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Abstract. One of the celebrated applications of Identity-Based Encryp-
tion (IBE) is the Canetti, Halevi, and Katz (CHK) transformation from
any (selective-identity secure) IBE scheme into a full chosen-ciphertext
secure encryption scheme. Since such IBE schemes in the standard model
are known from previous work this immediately provides new chosen-
ciphertext secure encryption schemes in the standard model.
This paper revisits the notion of Tag-Based Encryption (TBE) and pro-
vides security definitions for the selective-tag case. Even though TBE
schemes belong to a more general class of cryptographic schemes than
IBE, we observe that (selective-tag secure) TBE is a sufficient primi-
tive for the CHK transformation and therefore implies chosen-ciphertext
secure encryption.
We construct efficient and practical TBE schemes and give tight secu-
rity reductions in the standard model from the Decisional Linear As-
sumption in gap-groups. In contrast to all known IBE schemes our TBE
construction does not directly deploy pairings. Instantiating the CHK
transformation with our TBE scheme results in an encryption scheme
whose decryption can be carried out in one single multi-exponentiation.
Furthermore, we show how to apply the techniques gained from the TBE
construction to directly design a new Key Encapsulation Mechanism.
Since in this case we can avoid the CHK transformation the scheme
results in improved efficiency.

1 Introduction

Since Diffie and Hellman proposed the idea of public key cryptography [14], one
of the most active area of research in the field has been the design and analysis
of public key encryption (PKE) schemes. In [16, 27] efficient primitives were
suggested from which to build encryption schemes. Formal models of security
were developed in [19, 23, 26] and nowadays it is widely accepted that security
against chosen-ciphertext attacks provides the “right level of security” for public-
key encryption schemes.

?? The paper was written while the author was a visitor at University of California,
San Diego, supported by a DAAD postdoc fellowship.



2 E. Kiltz

There have been numerous efficient schemes that were shown to be chosen-
ciphertext secure in the random oracle model [2]. Unfortunately a proof in the
random oracle model can only serve as a heuristic argument and has proved to
possibly lead to insecure schemes when the random oracles are implemented in
the standard model (see, e.g., [10]).

Dolev, Dwork, and Naor [15] were the first to come up with a public-key en-
cryption scheme provably chosen-ciphertext secure in the standard model (with-
out random oracles). Later Cramer and Shoup [12] presented the first really
practical public-key encryption scheme. Their approach was further generalized
in [13] and later shown by Elkind and Sahai [17] to fit into a more general frame-
work. The nowadays most efficient chosen-ciphertext secure encryption scheme
in the standard model is the one due to Kurosawa and Desmedt [21, 1] itself being
an improvement of the original Cramer-Shoup scheme. Both schemes, Cramer-
Shoup and Kurosawa-Desmedt are secure under the Decisional Diffie-Hellman
(DDH) assumption.

From IBE to PKE. One of the recent celebrated applications of Identity-Based
Encryption (IBE) is the work due to Canetti, Halevi, and Katz [11] showing an
elegant black-box transformation from any IBE into a PKE scheme without
giving up its efficiency. We will refer to this as the CHK transformation. If the
IBE scheme is selective-identity secure then the resulting PKE scheme is chosen-
ciphertext secure. Efficient constructions of IBE schemes in the standard model
were recently developed by Boneh and Boyen [3] so the CHK transformation
provides further alternative instances of chosen-ciphertext secure PKE schemes
in the standard model.1

Another fact worth mentioning about the CHK transformation is that it does
not seem to fall into the general framework characterized by Elkind and Sahai.
Boneh and Katz [7] later improve the CHK transformation resulting in shorter
ciphertexts and more efficient encryption/decryption. Since the two IBE schemes
from [3] employ pairing operations the resulting schemes are still less efficient
than the Kurosawa-Desmedt scheme.

Tag-Based Encryption. MacKenzie, Reiter, and Yang [22] introduce the no-
tion of tag-based encryption (TBE) and show (independent from [11]) that the
CHK transformation also transforms any “weakly secure” TBE scheme into a
chosen-ciphertext secure PKE scheme. However, the only TBE schemes in the
standard model mentioned in [11] are directly derived from known PKE schemes
(for example the Cramer-Shoup scheme) and the CHK transformation applied
to TBE schemes does not readily give us new instantiations of chosen-ciphertext
secure PKE schemes.

1 The underlying computational assumptions for the security reduction of the two IBE
schemes from [3] are both “pairing-assumptions”, i.e. the Bilinear Decisional Diffie-
Hellman (BDDH) assumption and the q-strong Decisional Bilinear Diffie-Hellman
Inversion (q-strong BDDHI) assumption.
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1.1 Our Contribution

From TBE to PKE. As pointed out in the last two paragraphs selective-
identity secure IBE (or weakly secure TBE) schemes are sufficient to construct
chosen-ciphertext secure PKE schemes. The natural question that arises is if in
the transformation some of the security requirements made to the IBE/TBE
scheme can be dropped while still preserving security of the resulting PKE
scheme. One of our contributions is to answer this question to the affirmative.

We revisit the security definitions for TBE schemes and introduce the notion
of selective-tag secure TBE schemes. Selective-tag security for TBE can be seen
as the selective-identity analog for IBE and is weaker than the TBE definition
from [22] and the IBE definition from [11]. One of our main results is to show
that selective-tag secure TBE is sufficient to build chosen-ciphertext secure PKE.
Our construction uses the CHK transformations.

On the theoretical side our result underlines that for the CHK transforma-
tion, an IBE scheme is basically overkill since some of its functionality is super-
fluous. In particular, there is no need to have an IBE key-derivation algorithm,
which seems to be what distinguishes IBE from all other public-key encryption
primitives. The notion of TBE can be viewed as some sort of “flattened IBE
scheme” (i.e., as IBE without key-derivation) and therefore exactly captures
the above observation. Our contribution is to extract the best out of the afore
mentioned papers: we are able to combine the known CHK transformation with
a security requirement that is substantially weaker than the requirements that
were believed to be necessary.

Comparing different security notions of TBE, IBE, and PKE. What
distinguishes TBE from IBE is the IBE key-derivation algorithm. Indeed, as we
will point out later, it seems to be hard to transform (even particular instances
of) TBE schemes into IBE schemes. The difference between selective-tag TBE
and weakly secure TBE schemes seems marginal at first glance but (similar to the
IBE case [3]) it turns our that the “selective-tag” property is the key to make
security proofs for TBE schemes much easier to construct. An even stronger
security definition of TBE schemes was already used by Shoup [29] (where the
tag was called “label”). Interestingly we show that such “strongly secure” TBE
schemes are equivalent to chosen-ciphertext secure PKE schemes. Since the CHK
transformation is black-box, our results imply that all the afore mentioned three
flavors of TBE security together with chosen-ciphertext secure PKE are in fact
all equivalent through efficient black-box reductions.

TBE and PKE are equivalent. So what is TBE good for? One may
ask the question why to make the long detour over TBE when designing PKE
schemes at all? The answer is simple. Since TBE is simpler and more general
than PKE (and IBE) our hope is that TBE may prove itself useful in the future to
come up with more chosen-ciphertext secure encryption in the standard model.
In particular, we would like to have chosen-ciphertext secure PKE schemes based
on different intractability assumptions. (Different from the BDDH or DDH as-
sumption, hopefully even weaker or at least unrelated.)
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An efficient TBE Scheme without Pairing Operations. To underline
the usefulness of our TBE to PKE transformation we present an efficient TBE
scheme that (in contrast to all known IBE schemes) does not directly rely on
pairing operations for encryption and decryption. In particular, the decryption
operation of our new TBE scheme is very efficient and (similar to the KD scheme)
only performs one single multi-exponentiation. The recently introduced deci-
sional linear (DLIN) assumption [4] states that, roughly, it should be computa-
tional infeasible to decide if w = zr1+r2 , given random (g1, g2, z, gr1

1 , gr2
2 , w) as

input. Our TBE scheme can be proved to meet the necessary security properties
under the DLIN assumption in the standard model. The security reduction is
tight, simple, and very intuitive. In contrast to all known efficient IBE schemes
our TBE scheme does not directly use pairings. However, our proofs of security
have to be carried out in gap-groups [25], i.e. groups in which CDH is believed
to be hard even though they are equipped with an algorithm that efficiently
solves the Decisional Diffie-Hellman (DDH) problem. One particular instance of
such gap-groups (which is actually the only one we know at the time being) is
obtained using pairings.

Instantiating the scheme with our TBE to PKE transformation we obtain a
new and reasonably efficient chosen-ciphertext secure encryption scheme in the
standard model based on the DLIN assumption. We remark that this is the first
(practical) chosen-ciphertext secure PKE based on the DLIN assumption in the
standard model.

Direct Key Encapsulation. A key encapsulation mechanism (KEM) is a
light PKE scheme intended to encapsulate and decapsulate a random (symmet-
ric) key. It is well known how to transform any chosen-ciphertext secure KEM
into a fully fledged chosen-ciphertext secure PKE scheme using symmetric en-
cryption (with appropriate security properties).

Surprisingly, our techniques from constructing the TBE scheme can also
be exploited to directly build a chosen-ciphertext secure KEM in the standard
model. Our construction avoids the CHK transformations and (similar to [12,
21]) only deploys a target collision-resistant hash function. As a result the cipher-
text size of the scheme is more compact compared to the PKE scheme obtained
using the above transformation. Furthermore encryption and decryption can be
done more efficiently. Our KEM construction is practical and enjoys a simple
proof of security with a tight reduction to the DLIN assumption in the standard
model.

1.2 Related Work

Independent of our work, Boyen, Mei, and Waters [9] recently look at some spe-
cific PKE schemes obtained from the CHK transformation instantiated with the
IBE schemes from [3, 30] and show how to make the resulting schemes more
efficient (in terms of computation time and ciphertext length). In particular,
they also come up with a practical chosen-ciphertext secure KEM (BMW-KEM)
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whose security is based on the BDDH assumption in the standard model.2 Com-
pared to our KEM, the BMW-KEM is based on bilinear pairings and therefore
results in a less efficient decryption algorithm (one pairing and one exponen-
tiation compared to one multi-exponentiation in our KEM). The BMW-KEM,
however, is slightly more efficient in terms of encryption operations and comes
with smaller ciphertexts. Compared to our KEM, the Kurosawa-Desmedt PKE
scheme provides the same efficiency for decryption whereas it is more efficient for
encryption. In Section 7.1 we discuss efficiency of all known encryption schemes
in the standard model. Comparing the overall performance of all known encryp-
tion schemes in the standard model the Kurosawa-Desmedt scheme [21] can still
be considered as the most efficient.

However, in contrast to the Kurosawa-Desmedt/Cramer-Shoup scheme, our
KEM shares with the BMW-KEM the nice property that the validity (or consis-
tency) of ciphertexts can be verified even without knowledge the the secret key.
This observation was recently used in [9] to propose a threshold cryptosystem
based on their BMW-KEM. With a similar idea and also based on the public
validity test our KEM can also be used to build a threshold encryption scheme.

2 Notation

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes its
size. If k ∈ N then 1k denotes the string of k ones. If S is a set then s

$← S denotes
the operation of picking an element s of S uniformly at random. Unless other-
wise indicated, algorithms are randomized. “PT” stands for polynomial time
and “PTA” for polynomial-time algorithm or adversary. We write A(x, y, . . .)
to indicate that A is an algorithm with inputs x, y, . . . and by z

$← A(x, y, . . .)
we denote the operation of running A with inputs (x, y, . . .) and letting z be
the output. We write AO1,O2,...(x, y, . . .) to indicate that A is an algorithm with
inputs x, y, . . . and access to oracles O1,O2, . . . and by z

$← AO1,O2,...(x, y, . . .)
we denote the operation of running A with inputs (x, y, . . .) and access to oracles
O1,O2, . . ., and letting z be the output.

3 Definitions

In this section we formally introduce PKE and TBE schemes together with a
security definition. We also give a parameter generating algorithm for bilinear
groups and pairings and state our complexity assumptions.

3.1 Public-Key Encryption

An public-key encryption (PKE) scheme PKE = (PKEkg,PKEenc,PKEdec) con-
sists of three polynomial time algorithms (PTAs). Via (pk , sk) $← PKEkg(1k)
2 We note that the same scheme as in [9] was independently discovered during research

for this paper. Since [9] is already published at the time of writing this extended
abstract we decided not to include it here.
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the randomized key-generation algorithm produces keys for security parameter
k ∈ N; via C $← PKEenc(pk ,M) a sender encrypts a message M under the public
key pk to get a ciphertext; via M ← PKEdec(sk ,C ) the possessor of secret key
sk decrypts ciphertext C to get back a message. Associated to the scheme is a
message space MsgSp. For consistency, we require that for all k ∈ N and mes-
sages M ∈ MsgSp(k) we have Pr[PKEdec(sk ,PKEenc(pk ,M)) = M ] = 1, where
the probability is taken over the coins of all the algorithms in the expression
above.

Privacy. Privacy follows [26]. Let PKE = (PKEkg,PKEenc,PKEdec) be an PKE
scheme with associated message space MsgSp. To an adversary A we associate
the following experiment:

Experiment Exppke-cca
PKE ,A (k)

(pk , sk) $← PKEkg(1k)
(M0,M1, st)

$← ADec(·)(find, pk)
b

$← {0, 1} ; C ∗ $← PKEenc(pk ,Mb)
b′

$← ADec(·)(guess,C ∗, st)
If b 6= b′ then return 0 else return 1

where the oracle Dec(C ) returns M ← PKEdec(sk ,C ) with the restriction that
in the guess phase adversary A is not allowed to query oracle Dec(·) for the
target ciphertext C ∗. Both challenge messages are required to be of the same
size (|M0| = |M1|) and in the message space MsgSp(k). We define the advantage
of A in the above experiment as

Advpke-cca
PKE ,A (k) =

∣∣∣∣Pr
[
Exppke-cca

PKE ,A (k) = 1
]
− 1

2

∣∣∣∣ .

PKE scheme PKE is said to be secure against chosen ciphertext attacks (CCA-
secure) if the advantage function Advpke-cca

PKE ,A is a negligible function in k for all
PTAs A.

The weaker security notion of security against chosen-plaintext attacks (CPA-
security) is obtained in the above security experiment when depriving adversary
A of the the access to the decryption oracle.

3.2 Tag-based Encryption

Informally, in a tag-based encryption scheme [22], the encryption and decryption
operations take an additional “tag”. A tag is simply a binary string of appropriate
length, and need not have any particular internal structure. We define security for
tag-based encryption in manners analogous to security for standard encryption
schemes. In particular, we define selective-tag security against chosen-ciphertext
attacks. The selective-tag variant is reminiscent to the selective-identity variant
of IBE schemes [11] and was not considered in [22].

More formally, a tag-based encryption (TBE) scheme TBE = (TBEkg,TBEenc,

TBEdec) consists of three PTAs. Via (pk , sk) $←TBEkg(1k) the randomized key-
generation algorithm produces keys for security parameter k ∈ N; via C $←
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TBEenc(pk , t ,M) a sender encrypts a message M with tag t to get a ciphertext;
via M ← TBEdec(sk , t ,C ) the possessor of secret key sk decrypts ciphertext C
to get back a message or the symbol reject. Note that the tag t must explicitly
be provided as the input of the decryption algorithm and is usually not explic-
itly contained in the ciphertext. Associated to the scheme is a message space
MsgSp. For consistency, we require that for all k ∈ N, all tags t and messages
M ∈ MsgSp(k) we have Pr[TBEdec(sk , t ,TBEenc(pk , t ,M)) = M ] = 1, where
the probability is taken over the choice of (pk , sk) $← TBEkg(1k), and the coins
of all the algorithms in the expression above.

Privacy. To an adversary A we associate the following experiment:

Experiment Exptbe-stag-cca
TBE ,A (k)

(t∗, st0)
$← A(1k, init)

(pk , sk) $← TBEkg(1k)
(M0,M1, st)

$← ADec(·,·)(find, pk , st0)
b

$← {0, 1} ; C ∗
tbe

$← TBEenc(pk , t∗,Mb)
b′

$← ADec(·,·)(guess,C ∗
tbe, st)

If b 6= b′ then return 0 else return 1

where the oracle Dec(C, t) returns M ← TBEdec(sk , t , C) with the restriction
that A is not allowed to query oracle Dec for tag t∗ (called target tag). Both
messages must be of the same size (|M0| = |M1|) and in the message space
MsgSp(k). We define the advantage of A in the above experiment as

Advtbe-stag-cca
TBE ,A (k) =

∣∣∣∣Pr
[
Exptbe-stag-cca

TBE ,A (k) = 1
]
− 1

2

∣∣∣∣ .

TBE scheme TBE is said to be selective-tag weakly secure against chosen cipher-
text attacks if the advantage function is negligible for all PTAs A.

In the security experiment adversary A is allowed to make decryption queries
for any tag t 6= t∗, t∗ being the tag the challenge ciphertext is created with. In
particular, this includes queries for the target ciphertext C ∗

tbe (when queried
with a different tag t 6= t∗). In other words, the security notion offers chosen-
ciphertext security for all tags t 6= t∗ and chosen-plaintext security for t = t∗.
The target tag t∗ has to be output by A before even seeing the public key. That
means that a simulator may “tailor” the public-key to secure the scheme with
respect to the above definition.

Discussion of different TBE variants. Tags in public-key encryption
were already considered by Shoup [29] (and were called “labels”) and later by
MacKenzie, Reiter, and Yang [22]. While functionality is the same as in our
definition, in terms of security there are small but crucial differences between
the definitions given in the different papers. We recall the two TBE security
variants from [29, 22] and point out the differences to our definition. Let C ∗

tbe be
the target ciphertext and t∗ be the target tag selected by the adversary A in the
security experiment.
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– To obtain the notion of weak CCA security for TBE schemes (as considered
in [22]3) we modify the above security experiment in a way such that A does
not have to commit to the target tag t∗ in the beginning of the experiment.
Instead, A is allowed to choose t∗ at the end of its find stage, possibly
depending on the public key and on its queries. Clearly, this is a stronger
security requirement.

– To get (full) CCA-security (as considered in [29]), we further modify the se-
curity experiment (of weak CCA security) such that the adversary is allowed
to ask any decryption query suspect to (t ,Ctbe) 6= (t∗,C ∗

tbe). In particular
this includes queries for the target tag t∗ as long as Ctbe 6= C ∗

tbe.

The differences between the different TBE security notions are summarized in
the following table.

TBE security Restriction to Dec(t ,Ctbe) queries Selective-tag?
(full) CCA [29] (t ,Ctbe) 6= (t∗,C ∗

tbe) no
weak CCA [22] t 6= t∗ no
selective-tag weak CCA t 6= t∗ yes

Clearly, the three definitions form a hierarchy of security notions, Shoup’s CCA
security being the strongest and our selective-tag weak CCA security being the
weakest. We want to remark that selective-tag weak CCA security is strictly
weaker than weak CCA security, i.e. there exists a TBE scheme that is selective-
tag but not weakly CCA secure. (This can be shown by an example recently
used in [18] to show a similar separation related to IBE schemes.)

Relation between TBE and PKE. It is easy to see that by identifying a
message/tag pair (M, t) with a message M ||t , any CCA-secure PKE scheme is
also a CCA-secure TBE scheme. On the other hand, by identifying a message
M with message/tag pair (M, t) (for an arbitrary tag t that is appended to
the ciphertext in the plain) any CCA-secure TBE scheme can be used as a
CCA-secure PKE scheme. Note that the same trick is not possible anymore if
we weaken the security requirement to the TBE scheme to weak CCA security.
(An adversary against the CCA security of the PKE scheme could query the
decryption oracle for (C ∗

tbe, t) for t 6= t∗ what would give it the plaintext Mb.)
The above remarks show that the two notions of CCA-secure TBE and CCA-
secure PKE can in fact be seen as equivalent. Fig. 1 in Section 4 is summarizing
the relations between PKE and the different security flavors of TBE.

3.3 Identity Based Encryption

An identity based encryption (IBE) scheme can be viewed as a special kind of
tag-based encryption scheme where the tag t is associated with an identity id .
The difference is that an IBE scheme is equipped with an additional algorithm,

3 Note that weak CCA-security for TBE schemes was called CCA-security in [22]. But
for its relation to PKE schemes we prefer to refer to it as weak CCA-security. This
should become clear later.
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the key derivation algorithm KeyDer. On input of the secret key sk and an
identity id , KeyDer generates a user secret key usk [id ] for identity id . This
secret key allows the identity to decrypt all messages that were encrypted to
identity id . In the terminology of TBE this means that usk [t ] is a “wild-card” to
decrypt arbitrary ciphertexts that were encrypted with tag t , without knowing
the secret key. A formal definition of IBE, together with a security model for
(selective-identity) chosen-plaintext security, is given in the full version [20].

Relation between IBE and TBE. By the above it is easy to see that every
IBE scheme can be transformed into a TBE scheme while maintaining its secu-
rity properties. In the transformation TBE tag t is identified with IBE identity
id . The key generation and encryption algorithms are the same. The TBE de-
cryption algorithm first computes the secret key usk [t ] for “identity” t and then
uses the public IBE decryption algorithm to recover the plaintext. It is easy to
verify that if the IBE scheme is (selective-identity) CPA-secure then the TBE
scheme is (selective-tag) weakly CCA-secure.4 Furthermore, a CCA-secure IBE
scheme translates to a CCA-secure TBE scheme. (See full version [20] for exact
IBE security definitions.)

To the best of our knowledge it is not known how to generically transform
a TBE scheme into an IBE scheme. This seems particularly difficult since it is
not clear how, in general, the user secret key usk [id ] of the IBE scheme can be
defined since in TBE there is no such concept as the “user secret key”.

The above observations together with the discussion from Section 3.2 indicate
that the class of selective-tag weakly CCA-secure TBE schemes is more general
than the class of weakly CCA-secure TBE/selective-identity CPA-secure IBE
schemes and gives furthermore hope that TBE schemes in the weak selective-tag
model are easier to construct. Fig. 1 in Section 4 is summarizing the relations
between TBE and IBE.

4 Chosen-Ciphertext Security from Tag-Based
Encryption

Canetti, Halevi, and Katz [11] demonstrate how to transform any selective-
identity CPA-secure IBE scheme into a CCA-secure PKE scheme by adding
a one-time signature (we will refer to this as CHK transformation). Independent
of [11], MacKenzie, Reiter, and Yang [22] exploit the same construction as [11]
and describe how to convert any weakly CCA-secure TBE scheme into a CCA-
secure PKE scheme. In this section we combine the above three papers [11, 22,
7] and show that a selevtice-tag weakly CCA-secure TBE scheme is sufficient to
construct an CCA-secure PKE scheme. More precisely, we note that the CHK
transformation may as well be instantiated with any TBE scheme (the PKE
decryption algorithm needs to be adapted to the TBE definition). If the TBE
scheme is selective-tag weakly CCA-secure then the resulting PKE scheme is

4 Note that CCA security for TBE schemes naturally corresponds to CPA security for
IBE schemes.
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CCA−secure TBE CCA−secure PKE

CPA−secure PKE

(x)
CPA−secure IBE

CCA−secure IBE

sID CPA−secure IBEstag weakly  CCA−secure TBE

weakly CCA−secure TBE

Fig. 1. Relation between IBE, TBE, and PKE with different security definitions. Solid
arrows indicate direct implications, dashed lines indicate relations through a black-box
reduction. All direct implications were discussed in Section 3. The upper left dashed
black-box implication is due to [22], the right one due to [11], and the one with the
marker (x) shows our contribution.

CCA-secure. We summarize the known relations among TBE, PKE, and IBE in
Fig. 1. The results of this section settle the implication marked by (x).

4.1 The Transformation

Given a TBE scheme TBE = (TBEkg,TBEenc,TBEdec) with tag-space TagSp we
construct a public-key encryption scheme PKE = (PKEkg,PKEenc,PKEdec). In
the construction, we use a one-time signature scheme OTS = (SKG,SIGN,VFY)
in which the verification key output by SKG(1k) is an element from TagSp. We
require that this scheme be secure in the sense of strong unforgeability (cf. [20]).
The transformation defines the public/secret key pair of the PKE scheme to be
the public/secret key pair of the TBE scheme, i.e. PKEkg(1k) outputs whatever
TBEkg(1k) outputs. The construction proceeds as follows:

TBE to PKE transformation
PKEenc(pk ,M)

(vk , sigk) $← SKG(1k)
Ctbe

$← TBEenc(pk , vk ,M)
sig $← SIGN(sigk ,Ctbe)
Return C ← (Ctbe, vk , sig)

PKEdec(sk ,C )
Parse C as (Ctbe, vk , sig)
If VFY(vk ,Ctbe, sig) = reject

then return reject.
Else return M ← TBEdec(sk , vk ,Ctbe)

It is easy to check that the above scheme satisfies correctness.
Let us now give some intuition why the PKE scheme is CCA-secure. Let

(C ∗
tbe, vk

∗, sig∗) be the challenge ciphertext output by the simulator in the secu-
rity experiment. It is clear that, without any decryption oracle queries, the value
of the bit b remains hidden to the adversary. This is so because C ∗

tbe is output
by TBEenc which is CPA-secure, vk∗ is independent of the message, and sig∗ is
the result of applying the one-time signing algorithm to C ∗

tbe.
We claim that decryption oracle queries cannot further help the adversary in

guessing the value of b. Consider an arbitrary ciphertext query (Ctbe, vk , sig) 6=
(C ∗

tbe, vk
∗, sig∗) made by the adversary during the experiment. If vk = vk∗ then
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(Ctbe, sig) 6= (C ∗
tbe, sig

∗) and the decryption oracle will answer reject since the
adversary is unable to forge a new valid signature sig with respect to vk∗. If
vk 6= vk∗ then the decryption query will not help the adversary since the actual
decryption using TBE will be done with respect to a tag vk different to the
target tag vk∗. A formalization of the above arguments leads to the following:

Theorem 1. Assuming the TBE scheme is selective-tag chosen-ciphertext se-
cure, the OTS is a strong, one-time signature scheme, then the above public-key
encryption scheme is chosen-ciphertext secure.

The security reduction is tight (linear) with respect to all the public-key com-
ponents. The proof follows along the lines of [11, 5] and is therefore omitted
here. We note that the CHK transformation can also be used to transform a
(straight-forward definition of) tag-based KEM into a full KEM.

For simplicity we only described the CHK transformation in this Section. We
want to remark that the more efficient BK transformation [7, 5] (which basically
employs a MAC insteas of a signature) works as well for TBE schemes. The use
of a MAC instead of a one-time signature somewhat complicates exposition and
proof. The description of the BK transformation, together with all necessary
definitions, is deferred to the full version [20].

5 An Efficient TBE scheme based on the Linear
Assumption

In this section we demonstrate the usefulness of the TBE to PKE transformation
of Section 4. Whereas the only known IBE schemes are using pairings [3] we give
a simple and practical TBE scheme that does not perform any pairing operation.

5.1 Parameter generation algorithm for gap groups.

All schemes will be parameterized by a gap parameter generator. This is a
PTA G that on input 1k returns the description of an multiplicative cyclic
group G of prime order p, where 2k < p < 2k+1, and the description of a
Diffie-Hellman oracle DDHvf. A tuple (g, gx, gy, gz) ∈ G4 is called a Diffie-
Hellman tuple if xy = z mod p. The oracle DDHvf is a PTA that for each input
(g, gx, gy, gz) ∈ G4 outputs 1 if (g, gx, gy, gz) is a Diffie-Hellman tuple and 0
otherwise. More formally we require that for each (G, p,DDHvf) $← G(1k ) and
for each (g, gx, gy, gz) ∈ G4,

Pr[DDHvf(g, gx, gy, gz) = (xy = z)] ≥ 1− neg(k)

where the probability is taken over all internal coin tosses of DDHvf and “xy = z”
is defined as 1 is xy = z mod p and 0 otherwise. We use G∗ to denote G \ {0},
i.e. the set of all group elements except the neutral element. Throughout the
paper we use GG = (G, p, DDHvf) as shorthand for the description of the gap
group. See [25] for a more formal treatment of gap groups. We note that one spe-
cific instantiation of such gap-groups can be obtained using bilinear pairings [6].
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5.2 The Decision Linear Assumption.

Let GG as above and let g1, g2, z ∈ G be random elements from group G. Con-
sider the following problem introduced By Boneh, Boyen, and Shacham [4]: Given
(g1, g2, z, gr1

1 , gr2
2 , w) ∈ G6 as input, output yes if w = zr1+r2 and no otherwise.

One can easily show that an algorithm for solving the Decision Linear Problem
in G gives an algorithm for solving DDH in G. The converse is believed to be
false. That is, it is believed that the Decision Linear Problem is a hard problem
even in gap-groups where DDH is easy. To an adversary A we associate the
following experiment.

Experiment Expdlin
G,A(1k)

PG $← G(1k) ; g1, g2, z
$← G∗ ; r1, r2, r

$← Zp

β
$← {0, 1} ; if β = 1 then w ← zr1+r2 else w ← zr

β′
$← A(1k, PG , g1, g2, z, gr1

1 , gr2
2 , w)

If β 6= β′ then return 0 else return 1

We define the advantage of A in the above experiment as

Advdlin
G,A(k) =

∣∣∣∣Pr
[
Expdlin

G,B(1k) = 1
]
− 1

2

∣∣∣∣ .

We say that the decision linear assumption relative to generator G holds if
Advdlin

G,A is a negligible function in k for all PTAs A.
To put more confidence in the DLIN problem it was shown in [4] that the

DLIN problem is hard in generic gap-groups.

A basic scheme based on DLIN. Since it’s introduction the DLIN assump-
tion has already found some interesting applications (e.g., see [4, 8, 24]). As noted
in [4] the DLIN assumption readily gives a CPA-secure PKE scheme (called lin-
ear encryption scheme) as follows: The public key consists of random elements
g1, g2, z ∈ G, the secret key of elements x1, x2 such that gx1

1 = gx2
2 = z. En-

cryption of a message M is given by (C1, C2, E)← (gr1
1 , gr2

2 , zr1+r2 ·M), where
r1, r2 ∈ Z∗q are random elements. The message M is recovered by the possessor
of the secret key by computing M as M ← E/(Cx1

1 Cx2
2 ).

5.3 The Scheme

The starting point of our scheme will be the (CPA-secure) linear encryption
scheme from Section 5.2. By adding two additional values to the ciphertext we
can update it to a selective-tag CCA-secure TBE scheme. The values contain
redundant information and also depend on the tag. In the decryption algorithm
the two values are used to check the ciphertext for “validity” or “consistency”.
We build a TBE scheme TBE = (TBEkg,TBEenc,TBEdec) as follows:
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DLIN-based TBE
TBEkg(1k)

(G, p,DDHvf) $← G(1k)
g1

$← G∗ ; x1, x2, y1, y2
$← Z∗p

Chose g2, z ∈ G with gx1
1 = gx2

2 = z
u1 ← gy1

1 ; u2 ← gy2
2

pk ← (G, p, g1, g2, z, u1, u2) ; sk ← (x1, x2, y1, y2)
Return (pk , sk)

TBEenc(pk , t ,M)
r1, r2

$← Z∗p
C1 ← gr1

1 ; C2 ← gr2
2

D1 ← ztr1ur1
1 ; D2 ← ztr2ur2

2

K ← zr1+r2

E ←M ·K
Ctbe ← (C1, C2, D1, D2, E)
Return Ctbe

TBEdec(sk , t ,Ctbe)
Parse Ctbe as (C1, C2, D1, D2, E)
s1, s2

$← Z∗p
K ← C

x1+s1(tx1+y1)
1 ·Cx2+s2(tx2+y2)

2
D

s1
1 ·Ds2

2

M ← E ·K−1

Return M

Note that the public key pk does not contain the description of the Diffie-Hellman
verification oracle DDHvf.

5.4 Correctness and Alternative Decryption

Let Ctbe = (C1, C2, D1, D2, E) ∈ G5 be a (possibly malformed) ciphertext. Ctbe

is called consistent with tag t if Ctx1+y1
1 = D1 and Ctx2+y2

2 = D2. Note that any
ciphertext that was properly generated by the encryption algorithm for tag t is
always consistent with (the same) tag t , i.e. for i = 1, 2 we have (gri

i )txi+yi =
ztriuri

i for any ri ∈ Zp.
The key K in the decryption algorithm is computed as

K =
C

x1+s1(tx1+y1)
1 C

x2+s2(tx2+y2)
2

Ds1
1 Ds2

2

= Cx1
1 Cx2

2 ·

(
Ctx1+y1

1

D1

)s1

·

(
Ctx2+y2

2

D2

)s2

for uniform s1, s2 ∈ Zq. This can be viewed as an implicit test if the ciphertext
is consistent with tag t . If so the key is computed as K = Cx1

1 · C
x2
2 . If not

then at least one of the two fractions in the above equation is different from
1 ∈ G and (since G has prime order) a random key K is returned, completely
independent of the “real key” Cx1

1 · C
x2
2 . Hence the decryption algorithm in

the above construction is equivalent to the following (less efficient) decryption
algorithm:
TBEdec′(sk , t ,Ctbe)

Parse Ctbe as (C1, C2, D1, D2, E)
If Ctx1+y1

1 6= D1 or Ctx2+y2
2 6= D2 then K

$← G∗

Else K ← Cx1
1 · C

x2
2

Return M ← E ·K−1

It leaves to verify that, in case the ciphertext is consistent, K ← Cx1
1 · C

x2
2

computes the correct key. Indeed we have (gr1
1 )x1 · (gr2

2 )x2 = zr1 · zr2 = zr1+r2 .
This shows correctness.
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5.5 Public Verification

In this section we show that consistency (or validity) of a given TBE ciphertext
can be publicly verified. The above alternative decryption procedure TBEdec′

gives rise to an algorithm TBEpv(pk , t ,Ctbe) for public verification of the cipher-
text by checking if (g1, z

tu1, C1, D1) and (g2, z
tu2, C2, D2) are Diffie-Hellman

tuples. Both checks can be carried out using the Diffie-Hellman verification
algorithm DDHvf that we additionally have to provide in the public-key. To
verify correctness of the above public consistency check we have to show that
for i = 1, 2, Ctxi+yi

i = Di iff (gi, z
tui, Ci, Di) is a Diffie-Hellman tuple. Let

Ci = gri . Then (gi, z
tui = gxit+yi

i , Ci = gri
i , Di) is a proper Diffie-Hellman-tuple

iff g
(xit+yi)·ri

i = Di iff Cxit+yi

i = Di.

5.6 Security and Efficiency

Theorem 2. Under the decision linear assumption relative to generator G, the
TBE scheme from Section 5.3 is selective-tag secure against chosen-ciphertext
attacks.

Theorem 2 is proved in Appendix A. The intuition of the proof is as follows:
Given an adversary A against the security of the TBE scheme, we can build an
adversary B that breaks the linear assumption with the same success probability
of A. For simulating A’s view we use two main ingredients: First, when answering
the decryption queries, B can test for consistency using the public ciphertext
verification algorithm TBEpv from Section 5.5. (This is the reason why pairings
are needed for the security proof.) Second, we borrow techniques from [3] to
make sure that B can answer the (consistent) decryption queries for all tags but
for the target tag t∗ output by A in the beginning of the security experiment.

Encryption requires three exponentiations (to compute C1, C2 and K) and
two multi-exponentiation (to compute D1, D2) in G. Encryption may as well
be carried out in 7 exponentiations what is considerably faster when the re-
ceiver’s public key is considered to be fixed and precomputation for fixed-base
exponentiation is used. Decryption is very fast and can be done with one multi-
exponentiation.

6 Key Encapsulation based on the Linear Assumption

A key encapsulation mechanism [29] (KEM) KEM = (KEMkg,KEMencaps,
KEMdecaps) consits of three PTAs can be seen as a light PKE scheme. Instead of
encrypting messages, the encapsulation algorithm KEMencaps generates a (ran-
dom) symmetric key K and a corresponding ciphertext C . The decapsulation
algorithm inputs the secret key and a ciphertext and reconstructs the symmetric
key K. In practice the key K is usually fed to a symmetric encryption scheme.
CCA-security of a KEM can be analogously defined as CCA-security security of
a PKE scheme; in the security game an adversary is given a ciphertext/key pair
and has to decide if the two pairs match or if the key is random and independent
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from the ciphertext. A formal definition of a CCA-secure KEM can be looked
up in the full version [20].

6.1 The KEM Scheme

We build a KEM scheme as follows. Let KEMkg(1k) be as in the TBE scheme of
Section 5.3. The public key pk additionally contains a target collision resistant
hash function TCR : G×G→ Zq (i.e. given t = TCR(g1, g2) it should be hard to
find (h1, h2) ∈ G×G\{(g1, g2)} such that TCR(h1, h2) = t; we refer to [12] for a
formal definition).5 The encapsulation/decapsulation algorithms are as follows:

DLIN-based KEM
KEMencaps(pk)

r1, r2
$← Z∗p

C1 ← gr1
1 ; C2 ← gr2

2

t← TCR(C1, C2)
D1 ← ztr1ur1

1 ; D2 ← ztr2ur2
2

K ← zr1+r2

Ckem ← (C1, C2, D1, D2)
Return (Ckem ,K)

KEMdecaps(sk ,Ckem)
Parse Ckem as (C1, C2, D1, D2)
t ← TCR(C1, C2)
s1, s2

$← Z∗p
K ← C

x1+s1(tx1+y1)
1 ·Cx2+s2(tx2+y2)

2
D

s1
1 ·Ds2

2

Return K

Analogous to the TBE construction from Section 5 consistency of a ciphertext
Ckem = (C1, C2, D1, D2) can be publicly verified by computing t ← TCR(C1, C2)
and checking if (gi, z

tui, Ci, Di) is a Diffie-Hellman tuple for i = 1, 2.

6.2 Security

Theorem 3. Assume TCR is a target collision resistant hash function. Under
the decision linear assumption relative to the generator G the KEM from Sec-
tion 6.1 is secure against chosen-ciphertext attacks.

The security reduction is tight and compared to the reduction from Theorem 2
there appears an additional additive factor taking into account a possible col-
lision in the hash function TCR. The proof of Theorem 3 is similar to that of
Theorem 2 and is given in the full version [20].

The way we use the target collision hash function is reminiscent to the
Cramer-Shoup cryptosystem [12]. Indeed, the intuition is the same. Given an
adversary A against the security of the KEM, we can build an adversary B
that breaks the linear assumption with the same success probability of A. Let
(C∗

1 , C∗
2 , D∗

1 , D∗
2) be the challenge ciphertext given to adversary A and let t∗ =

TCR(C∗
1 , C∗

2 ). Consider a ciphertext (C1, C2, D1, D2) queried by adversary A
during the CCA experiment and let t = TCR(C1, C2). Similar to the proof of
Theorem 2 we can setup the public-key in a way such that B is able to correctly

5 More formally we need a family of hash functions indexed by some random key c,
where c is contained in the public key and the description of the hash function is
included in the scheme parameters.
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simulate all such decryption queries as long as t 6= t∗ and the ciphertext is con-
stentent. The latter one can be checked using the public consistency algorithm.
Assume t = t∗. On one hand, when (C1, C2) 6= (C∗

1 , C∗
2 ) then B found a colli-

sion in the hash function. On the other hand, when (C1, C2) = (C∗
1 , C∗

2 ) then
consistency of the ciphertext also implies D1 = D∗

1 and D2 = D∗
2 and hence

the queried ciphertext matches the target ciphertext what is forbidden in the
experiment.

6.3 From KEM to Full PKE

It is well known that if both the public-key encapsulation scheme and the un-
derlying symmetric-key encryption scheme are CCA-secure, then the resulting
hybrid public-key encryption scheme is CCA-secure [13, Sec. 7]. The security
reduction is tight.

7 Discussion

7.1 Efficiency considerations

An efficiency comparison of all previously known CCA-secure PKE schemes in
the standard model is assembled in Figure 2. The Cramer-Shoup scheme [12]
and the Kurosawa-Desmedt scheme [21] are listed for reference. BK/BBx refers
to one of the two Boneh-Boyen IBE schemes from [3] instantiated with the MAC
based BK-transformation (since the signature-based CHK transformation is less
efficient we decided not to list it in our comparison).

BMW is the recent KEM from Boyen, Mei, and Waters [9]. To obtain a
fair comparison we equipped the two KEM schemes (the BMW-KEM and ours
from §6) with a hybrid encryption scheme to obtain a fully fledged PKE scheme.

Together with the Kurosawa-Desmedt PKE, our proposed DLIN-based KEM
offers the nowadays fastest decryption algorithm. Compared to all other schemes
the obvious drawbacks of our schemes are slower encryption and longer cipher-
texts. Interestingly, the BK/BBx and BMW constructions tie with the KD
scheme in terms of encryption but lose in terms of decryption, whereas our
scheme loses in encryption but ties in decryption.

We note that the long ciphertexts are basically due to the different assump-
tion; this is since the basic (chosen-plaintext secure) linear encryption scheme
from Section 5.2 already comes with a ciphertext overhead of 2|p|.

7.2 Remarks

We hope that by having provided weaker sufficient conditions for the CHK/BK
transformations we make a step directed towards a better understanding and
utilization of CCA-security in PKE schemes. From a designer’s point of view
the definition of selective-tag security means that the scheme only has to be “se-
cured” with respect to the target tag. Furthermore, in the security reduction, the
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Scheme Origin Assumption Encryption Decryption Ciphertext Public
#pairings + #[multi,reg,fix]-exp Overhead Vfy?

KD direct DDH 0 + [1, 2, 0] 0 + [1, 0, 0] 2|p|(+hybrid) —
CS KEM DDH 0 + [1, 3, 0] 0 + [1, 1, 0] 3|p| —
BK/BB1 BK/IBE BDDH 0 + [1, 2, 0] 1 + [1, 0, 0] 2|p|+com+mac —
BK/BB2 BK/IBE q-BDDHI 0 + [1, 2, 0] 1 + [0, 1, 1] 2|p|+com+mac —
BMW KEM BDDH 0 + [1, 2, 0] 1 + [0, 1, 0] 2|p| yes
Ours (§5) BK/TBE DLIN 0 + [2, 3, 0] 0 + [1, 0, 0] 4|p|+com+mac —
Ours (§6) KEM DLIN 0 + [2, 3, 0] 0 + [1, 0, 0] 4|p| yes

Fig. 2. Efficiency comparison for CCA-secure PKE schemes. Some figures are bor-
rowed from [7, 5, 9]. All “private-key” operations (such as hash function/MAC/KDF)
are ignored. Cipher overhead represents the difference (in bits) between the ciphertext
length and the message length, and |p| is the length of a group element. For concrete-
ness one can think of mac = 128 and the commitment com = 512 bits. For comparison
we mention that relative timings for the various operations are as follows: bilinear
pairing ≈ 5 [28], multi-exponentiation ≈ 1.5, regular exponentiation = 1, fixed-base
exponentiation � 0.2.

generated keys may depend on this tag. Having that designing concept in mind
it would be interesting to come up with new CCA-secure TBE/PKE schemes
based on different assumptions.

A very efficient TBE construction based on the Kurosawa-Desmedt encryp-
tion scheme [21] is obtained by removing the target collission-resistant hash func-
tion and taking the former output of the hash function as the tag. A straightfor-
ward question is if we can somewhat modify either this KD based TBE scheme or
our proposal from Section 5 to obtain an IBE scheme that does not use pairings.
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A Proof of Theorem 2

Adversary B inputs an instance of the decisional linear problem, i.e. B inputs the
values (1k, GG , g1, g2, z, gr1

1 , gr2
2 , w). B’s goal is to determine whether w = zr1+r2

or w is a random group element.
Now suppose there exists an adversary A that breaks the selective-tag CCA

security of the TBE scheme with (non-negligible) advantage Advtbe-stag-cca
TBE ,A (k).

We show that adversary B can run adversary A to solve its instance of the
decisional linear problem (i.e. to determine whether w = zr1+r2 or if w is a
random group element) with advantage

Advdlin
G,B(k) ≥ Advtbe-stag-cca

TBE ,A (k) . (1)

Now Eqn. (1) proves the Theorem. Adversary B runs adversary A simulating its
view as in the original TBE security experiment. We now give the description
of adversary B.

Init Stage Adversary B runs adversary A on input 1k and init. A outputs the
target tag t∗ that is input by B.

Find Stage B picks two random values c1, c2 ∈ Zp and sets

u1 ← z−t∗ · g1
c1 , u2 ← z−t∗ · g2

c2 .

The public key pk is defined as (G, p, g1, g2, z, u1, u2) and it is identically
distributed as in the original TBE scheme. Let x1 = logg1

z and x2 = logg2
z,

as in the original TBE scheme. This implicitly defines the values y1, y2 as

y1 = logg1
u1 = −t∗x1 + c1, y2 = logg2

u2 = −t∗x2 + c2 .

Note that no value of the corresponding secret key sk = (x1, x2, y1, y2) is
known to B.
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Now consider an arbitrary ciphertextCtbe = (C1, C2, D1, D2) and let t ∈ Zp

be a tag. Recall that Ctbe is consistent with tag t if Cxi·t+yi

i = Di for
i ∈ {1, 2}. The way the keys are setup this condition can be rewritten as

Di = Ctxi+yi

i = Cxit−t∗xi+ci
i = (Cxi

i )t−t∗ · Cci
i , i ∈ {1, 2} . (2)

By Equation (2), Di/Cci
i = (Cxi

i )t−t∗ and if t 6= t∗ then the session key
K = Cx1

1 · C
x2
2 can alternatively be reconstructed as

K ←
(

D1 ·D2

Cc1
1 · C

c2
2

) 1
t−t∗

. (3)

Now adversary B runs A on input find and pk answering to its decryption
queries as follows: Let Ctbe = (C1, C2, D1, D2) be an arbitrary ciphertext
submitted to the decryption oracle Dec(Ctbe, t) for tag t 6= t∗. First B
performs a public consistency check as explained in Section 5.5 using the
Diffie-Hellman verification algorithm DDHvf. If Ctbe is not consistent then B
returns a random message, as in the alternative (but equivalent) decryption
algorithm (Section 5.4) of the original TBE scheme. Otherwise, if the ci-
phertext is consistent adversary B computes the session key by Equation (3)
as K ← ( D1D2

C
c1
1 C

c2
2

)
1

t−t∗ and returns M ← E ·K−1. This shows that as long
as t 6= t∗ the simulation of the decryption queries is always perfect, i.e.
the output of oracle Dec(Ctbe, t) is identically distributed as the output of
TBEdec(sk ,Ctbe, t).

Guess Stage A returns two distinct messages M0,M1 of equal length. Ad-
versary B picks a random bit b and constructs the challenge ciphertext
C ∗

tbe = (C∗
1 , C∗

2 , D∗
1 , D∗

2 , E∗) for message Mb as follows:

( C∗
1 = gr1

1 , C∗
2 = gr2

2 , D∗
1 = (gr1

1 )c1 , D∗
2 = (gr2

2 )c2 , E∗ = Mb · w )

By Equation (2), C ∗
tbe is always consistent with target tag t∗. If w = zr1+r2 ,

then E = Mb ·w is indeed a valid ciphertext of message Mb and tag t∗ under
the public key pk . On the other hand, when w is uniform and independent
in G then E = w ·Mb is independent of b in the adversary’s view.
AdversaryA is run with challenge ciphertext C ∗

tbe answering to its decryption
queries as in the find stage.
Eventually, A outputs a guess b′ ∈ {0, 1}. Algorithm B concludes its own
game by outputting a guess as follows: If b = b′ then B outputs 1 meaning
w = zr1+r2 . Otherwise, it outputs 0 meaning that w is random.

This completes the description of adversary B. We now analyze B’s success in
breaking the decisional linear problem.

When the value w input by B equals to w = zr1+r2 , then A’s view is identical
to its view in a real attack game and therefore A must satisfy |Pr[b = b′] −
1/2| ≥ Advtbe-stag-cca

TBE ,A (k). On the other hand, when w is uniform in G then

Pr[b = b′] = 1/2. Therefore Advdlin
G,B(k) ≥

∣∣∣( 1
2 ±Advtbe-stag-cca

TBE ,A (k)
)
− 1

2

∣∣∣ =

Advtbe-stag-cca
TBE ,A (k). This proves Equation (1) and concludes the proof.


