
Tackling Adaptive Corruptions in Multicast
Encryption Protocols?

Saurabh Panjwani
University of California, San Diego

Abstract. We prove a computational soundness theorem for symmetric-
key encryption protocols that can be used to analyze security against
adaptively corrupting adversaries (that is, adversaries who corrupt pro-
tocol participants during protocol execution). Our soundness theorem
shows that if the encryption scheme used in the protocol is semantically
secure, and encryption cycles are absent, then security against adaptive
corruptions is achievable via a reduction factor of O(n · (2n)l), with n
and l being (respectively) the size and depth of the key graph gener-
ated during any protocol execution. Since, in most protocols of practical
interest, the depth of key graphs (measured as the longest chain of ci-
phertexts of the form Ek1(k2), Ek2(k3), Ek3(k4), · · ·) is much smaller than
their size (the total number of keys), this gives us a powerful tool to
argue about the adaptive security of such protocols, without resorting to
non-standard techniques (like non-committing encryption).

We apply our soundness theorem to the security analysis of mul-
ticast encryption protocols and show that a variant of the Logical Key
Hierarchy (LKH) protocol is adaptively secure (its security being quasi-
polynomially related to the security of the underlying encryption scheme).

Keywords. Adaptive Corruptions, Encryption, Multicast, Selective De-
cryption

1 Introduction

Imagine a large group of users engaged in a private virtual conversation over the
Internet. The group is monitored by a group manager who ensures that at all
points in time, users share a common secret key which is used for secure commu-
nication within the group (e.g., for encrypting all data that is exchanged between
group members). Over time, the composition of the group changes—users can
leave and/or join it at various (a priori unknown) instants—and, accordingly,
the manager sends “update” messages to the group which enable all and only
current participants to acquire the common secret. At some calamitous hour, a
large number of user terminals get hijacked (e.g., an Internet worm infects half
the Windows users in the group) and all information possessed by these users
gets compromised. Clearly, this results in the compromise of group data that
was exchanged while these ill-fated participants were part of the group. The
? This material is based upon work supported by the National Science Foundation

under the Grant CNS-0430595. A full version of the paper is available from the
author’s webpage: http://www-cse.ucsd.edu/users/spanjwan

question is—can one be sure that the data for other instants (that is, instants
when affected participants were all outside the group) is still secure?

Answering such a question in the affirmative, even for simple security proto-
cols (based on conventional, symmetric-key encryption alone) is often beset with
tough challenges. The possibility of user corruptions occurring during protocol
execution, and in a manner that is adaptively controlled by the attacker, increases
the threat to a protocol’s security and makes the task of proving protocols secure
an unnerving task. It is known that, in general, protocols proven secure against
non-adaptive attacks may actually turn insecure once an adversary is allowed to
corrupt participants adaptively. (See [5] for a simple separation result for proto-
cols based on secret sharing.) The situation is especially annoying for protocols
that make use of encryption—adversaries can spy on ciphertexts exchanged be-
tween two honest parties, and later, at will, corrupt one of the parties, acquire
its internal state, and use such information to “open” all ciphertexts which were
previously sent or received by that party. While trying to prove security of such a
protocol, one must argue that all “unopened” ciphertexts (those that cannot be
decrypted trivially using the compromised keys) leak essentially no information
to the adversary (that is, appear as good as encryptions of random bitstrings).
The heart of the problem lies in the fact that one does not a priori know which
ciphertexts are going to be opened by the adversary since these decisions are
made only as the protocol proceeds. Besides, every ciphertext is a binding com-
mitment to the plaintext it hides—one cannot hope to “fool” the adversary by
sending encryptions of random bitstrings every time and then, when he corrupts
a party, somehow convince him that the ciphertexts he saw earlier on (and which
he can now open) were, in fact, encryptions of real data.

Previous Approaches. In the past, security analysis of encryption-based mul-
tiparty protocols against adaptive adversaries has largely been conducted using
three approaches. The first (and the simplest) involves bypassing adaptive se-
curity altogether—if you cannot prove a protocol adaptively secure, then so be
it. (That is, rest your minds with non-adaptive security.) The second approach
attempts to solve the problem, but by studying it in the “erasure” model [3], in
which all honest parties are assumed to delete their past state the moment they
enter a new state configuration (wherein keys are generated afresh). Proving
adaptive security of protocols in such a model is easy because adversaries are
trivially disallowed from opening previously-sent ciphertexts—the correspond-
ing decryption keys are assumed to have been erased from the system! However,
the model itself is quite unrealistic: an honest party could simply forget to erase
its previous states, or else, internally deviate from the rules of the game (that
is, store all keys and behave in an “honest-but-curious” manner). Besides, some
cryptographic protocols, for the sake of efficiency, require users to store keys
received in the past and such protocols (an example will be discussed in this
paper) would need to be re-designed in order to comply with the model.

The third approach, and perhaps the most compelling one, to adaptive se-
curity has been to develop non-standard notions of security of an encryption

scheme. This corresponds to a line of research initiated by Canetti et al. [5], who
introduced a cryptographic primitive, called non-committing encryption, specif-
ically to address the problem of adaptive corruptions in multiparty protocols.
Non-committing encryption schemes have the unusual property that ciphertexts
created using them need not behave as binding commitments on the correspond-
ing plaintexts (hence the name “non-committing”). That is, it is possible that an
encryption of ‘0’ collide with an encryption of ‘1’ (or, more generally, encryption
of real data be the same as encryption of a random bitstring). However, such
collisions occur with only negligible probability—the chances of encrypting ‘0’
and obtaining a ciphertext which can later be opened as ‘1’ are very small. At
the same time, these schemes allow to sample “ambiguous” ciphertexts (those
that can be opened as either ‘0’ or ‘1’) efficiently and to convince an adversary of
such a ciphertext being an encryption of ‘0’ or of ‘1’, as the situation demands.
Encryption protocols implemented with non-committing encryption can be eas-
ily proven to achieve adaptive security—in the security proof, one just simulates
the real protocol by transmitting ambiguous ciphertexts and upon corruption
of a party, convinces the adversary that the ciphertexts he saw earlier were in-
deed the encryptions of the revealed data. Non-committing encryption schemes,
though interesting in their own right, have their share of limitations—they are
typically too inefficient for practical applications, and require bounding (a priori)
the number of message bits that can be encrypted using any single key (usually,
the number of bits that can be encrypted with a key cannot be more than the
size of the key itself, which is highly prohibitive for real applications)1.

Our Contribution. In this paper, we show that it is possible to argue about
the adaptive security of a large class of encryption protocols, without requiring
erasures and without resorting to primitives like non-committing encryption,
while simultaneously achieving efficiency that meets practical requirements. We
focus on protocols built generically from symmetric-key encryption (no other
primitives are involved) and where every ciphertext is created by encrypting a
key or a data element, with a single other key (no nesting of the encryption op-
eration). We show that for a large variety of such protocols if keys are generated
independently of each other, then protocols can be proven adaptively secure,
even under the assumption that the encryption scheme is semantically secure,
with very reasonable assurances on the strength of the protocol against adaptive
corruptions.

Our main contribution is a general computational soundness theorem for
encryption protocols which works as follows. Consider an abstract game played
between an adversary and a challenger, both being given access to a semantically
secure symmetric-key encryption algorithm E . Initially, the challenger generates
n independent keys k1, k2, · · · , kn and keeps them secret from the adversary. Dur-
ing the game, the adversary gradually and adaptively builds a directed graph G

1 As shown by Nielsen [16], any non-committing encryption scheme that has a non-
interactive encryption procedure must use a decryption key that is at least as long
as the total number of bits to be decrypted.

over n nodes labeled 1 through n. He arbitrarily introduces edges into the graph
and for each such edge i→ j he asks the challenger to provide an encryption of
the key kj under the key ki, that is, Eki(kj). (Thus, creation of the edge i→ j in
G depicts the fact that given ki, the adversary can recover kj , via the decryption
operation corresponding to E .) The adversary can also (again adaptively) decide
to “corrupt” some nodes in the graph—from time to time, he instructs the chal-
lenger to reveal the key associated with the ith node in G (for any arbitrary i)
and the challenger must answer with ki in such a situation. We refer to G as
the key graph generated by the adversary and the nodes in G that correspond
to the revealed keys are called corrupt nodes. Note that any node i′ in G that
is reachable from a corrupt node i is also effectively corrupt; the adversary can
recover the corresponding key using successive decryptions along the path from
i to i′. The question is—can we prove that, at the end of the game, keys cor-
responding to nodes that are not reachable from any of the corrupt nodes, are
still pseudorandom?

This simple game (formalized further in Section 2) provides an effective ab-
straction for many of the challenges a security analyst can expect to face when
proving protocols secure against adaptive corruptions. The power to corrupt
nodes in an adaptive fashion models the ability of attackers to compromise keys
of users during the execution of the protocol. The power to decide the structure
of all ciphertexts abstracts the fact that the execution flow of the protocol is
indeterminable at design time and can potentially be influenced by the adver-
sary during run-time. (A slight variant of the game would be one in which the
adversary can also acquire ciphertexts formed by encrypting arbitrary messages
of his choice. We will discuss this variant further in Section 2.) Note that we
allow the creation of ciphertexts even after nodes have been corrupted (that
is, the compromise of a key at some point in the protocol should not hamper
security of ciphertexts created using future uncompromised keys). Likewise, the
security of keys transmitted in the past must be preserved even if other keys are
compromised in the future.

A naive first step to proving security in the game we just described would be
to guess, a priori, the set of nodes that the adversary is going to corrupt during
the execution and for every edge issuing from such a node, reply with a real
ciphertext while for the other edges reply with encryptions of random bitstrings.
Any security reduction seeded with such an idea would give us a reduction factor
that is exponential in n (that is, we would end up proving a statement like “if
the encryption scheme is ε-secure then security in the game is guaranteed with
probability 2nε”). Such a reduction would be completely impractical; in most
applications, n would be of the order of the number of protocol participants,
which can be extremely large.

In this paper, we prove security in this game using a significantly different
approach, and one that is of much better practical value. We show that if the
key graph G generated by the adversary is acyclic2 and if its depth (defined as

2 Acyclicity of key graphs is an almost-inescapable criterion required in security proofs
of protocols based on encryption. We will discuss this issue further in Section 2.

the length of the longest path in G) is upper bounded by a parameter l, then
security in our game can be proven via a reduction factor of O(n · (2n)l). Here,
by “security in our game” we mean that keys that (a) cannot be trivially recov-
ered by the adversary (that is, are not reachable from corrupt nodes in G) and
(b) are not used to encrypt other keys3, remain pseudorandom at the end of it.
That is, we prove that the security of a semantically secure encryption scheme
can degrade in the face of adaptive attacks (as those captured by our game) by
a factor of at most O(n · (2n)l) but not by worse.

An Application. So what is this reduction good for? At first glance, it would
appear that it is much worse than the naive solution—l could potentially be of the
order of n and n·(2n)n is obviously no more consoling than 2n. Well, for arbitrary
key graphs, this is indeed the case. However, in practice, key graphs are much
smaller (in fact, orders of magnitude smaller) in depth than in total size. For
example, the key graphs generated in the execution of most broadcast encryption
protocols (those falling under the subset-cover framework introduced by Naor et
al. [15]) have depth 1 and their depth remains fixed for arbitrarily long runs of
the protocol. All encryption-based group key distribution protocols (designed for
secure multicast over the Internet, and also called multicast encryption protocols)
generate key graphs that have depth at most logarithmic in the total number
of users in the system (again, the depth remains fixed for arbitrarily long runs
of the protocol, once the total space of users has been ascertained). In general,
in all encryption protocols, the depth of key graphs created in any execution is
likely to be related to the number of decryptions performed by users in order
to be able to recover certain keys while their total size to the number of users
themselves; it is reasonable to expect that protocol designers, for the purpose of
efficiency, would strive to keep the former smaller than the latter.

We exemplify the power of our soundness result by applying it to the security
analysis of the Logical Key Hierarchy (LKH) protocol [17]. LKH is a protocol
originally developed for secure communication in multicast groups on the Inter-
net (applications of the form we discussed in the first paragraph) and has since
then attracted a lot of interest from both cryptographers and researchers in the
networking community. Surprisingly, even though the protocol gets mentioned
in a lot of papers on cryptography, there has been little effort from within our
community towards analyzing its security (adaptive or otherwise) rigorously or
to make any claims to the contrary.

The original LKH protocol has a security flaw in it [12]. Although this flaw
is quite easy to spot, we are not aware of any work (prior to ours) that recti-
fies this flaw in a provably secure manner. (In [12], a fix is suggested but not
proven secure.) In Section 3 of this paper, we present a variant of LKH which
is not only as efficient as the original protocol, but also enjoys strong guaran-
tees of security against adaptive adversaries. In particular, we use our soundness
theorem to show that the security of the improved protocol is related to the

3 This is a necessary criterion if our goal is to guarantee pseudorandomness of these
keys.

semantic security of the underlying encryption scheme via a reduction factor
that is quasi-polynomial in the number of protocol participants. Concretely, our
reduction factor is of the order of ñlog(n)+2, where n is the number of users in
the protocol and ñ = O(n).

This reduction factor, though not strictly polynomial in n, is still quite rea-
sonable from a practical perspective. For example, in a system with 128 users,
one is guaranteed that an execution of our protocol provides at least 65 bits of
adaptive security when implemented with 128-bit AES in counter mode (for a
run with upto 64 key updates)4. Our result practically eliminates the need for
using expensive techniques like non-committing encryption to build adaptively
secure multicast encryption protocols, and it does this while matching the effi-
ciency of existing schemes.

Relation with Selective Decryption. The abstract game used in our
soundness theorem is reminiscent of the well-studied (though largely unresolved)
problem of selective decryption. In this problem (like in ours), an adversary in-
teracts with a challenger who initially generates a set of plaintexts m1, · · · ,mn

and a corresponding set of keys k1, · · · , kn. (We stress here that the plaintexts
are not chosen by the adversary, but generated by the challenger using some
fixed distribution.) The adversary first wants to see the encryptions of all the
plaintexts, {Eki

(mi)}ni=1, and later “open” some of them adaptively; that is, he
queries an arbitrary set I ⊆ [n] and the challenger replies with {ki}i∈I . The
question now is to show that plaintexts corresponding to all unopened cipher-
texts are still “safe”, in the sense that the adversary cannot learn any more
information about them than what he could learn from the revealed plaintexts.
In our soundness theorem, we are essentially generalizing this game to a setting
in which the adversary can ask for not only single ciphertexts but chains of ci-
phertexts of the form Ek1(k2), Ek2(k3), Ek3(k4), · · · and he is also allowed to open
such chains adaptively (as above). Plus, we allow the adversary to interleave his
“encrypt” and “open” queries arbitrarily. (Indeed, the fact that ciphertexts can
be asked for in an adaptive manner, possibly depending upon past corruptions,
is responsible for much of the complication in our proof.) It is for this reason
that we refer to our game (detailed in Section 2) as the generalized selective
decryption (GSD) game.

Does this paper solve the selective decryption problem? Not really. A cru-
cial ingredient of that problem is the distribution from which the plaintexts
m1, · · · ,mn are drawn by the challenger. It has been shown [8] that if this dis-
tribution is such that each plaintext can be generated independently of the others
then the unopened ciphertexts indeed remain secure and the adversary learns
essentially no partial information about the plaintexts they hide from his inter-
action with the challenger. In the GSD game, too, we require all keys, even those
which are not used for further encryption, to be generated independently of each

4 These numbers are computed assuming the protocol is implemented using a binary
hierarchy of keys; for non-binary hierarchies, the security guarantee is actually better.

other, and this “independence property” is crucial in our proof5. Our soundness
theorem essentially builds up on this positive result for selective decryption and
extends it to the more general scenario of arbitrarily (and adaptively) generated
key graphs. The question of solving selective decryption without the indepen-
dence assumption on plaintexts still remains open.

We remark that independence of all keys is not just a simplifying assumption
in our theorem; it is almost a requirement for the security of the protocols we
are interested in analyzing. A multicast encryption protocol that uses related
group keys across key updates may not guarantee good security at all.

Related Work. The notion of computational soundness theorems was intro-
duced by Abadi and Rogaway [1], and has since then found applications in the se-
curity analysis of various cryptographic tasks, including key exchange [7, 6], mu-
tual authentication [13, 6], XML security [2] and multicast key distribution [11,
12]. Although most of the literature on computational soundness theorems deals
with protocols that make use of encryption as the fundamental primitive, to
the best of our knowledge, none of these works prove soundness in the pres-
ence of adaptively corrupting adversaries. Recently, Gupta and Shmatikov [10]
developed a symbolic logic that allows reasoning about a weak variant of adap-
tive security for the case of key exchange protocols; however, the protocols they
analyze, do not make use of encryption (and instead use Diffie-Hellman expo-
nentiation coupled with signatures).

The soundness result of this paper is of a very different flavor than those in
previous works in the area. The protocol model we use is relatively simpler—
in the protocols we consider, every message generated during an execution is
either a key or an encryption of a key under a key or else, a sequence of values
with one of these types6. Symbolic analysis of such protocols can be effectively
conducted using graph-theoretic terminology: keys can be interpreted as nodes,
ciphertexts as edges, and Dolev-Yao attacks on protocols can be expressed in
terms of reachability from adversarial nodes (corresponding to corrupted keys).
As such, all discussions on symbolic analysis in this paper take place within a
graph-theoretic framework (as illustrated by the GSD game). This simplifies our
presentation considerably and brings us quickly to the crux of the matter.

Lastly, a few words comparing the result of this paper with our previous
work, joint with Micciancio [11, 12], on the computationally sound analysis of
encryption protocols are in order. Although both our works address adaptive at-
tacks on encryption protocols, the adversarial model used in the current work is
stronger: we not only allow the adversary to adaptively modify the execution flow

5 Jumping ahead, we remark that even in the variant in which the adversary can
acquire encryptions of arbitrary messages of his choice, we need only keys to be
independent of each other, and not the messages.

6 We remark that extending our result to protocols that use nested encryption is also
possible, but the soundness theorem and the corresponding proof become much more
complex. We avoid nested encryption largely for the sake of simplicity (and partly
because most existing multicast encryption protocols don’t use nesting).

of the protocol (as in our past work) but also to corrupt participants in an adap-
tive manner. Tackling the latter type of attacks is significantly more non-trivial,
and forms the central theme of this paper. Another difference is that our previ-
ous soundness results applied only to protocols that satisfied certain syntactic
conditions besides acyclicity of key graphs. Informally, these conditions require
protocols to use every key in two phases—a distribution phase in which keys are
used as plaintexts, followed by a deployment phase in which the distributed keys
are used for encrypting other keys or messages. Key distribution is not allowed
to succeed key deployment. Our new result, while incorporating adaptive cor-
ruptions, also does away with this restriction. The downside, however, is that
this result provides security guarantees in a manner that is dependent on the
depth of protocol key graphs, and it is not meaningful for protocols that could
potentially generate key graphs with arbitrary depth. We believe that improving
the result of this paper to overcome this limitation is non-trivial, but a worthy
direction for future research; in particular, obtaining an analogous result with a
reduction factor smaller than Θ(nl) would be quite remarkable, and could lead
to even newer techniques to address adaptive corruptions in security protocols.

2 The Main Result

Fix a symmetric-key encryption scheme Π = (E ,D)7. We use the standard notion
of indistinguishability against chosen plaintext attacks (Ind-CPA) for encryption
schemes as defined by Bellare et al. [4]. Specifically, let OΠ

k,b denote a left-or-right
oracle for Π which first generates a key k uniformly at random from {0, 1}η (η
being the security parameter) and subsequently, responds to every query of the
form (m0,m1) ∈ {0, 1}∗ × {0, 1}∗ (such that |m0| = |m1|) with Ek(mb)—the
encryption of mb under key k. For any adversary (that is, any arbitrary proba-
bilistic Turing machine) A, let AOΠ

k,b denote the random variable corresponding
to the output of A when interacting with such an oracle.

Definition 1 Let t ∈ IN+ and 0 < ε < 1. An encryption scheme Π is called
(t, ε)-Ind-CPA secure if for every adversary A running in time t: |P[AOΠ

k,b = 1|b =
0]−P[AOΠ

k,b = 1 | b = 1]| ≤ ε

The GSD game. Consider the following game, which we call the generalized se-
lective decryption (GSD) game, played between an adversary A and a challenger
B. Both parties are given blackbox access to the algorithms E and D. In the
beginning, A specifies an integer n, and the challenger generates a set of keys,
k1, k2, · · · , kn, each key being sampled independently and uniformly at random

7 In this paper, we consider encryption schemes where key generation is defined by
picking a uniformly random bitstring from the set {0, 1}η with η being the secu-
rity parameter. Thus, the key generation algorithm is implicit in the definition of
encryption schemes. We also assume that the encryption scheme allows to encrypt
arbitrary bitstrings; so, keys themselves can always be used as plaintexts.

from the set {0, 1}η (where η is the security parameter). B also generates a chal-
lenge bit b (uniformly at random from {0, 1}), which A is required to guess in
the end. It stores the generated values for the rest of the game, and uses them
to answer all of A’s queries.

A can make three types of queries to B:

1. encrypt: At any point, A can make a query of the form encrypt(i, j), in
response to which B creates a ciphertext c ← Eki

(kj) (using fresh coins for
the encryption operation each time) and returns c to A.

2. corrupt: A can also ask for the value of any key initially generated by B; it
does this by issuing a query of the form corrupt(i), in response to which it
receives ki.

3. challenge: Finally, A can issue a query of the form challenge(i). The
response for such a query is decided based on the bit b: if b = 0, B returns
the key ki to A, whereas if b = 1, it generates a value ri uniformly at random
from {0, 1}η, and sends ri to A8.

Multiple queries of each type can be made, interleavingly and adaptively. We
stress here that A can make more than one challenge queries in the game and
it can choose to interleave its challenge queries with the other two types of
queries. (This is a slight generalization of the setting described in the intro-
duction.) Giving the adversary the power to make multiple challenge queries
models the requirement that keys linked with challenge nodes be “jointly” pseu-
dorandom (as opposed to individual keys being pseudorandom by themselves).
Allowing it to interleave challenge’s with other queries means that such keys
are required to retain their pseudorandomness even after more corruptions or
ciphertext transmissions have occurred.

We think of the queries of A as creating a directed graph over n nodes (labeled
1, 2, · · · , n), edge by edge, and in an adaptive fashion. Each query encrypt(i, j)
corresponds to creating an edge from i to j, denoted i → j, in this graph. For
any adversary A, the graph created by its queries in this manner is called the
key graph generated by A and is denoted G(A). A node i in G(A) for which A
issues a query corrupt(i) is called a corrupt node while one for which A issues
a query challenge(i) is referred to as a challenge node. The set of all corrupt
nodes is denoted V corr(A) and that of all challenge nodes is denoted V chal(A).
Note that G(A), V corr(A) and V chal(A) are all random variables depending on the
coins used by both A and B.

Legitimate Adversaries. There is a trivial way in which any adversary can
win in the GSD game—by corrupting a node i in G(A) and making a query
challenge(j) for any j that is reachable from i, A can easily guess the challenge
bit b. The interesting case to consider is, thus, one in which A is constrained not
to issue queries of this form, that is, where A is restricted to make queries in a
manner such that no challenge node is reachable from a corrupt node in G(A).

8 If A issues multiple challenge queries with argument i and if b equals 1, B must
return the same value ri everytime.

Our intuition suggests that if the encryption scheme is secure (in the Ind-CPA
sense), then the chances of such an adversary being able to decipher b correctly
are no better than half. However, translating this intuition into a proof is far
from easy. For one, it is not even possible to do this without further restrictions
on the adversary’s queries: if a key kj is used to encrypt other keys (that is, there
exists an edge issuing from j in G(A)), then kj cannot be guaranteed to remain
pseudorandom, even if j is not reachable from the corrupt nodes. In other words,
we can hope to prove pseudorandomness of keys associated with challenge nodes
only as long as these nodes have no outgoing edge in G(A). Secondly, arguing
about the security of encryption schemes in the presence of key cycles is a gruel-
ingly hard problem; in particular, it is currently not known whether an arbitrary
Ind-CPA-secure encryption scheme can be proved to retain its security in a sit-
uation where ciphertexts of the form Ek1(k2), Ek2(k3), · · · , Ekt−1(kt), Ekt

(k1), for
some t > 1, are created using it. Standard techniques do not allow to prove
such statements and counterexamples are not known either. Given this state of
affairs, our only hope to prove security in the GSD game is to forbid the creation
of key cycles altogether. The following definition formalizes all our requirements
from the adversary:

Definition 2 An adversary A is called legitimate if in any execution of A in the
GSD game, the values of G(A), V corr(A) and V chal(A) are such that:

1. For any i ∈ V corr(A) and any j ∈ V chal(A), j is unreachable from i in G(A).
2. G(A) is a DAG and every node in V chal(A) is a sink in this DAG.

The Result. Let A be any legitimate adversary playing the GSD game. We say
that A is an (n, e, l)-adversary if in any execution in the game, the number of
nodes and edges in the key graph generated by A are bounded from above by n
and e respectively and the depth of the graph (the length of the longest path in
it) is at most l. We denote the random variable corresponding to the output of
A in the game by ABΠ

b .

Definition 3 Let t, n, e, l ∈ IN+ and 0 < ε < 1. An encryption scheme Π is
called (t, ε, n, e, l)-GSD secure if for every legitimate (n, e, l)-adversary A running
in time t: |P[ABΠ

b = 1 | b = 0]−P[ABΠ
b = 1 | b = 1]| ≤ ε

Here, probabilities are taken over the random choices made by both A and B
(including the randomness used by B in creating ciphertexts). The following is
the main result of this paper:

Theorem 4 Let t, n, e, l ∈ IN+ and 0 < ε < 1. If an encryption scheme Π is
(t, ε)-Ind-CPA secure, then it is (t′, ε′, n, e, l)-GSD secure for quantities t′ and ε′

defined as:
ε′ = ε · 3n

2
· (n + 1) · (2n + 1)l−1

t′ = t− (O(n) · tGenKey + e · tEncrypt)

where tGenKey (resp. tEncrypt) denotes the time taken to perform key generation
(resp. encryption) in Π.

Overview of the Proof. The starting point of the proof of our theorem
is the positive result on the selective decryption problem (more precisely, the
selective decommitment problem) due to Dwork et al. [8]. Consider first the
GSD game for the case l = 1. The graph G(A) in this case is a directed bipartite
graph mapping a set of sources to a set of sinks. (In the problem studied in [8],
the map from sources to sinks is one-to-one. In our case, it could be many-
to-many; plus, it could be adaptively generated based on previous corruptions.)
How can we argue about security in this case? Intuitively, an attacker’s ability to
differentiate between real and random values for all nodes in V chal(A) translates
into its ability to differentiate between the two values for some node (say the jth
one) in V chal(A); that is, such an adversary can effectively differentiate between
two worlds, one in which the reply to each of the first j − 1 queries of the form
challenge(i) is ri (and for the rest, it is ki), and the other in which the reply
to each of the first j queries of this form is ri (and that for the rest is ki).

Let us call these worlds Worldj(0) and Worldj(1) respectively. Let us assume
that the argument specified in A’s jth challenge query is known a priori (it can
be guessed with success probability 1/n) and equals ij . Let I(ij) denote the set
of nodes is for which there exists an edge is → ij in G(A). Now consider this
modified version of the game: While generating keys in the beginning of the game,
B also generates a random key k̃ij

, independently of all other keys. It replies
to the adversary’s queries in one of two worlds again, but now the worlds are
defined as follows. Each query of the form encrypt(is, ij) is replied to with the
real ciphertext Ekis

(kij
) in the first world, World′j(0), but with a fake one, namely

Ekis
(k̃ij

), in the other one, World′j(1). All other encrypt queries are replied to
with real ciphertexts in both worlds. For the challenge queries the replies always
have the same distribution—ri for the first j − 1 challenge queries and ki for
the rest. (In particular, the reply for challenge(ij) is always kij

.) It is easy to
see that the distribution on the challenger’s replies in World′j(0) is exactly the
same as in Worldj(0). The key observation to make here is that the distribution
on the replies in World′j(1) is also the same as that in Worldj(1)! This is true
because the keys kij

, k̃ij
and rij

are generated by the challenger independently of
each other, and so, replying to encrypt(is, ij) with Ekis

(kij
) and challenge(ij)

with rij
(as done in Worldj(1)) produces the same distribution as replying to

the former with Ekis
(k̃ij

) and the latter with kij
(as done in World′j(1)). Thus,

our adversary can differentiate between Worldj(0) and Worldj(1) with the same
probability as it can differentiate between World′j(0) and World′j(1).

Why are the two worlds World′j(0) and World′j(1) indistinguishable? Be-
cause the encryption scheme is Ind-CPA-secure. If the adversary can distin-
guish between two sets of ciphertexts {Ekis

(kij
)}is∈I(ij) (the real ones) and

{Ekis
(k̃ij)}is∈I(ij) (the fake ones) then it must be able to tell the difference

between Ekis
(kij

) and Ekis
(k̃ij

) for some node is ∈ I(ij). (A standard hybrid
argument applies here.) This goes against the Ind-CPA-security of Π.

Going beyond l = 1. In the general setting, a node is, pointing at any node
ij ∈ V chal(A) need not be a source—there could be other edges incident upon

each such is and extending the above argument to this general setting requires
more work. In order to be able to make a statement like “the ciphertext Ekis

(kij
)

is indistinguishable from Ekis
(k̃ij

)”, one must first argue that every ciphertext
of the form Eki′s

(kis
) (where i′s → is is an edge in G(A)) looks the same as one

of the form Eki′s
(k̃is

) (a fake ciphertext). But every such ki′s could, in turn, be
encrypted under other keys (that is, the node i′s could have other edges incident
on it). There could be a lot of nodes (O(n), in general) from which ij is reachable
in G(A) and at some point or the other, we would need to argue that replying
with real ciphertexts created under each of these nodes is the same as replying
with fake ones. Worse still, we do not a priori know the set of nodes from which
ij can be reached in G(A) since the graph is created adaptively; so we must make
guesses in the process.

It is easy to come up with an argument where the amount of guesswork
involved is exponential in n (simply guess the entire set of nodes from which there
is a path to ij). In our proof, however, we take a radically different approach.
We first define a sequence of hybrid distributions on the replies given to A such
that in each of the distributions, the replies corresponding to some of the edges
in the key graph are fake, and these “faked” edges are such that their end-points
lie on a single path ending in ij . (Henceforth, we will refer to every edge for
which the corresponding reply is fake, as a faked edge.) The extreme hybrid
distributions are defined as in the two worlds World′j(0) and World′j(1) for l = 1:
in one extreme, the replies corresponding to all edges are real, and in the other
extreme, the replies corresponding to all edges incident on ij are fake (while the
rest of the replies are still real). Intermediate to these extremes, however, are
several distributions in which edges other than those incident on ij are faked.
For any two adjacent distributions in the sequence of distributions, the following
properties are always satisfied:

(a) The distributions differ in the reply corresponding to a single edge is → it;
the reply is real in one distribution while fake in the other.

(b) In both distributions, for every ir ∈ I(is), the edge ir → is is faked.
(c) There exists a path from it to ij in the key graph and in both distributions,

“some” of the edges incident upon this path are faked, the faked edges being
the same in both distributions.

(d) No other edge in the key graph is faked in either of the distributions.

Properties (a) and (b) are meant to ensure that any two adjacent hybrids can
be simulated using a single left-or-right encryption oracle (and so, A’s capability
to distinguish between them would imply that the encryption scheme is not
Ind-CPA-secure); properties (c) and (d) enable the simulation to be carried out
by guessing a path (that goes from is to it to ij) as opposed to guessing all the
nodes from which ij is reachable. (This partly explains why our reduction factor
is exponential in the depth, rather than the size, of the key graph.) In order
to simultaneously achieve all these properties, we order the hybrid distributions
such that (i) when the reply for any edge is → it is changed (from real to fake or
vice versa) in moving from one hybrid to another, all edges of the form ir → is

have already been faked in previous hybrids; and (ii) after changing the reply for
is → it, there is a sequence of hybrids in which the replies for all edges ir → is
are, step by step, changed back from fake to real. This is done in order to satisfy
property (d) above (particularly, to make sure that it is satisfied when the replies
for edges issuing from it are changed in a subsequent hybrid).

Thus, if we scan the sequence of hybrid distributions from one extreme to
the other, we observe both “real-to-fake” and “fake-to-real” transitions in the
replies given to A, taking place in an oscillating manner. The oscillations have a
recursive structure—for every oscillation in replies (transition from real to fake
and back to real) for an edge is → it, there are two oscillations (transition from
real to fake to real to fake to real) for every edge ir → is incident upon is.
Simulating these hybrid distributions (using a left-or-right oracle) and subse-
quently, proving that the simulation works correctly is the most challenging part
of the proof. After developing an appropriate simulation strategy, we prove its
correctness using an inductive argument—assuming that, for some l′ ≤ l, the
simulation behaves correctly whenever is is at depth smaller than l′ in the key
graph, we show that the simulation is correct also when is is at depth smaller
than l′ + 1; this simplifies our analysis considerably. Details of the entire proof
are given in the full version of the paper.

Other Variants. A natural variant of the GSD game would be one in which
the adversary is allowed to acquire encryptions of messages of its choice (besides
receiving encryptions of keys, as in the original game). Consider the following
modified version of the game: A issues encrypt and corrupt queries, as be-
fore, but instead of making challenge queries, it makes queries of the form
encrypt msg(i, m0,m1) (such that m0,m1 ∈ {0, 1}∗ and |m0| = |m1|). In return
for each such query, the challenger sends it the ciphertext Eki(mb). A legitimate
adversary in this modified game would be one whose key graph is always a DAG
and for whom every query encrypt msg(i, m0,m1) is such that i is unreach-
able from the corrupt nodes in the DAG. We remark that a result analogous to
Theorem 4 can also be proven for this modified game, and with only a slight
modification to the proof of that theorem. Specifically, we can show that if Π is
(t, ε)-Ind-CPA secure, then for any t′-time (n, e, l) adversary A (t′ as defined in
Theorem 4),

|P[ABΠ
b = 1 | b = 0]−P[ABΠ

b = 1 | b = 1]| ≤ ε · 3n

2
· (2n + 1)l

A different variant of our game would be one in which A is provided encryp-
tions of messages, but these messages are sampled by the challenger using some
fixed distribution known to A. In this variant, the messages themselves can be
thought of as nodes (more specifically, sinks) in the key graph, whose values
are hidden from A but whose probability distribution is defined differently from
that of the keys. The goal now would be to argue that from A’s perspective,
all “unopened” messages (that is, messages that are not reachable from cor-
rupt nodes in the key graph) appear as good as fresh samples from the same
message space. If we assume that messages are sampled independently of each

other, then security in this variant can also be proven, and with almost the same
reduction factor as in Theorem 4. (Specifically, the reduction factor would be
(3/2) ·M(n + 1)(2n + 1)l, where M is an upper bound on the total number of
messages that are encrypted.) However, in the absence of this assumption, it
becomes considerably more challenging to prove the same claim. The techniques
developed in this paper do not allow us to argue about security in such a setting,
not even in the case where the key graph has depth 0 (only messages, and not
keys, are used as plaintexts)9.

3 The Application

In this section, we illustrate how our result from Section 2 applies to the security
analysis of multicast encryption protocols.

Multicast Encryption. A group of n users, labeled U1, · · · , Un, share a broad-
cast channel and wish to use it for secure communication with each other. At
any point in time t, only a subset of users, labeled St, are “logged in” to the
network, that is, are authorized to receive information sent on the channel. We
would like to ensure that for all t, only the users in St (called group members)
be able to decipher the broadcasts. We assume the existence of a central group
manager C who shares a unique long-lived key kUi

with each user Ui
10 and

runs a key distribution program, KD, in order to accomplish the said task. The
manager (or, equivalently, the program KD) receives user login and logout re-
quests and for the request at time t, sends out a set of rekey messages, Mt, on
the channel. These rekey messages carry information about a key k[t] (the group
key for t), and are such that only the group members can decipher them (and,
subsequently, recover k[t]). The key k[t] can then be used to carry out all group-
specific security tasks until the next login/logout request arrives, which, we
assume, happens at time t + 1. For example, it can be used for ensuring privacy
of all data sent between time t and t + 1 and/or guaranteeing “group authen-
ticity” of data (that is, enabling members to verify that the sender of the data
is a group member at time t, and not an outsider). To ensure security of any
such task, it is important to guarantee that k[t] appears pseudorandom to users
not in St (the non-members) for all instants t, even when such users can collude
with each other and share all their information. The problem is to design the
program KD in a manner such that this guarantee is achieved.
9 Here, by “argue about security” we mean the following: Consider an adversary A who

makes only encrypt and corrupt queries in the above variant of the GSD game. At
the end of the game, provide A with one out of two sets of values: in one world, reveal
the real values of all unopened messages; in the other, provide an equal number of
messages, sampled from the same probability space conditioned on the values of the
opened messages. Now show that A cannot tell the two worlds apart. This problem is
essentially the same as the selective decryption problem where plaintexts are allowed
to be mutually dependent. We don’t know of a solution to this problem yet.

10 In practice, such long-lived keys could be established during the first login request
made by users using, say, public-key based approaches.

Fiat and Naor [9] were the first to define this problem formally and they
introduced it under the title of broadcast encryption—a formulation in which all
users are assumed to be stateless and group members are required to be able
to recover k[t], given only Mt and their long-lived keys. Subsequent work (for
example, [14, 17]) lifted the problem to the more general setting of stateful users,
and studied it in the context of ensuring privacy in multicast groups on the In-
ternet (hence the name multicast encryption). LKH is a protocol that relies on
the statefulness assumption.

The Protocol. A trivial approach to multicast key distribution would be to
have the center generate a new, purely random key k[t] for every group mem-
bership change, and to let Mt (the rekey messages for time t) be the set of
ciphertexts obtained by encrypting k[t] individually under the long-lived keys of
every user in St, that is, the set {EkUi

(k[t])}Ui∈St . This, however, is an unscal-
able solution since it involves a linear communication overhead per membership
change, which is prohibitive for most applications that use multicast.

The LKH protocol betters the above trivial approach by distributing to users,
in addition to the group key, a set of auxiliary keys, with each auxiliary key being
given to some subset of the current group members. All keys in the system
are organized in the form of a hierarchy—the group key is associated with the
root node in the hierarchy, the long-lived keys of users with the leaves, and the
auxiliary keys with internal nodes. At each point in time t, a user Ui ∈ St knows
all keys on the path from the leaf node corresponding to kUi to the root node
(which corresponds to k[t]). The protocol maintains this property as an invariant
across membership changes.

Rekey Messages. For simplicity, we illustrate the protocol using an exam-
ple where n = 8 and the hierarchy is binary. We assume that all parties (in-
cluding the center) have blackbox access to a symmetric-key encryption scheme
Π = (E ,D) with key space {0, 1}η for some fixed security parameter η. In our
description, we use the terms “keys” and “nodes” interchangeably (the relation
between them is obvious in the current context) and depict transmission of a
ciphertext Ek1(k2) with an edge k1 → k2 in the figures.

Suppose that initially (t = 0), the set of group members S0 = {U1, U2, U3, U6, U7}
as shown in Figure 1(a). The center’s key distribution program KD generates the
initial group key k[0] = kε (the root node) and all auxiliary keys (internal nodes)
which are supposed to be given to users in S0. For example, since k00 and k0

lie on the path from kU1 to k[0], these keys must be generated afresh and sent
securely to U1. KD transmits the keys to the designated users by sending the
ciphertexts shown by dark edges in the figure. So, for example, user U1 can ob-
tain all the keys it is supposed to know (k00, k0, kε) by decrypting, in order, the
ciphertexts EkU1

(k00), Ek00(k0) and Ek0(kε).
Now suppose that at time t = 1, user U1 logs out of the group. That is,

S1 = {U2, U3, U6, U7}. The program KD should re-generate the group key kε,
and the auxiliary keys which were known to U1 at t = 0 (k00 and k0) and dis-
tribute the new values in a manner such that U1 cannot recover them but other

k11k10k01k00

ke
 = k[0]

k1k0

kU1 kU2 kU3 kU4 kU5 kU6 kU7 kU8
S0 = {U1, U2, U3, U6, U7}

(a)

k0
1

k00
1 k01

ke

k1

k11k10

kU1 kU2 kU3 kU4 kU5 kU6 kU7 kU8
S1 = {U2, U3, U6, U7}

ke
 = k[1]

logout

1

(b)

k1

k11
k10

login

S2 = {U2, U3, U6, U7, U8}

k0
1

k01

kU1 kU2 kU3 kU4 kU5 kU6 kU7 kU8

ke
1

k00
1

ke=k[2]2

k1
2

k11
2

(c)

k1

k11

loginkU6 kU7 kU8

k10

S2 = {U2, U3, U6, U7, U8}

k0
1

k01

kU1 kU2 kU3 kU4 kU5

ke
1

k00
1

ke=k[2]2

k1
2

k11
2

(d)

Fig. 1. LKH and rLKH: Figure 1(a) shows how key distribution to the initial set
of users S0 is performed while figure 1(b) demonstrates the rekeying process for user
logout (both these procedures are the same in LKH and rLKH). Figure 1(c) shows
how rekeying for user login works in LKH and fig. 1(d) illustrates the same for rLKH.

users who are required to do so (according to the protocol invariant) still can.
Specifically, it generates new keys k1

00, k
1
0 and k1

ε =: k[1] (independently and
uniformly at random) and sends out the ciphertexts shown in figure 1(b). Thus,
every rekey operation for a user logout requires sending logarithmically many
(specifically, 2 log2(n)− 1) ciphertexts; in our example, this number is 5.

The Flaw and the Fix. The flaw in the original LKH protocol lies in the way
it implements rekeying for user login operations. Suppose U8 sends a login
request at time t = 2. The center must now re-generate keys k11, k1, kε and
send them securely to all the designated users (including U8). The protocol does
this by transmitting the ciphertexts shown in figure 1(c). (k2

11, k
2
1, k

2
ε denote the

newly generated keys.)
Note that the group key at t = 1, k[1] = k1

ε , is used to encrypt the group key
at t = 2, k2

ε . This is a problem since our initial goal was to guarantee pseudo-
randomness of all group keys but deploying k[1] in this manner clearly fails that
purpose. In principle, if k[1] is used in keying other applications (for example, in
a message authentication scheme) at t = 1, and is also used for rekeying in the

manner shown, then the protocol could be completely subverted (both k[1] and
k[2] fully recovered) even by a passive eavesdropper on the channel. Of course,
this does not mean that the protocol is broken for any secure implementation of
the encryption scheme; but for some, it is.

We propose to fix the LKH protocol by changing the rekeying procedure for
user logins as shown in Figure 1(d). (We remark that this fix is different from
the one suggested in [12].) Notice that the communication cost incurred is the
same as in the original protocol (2 log2(n) ciphertexts for a user space of size n).
Notice also that the structure of the rekey messages is now similar to that of the
messages sent upon a user logout request (figure 1(b)). We refer to this modified
version of LKH as “rLKH” (the r stands for “repaired”). The protocol can be
easily generalized to work with arbitrary hierarchies; in particular, when the
key hierarchy is a d-ary tree (so its height equals dlogd(n)e), the communication
complexity (number of ciphertexts transmitted) of rekeying would be ddlogd(n)e
for user logins and ddlogd(n)e − 1 for user logouts. An implementation of
rLKH with n users and a d-ary hierarchy is referred to as the (n, d)-instance of
the protocol.

One could conceive other ways of fixing the user login process of LKH (pos-
sibly as secure and as efficient as the one we propose). We prefer this fix for two
reasons: (a) the key hierarchy in rLKH has the nice property that at all instants,
every auxiliary key (and even the group key) is transmitted to the legitimate
recipients by encrypting it under its two children only (and no other keys). This
property could potentially simplify implementation of the protocol in practice;
(b) more importantly, our fix ensures that the depth of the key graph generated
in any execution of the protocol is independent of the number of protocol rounds;
this property is useful in arguing about the protocol’s adaptive security.

Adaptive Security. Let KD be an n-user multicast key distribution program.
We define adaptive security of KD using the following game (which we call the
MKD game) played between an adversary A and a challenger B. Initially, B
generates the long-lived keys of all users kU1 , · · · , kUn (randomly, independently
from the underlying key space) and also generates a random challenge bit b. A
specifies the initial set of group members, S0, in response to which KD is invoked
and the initial key distribution messages, M0, returned to A. Subsequently, A
issues multiple queries to B, each query being either:

1. a rekey query—at any instant t, A can issue a query of the form rekey(command, Ui)
where command is either login or logout. In response, B runs KD based on
the membership change command specified and returns the set of rekey mes-
sages Mt to A; OR

2. a corrupt query—A can also issue queries of the form corrupt(Uj), in return
for which B sends it the key kUj

; OR
3. a challenge query—finally, A can issue a challenge query at any instant t;

in response, it is given the key k[t] if b = 0, or a fresh key r[t] (sampled
independently and uniformly at random from {0, 1}η) if b = 1.

All queries can be issued interleavingly and adaptively. Let U corr(A) be the set
of all users corrupted by A during the game. Let T chal(A) be the set of instants
t at which A issues a challenge query. We say that A is legitimate if in every
execution of A in the MKD game, for all t ∈ T chal(A), St ∩ U corr(A) = ∅. Let
ABKD

b denote the random variable corresponding to the output of A in the game,
conditioned on the event that B selects b as the challenge bit.

Definition 5 Let t, r ∈ IN+ and 0 < ε < 1. A multicast key distribution pro-
gram KD is (t, r, ε)-secure against adaptive adversaries if for every legitimate
adversary A that runs in time t, and makes r rekey queries: |P[ABKD

b = 1 | b =
0]−P[ABKD

b = 1 | b = 1]| ≤ ε

On the lines of the above definition, one can also define the problem of multicast
encryption (or, for that matter, any security task based on multicast key distri-
bution). For example, consider a multicast encryption protocol ME constructed
using a key distribution program KD and an encryption scheme Π = (E ,D)
as follows: the protocol distributes rekey messages for every group membership
change just as KD but besides this, it also encrypts arbitrary messages—upon
receiving a message m to encrypt at time t, the protocol outputs Ek[t](m). Se-
curity of such a scheme can be defined using a game similar to the MKD game,
but with one change—every time the adversary issues a challenge query, it
also specifies two messages (m0,m1) (m0,m1 ∈ {0, 1}∗, |m0| = |m1|) and the
challenger replies with Ek[t](mb) (k[t] being the current group key). It is pos-
sible to show that if KD is (t, r, ε)-secure against adaptive adversaries, and Π
is (t, ε′)-Ind-CPA secure, then ME is (O(t), r, 2ε + ε′)-secure against adaptive
adversaries.

In general, the problems of multicast key distribution and multicast encryp-
tion are equivalent to each other but studying the key distribution problem is
more natural since it allows to generically build protocols for any security task
(not necessarily multicast encryption) that can be accomplished using shared
group keys. For this reason, we have focussed our attention on the key distribu-
tion problem alone, and discuss the security of rLKH in the same context.

Theorem 6 Let n, d, t, r′ ∈ IN+ such that 1 < d ≤ n. Let 0 < ε < 1. The (n, d)-
instance of rLKH, when implemented using a (t, ε)-Ind-CPA secure encryption
scheme Π, is (t′, r′, ε′)-secure against adaptive adversaries for

ε′ = ε · 3
2
(ñ · (ñ + 1) · (2ñ + 1)dlogd(n)e−1)

t′ = t− (O(ñ) · tGenKey + (r′ddlogd(n)e) · tEncrypt)

Here, ñ = max{n, ddlogd(n)e−1 +r′} and tGenKey (resp. tEncrypt) is the time taken
to perform key generation (resp. encryption) in Π.

The proof of this theorem follows almost immediately from our soundness result
of Section 2, given that (a) the key graph generated by any execution of rLKH
is acyclic; (b) all group keys correspond to sinks in the protocol key graph; (c)

the depth of the graph remains dlogd(n)e throughout; and (d) for any r′-round
execution of the protocol, and for all t ≤ r′, the group key k[t] can be reached
from a long-lived key kUi if and only if Ui ∈ St. (The last part can be proven
using a straightforward inductive argument, with the induction being performed
on r′.) The reduction factor given in the theorem is slightly better than what one
gets using a direct invocation of Theorem 4: this is achieved using the fact that
in any r′-round execution of the rLKH protocol, (a) a key at depth i in the key
graph (that is, at distance i from some source) is encrypted only by keys at depth
i− 1 and (b) there are at most ddlogd(n)e−1 + r′ keys at any depth in the graph
(and at most n sources in it). Note that our reduction factor is exponential in
dlogd(n)e which is independent of the number of rounds the protocol is executed
for. That is, the adaptive security of rLKH degrades polynomially (and not
exponentially) with the number of rounds in the protocol execution.

Changing the hierarchy structure in rLKH involves a natural trade-off be-
tween efficiency and security: If we increase the arity d of the hierarchy (and
correspondingly, reduce the height), the communication efficiency of the proto-
col suffers, but we get a better guarantee on its adaptive security. The extreme
case is the n-ary hierarchy that has a linear rekeying communication complexity
but provides adaptive security via a reduction factor of only O(ñ2). (Note that
this is exactly the trivial approach to key distribution we discussed earlier on.)
Whether or not one can further improve this trade-off between efficiency and
security across different instances of rLKH, and, in particular, prove its adap-
tive security via a reduction factor smaller than the one given in Theorem 6,
assuming only the semantic security of Π, is a question left open by this work.

Acknowledgements

Thanks to Daniele Micciancio, Thomas Ristenpart and Scott Yilek, for comment-
ing on an earlier draft of the paper. Thanks also to the anonymous referees.

References

1. Martin Abadi and Philip Rogaway. Reconciling two views of cryptography (the
computational soundness of formal encryption). Journal of Cryptology, 15(2):103–
127, 2002.

2. Martin Abadi and Bogdan Warinschi. Security analysis of cryptographically con-
trolled access to xml documents. In Proceedings of the 24th ACM Symposium
on Principles of Database Systems (PODS), pages 108–117, Baltimore, Maryland,
June 2005. ACM.

3. Donald Beaver and Stuart Haber. Cryptographic protocols provably secure against
dynamic adversaries. In Rainer A. Rueppel, editor, Advances in Cryptology –
EUROCRYPT’92, volume 658 of Lecture Notes in Computer Science, pages 307–
323. Springer-Verlag, May 1992.

4. Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete security
treatment of symmetric encryption. In 38th Annual Symposium on Foundations of
Computer Science, pages 394–403. IEEE Computer Society Press, October 1997.

5. Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure mul-
tiparty computation. In 28th Annual ACM Symposium on Theory of Computing,
pages 639–648. ACM Press, May 1996.

6. Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis of
mutual authentication and key exchange protocols. In Shai Halevi and Tal Ra-
bin, editors, TCC ’06: Third Theory of Cryptography Conference, volume 3876 of
Lecture Notes in Computer Science, pages 380–403. Springer-Verlag, 2006.

7. Anupam Datta, Ante Derek, John Mitchell, and Bogdan Warinschi. Computation-
ally sound compositional logic for key exchange protocols. In 19th IEEE Computer
Security Foundations Workshop (CSFW ’06), pages 321–334. IEEE Computer So-
ciety, 2006.

8. Cynthia Dwork, Moni Naor, Omer Reingold, and Larry Stockmeyer. Magic func-
tions. Journal of the ACM, 50(6):852–921, 2003.

9. Amos Fiat and Moni Naor. Broadcast encryption. In Douglas R. Stinson, editor,
Advances in Cryptology – CRYPTO’93, volume 773 of Lecture Notes in Computer
Science, pages 480–491. Springer-Verlag, August 1993.

10. Prateek Gupta and Vitaly Shmatikov. Key confirmation and adaptive corrup-
tions in the protocol security logic. In FCS-ARSPA 2006 (Joint Workshop on
Foundations of Computer Security and Automated Reasoning for Security Protocol
Analysis), 2006.

11. Daniele Micciancio and Saurabh Panjwani. Adaptive security of symbolic encryp-
tion. In J. Kilian, editor, Theory of Cryptography Conference, TCC 2005, volume
3378 of Lecture Notes in Computer Science, pages 169–187, Cambridge, MA, USA,
February 2005. Springer-Verlag, Berlin, Germany.

12. Daniele Micciancio and Saurabh Panjwani. Corrupting one vs. corrupting many:
The case of broadcast and multicast encryption. In Automata, Languages, and
Programming: 33rd International Colloquium, ICALP 2006, Proceedings, Part II,
volume 4052 of Lecture Notes in Computer Science. Springer-Verlag, January 2006.

13. Daniele Micciancio and Bogdan Warinschi. Soundness of formal encryption in
the presence of active adversaries. In Moni Naor, editor, TCC 2004: 1st Theory
of Cryptography Conference, volume 2951 of Lecture Notes in Computer Science,
pages 133–151. Springer-Verlag, February 2004.

14. Suvo Mittra. Iolus: A framework for scalable secure multicasting. In Proceedings
of ACM SIGCOMM, pages 277–288, Cannes, France, September 14–18, 1997.

15. Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for
stateless receivers. In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages 41–62. Springer-Verlag,
August 2001.

16. Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic
proofs: The non-committing encryption case. In Moti Yung, editor, Advances in
Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science,
pages 111–126. Springer-Verlag, August 2002.

17. Chung Kei Wong, Mohamed Gouda, and Simon S. Lam. Secure group commu-
nications using key graphs. IEEE/ACM Transactions on Networking, 8(1):16–30,
February 2000.

