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Abstract. Algorithmic progress and future technology threaten to-
day’s cryptographic protocols. Long-term secure protocols should not
even in future reveal more information to a—then possibly unlimited—
adversary.
In this work we initiate the study of protocols which are long-term secure
and universally composable. We show that the usual set-up assumptions
used for UC protocols (e.g., a common reference string) are not suffi-
cient to achieve long-term secure and composable protocols for commit-
ments or general zero knowledge arguments. Surprisingly, nontrivial zero
knowledge protocols are possible based on a coin tossing functionality:
We give a long-term secure composable zero knowledge protocol proving
the knowledge of the factorisation of a Blum integer.
Furthermore we give practical alternatives (e.g., signature cards) to the
usual setup-assumptions and show that these allow to implement the
important primitives commitment and zero-knowledge argument.

Keywords: Universal Composability, long-term security, zero-
knowledge, commitment.

1 Introduction

Computers and algorithms improve over time and so does the power of an adver-
sary in cryptographic protocols. The VENONA project is an example where NSA
and GCHQ stored Russian ciphertexts over years until they could eventually be
cryptanalysed. Official key length recommendations, e.g. by the Federal Office
for Information Security (BSI) in Germany, usually do not exceed six years and
future technology like quantum computers could render even paranoid choices
for the key length obsolete.

Everlasting security from assumptions which have to hold only during the
protocol execution would be an ideal solution to this problem. In this work
we combine the notions of universal composability and long-term security. For
the first time we investigate protocols which are long-term secure and exhibit
a composition theorem which allows a modular design of such protocols. In
particular, we investigate commitment protocols and zero knowledge schemes
which are composable and robust against future improvements of the adversary’s
computing technology.

? Most of the work was done while the second author was at the IAKS, Universität
Karlsruhe (TH)



To capture the threat of an adversary with increasing power we introduce
the security notion of long-term universal composability (long-term-UC) with
the intuition that the adversary becomes unlimited at some point of time after
termination of the protocol. The protocols do not run after this point of time,
but all information stored from past executions should not reveal any additional
information to the then unlimited adversary. A surprising consequence of our
work is that unconditionally hiding universally composable commitments [11]
are not necessarily long-term-UC.

Long-term-UC is preserved under composition, i.e., idealised building blocks
can be replaced by long-term-UC protocols while preserving the long-term secu-
rity of the complete application. The security notion of long-term-UC lies strictly
between information theoretical security, where the adversary is unlimited from
the start, and computational security, where for a concrete security parameter
the computational power of the adversary must be limited for all times to come.

The idea of everlasting security has been considered with respect to memory
bounded adversaries. Key exchange protocols and protocols for oblivious trans-
fer have been developed in the bounded storage model [5,4]. These protocols
can be broken by an adversary with more memory than assumed, however they
cannot be broken in retrospect even by an unlimited adversary. A scheme us-
ing distributed servers of randomness (virtual satellites) to achieve everlasting
security has been implemented [22]. In this scheme the access of the adversary
to the communication of the parties is limited during the key exchange. It was
shown by [12] that in the bounded-storage model composability cannot be taken
for granted. They gave a key-exchange protocol that is secure in the bounded-
storage model even if the initial key leaks after protocol termination, and then
showed that if the initial key was generated by a computationally secure key ex-
change protocol, the resulting protocol is insecure. However, theirs was a purely
negative result in that they did not give any criteria under which composition
would be possible.

Long-term security has been investigated in quantum cryptography. It is gen-
erally accepted (even though not formally proven) that an only computationally
secure authentication of a quantum key exchange yields a long-term secure key.
Bit commitment and oblivious transfer quantum protocols which become uncon-
ditionally secure, but rely on temporary computational assumptions have been
searched, but are now known to be impossible3 (see, e.g. [3]).

Zero knowledge proofs where the verifier cannot (ever) break the protocol
and the prover can only on-line break the protocol where given in [2]. In [20]
protocols achieving long-term security were stated, however, only secure function
evaluation with constant input size was considered.

Another related topic is that of forward security, where it is demanded that
past session keys remain computationally secure even if a long-term secret is
given to the adversary. This notion is related to but less strict than long-term-
UC as the session keys will not remain secure forever.

3 Unless additional assumptions are made, such as bounded quantum storage or the
availability of a piece of trusted hardware.



With exception of [12], previous work on long-term security did not take
the problem of composability into account. When composability is required the
situation changes drastically. E.g., an unconditionally hiding UC commitment
is not long-term-UC and a straightforward adaption of e.g., the protocol of [2]
using an unconditionally hiding UC commitment does not yield long-term-UC
zero knowledge arguments.

In this work we thoroughly investigate under which assumptions long-term-
UC commitments and long-term-UC zero knowledge arguments exist. We prove
that a common reference string or a coin toss functionality are not sufficient for
realising long-term-UC commitments. To be more general we define a function-
ality F to be only temporarily secret for a party P if, roughly speaking, every
secret known to P and F can in principle (but not necessarily efficiently) be
computed from the communication of F with all the other parties. Coin tossing
and a common reference string are only temporarily secret for all parties and
we show that long-term-UC commitments are impossible given any functionality
which is only temporarily secret for the committer.

In contrast to this impossibility of commitments there exist nontrivial lan-
guages for which zero knowledge protocols are possible even with an only tem-
porarily secret functionality. More concrete we give a zero knowledge proof of
knowledge of the factorisation of a Blum integer using a helping coin toss func-
tionality. This is astonishing as such a proof is not possible using a common
reference string instead of a coin toss (unless factoring of Blum integers is easy
for nonuniform machines). More generally we prove that no nonuniformly non-
trivial language has a zero knowledge argument with the help of any functionality
which works “offline” in the sense that it needs, like a common reference string,
only be invoked before the start of the protocol and which is only temporarily
secret for both parties. For example, most PKI are of this form and hence do
not allow any nontrivial long-term-UC zero knowledge protocols.

Further we give two helping functionalities which are motivated from (tem-
porarily) tamper proof hardware which allow to implement an unlimited number
of long-term-UC commitments and zero knowledge arguments for all in NP. One
of these functionalities resembles a trusted device which is computationally indis-
tinguishable from a random oracle and the other a smart card which can generate
digital signatures, but from which the secret key cannot be extracted. Note how-
ever that in contrast to the classical (i.e., not long-term secure) UC definition,
commitments and ZK are not sufficient to implement any functionality.

1.1 Preliminaries

Notation. We call a function f negligible, if for any polynomial p and sufficiently
large k, f(k) ≤ 1/p(k). We call f overwhelming, when 1− f is negligible.

A PPT-algorithm (probabilistic polynomial time) is a uniform probabilistic
algorithm that runs in polynomial-time in the length of its inputs.

We call a relation R on {0, 1}∗×{0, 1}∗ poly-balanced if there is a polynomial
p, s.t. |w| ≤ p(|x|) for all x, w with xRw. We call R an NP-relation if it is poly-
balanced and deciding (x, w) ∈ R is in P. We call R an MA-relation if it is



poly-balanced and deciding (x, w) ∈ R is in BPP. The language LR associated
with R is LR := {x ∈ {0, 1}∗ : ∃w : xRw}. We usually call x the statement
and w with xRw the witness for x. We call a MA-relation R (uniformly) trivial
if there is a PPT-algorithm that upon input x ∈ LR outputs a witness for x
with overwhelming probability. We call R nonuniformly deterministically trivial
there is a nonuniform deterministic polynomial-time algorithm that upon input
x ∈ LR outputs a witness for x.

An integer n > 0 is called a Blum-integer, if n = pq for two primes p, q with
p ≡ q ≡ 3 mod 4.

Cryptographic tools. In [21], it is shown that assuming the existence of a one-
way permutation, an unconditionally hiding commitment scheme exists. This
scheme has the additional properties that the unveil-phase consists of only one
message, and that given the message, the committed value v, and the transcript
of the interaction in the commit phase, there is a deterministic polynomial-time
algorithm that checks whether the verifier accepts the value v.

Using that commitment-scheme in the zero-knowledge proof-system for
graph-3-colourability from [16], we get a statistically witness indistinguishable
argument of knowledge for any NP-relation given any one-way permutation.4

Using a statistically witness indistinguishable argument of knowledge for any
NP-relation and a unconditionally hiding commitment scheme, we can easily
construct a statistically witness indistinguishable argument of knowledge for any
MA-relation using any one-way permutation.5

2 Modelling long-term UC

We now present our modelling of universally composable long-term security
(short long-term UC). We build on the Universal Composability framework [7].
In that modelling, a computationally limited entity called the environment has
to distinguish between an execution of the protocol (with some adversary) and
an execution of an ideal functionality (with some simulator). To define long-term
security, we have to add the requirement that even if some entity gets unlimited
computational power after the execution of the protocol, security is maintained.
In the Universal Composability framework, this is quite easily done: We simply
require that after the execution of the protocol (which is still performed against

4 The resulting scheme is of course also zero-knowledge, but we do not need that
property here.

5 Let B be a PPT-algorithm s.t. B(w, x) = 1 with overwhelming probability for xRw

and with negligible probability otherwise. Such an algorithm exists for any MA-
relation R. To prove a statement x ∈ LR, the prover first commits to the witness
w, then commits to randomness r′. The verifier sends to the prover randomness r′′.
Then the prover proves using a statistically witness indistinguishable argument of
knowledge that he knows a witness, s.t. B(w,x) = 1 with random-tape r := r′ ⊕ r′′.
Since the latter statement is in NP, this can be done given a one-way permutation.



computationally limited adversaries) even an unlimited entity could not distin-
guish between an execution of the real protocol or of the functionality, i.e., we
require that the output of the environment is statistically indistinguishable.6

Definition 1 (Long-term UC). Let EXECπ,A,Z(k, z) denote the output of Z
in an execution of the protocol π with adversary A and environment Z, where
k is the security parameter and z the auxiliary input of the environment Z.
EXECF ,A,Z(k, z) is defined analogously.7

A protocol π long-term-UC realises a functionality F , if for any
polynomial-time adversary A there exists a polynomial-time simulator S,
s.t. for any polynomial-time environment8 Z the families of random variables
{EXECπ,A,Z(k, z)}k∈N,z∈{0,1}poly(k) and {EXECF ,S,Z(k, z)}k∈N,z∈{0,1}poly(k) are
statistically indistinguishable.

Note that the Universal Composition Theorem from [7] applies with a virtu-
ally unmodified proof.

Conventions. In all our results we assume that secure channels are given for
free (i.e., we are in the secure-channel network-model).9 Further, security al-
ways denotes security with respect to static adversaries, i.e. parties are not cor-
rupted during the protocol execution. However, we believe that our results can
be adapted to adaptive adversaries.

We consider the case without an honest majority, since given an honest ma-
jority we could use information-theoretically secure protocols.

2.1 On the minimality of the security notion

At this point one might wonder whether this definition is possibly stricter than
necessary, especially in view of the various impossibility results presented below.
However, if one is willing to accept stand-alone security (i.e., simulation-based
security without an environment, see e.g. [15]), with the extra requirement that
the outputs of the parties and the adversary/simulator are statistically indistin-
guishable in real and ideal model (long-term stand-alone security), as a minimal
security notion, we can argue as follows: If we want this minimal security and

6 Note that we can w.l.o.g. assume that the output of the environment contains the
whole view of that environment.

7 See [7] for details.
8 Not limited to environments with single bit output.
9 This much simplifies the presentation. Since all our results concern the two-party

case, it is easy to adapt our results to authenticated channels, if one adapts the defi-
nitions of the functionalities accordingly (e.g., the commitment functionality would
then send the value of an unveil to the adversary as well as to the adversary). How-
ever, we cannot expect to use a key exchange protocol to make the authenticated
channels secure, since such an approach would not be long-term secure.



composability simultaneously, the proof from [18]10 states that the minimal se-
curity notion satisfying these two requirements is a security notion similar to
Definition 1, with the only difference that the simulator is allowed to depend
on the environment (specialised-simulator long-term UC). Since all our impossi-
bility results also apply for this weaker notion (we never use the fact that the
simulator does not depend on the environment), we see that we cannot find an
essentially more lenient security notion than Definition 1 if we accept long-term
stand-alone security as a minimal security notion.

2.2 Functionalities

In this section, we define some commonly used functionalities that we will inves-
tigate in the course of this paper.

We assume the following conventions in specifying functionalities:

We always assume that the adversary is informed of every invocation of the
functionality, and the functionality only delivers its output when the adversary
has triggered that delivery. So a phrase like “upon input x from P1, F sends y to
P2”should be understood as“upon input y from P1, F sends (i-th input from P1)
to the adversary, and upon a message (deliver i) from the adversary, F sends y
to P2”. For better readability, we use the shorter formulation.

Most of the functionalities defined here are parametrised by a function m
giving the length of their input and outputs. We will often omit explicitly stating
this m if it is clear from the context.

When a functionality receives an invalid input from some party, it simply
forwards that input to the adversary.

The first functionality used in this paper is the common reference string
(CRS). Intuitively, the CRS denotes a random string that has been chosen by
some trusted party or by some natural process, and that is known to all parties
prior to the start of the protocol.

Definition 2 (Common Reference String (CRS)). Let Dk (k ∈ N) be an
efficiently samplable distribution on {0, 1}∗. At its first activation the functional-
ity FD

CRS chooses a value r according to the distribution Dk (k being the security
parameter). Upon any input from Pi, send r to the adversary and to Pi (in
particular, all parties Pi get the same r).

If Dk is the uniform distribution on {0, 1}m(k) for any k, we speak of a
uniform CRS of length m. We then write Fm

CRS instead of FDk

CRS.

The second functionality is the coin toss. At a first glance, the coin toss looks
very similar to the CRS, since also the coin toss consists of a random string that
is given to both parties involved (and to the adversary). However, the coin toss
guarantees that no party can learn the coin toss before both parties agree to toss

10 With minor modifications: simply replace computational indistinguishability by sta-
tistical indistinguishability.



the coin.11 As we will see below, a coin toss is more powerful than a CRS in the
context of long-term UC.12

Definition 3 (Coin Toss (CT)). When both P1 and P2 have given some
input, the functionality Fm

CT chooses a uniformly distributed r ∈ {0, 1}m(k) and
sends r to the adversary, to P1, and to P2.

The next functionality models the setup assumption, that there is a trusted
(predistributed) public key infrastructure, which provides each party with a se-
cret key and attests the corresponding public key to any interested party.

Definition 4 (Public Key Infrastructure (PKI)). Let G be a PPT-
algorithm that upon input 1k outputs two string sk and pk.13 When FG

PKI runs
with parties P1, . . . , Pn, upon its first activation it chooses independent key pairs
(sk i, pk i) ← G(1k) for i = 1, . . . , n and sends (pk1, . . . , pkn) to the adversary.
When receiving any input from Pi, send (sk i, pk1, . . . , pkn) to Pi.

The next two functionalities are well-known cryptographic building blocks that
find application in the construction of many protocols.

Definition 5 (Commitment (COM)). Let C and R be two parties. The func-

tionality FC→R,m
COM behaves as follows: Upon (the first) input x ∈ {0, 1}m(k) from

C send (committed) to R. Upon input (unveil) from C send x to R.
We call C the sender and R the recipient.

Definition 6 (Zero-Knowledge (ZK)). Let R be a MA-relation, and let P

and V be two parties. The functionality FR,P→V,m
ZK behaves as follows: Upon the

first input of (x, w) from P satisfying xRw and |x| ≤ m(k), send x to V .14

We call P the prover and V the verifier.

3 Commitment

In this section we will examine the possibility of long-term-UC realising commit-
ments. It will turn out, that commitment cannot be long-term-UC realised using
CRS or coin-toss, nor with an arbitrary PKI. In particular unconditionally hiding

11 This can be illustrated by the following example: Alice and Bob want to know which
of them pays the bill. So Alice and Bob agree: “We toss a coin, if the outcome is 1,
Bob pays, otherwise Alice pays.” Of course, if they were to use a CRS instead of a
coin toss they could not use this simple protocol, because the outcome of the CRS
is known before the start of the protocol.

12 Although, in contrast, a UC secure (without long-term) coin toss can be realised
using a CRS under reasonable complexity assumptions, see [9].

13 I.e., G is a key generation algorithm.
14 The resulting functionality FZK is not polynomial-time if R is not an NP-relation.

However, in that case FZK can be replaced by an efficient implementation that uses
a BPP-algorithm for checking xRw and errs only with negligible probability. The
resulting functionality is then indistinguishable from FZK.



UC commitments, which are possible with a CRS [11], are not necessarily long-
term UC.15 Note that the incompleteness of the CRS stands in stark contrast to
the situation of (non-long-term) UC. In [10] it was shown that given a CRS, any
functionality has a UC secure realisation. Furthermore, in [1] it was shown that
the same holds for a PKI.16 However, given a ZK functionality, commitments
can be realised even with respect to long-term UC.

To state the impossibility results in a more general fashion, we first need the
following definition:

Definition 7 (Only temporarily secret). We say a functionality F is only
temporarily secret (OTS) for party P , if the following holds in any protocol:
Let trans denote the transcript of all communication between F and the other
machines (including the adversary). Let trans \ P denote the transcript of all
communication between F and all machines except P . Then there is a determin-
istic function f (not necessarily efficiently computable) s.t. with overwhelming
probability we have trans = f(k, trans \ P ).

The intuition behind this definition is that if F is only temporarily secret
(OTS) for P , then any secrets that P and F share may eventually become
public. The following lemma gives some examples:

Lemma 8. Coin toss (FCT) and CRS (FD
CRS with any D) are OTS for all par-

ties. Commitment (FCOM) and ZK (FZK) are OTS for the recipient/verifier. If
G is a key generation algorithm, s.t. the secret key depends deterministically on
the public key (e.g., RSA, ElGamal17), the PKI FG

PKI is OTS for all parties.

Proof. In the case of coin toss and CRS the adversary learns the random value
r when if some party learns it, so all communication can be deduced from the
communication with the adversary. In case of Commitment and ZK the commu-
nication with the recipient/verifier can be deduced from the communication with
the sender. (In these cases, the function f is even efficiently computable.) All
secret keys chosen by FG

PKI can be calculated from the public keys pk1, . . . , pkn

sent to the adversary. ut

Using this definition, we can prove that using a CRS, coin-toss or other
functionalities that are OTS for the sender, one cannot long-term-UC realise a
commitment:

Theorem 9 (Impossibility of commitment with OTS functionalities).
Let F be a functionality that is OTS for party C. Then there is no nontrivial

15 The intuitive reason being that the simulator may choose a value for the CRS which is
only computationally indistinguishable from the uniform distribution without loosing
the unconditional hiding property.

16 Their definition Fkrk of a PKI is somewhat different to ours. However, their proof
directly carries over to FPKI.

17 Under the condition, that in the secret key, group elements are always given using
a unique representative (e.g., the secret exponent e in RSA is chosen smaller than
ϕ(n)).



protocol that long-term-UC realises commitment with sender C (FC→R
COM ) in the

F-hybrid model.

If one is willing to assume NP 6⊆ P/poly, this theorem is an immediate conse-

quence of Lemma 17 stating that FSAT,C→R
ZK (ZK for SAT with the sender C be-

ing the prover) is possible from FC→R
COM , and Corollary 15 stating that FSAT,C→R

ZK

cannot be realised using F (both shown in Section 4). However, in the full ver-
sion [19] we give a direct proof (similar in spirit to that of Theorem 14) for this
theorem that does not depend on NP 6⊆ P/poly.

An interesting corollary from this theorem is that long-term-UC commit-
ments cannot be turned around, i.e. using one (or many) long-term-UC com-
mitments from A to B, one cannot long-term-UC realise a commitment from B
to A.

Corollary 10 (Commitments cannot be turned around). There is no
nontrivial protocol long-term-UC realising FA→B

COM using any number of instances
of FB→A

COM .

Proof. Immediate from Lemma 8 and Theorem 9. ut

In contrast to the impossibility results above, it is possible to get long-term-
UC secure commitments using a ZK functionality:

Lemma 11 (Commitment from ZK). Assume that a one-way permutation
exists. Then there is a nontrivial protocol π that long-term-UC realises FC→R

COM

(commitment with sender C) and that uses two instances of FSAT,C→R
ZK (ZK for

SAT with the sender C being the prover).

The protocol π looks as follows:

– To commit to v, the sender C first commits to v using an unconditionally
hiding commitment scheme.

– Then C proves (using the first instance of FZK) that he knows v and match-
ing unveil information u.18

– To unveil, the sender C sends v to the recipient and proves (using the
second instance of FZK) that he knows matching unveil information u.

The long-term-UC security of this protocol stems from the following two
facts. Equivocability: the simulator can unveil to any value v′ since he controls
the second instance of FZK. Extractability: Since the sender cannot (efficiently)
compute different unveil informations u and u′, the message v given to the first
instance of FZK must be the same as that used in the unveil phase. Since the
simulator controls the first instance of FZK, he learns that message v during the
commit phase.

The actual proof is given in the full version [19].

18 I.e., unveil information that would convince the verifier.



4 Zero-Knowledge

In the present section we examine to what extend long-term-UC secure zero-
knowledge proofs can be implemented using various functionalities. Besides sev-
eral impossibility results, we also have a quite surprising possibility result (The-
orem 16).

4.1 Using OTS functionalities

First, analogous to our investigations concerning commitments in Section 3, we
are now going to examine whether long-term-UC secure ZK can be realised using
functionalities that are OTS for one of the parties.

Whether long-term-UC realising ZK for some relation R is possible strongly
depends on the relation R under consideration. The following definition specifies
a class of relations which is going to play an important role in our results:

Definition 12 (Essentially unique witnesses). A MA-relation R has essen-
tially unique witnesses if there is a PPT-algorithm UR (the witness unifier), that
has the following properties:
– If w is a witness for x, UR(1k, x, w) outputs a witness for x with overwhelm-

ing probability, formally: for sequences wk, xk with xkRwk the probability
P (xkRUR(1k, xk, wk)) is overwhelming in k.

– If w is a witness for x, the output of UR(1k, x, w) is almost independent
of w, formally: for sequences w1

k, w2
k, xk with xkRw1

k and xkRw2
k, the fam-

ilies of random variables UR(1k, xk, w1
k) and UR(1k, xk, w2

k) are statistically
indistinguishable.

A possible way to interpret the witness unifier is as a statistically witness
indistinguishable proof, that simply sends a witness in the clear.

It is most likely that relations without essentially unique witnesses exist:

Lemma 13. If one-way-functions (secure against uniform adversaries) exist, or
if NP 6⊆ P/poly, then SAT does not have essentially unique witnesses.

The proof is given in the full version [19].
We are now ready to present the first impossibility result concerning long-

term-UC secure ZK:

Theorem 14 (Impossibility of ZK with OTS functionalities). Let R be
a MA-relation without essentially unique witnesses. Let F be a functionality
that is OTS for party P . Then there is no nontrivial protocol that long-term-UC
realises ZK for the relation R with prover P (FR,P→V

ZK ) in the F-hybrid model.

The rough idea of the proof is as follows: Clearly, if π was to be long-term-UC
secure, the interaction between prover P and verifier V must be (almost) statis-
tically independent from the witness V received from the environment. Further,
a simulator that is able to simulate convincingly in case of a corrupted prover
must be able to extract a witness w̃ from the communication with that prover,



which is (almost) statistically independent from the witness w. So in particular,
w̃ is (almost) statistically independent from w. Therefore, combining the prover
and the simulator into one algorithm, we get an algorithm that given one witness
w returns another almost independent one, in other words, a witness unifier in
the sense of Definition 12. Therefore R must have essentially unique witnesses,
which gives the desired contradiction.

The proof is given in the full version [19].
Note that we cannot expect an analogous result in the case that F is OTS

for the verifier V , since commitments are OTS for the recipient and Lemma 17
show that FR,P→V

ZK can be long-term-UC implemented using commitments with
the verifier V as recipient.

Combining the results in this section, we get the impossibility of long-term-
UC secure ZK for SAT:

Corollary 15. Let F be a functionality that is OTS for party P . If one-way-
functions (secure against uniform adversaries) exist, or if NP 6⊆ P/poly, there
is no nontrivial long-term-UC secure protocol for ZK with prover P for SAT in
the F-hybrid model.

Proof. Immediate from Lemma 13 and Theorem 14. ut

At this point one might ask why our impossibility result needs the restric-
tion to relations without essentially unique witnesses. Would not the following
argumentation show that given a, say, coin-toss, there is no long-term-UC ZK
protocol π for any nontrivial relation: The simulator is able to extract a witness w
from the interaction with the prover. Therefore w must information-theoretically
already be “contained” in the interaction. On the other hand, in an interaction
between simulator and verifier, the witness w cannot be “contained” in the inter-
action, since the simulator does not know w. However, since the interaction in
both cases must be statistically indistinguishable from the interaction in the un-
corrupted case, that latter both “contains”and does not “contain”w, which gives
a contradiction. Surprisingly, this intuition is not sound as shows the following
possibility result:

Theorem 16 (ZK for Blum-Integers using coin toss). Assume that a one-
way permutation exists. Let nR(p, q) if n = pq, p, q prime and p ≡ q ≡ 3 mod 4.
There is a nontrivial protocol using two instances of FCT that long-term-UC
realises FR

ZK in the coin toss hybrid model.

To construct such a protocol, we have to achieve two seemingly contradic-
tory goals simultaneously. If the prover or verifier is corrupted, the simulator
may choose the value r the coin-toss functionality returns. First, since the sim-
ulator should be able to extract a witness (p, q) (i.e., a factorisation of n in this
case) in case of the corrupted prover, the simulator should be able to choose r
having a trapdoor X s.t. it is possible to extract (p, q) under knowledge of that
trapdoor. However, in the case of long-term-UC the value r should be statis-
tically indistinguishable from uniform randomness. So the trapdoor should be



present (but possibly unknown) even if r is chosen randomly. Further, if the
verifier is corrupted, the simulator should be able to simulate the proof with-
out knowing a witness. However, since also in this case r is almost uniformly
distributed, the trapdoor X is also present. So by finding that trapdoor X we
could extract a witness from the proof although the simulator never used that
witness in constructing the proof. This can only be realised, if finding the witness
can be reduced to finding the trapdoor.

In the case of factoring n, an example for such a trapdoor is the knowledge of
random square roots modulo n. Given an oracle that finds square roots modulo
n, we can factor n. So if the trapdoor X consists of the square roots of r (when
we consider r as a sequence of integers modulo n) finding the trapdoor is as
hard as factoring n, so there is no contradiction in the fact that by finding the
trapdoor we can extract a witness (p, q) from an interaction that was produced
without knowledge of (p, q).

This leads us to the following simplified version of our protocol:

– The prover sends n to the verifier.
– Prover and verifier invoke the coin-toss. The result r of that coin-toss is

considered as a sequence r1, . . . , rk of integers modulo n.
– For each i, the prover chooses a random si with s2

i = ri. It sets si := ⊥ if
ri does not have a square root.19

– The prover sends s1, . . . , sk to the verifier.
– The verifier checks, whether s2

i = ri for all si 6= ⊥, and whether at least 1
5

of all si 6= ⊥.

This protocol is not yet a long-term-UC realisation of FR
ZK, since it fails if

n is not a Blum-integer, but it will demonstrate the main point. So why is this
protocol long-term-UC secure if we guarantee that n is a Blum-integer? First,
we see that if prover and verifier are both honest, the verifier will always accept.
This is due to the fact that for a Blum-integer n, a random residue is a square
with probability at least 1

4 .
Now we consider the case that the verifier is corrupted. In this case, the

simulator has to produce coin-toss values r1, . . . , rn that are indistinguishable
from the uniform distribution, and a proof that is statistically indistinguishable
from the proof given by the prover. In other words, the simulator needs to si-
multaneously produce (almost) uniformly distributed r1, . . . , rn, and for each
ri a random square root si modulo n if such si exists. Fortunately, if n is a
Blum-integer, there is an efficient algorithm Q for choosing such ri and si. So
the simulator can successfully simulate by simply choosing the ri and si using
Q. Note that for this, it is vital that the simulator knows n before having to
send the coin-toss result r1, . . . , rn to the environment. This is why we let the
prover send n to the verifier before they invoke the coin-toss. In particular, we
could not use a CRS here, because then the simulator might have to choose the
ri before the environment sends n to the prover.

Now for the case that the prover is corrupted. In this case, the simulator
needs to interact with the environment incorporating the prover and to extract

19 This is feasible given the factorisation of n.



the witness (p, q) if the prover’s proof would convince the honest verifier. To do
this, the simulator again chooses the coin-toss r1, . . . , rn using the algorithm Q
and therefore knows random square roots s̃i of all ri that are quadratic residues.
Now the environment sends si to the simulator. The uncorrupted verifier would
only accept if at least k/5 of these si satisfy s2

i = ri. Therefore after receiving the
si from the environment, the simulator knows k/5 independently chosen pairs
(si, s̃i) of square roots of ri. For each such pair the probability of si 6≡ s̃i mod n is
1
2 (we ignore the finer detail of non-invertible ri at this point), and in this case we
get a factor of n by evaluating gcd(si ± s̃i, n). This happens with overwhelming
probability, so the simulator is successful in extracting a factor and therefore the
witness (p, q).

However, the protocol as described so far has a major flaw: If n is not a Blum-
integer, the above security proof does not work. So we must ensure that n is in
fact a Blum-integer. If the verifier is corrupted, the simulator gets n from the
functionality FR

ZK which ensures (by definition of R) that n is a Blum-integer. So
in this case there is no problem. However, if the prover is corrupted, the simulator
will have to choose the coin-toss r1, . . . , rn. If n is not a Blum-integer, he might
learn this later on (since he learns (p, q) in case of a successful proof), but then it
might already be too late, because the simulator sends the ri to the environment
before the end of the proof (the algorithm Q does not guarantee r1, . . . , rn to
be (almost) uniformly distributed if n is not a Blum-integer). To overcome this
difficulty, we add an additional step to the beginning of the protocol. Before
the coin-toss is invoked, the prover proves that n is indeed a Blum-integer. If
the prover succeeds in this proof, the simulator can use the algorithm Q without
danger, otherwise the simulator may abort (since the verifier would have done so,
too). However, this introduces the additional difficulty that in case of a corrupted
verifier, the simulator has to perform that proof, too, and without knowledge of
the witness. To achieve this, we make use of the FLS-technique [13]: Prover and
verifier first invoke another instance of the coin-toss functionality (in this case,
a CRS would be sufficient, too) and then the prover proves using a statistically
witness indistinguishable argument of knowledge to the verifier that either n
is a Blum-integer or that he knows a the preimage of the coin-toss t under a
one-way permutation f . Then the simulator can simulate this proof by simply
choosing t = f(u) for uniform u. Since f(u) is uniformly distributed, this is
indistinguishable from what an honest prover knowing the witness would produce.
After having successfully performed this first step, prover and verifier proceed
with the protocol as described above.

The actual proof for Theorem 16 is given in the full version [19].
Furthermore, given a commitment, long-term-UC secure ZK for any NP-

relation is (unsurprisingly) possible:

Lemma 17 (ZK from commitment). Let R be a NP-relation. Then there is

a long-term-UC secure protocol π for ZK with relation R (i.e., FR,P→V
ZK ) using

a polynomial number of commitments from prover P to verifier V (i.e., FP→V
COM ).

Proof. [9] gives a UC secure protocol that realises FR,P→V
ZK using FP→V

COM where
R is the relation for the Hamilton cycle problem. Their result even holds uncon-



ditionally (i.e., even when the environment is unlimited during the execution of
the protocol) and therefore in particular with respect to long-term UC. Since
the Hamilton cycle problem is NP-complete, the lemma follows. ut

Note that we cannot expect a similar result using commitments from verifier to
prover, since FCOM is OTS for the recipient and thus Theorem 14 applies.

4.2 Using offline functionalities

In the preceding section, we saw that using a coin toss, long-term-UC secure ZK
for the factorisation of Blum-integer can be realised. It is therefore a natural
question to ask whether something similar is also possible using a CRS, which
can be seen as the offline variant of a coin-toss. Unfortunately, the answer is no.
To state this result in greater generality, let us first formalise what we mean by
an offline functionality.

Definition 18 (Offline functionalities). We call a functionality F offline, if
it has the following form: When F runs with parties P1, . . . , Pn, upon its first
activation, it chooses values (c, cP1 , . . . , cPn

) according to a fixed distribution and
sends c to the adversary. When receiving any input from Pi, send cPi

to Pi.

Lemma 19. CRS and PKI are offline functionalities.

Proof. For FCRS, set c := ci := r (cf. Definition 2), and for FPKI, set c :=
(pk1, . . . , pkn) and ci := (sk i, pk1, . . . , pkn) (cf. Definition 4). ut

The following result shows that a CRS as well as a PKI where the secret key
is information-theoretically determined by the public key (cf. Lemma 8) cannot
be used for long-term-UC secure ZK for any relation R unless that relation is
trivial for nonuniform algorithms anyway.

Theorem 20 (Impossibility of ZK with OTS offline functionalities). Let
R be a nonuniformly deterministically nontrivial MA-relation.20 Let F be an
offline functionality that is OTS for party P and for party V . Then there is no
nontrivial protocol that long-term-UC realises ZK for relation R with prover P
and verifier V (i.e., FR,P→V

ZK ) in the F-hybrid model.

To understand the proof idea, assume that F is a CRS. Assume that there
is a protocol π for FR

ZK. Then there is a simulator S1 that is able to choose
the CRS r1 and calculate a corresponding trapdoor T1, s.t. he can simulate
the prover and convince the verifier using this trapdoor (without knowledge of
a witness). Furthermore, there is another simulator S2 that is able to choose
the CRS r2 and calculate a corresponding trapdoor T2, s.t. he can simulate the
verifier and — if the verifier accepts — extract a witness w. Since both r1 and r2

are statistically indistinguishable from an honestly chosen CRS, it follows that

20 I.e., there is no nonuniform deterministic polynomial-time algorithm that finds wit-
nesses for R.



an honestly chosen CRS always already “contains” such trapdoors T1 and T2

(however, given a CRS it can be infeasible to find these trapdoors). Therefore,
if we provide S1 and S2 with a CRS and with trapdoors T1 and T2, S1 will be
able to produce a convincing proof (due to trapdoor T1), and S2 will be able to
extract a witness from this convincing proof. Since S1 and S2 are polynomial-
time, and CRS and trapdoors can be given as an auxiliary input, it follows that a
nonuniform polynomial-time algorithm can find witnesses for R in contradiction
to the nontriviality of R. Functionalities other than a CRS are handled almost
identically, see the full proof.

The full proof is given in the full version [19].
A natural question arising in this context is whether this impossibility result

can be made stronger. In particular, one might ask whether such an impossibility
result already holds if F is OTS for P or for V . Further one might ask, whether
the theorem can be strengthened to state impossibility of ZK for uniformly non-
trivial relations. These questions are discussed in the full version.

Lemma 8 tells us that at least for some commonly used encryption schemes,
FG

PKI is OTS for all parties (here and in the following G denotes the key gener-
ation algorithm) and therefore cannot be used for long-term-UC realising com-
mitment or zero-knowledge21. However, in general this is not the case. As we
show in the full version, there exist special public key schemes for which a PKI
can be used for constructing ZK and commitment protocols.

5 Other setup-assumptions

As the preceding sections have shown, trying to design long-term-UC secure
protocols using a CRS, coin toss or PKI is a futile endeavour. Therefore, in
the following sections we will investigate alternative setup-assumptions that are
more fruitful in the context of long-term-UC.

5.1 Trusted devices implementing a random oracle

A very powerful assumption in the context of universally composable security
is the random oracle. It may therefore seem worthwhile to investigate whether
a random oracle can be used to realise long-term-UC secure commitment and
ZK. However, a closer look shows that in the context of long-term-UC security
the random oracle is a very unrealistic assumption due to the following fact:
Real-life implementations of the random oracle have to be done via some effi-
ciently computable function (e.g., using trusted hardware that calculates some
pseudorandom function with a secret seed). In the context of long-term-UC, this
function could be “broken” by an unlimited adversary after protocol execution.
In contrast, a random oracle functionality ensures, that even for an unlimited
adversary, the function looks completely random. Therefore, we advocate that
in the context of long-term-UC, instead of a random oracle one should use a

21 Except for nonuniformly trivial relations, see Theorem 20.



functionality that evaluates a pseudorandom function with a secret seed (repre-
senting e.g. a (temporarily) trusted device).

We now give a definition of such a functionality FTPF. Note however, that
all possibility results given in this section also hold (with identical proofs) when
using a random oracle instead of FTPF.

Definition 21 (Trusted pseudorandom function (TPF)). Let fs be an ef-
ficiently computable family of deterministic functions fs : {0, 1}l(|s|) → {0, 1}l(|s|)

with polynomially bounded l.
Then, the functionality trusted pseudorandom function (TPF) Ff

TPF is
defined as follows: Upon its first activation, it chooses a uniformly random
s ∈ {0, 1}k. When receiving a message x ∈ {0, 1}l(k) from a party P or the
adversary, it sends fs(x) to P or the adversary, respectively.

At this point, one should note that the UC definition (and therefore our variant,
too) implicitly assumes that when using a TPF, that TPF is accessed only by
the protocol (and the adversary), but that it cannot be directly accessed by the
environment. This in particular rules out that different protocols share a single
TPF. A more detailed analysis of the consequences of this assumption can be
found in [17,8]. However, we show that using a single TPF we can perform an
arbitrary number of zero knowledge arguments or commitments, so that at least
we do not need a large number of TPFs when constructing a larger protocol that
performs many ZK arguments or commitments.

Theorem 22 (ZK from TPF). Assume that a one-way permutation exists.
Let fs be a pseudorandom function (as in [14]), and R an NP-relation. Then

there is a nontrivial protocol π using one instance of Ff
TPF that long-term-UC

realises unlimited number of instances of FR
ZK (i.e., ZK for the relation R).

We give the proof idea here. First a commitment scheme is constructed which is
computationally binding, unconditionally hiding and extractable (however, this
commitment is not necessarily UC). The extractable commitment is constructed
from a given commitment which is unconditionally hiding. To commit to a value
v one first commits to v, fs(v). Then one commits to u, fs(u) where u is the
unveil information for the first commitment. As the function fs(.) can only be
evaluated by using the functionality FTPF a simulator can extract the committed
value v from the calls which are placed to FTPF.

Using this extractable commitment we modify the zero knowledge protocol
for graph-3-colourability of [16]. Instead of letting the prover commit to a colour-
ing and then let the verifier choose a random edge e for which the colours are
unveiled and checked we let the verifier commit to e before the prover commits
to the colouring.

In this protocol the simulator can, if the prover is corrupted, extract a wit-
ness from the commitments of the simulated real adversary or the protocol will
fail and is then easily simulated. In case of a corrupted verifier the simulator
can extract the edge which will later be investigated before committing to the



colouring. So the simulator can easily commit to a fake colouring and still pass
the test at the edge in question.

In both cases the communication between the parties, the adversary and the
environment are statistically indistinguishable in the real protocol and in this
simulation and we achieve a long-term-UC zero knowledge argument for graph-
3-colouring and hence for all NP-statements. The complete proof can be found
in the full version [19].

According to Lemma 11 one commitment can be obtained from two invoca-
tions of a zero knowledge scheme and we can hence conclude:

Corollary 23 (Commitments from TPF). Assume that a one-way permu-
tation exists. Let fs be a pseudorandom function. Then there is a nontrivial
protocol π using one instance of Ff

TPF that long-term-UC realises an unlimited
number of instances of FCOM (i.e., commitments).

Proof. Immediate from Lemma 11 and Theorem 22. ut

5.2 Signature cards

One disadvantage of the TPF-assumption from the foregoing section is that
trusted hardware implementing a pseudorandom function are unlikely to be
available for practical use.22 However, another kind of trusted device is already
available commercially today: the signature card. A signature card is a tam-
perproof device with an built-in secret key. Upon request, this card signs an
arbitrary document, but never reveals the secret key. The corresponding pub-
lic key can be obtained from some certification authority. These properties are
required e.g. from the German signature law [23].

These properties are captured by the following ideal functionality (based
on [17]):

Definition 24 (Signature Card (SC)). Let S = (KeyGen ,Sign ,Verify) be

a signature scheme. Let H be a party. Then the functionality FH,S
SC (signature

card for scheme S with holder H) behaves as follows: Upon the first activation,

FH,S
SC chooses a public/secret key pair (pk , sk) using the key generation algorithm

KeyGen(1k). Upon a message (pk ) from a party P or the adversary, send pk to
that party or the adversary, resp. Upon a message (sign , m) from the holder H ,
produce a signature σ for m using the secret key sk and send σ to H.23

As was the case with TPFs, our definition implicitly assumes that the en-
vironment has no direct access to the signature card. See the discussion after
Definition 21. However, in [17] techniques where introduced that allow to share

22 Not because of technical difficulties, but simply and plainly due to the forces of
supply and demand.

23 The definition from [17] additionally provides the possibility of locking the card
(called seize and release there). These however are not needed in our protocols, so
we omit them.



a single signature card in different protocols. It would be interesting to explore
whether their approach can also be applied to our scenario.

It was shown in [17] that signature cards are powerful assumptions in the
context of universal composability. Using an adaption of their technique, we can
show that these signature cards are also very useful for long-term-UC security:

Theorem 25 (ZK from a signature card). Assume that a one-way permu-
tation exists. Let S be an EF-CMA secure signature scheme. Let R be any MA-
relation. Then there is a nontrivial protocol π that long-term-UC realises an
unbounded number of instances of FR,P→V

ZK (i.e., ZK for the relation R with

prover P ) using a single instance of FS,P
SC (i.e., a signature card for S with P

as the holder).

The idea of the proof is as follows: To prove the existence of a witness w for
some statement x, the prover P signs x using his signature card (resulting in a
signature σ) and then performs a statistically witness indistinguishable argument
of knowledge that one of the following holds: (i) he knows a w and a σ, so that
xRw and σ is a valid signature for w, or (ii) he knows a secret key sk ′ matching
the public key pk provided by the signature card functionality.

Consider the case of a corrupted prover. Since S is EF-CMA secure, it is
infeasible to get a secret key sk ′ matching the public key pk chosen by the
signature card (since the signature card allows only black-box access to the
signing algorithm). So the prover has to show the knowledge of a signature σ of
the witness w. The only way to obtain such a signature σ is to sign the witness
w using the signature card. Since in the ideal model, the signature card FSC is
simulated by the simulator, the simulator learns that witness w. So the simulator
is able to extract w while honestly simulating verifier and FSC.

In case the verifier is corrupted, the simulator knows the secret key sk match-
ing the public key pk . So the simulator can prove (ii) instead of (i). Since the
proof system we use is statistically witness indistinguishable, the resulting inter-
action is statistically indistinguishable.

The full proof is given in the full version [19].

Corollary 26 (Commitments from a signature card). Assume that a one-
way permutation exists. Let S be an EF-CMA secure signature scheme. Then
there is a nontrivial protocol π that long-term-UC realises an unbounded number
of instances of FC→R

COM (i.e., commitment with sender C) using a single instance

of FS,P
SC (i.e., a signature card for S with P as the holder).

Proof. This is an immediate consequence of Theorem 25 and Lemma 11. ut

6 Conclusions

We have examined the notion of long-term UC which allows to combine the ad-
vantages of long-term security (i.e., security that allow for unlimited adversaries
after protocol end) and Universal Composability. We saw that the usual set-up



assumptions used for UC protocols (e.g., CRS) are not sufficient any more in
the case of long-term UC. However, we could show that there are other practi-
cal alternatives to these setup-assumptions (e.g., signature cards) that allow to
implement the important primitives commitments and zero-knowledge proofs.

Further research in this directions might include the following:
– Which protocol tasks can or cannot be long-term-UC realised using commit-

ments and zero-knowledge proofs.
– What other setup-assumptions might be useful in the context of long-term

UC. In particular, under which assumptions can OT (and therefore any func-
tionality) be realised?

– Our investigations were in the secure-channels communication-model. If only
authenticated channels are present, the important issue of key exchange oc-
curs. What setup-assumptions are necessary to implement the latter?

– The protocols presented here were not optimised for efficiency. To what ex-
tend can efficient protocols be found for the tasks discussed in this work?

– In [17] techniques were presented that allow to share a single signature card
between different protocols. Can these techniques be applied to our setting,
too?

– Much work on unconditional and long-term security has been done in the
field of quantum cryptography. How does long-term UC behave in the pres-
ence of quantum communication. Can some of the impossibility results given
in this work be avoided? In particular, quantum communication could solve
the problem of key exchange mentioned above.
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