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Abstract. In a seminal paper, H̊astad, Impagliazzo, Levin, and Luby
showed that pseudorandom generators exist if and only if one-way func-
tions exist. The construction they propose to obtain a pseudorandom
generator from an n-bit one-way function uses O(n8) random bits in
the input (which is the most important complexity measure of such a
construction). In this work we study how much this can be reduced if
the one-way function satisfies a stronger security requirement. For exam-
ple, we show how to obtain a pseudorandom generator which satisfies a
standard notion of security using only O(n4 log2(n)) bits of randomness
if a one-way function with exponential security is given, i.e., a one-way
function for which no polynomial time algorithm has probability higher
than 2−cn in inverting for some constant c.
Using the uniform variant of Impagliazzo’s hard-core lemma given in [7]
our constructions and proofs are self-contained within this paper, and as
a special case of our main theorem, we give the first explicit description
of the most efficient construction from [6].

1 Introduction

A pseudorandom generator is a deterministic function which takes a uniform
random bit string as input and outputs a longer bit string which cannot be
distinguished from a uniform random string by any polynomial time algorithm.
This concept, introduced in the fundamental papers of Yao [16] and Blum and
Micali [1] has many uses. For example, it immediately gives a semantically se-
cure cryptosystem: the input of the pseudorandom generator is the key of the
cryptosystem, and the output is used as a one-time pad. Other uses of pseu-
dorandom generators include the construction of pseudorandom functions [2],
pseudorandom permutations [11], statistically binding bit commitment [13], and
many more.

Such a pseudorandom generator can be obtained from an arbitrary one-way
function, as shown in [6]. The given construction is not efficient enough to be
used in practice, as it requires O(n8) bits of input randomness (for example, if
one would like to have approximately the security of a one-way function with
n = 100 input bits, the resulting pseudorandom generator would need several



petabits of input, which is clearly impractical). On the other hand, it is possible
to obtain a pseudorandom generator very efficiently from an arbitrary one-way
permutation [4] or from an arbitrary regular one-way function [3] (see also [5]),
i.e., a one-way function where every image has the same number of preimages.
In other words, if we have certain guarantees on the combinatorial structure of
the one-way function, we can get very efficient reductions.

In this paper we study the question whether a pseudorandom generator can
be obtained more efficiently under a stronger assumption on the computational
difficulty of the one-way function. In particular, assume that the one-way func-
tion is harder to invert than usually assumed. In this case, one single invocation
of the one-way function could be more useful, and fewer invocations might be
needed. We will see that is indeed the case, even if the pseudorandom generator
is supposed to inherit a stronger security requirement from the one-way function,
and not only if it is supposed to satisfy the standard security notion.

2 Overview of the Construction

The construction given in [6] uses several stages: first the one-way function is
used to construct a false entropy generator, i.e., a function whose output is com-
putationally indistinguishable from a distribution with more entropy. (This is
the technically most difficult part of the construction and the security proof can
be significantly simplified by using the uniform hard-core lemma from [7].) Next,
the false entropy generator is used to construct a pseudoentropy generator (a
function whose output is computationally indistinguishable from a distribution
which has more entropy than the input), and finally a pseudorandom generator
is built on top of that. If done in this way, their construction is very inefficient
(requiring inputs of length O(n34)), but it is also sketched in [6] how to “un-
roll” the construction in order to obtain an O(n10) construction. Similarly it is
mentioned that an O(n8) construction is possible (by being more careful).

Pseudorandom generator

Pseudo-entropy pair

One-way function

6Section 4
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Fig. 1. Overview of our construction.

In this work we explicitly describe an O(n8) construction (in an unrolled
version the construction we describe is the one sketched in [6]). Compared to [6]



we choose a different way of presenting this construction; namely we use a two-
step approach (see Figure 1). First, (in Section 4) we use the one-way function
to construct a pair (g, P ) where g is an efficiently evaluable function and P is a
predicate. The pair will satisfy that predicting P (x) from g(x) is computationally
difficult (in particular, more difficult than it would be information theoretically).
In [5] the term pseudo-entropy pair is coined for such a pair and we will use this
term as well. In a second step we use many instances of such a pseudo-entropy
pair to construct a pseudorandom generator.

Further, we generalize the construction to the case where stronger security
guarantees on the one-way function are given. This enables us to give more
efficient reductions under stronger assumptions.

Indepenently of this work, Haitner, Harnik, and Reingold [5] give a bet-
ter method to construct a pseudo-entropy pair from a one-way function. Their
construction has the advantage that the entropy of P (x) given g(x) can be esti-
mated, which makes the construction of the pseudorandom generator from the
pseudo-entropy pair more efficient.

3 Definitions and Result

3.1 Definitions and Notation

Definition 1. A one-way function with security s(n) against t(n)-bounded in-
verters is an efficiently evaluable family of functions f : {0, 1}n → {0, 1}m such
that for any algorithm running in time at most t(n)

Pr
x←R{0,1}n

[f(A(f(x))) = f(x)] <
1

s(n)

for all but finitely many n.

For example the standard notion of a one-way function is a function which
is one-way with security p(n) against p(n)-bounded inverters for all polynomi-
als p(n).

In [15] it is shown that a random permutation is 2n/10-secure against 2n/5-
bounded inverters, and also other reasons are given why it is not completely
unreasonable to assume the existence of one-way permutations with exponential
security. In our main theorem we can use one-way functions with exponential
security, a weaker primitive than such permutations.

Definition 2. A pseudorandom-generator with security s(`) against t(`)-boun-
ded distinguishers is an efficiently evaluable family of (expanding) functions
h : {0, 1}` → {0, 1}`+1 such that for any algorithm running in time at most t(`)∣∣∣ Pr

x←R{0,1}`
[A(h(x)) = 1]− Pr

u←R{0,1}`+1
[A(u) = 1]

∣∣∣ ≤ 1
s(`)

,

for all but finitely many `.



The standard notion of a pseudorandom generator is a pseudorandom gen-
erator with security p(`) against p(`)-bounded distinguishers, for all polynomi-
als p(`).

As mentioned above, we use pseudo-entropy pairs as a step in our construc-
tion. For such a pair of functions we first define the advantage an algorithm A
has in predicting P (w) from g(w) (by convention, we use the letter w to denote
the input here).

Definition 3. For any algorithm A, any function g : {0, 1}n → {0, 1}m and
any predicate P : {0, 1}n → {0, 1}, the advantage of A in predicting P given g is

AdvA(g, P ) := 2
(

Pr
w←R{0,1}n

[A(g(w)) = P (w)]− 1
2

)
.

The following definition of a pseudo-entropy pair contains (somewhat surpris-
ingly) the conditioned entropy H(P (W )|g(W )); we give an explanation below.

Definition 4. A pseudo-entropy pair with gap φ(n) against t(n)-bounded pre-
dictors is a pair (g, P ) of efficiently evaluable functions g : {0, 1}n → {0, 1}m
and P : {0, 1}n → {0, 1} such that for any algorithm A running in time t(n)

AdvA(g, P ) ≤ 1−H(P (W )|g(W ))− φ,

for all but finitely many n (where W is uniformly distributed over {0, 1}n).

The reader might think that it would be more natural if we used the best
advantage for computationally unbounded algorithms (i.e., the information the-
oretic advantage), instead of 1 − H(P (W )|g(W )). Then φ would be the gap
which comes from the use of t(n)-bounded predictors. We quickly explain why
we chose the above definition. First, to get an intuition for the expression
1 − H(P (W )|g(W )), assume that the pair (g, P ) has the additional property
that for every input w, g(w) either fixes P (w) completely or does not give any
information about it, i.e., for a fixed value v either H(P (W )|g(W ) = v) = 1
or H(P (W )|g(W ) = v) = 0 holds. Then, a simple computation shows that
1−H(P (W )|g(W )) is a tight upper bound on the advantage of computationally
unbounded algorithms, i.e., in this case our definition coincides with the above
“more natural definition”. We mention here that the pairs (g, P ) we construct
will be close to pairs which have this property. If there are values v such that
0 < H(P (W )|g(W ) = v) < 1, the expression 1 −H(P (W )|g(W )) is not an up-
per bound anymore and in fact one might achieve significantly greater advantage
than 1−H(P (W )|g(W )). Therefore in this case, Definition 4 requires something
stronger than the “more natural definition”, and, consequently, constructing a
pseudorandom generator from a pseudo-entropy pair becomes easier.1

We use ‖ to denote concatenation of strings, ax denotes the multiplication
of bitstrings a and x over GF(2n) (with an arbitrary representation), and x|λ
1 In fact, we do not know a direct way to construct a pseudorandom generator from

a pseudo-entropy pair with the “more natural definition”.



denotes the first bλc bits of the bit string x. For fixed x and x, x 6= x, the
probability that (ax)|i equals (ax)|i for uniformly chosen a can be computed as

Pr
a←{0,1}n

[
(ax)|i = (ax)|i

]
= Pr

a←{0,1}n

[
(a(x− x))|i = 0i

]
= 2−i, (1)

an expression we will use later.
For bitstrings x and r of the same length n we use x� r :=

⊕n
i=1 xiri for the

inner product. We use the convention that f−1(y) :=
{
x ∈ {0, 1}n|f(x) = y

}
,

i.e., f−1 returns a set.
For two distributions PX0 and PX1 over X the statistical distance is

∆(X0, X1) :=
1
2

∑
x∈X
|PX0(x)− PX1(x)|.

We also say that a distribution is ε-close to another distribution if the statis-
tical distance of the distributions is at most ε. For a distribution PX over X
the min-entropy is H∞(X) := − log(maxx∈X PX(x)). For joint distributions
PXY over X × Y the conditional min-entropy is defined with H∞(X|Y ) :=
miny∈Y H∞(X|Y = y).

Finally, we define [n] := {1, . . . , n}.

3.2 Result

We give a general construction of a pseudorandom generator from a one-way
function. The construction is parametrized by two parameters ε and φ. The pa-
rameter ε should be chosen such that it is smaller than the target indistinguisha-
bility of the pseudorandom generator: an algorithm which distinguishes the out-
put of the pseudorandom generator with advantage less than ε will not help us
in inverting f . The second parameter φ should be chosen such that the given
one-way function cannot be inverted with probability more than about 2−nφ (as
an example, for standard security notions choosing φ = 1

n and ε = 2−n would
be reasonable – these should be considered the canonical choices).

Theorem 1. Let functions f : {0, 1}n → {0, 1}m, φ : N → [0, 1], ε : N → [0, 1]
be given, computable in time poly(n), and satisfying 2−n ≤ ε ≤ 1

n ≤ φ.
There exists an efficient to evaluate oracle function hf

ε,φ with the following
properties:

– hf
ε,φ is expanding,

– hf
ε,φ has input of length O(n4

φ4 log( 1
ε )), and

– an algorithm A which distinguishes the output of hf
ε,φ from a uniform bit

string with advantage γ can be used to get an oracle algorithm which inverts
f with probability O( 1

n3 )2−nφ, using poly(n, 1
γ−ε ) calls to A.



For example, if we set φ := log(n)/n and ε := n− log(n) = 2− log2(n) and
use a standard one-way function in the place of f , then hf

ε,φ will be a standard
pseudorandom generator, using O(n8) bits2 of randomness.

Corollary 1. Assume that f : {0, 1}n → {0, 1}m is a one-way function with
security p(n) against p(n)-bounded inverters, for all polynomials p(n). Then
there exists a pseudorandom generator h : {0, 1}` → {0, 1}`+1 with security p(`)
against p(`)-bounded distinguishers, for all polynomials p(`). The construction
calls the one-way function for one fixed n dependent of ` and satisfies ` ∈ O(n8).

Alternatively if we have a much stronger one-way function which no poly-
nomial time algorithm can invert with better probability than 2−cn for some
constant c, we can set φ to some appropriate small constant and ε := n− log(n),
which gives us a pseudorandom generator using O(n4 log2(n)) bits of input:

Corollary 2. Assume that f : {0, 1}n → {0, 1}m is a one-way function with se-
curity 2−cn against p(n)-bounded inverters, for some constant c and all polyno-
mials p(n). Then there exists a pseudorandom generator h : {0, 1}` → {0, 1}`+1

with security p(`) against p(`)-bounded distinguishers, for all polynomials p(`).
The construction calls the one-way function for one fixed n dependent of `, and
satisfies ` ∈ O(n4 log2(n)).

If we want a pseudorandom generator with stronger security we set ε smaller
in our construction. For example, if a one-way function f has security 2cn against
2cn bounded distinguishers, we set φ (again) to an appropriate constant and
ε := 2−n. With these parameters our construction needs O(n5) input bits, and,
for an appropriate constant d, an algorithm with distinguishing advantage 2−dn,
and running in time 2dn, can be used to get an inverting algorithm which con-
tradicts the assumption about f . (A corollary similar to the ones before could
be formulated here).

The proof of Theorem 1 is in two steps (see Figure 1). In Section 4 we use the
Goldreich-Levin Theorem and two-universal hash-functions to obtain a pseudo-
entropy pair. In Section 5 we show how such a pair can be used to obtain a
pseudorandom generator.

3.3 Extractors

Informally, an extractor is a function which can extract a uniform bit string from
a random string with sufficient min-entropy. The following well known left-over
hash lemma from [10] shows that multiplication over GF(2n) with a randomly
chosen string a and then cutting off an appropriate number of bits can be used
to extract randomness. For completeness we give a proof (adapted from [12]).

Lemma 1 (Left-over hash lemma). Let x ∈ {0, 1}n be chosen according to
any source with min-entropy λ. Then, for any ε > 0, and uniform random a, the
distribution of

(
(ax)|λ−2 log( 1

ε )

∥∥ a
)

is ε
2 -close to a uniform bit string of length

bλ− 2 log( 1
ε )c+ n.

2 This could be insignificantly reduced by choosing ε slightly bigger.



Proof. Let m := bλ−2 log( 1
ε )c, and PV A be the distribution of (ax)|m‖a. Further,

let PU be the uniform distribution over {0, 1}m+n. Using the Cauchy-Schwartz
inequality (

∑k
i=1 ai)2 ≤ k

∑k
i=1 a2

i we obtain for the statistical distance in ques-
tion

∆(V A,U) =
1
2

∑
v∈{0,1}m,a∈{0,1}n

∣∣∣PV A(v, a)− 1
2n 2m

∣∣∣
≤ 1

2

√
2n 2m

√√√√∑
v,a

P 2
V A(v, a)− 2

∑
v,a

PV A(v, a)
2n 2m

+
∑
v,a

( 1
2n 2m

)2
=

1
2

√
2n 2m

√∑
v,a

P 2
V A(v, a)− 1

2n 2m
. (2)

Let now X0 and X1 be independently distributed according to PX (i.e., the
source with min-entropy λ). Further, let A0 and A1 be independent over {0, 1}n.
The collision probability of the output distribution is

Pr
[(

(X0A0)|m
∥∥ A0

)
=
(
(X1A1)|m

∥∥ A1

)]
=
∑
v,a

P 2
V A(v, a).

Thus we see that equation (2) gives an un upper bound on ∆(V A,U) in terms
of the collision probability of two independent invocations of the hash-function
on two independent samples from the distribution PX . We can estimate this
collision probability as follows:

Pr
[(

(X0A0)|m
∥∥ A0

)
=
(
(X1A1)|m

∥∥ A1

)]
= Pr[A0 = A1] Pr[(X0A0)|m = (X1A0)|m]

≤ Pr[A0 = A1]
(
Pr[X0 = X1] + Pr

[
(X0A0)|m = (X1A0)|m

∣∣∣ X0 6= X1

])
≤ 1

2n

( 1
2m+2 log(1/ε)

+
1

2m

)
=

1 + ε2

2n 2m
, (3)

where we used (1) in the last inequality. We now insert (3) into (2) and get
∆(V A,U) ≤ ε

2 . ut

Using the usual definition of an extractor, the above lemma states that mul-
tiplying with a random element of GF(2n) and then cutting off the last bits is a
strong extractor. Consequently, we will sometimes use the notation Extm(x, a)
to denote the function Extm(x, a) := (ax)|m

∥∥ a, extracting bmc bits from x.
Further we use the following proposition on independent repetitions from

[8], which is a quantitative version of the statement that for k independent
repetitions of random variables, the min-entropy of the resulting concatenation
is roughly k times the (Shannon-)entropy of a single instance (assuming k large
enough and tolerating a small probability that something improbable occured).
A similar lemma with slightly weaker parameters is given in [10] (the latter
would be sufficient for our application, but the expression from [8] is easier to
use).



Proposition 1. Let (X1, Y1), . . . , (Xk, Yk) i.i.d. according to PXY . For any ε
there exists a distribution PX Y which has statistical distance at most ε

2 from
(X1, . . . , Xk, Y1, . . . , Yk) and satisfies

H∞(X|Y ) ≥ kH(X|Y )− 6
√

k log(1/ε) log(|X |).

We can combine the above propositions as follows:

Lemma 2. Let k, ε with k > log(1/ε) be given. Let (X1, Y1), . . . , (Xk, Yk) i.i.d.
according to PXY over X ×Y with X ⊆ {0, 1}n. Let A be uniform over {0, 1}kn.

Then,

Ext
kH(X|Y )−8 log(|X |)

√
k log(1/ε)

(
X1‖ · · · ‖Xk, A

)
‖Y1‖ · · · ‖Yk

is ε-close to U × Y k, where U is an independent uniform chosen bitstring of
length bkH(X|Y )− 8 log(|X |)

√
k log(1/ε)c+ kn.

Proof. Combine Lemma 1 and Proposition 1. ut

4 A Pseudo-entropy Pair from any One-way Function

The basic building block we use to get a pseudo-entropy pair is the following
theorem by Goldreich and Levin [4] (recall that x� r = x1r1 ⊕ · · · ⊕ xnrn is the
inner product of x and r):

Proposition 2 (Goldreich-Levin). There is an oracle algorithm B(·) such
that for any x ∈ {0, 1}n and any oracle A satisfying

Pr
r←R{0,1}n

[A(r) = x� r] ≥ 1
2

+ γ

BA does O( n
γ2 ) queries to A and then efficiently outputs a list of O( 1

γ2 ) elements
such that x is in the list with probability 1

2 .

This proposition implies that for any one-way function f , no efficient algo-
rithm will be able to predict x � r from f(x) and r much better than random
guessing, as otherwise the one-way function can be broken.

This suggests the following method to get a pseudo-entropy pair: if we define
g(x, r) := f(x)‖r and P (x, r) := x � r, then predicting P (x, r) from g(x, r) is
computationally hard. The problem with this approach is that since f(x) may
have many different preimages, H(P (X, R)|g(X, R)) ≈ 1 is possible. In this case,
P (x, r) would not only be computationally unpredictable, but also information
theoretically unpredictable, and thus (g, P ) will not be a pseudo-entropy pair.

The solution of this problem (as given in [6]), is that one additionally ex-
tracts some information of the input x to f ; the amount of information ex-
tracted is also random. The idea is that in case one is lucky and extracts roughly



log
(∣∣f−1(f(x))

∣∣) bits, then these extracted bits and f(x) fix x in an informa-
tion theoretic way, but computationally x� r is still hard to predict because of
Proposition 2.

Thus, we define functions g : {0, 1}4n → {0, 1}m+4n and P : {0, 1}4n → {0, 1}
as follows (where i ∈ [n] is a number3, x, a, and r are bitstrings, and we ignore
padding which should be used to get (ax)|i to length n)

g(x, i, a, r) := f(x)
∥∥ i
∥∥ a

∥∥ (ax)|i
∥∥ r (4)

P (x, i, a, r) := x� r. (5)

We will alternatively write g(w) and P (w), i.e., we use w as an abbreviation
for (x, i, a, r). We will prove that (g, P ) is a pseudo-entropy pair in case f is
a one-way function. Thus we show that no algorithm exceeds advantage 1 −
H(P (W )|g(W )) − φ in predicting P (w) from g(w) (the gap φ does not appear
in the construction, but the pair will have a bigger gap if the one-way function
satisfies as stronger security requirement, as we will see).

We first give an estimate on H(P (W )|g(W )). The idea is that we can distin-
guish two cases: either i ≥ log(|f−1(f(x))|), in which case H(P (W )|g(W )) ≈ 0,
since (ax)|i, a, and f(x) roughly fix x, or i < log(|f−1(f(x))|), in which case
H(P (W )|g(W )) ≈ 1.

Lemma 3. For the functions g and P as defined above

H(P (W )|g(W )) ≤
Ex←R{0,1}n [log(|f−1(f(x))|)] + 2

n

Proof. From (1) and the union bound we see that if i > log(|f−1(y)|) the prob-
ability that x is not determined by the output of g is at most 2−(i−log(|f−1(y)|)).
This implies H(P (W )|g(W ), f(X) = y, I = i) ≤ 2−(i−log(|f−1(y)|)), and thus

H(P (W )|g(W )) =
1
2n

∑
x∈{0,1}n

H
(
P (W )|g(W ), f(X) = f(x)

)
=

1
2n

∑
x∈{0,1}n

1
n

n∑
i=1

H
(
P (W )|g(W ), f(X) = f(x), I = i

)
≤ 1

2n

∑
x∈{0,1}n

(
log(|f−1(f(x))|)

n

+
1
n

n∑
i=dlog(|f−1(f(x))|)e

2−(i−log(|f−1(f(x))|))))

≤ 1
2n

∑
x∈{0,1}n

log(|f−1(f(x))|) + 2
n

3 Technically, we should choose i as a uniform number from [n]. We can use an n bit
string to choose a uniform number from [2n] and from this we can get an “almost”
uniform number from [n] (for example by computing the remainder when dividing
by n). This only gives an exponentially small error which we ignore from now on.



=
Ex←R{0,1}n [log(|f−1(f(x))|)] + 2

n
.

ut

We can now show that (g, P ) is a pseudo-entropy pair. For this, we show that
any algorithm which predicts P from g with sufficient probability can be used
to invert f . Recall that φ is usually 1

n .

Lemma 4. Let f : {0, 1}n → {0, 1}m and φ : N → [0, 1] be computable in
time poly(n). Let functions g and P be as defined above. There exists an oracle
algorithm B(·) such that, for any A which has advantage AdvA(gf , P f ) ≥ 1 −
H(P f (W )|gf (W )) − φ in predicting P f from gf , BA inverts f with probability
Ω( 1

n3 )2−nφ and O(n3) calls to A.

We find it convenient to present our proof using random experiments called
“games”, similar to the method presented in [14].

Proof. Assume that a given algorithm A(y, i, a, z, r) has an advantage exceeding
the bound in the lemma in predicting P from g. To invert a given input y = f(x),
we will choose i, a, and z uniformly at random. Then we run the Goldreich-
Levin algorithm using A(y, i, a, z, ·), i.e., the Goldreich-Levin calls A(y, i, a, z, r)
for many different r, but always using the same y, i, a, and z. This gives us
a list L containing elements from {0, 1}n. For every x ∈ L we check whether
f(x) = y. If at least one x ∈ L satisfies this we succeeded in inverting f .

In order to see whether this approach is successful, we first define α to be
the advantage of A for a fixed y, i, a and z in predicting x� r for a preimage x
of y:

α(y, i, a, z) := max
x∈f−1(y)

(
2 Pr

r←{0,1}n
[A(y, i, a, z, r) = x� r]− 1

)
.

We maximize over all possible x ∈ f−1(y), since it is sufficient if the above
method finds any preimage of y. We will set the parameters of the algorithm such
that it succeeds with probability 1

2 if α(y, i, a, z) > 1
4n (i.e., with probability 1

2
the list returned by the algorithm contains x). It is thus sufficient to show for
uniformly chosen x, i, a, and z the inequality α(f(x), i, a, z) > 1

4n is satisfied
with probability Ω( 1

n3 )2−nφ.
Together with Lemma 3, the requirement of this lemma implies that in the

following Game 0 the expectation of the output is at least 1−H(P f (W )|gf (W ))−
φ ≥ 1− 1

n Ex[log(|f−1(f(x))|)]− 2
n−φ (this holds even without the maximization

in the definition of α and using x = x instead – clearly, the maximization cannot
reduce the expected output of Game 0).

Game 0:
x←R {0, 1}n, y := f(x), i←R [n]
a←R {0, 1}n, z := (ax)|i
output α(y, i, a, z)



Note that even though we can approximate α(y, i, a, z) we do not know how to
compute the exact value in reasonable time. However, we do not worry about
finding an efficient implementation of our games.

If i is much larger than log(|f−1(y)|) then predicting P (w) from g(w) is not
very useful in order to invert f , since (ax)|i gives much information about x
which we do not have if we try to invert y. Thus, we ignore the cases where i is
much larger than log(|f−1(y)|) in Game 1.

Game 1:
x←R {0, 1}n, y := f(x), i←R [n]
if i ≤ log(|f−1(y)|) + nφ + 3 then

a←R {0, 1}n, z := (ax)|i
output α(y, i, a, z)

fi
output 0

It is not so hard to see that the probability that the if clause fails is at most
1− 1

nEx[log(|f−1(f(x))|)]− 3
n−φ. Thus, in Game 1 the expectation of the output

is at least 1
n (because the output only decreases in case the if clause fails, and

in this case by at most one).
In Game 2, we only choose the first j bits of z as above, where j is chosen

such that these bits will be 1
4n -close to uniform (this will be used later). We fill

up the rest of z with the best possible choice; clearly, this cannot decrease the
expectation of the output.

Game 2:
x←R {0, 1}n, y := f(x), i←R [n]
if i ≤ log(|f−1(y)|) + nφ + 3 then

j := min(blog(|f−1(y)|)− 2 log(4n)c, i)
a←R {0, 1}n, z1 := (ax)|j
set z2 ∈ {0, 1}j−i such that α(y, i, a, z1‖z2) is maximal
output α(y, i, a, z1‖z2)

fi
output 0

We now chose z1 uniformly at random. Lemma 1 implies that the statistical
distance of the previous distribution of z1 to the uniform distribution (given a, i,
and y but not x) is at most 1

4n . Thus, the expecation of the output is at least 1
2n .

Game 3:
x←R {0, 1}n, y := f(x), i←R [n]
if i ≤ log(|f−1(y)|) + nφ + 3 then

j := min(blog(|f−1(y)|)− 2 log(4n)c, i)
a←R {0, 1}n, z1 ←R {0, 1}j
set z2 ∈ {0, 1}j−i such that α(y, i, a, z1‖z2) is maximal
output α(y, i, a, z1‖z2)

fi
output 0



As mentioned above, we will be satisfied if we have values y, i, a, (z1‖z2) such
that α(y, i, a, z1‖z2) ≥ 1

4n . In Game 4, we thus do not compute the expectation
of α anymore, but only output success if this is satisfied, and fail otherwise.

Game 4:
x←R {0, 1}n, y := f(x), i←R [n]
if i ≤ log(|f−1(y)|) + nφ + 3 then

j := min(blog(|f−1(y)|)− 2 log(4n)c, i)
a←R {0, 1}n, z1 ←R {0, 1}j
set z2 ∈ {0, 1}j−i such that α(y, i, a, z1‖z2) is maximal
if α(y, i, a, z1‖z2) > 1

4n
output success

fi
fi
output fail

The usual Markov style argument shows that the probability that the output is
success is at least 1

4n (this is easiest seen by assuming otherwise and computing
an upper bound on the expectation of the output in Game 3: it would be less
than 1

2n ).
In Game 5, we choose all of z uniformly at random.

Game 5:
x←R {0, 1}n, y := f(x), i←R [n]
if i ≤ log(|f−1(y)|) + nφ + 3 then

a←R {0, 1}n, z ←R {0, 1}i
if α(y, i, a, z) > 1

4n
output success

fi
fi
output fail

In Game 5, we can assume that z is still chosen as z1‖z2. For z1, the distribution
is the same as in Game 4, for z2, we hope that we are lucky and choose it exactly
as in Game 4. The length of z2 is at most 2 log(4n)+nφ+3, and thus this happens
with probability at least 1

128n2 2−nφ. Thus, in Game 4, with probability at least
1

512n3 2−nφ the output is success. As mentioned at the start of the proof, in this
case running the Goldreich-Levin algorithm with parameter 1

4n will invert f
with probability 1

2 , which means that in total we have probability Ω( 1
n3 )2−nφ in

inverting f . ut

5 A Pseudorandom Generator from a Pseudo-entropy
Pair

We now show how we can obtain a pseudorandom generator from a pseudo-
entropy pair (g, P ) as constructed in the last section. The idea here is that we
use many (say k) parallel copies of the function g. We can then extract about



kH(g(W )) bits from the concatenated outputs of g, about kH(W |g(W )P (W ))
bits from the concatenated inputs, and about k(H(P (W )|g(W )) + φ) bits from
the concatenated outputs of P . Using the identity H(g(W ))+H(P (W )|g(W ))+
H(W |g(W )P (W )) = H(W ), we can see that this will be expanding, and we can
say that the kφ bits of pseudorandomness from P are used to get the expanding
property of h.

The key lemma in order to prove the security of the construction is the
following variant of Impagliazzo’s hard-core lemma [9] proven in [7]4. For a set
T let χT be the characteristic function of T :

χT (x) :=

{
1 x ∈ T
0 x /∈ T .

Proposition 3 (Uniform Hard-Core Lemma). Assume that the given func-
tions g : {0, 1}n → {0, 1}m, P : {0, 1}n → {0, 1}, δ : N→ [0, 1] and γ : N→ [0, 1]
are computable in time poly(n), where δ is noticeable and γ > 2−n/3.

Further, assume that there exists an oracle algorithm A(·) such that, for in-
finitely many n, the following holds: for any set T ⊆ {0, 1}n with |T | ≥ δ2n,
AχT outputs a circuit C satisfying

E
[

Pr
x←RT

[C(g(x)) = P (x)]
]
≥ 1 + γ

2

(where the expectation is over the randomness of A).
Then, there is an algorithm B which calls A as a black box poly( 1

γ , n) times,
such that

AdvB(g, P ) ≥ 1− δ

for infinitely many n. The runtime of B is bounded by poly( 1
γ , n) times the

runtime of A.

The advantage of using Proposition 3 is as follows: in order to get a con-
tradiction, we will use a given algorithm A as oracle to contradict the hard-
ness of a pseudo-entropy pair, i.e., we will give B such that AdvB(g, P ) ≥ 1 −
H(P (W )|g(W ))−φ. Proposition 3 states that for this it is sufficient to show how
to get circuits which perform slightly better than random guessing on a fixed set
of size 2n(H(P (W )|g(W )) + φ), given access to a description of this set. Often,
this is a much simpler task.

In the following construction of a pseudorandom generator from a pseudo-
entropy pair we assume that parameters ε and φ are provided (thus they reap-
pear in Theorem 1). The parameter ε describes how much we lose in the indis-
tinguishability (by making our extractors imperfect), while φ is the gap of the
pseudo-entropy pair.
4 The proposition here is slightly stronger then the corresponding lemma in [7], as we

do not require γ to be noticeable. It is easy to see that the proof in [7] works in this
case as well.



Further we assume that parameters α and β are known which give certain
information about the combinatorial structure of the given predicate. We will
get rid of this assumption later by trying multiple values for α and β such that
one of them must be correct.5

Lemma 5. Let g and P be efficiently evaluable functions, g : {0, 1}n → {0, 1}m,
P : {0, 1}n → {0, 1}, ε : [0, 1] → N, and φ : [0, 1] → N be computable in
polynomial time, φ > 1

n . Assume that parameters α and β are such that

α ≤ H(P (W )|g(W )) ≤ α + φ/4
β ≤ H(g(W )) ≤ β + φ/4 .

There is an efficient to evaluate oracle function hg
α,β,ε,φ with the following

properties:

– hg
α,β,ε,φ is expanding,

– hg
α,β,ε,φ has inputs of length O(n3 1

φ2 log( 1
ε )), and

– any algorithm A which distinguishes the output of hg
α,β,ε,φ from a uniform bit

string with advantage γ can be used to get an oracle algorithm BA satisfying
AdvB(g, P ) ≥ 1−H(P (W )|g(W ))− φ which does poly( 1

γ−ε , n) calls to A.

Proof. Let k := 4096 · (n
φ )2 · log( 3

ε ) be the number of repetitions (this is chosen
such that

kφ

8
= 512

n2

φ
log
(3

ε

)
= 8n

√
k log

(3
ε

)
, (6)

which we use later). To simplify notation we set λ := n − α − β − φ/2. Using
the notation wk := w1‖ . . . ‖wk, g(k)(wk) := g(w1)‖ . . . ‖g(wk) and P (k)(wk) :=
P (w1)‖ . . . ‖P (wk), the function hα,β,ε,φ is defined as

hα,β,ε,φ(wk, s1, s2, s3) :=

Extk(β−φ/8)

(
g(k)(wk), s1

) ∥∥∥ Extk(α+7φ/8)

(
P (k)(wk), s2

) ∥∥∥ Extk(λ−φ/8)

(
wk, s3

)
.

Clearly, the input length is O(n3 1
φ2 log( 1

ε )). We further see by inspection that,
excluding the additional randomness s1, s2, and s3, the function h maps kn bits
to at least k(α + β + λ) + 5k φ

8 − 3 = k(n− φ
2 ) + k 5φ

8 − 3 = k(n + φ
8 )− 3 > kn

bits. Since the additional randomness is also completely contained in the output,
hα,β,ε,φ is expanding for almost all n.

We now show that an algorithm A which has advantage γ in distinguishing
hα,β,ε,φ(wk, s1, s2, s3) from a uniform bit string of the same length can be used
to predict P (w) given g(w) as claimed above. Per definition the probability that
the output is true in the following game is at least 1+γ

2 .

5 Haitner, Harnik, and Reingold [5] construct a pseudo-entropy pair for which
H(P (W )|g(W )) = 1

2
is fixed. Because of this, they are able to save a factor of n in

the seed length under standard assumptions (they do not need to try different values
for α).



Game 0:
(w1, . . . , wk)←R {0, 1}nk

b←R {0, 1}
if b = 0 then (Run A with the output of h)

s1 ←R {0, 1}mk, v1 := Extk(β−φ/8)

(
g(k)(wk), s1

)
s2 ←R {0, 1}k, v2 := Extk(α+7φ/8)

(
P (k)(wk), s2

)
s3 ←R {0, 1}nk, v3 := Extk(λ−φ/8)

(
wk, s3

)
else (Run A with uniform randomness)

v1 ←R {0, 1}mk+k(β−φ/8)

v2 ←R {0, 1}k+k(α+7φ/8)

v3 ←R {0, 1}nk+k(λ−φ/8)

fi
output b = A(v1‖v2‖v3)

We now make two transition based on statistical indistinguishability. First, we
replace the last part v3 in the if -clause of Game 0 with uniform random bits.
Because H(W |g(W )P (W )) = H(W ) − H(g(W )) − H(P (W )|g(W )) ≥ n −
α − β − φ

2 = λ, Lemma 2 implies that conditioned on the output of g(k)

and P (k) (and thus also conditioned on the extracted bits of those outputs)
Extkλ−kφ/8(wk, s3) = Ext

kλ−8n·
√

k log( 3
ε )

(wk, s3) is ε
3 -close to the uniform dis-

tribution (here we used (6)). Thus this only loses ε/3 of the advantage γ in
distinguishing.

Second, we replace v1 in the else-clause with Extk(β−φ/8)(g(k)(wk), s1). Since
H(g(W )) ≥ β, Lemma 2 implies that we only lose ε/3 in the advantage again. In
total, in the following Game 1 we have advantage at least γ− 2ε/3 over random
guessing.

Game 1:
(w1, . . . , wk)←R {0, 1}nk

b←R {0, 1}
if b = 0 then

s1 ←R {0, 1}mk, v1 := Extk(β−φ/8)

(
g(k)(wk), s1

)
s2 ←R {0, 1}k, v2 := Extk(α+7φ/8)

(
P (k)(wk), s2

)
v3 ←R {0, 1}nk+k(λ−φ/8)

else
s1 ←R {0, 1}mk, v1 := Extk(β−φ/8)

(
g(k)(wk), s1

)
v2 ←R {0, 1}k+k(α+7φ/8)

v3 ←R {0, 1}nk+k(λ−φ/8)

fi
output b = A(v1‖v2‖v3)

We would like to ignore the parts which are the same in case b = 0 and b = 1.
It is easy to see that A′ in Game 2 can be designed such that it calls A with the
same distribution as in Game 1.



Game 2:
(w1, . . . , wk)←R {0, 1}nk

b←R {0, 1}
if b = 0 then

s←R {0, 1}k, v := Extk(α+7φ/8)

(
P (k)(wk), s

)
else

v ←R {0, 1}k+k(α+7φ/8)

fi
output b = A′(g(k)(wk)‖v)

Later we want to use Proposition 3. Thus we will have an oracle χT which
implements the characteristic function of a set T of size at least (α+φ)2n. From
now on we will use the oracle implicitly in the games by testing whether w ∈ T .

In Game 3 it is easy to check that in case b = 0 the distribution with which A′

is called does not change from Game 2. On the other hand, if b = 1, then (since
|T | ≥ 2n(α + φ)) the pi contain independent random variables with entropy at
least α + φ (where the entropy is conditioned on g(wi)). Using Lemma 2 we see
that in this case v is ε

3 -close to uniform, implying that in Game 3 the advantage
of A′ in predicting b is still γ − ε.

Game 3:
(w1, . . . , wk)←R {0, 1}nk

b←R {0, 1}
for i ∈ [n] do

if wi ∈ T ∧ b = 1 then
pi ←R {0, 1}

else
pi := P (wi)

fi
od
s←R {0, 1}k, v := Extk(α+7φ/8)

(
pk, s

)
output b = A′(g(k)(w(k))‖v)

From Game 3, we will now apply a standard hybrid argument to get a pre-
dictor for a single position. For this, consider Game 4.

Game 4:
(w1, . . . , wk)←R {0, 1}nk

j ←R [n]
for i ∈ {1, . . . , j − 1} do

if wi ∈ T then pi ←R {0, 1} else pi := P (wi) fi
od
for i ∈ {j + 1, . . . , n} do pi := P (wi) od
b←R {0, 1}
if wj ∈ T ∧ b = 1 then pj ←R {0, 1} else pj := P (wj) fi
s←R {0, 1}k, v := Extk(α+7φ/8)

(
pk, s

)
output b = A′(g(k)(w(k))‖v)



The distribution A′ is called in Game 4 in case b = 0 and j = 1 is the same as in
Game 3 in case b = 0; the distribution used in Game 4 in case b = 1 and j = n
is the same as in Game 3, in case b = 1. Further, the distribution in Game 4
does not change if b is set from 1 to 0 and j is increased by one. This implies
that the advantage of A′ in predicting b is (γ − ε)/k.

In Game 5, we replace A′ with A′′ which does all the operations common in
case b = 0 and b = 1 (the w chosen in Game 5 corresponds to wj in Game 4,
and A′′ chooses the value of j, and all other wi before calling A′).

Game 5:
w ←R {0, 1}n
b←R {0, 1}
if w ∈ T ∧ b = 1 then

p←R {0, 1}
output A′′(g(w)‖p) = b

else
output A′′(g(w)‖P (w)) = b

fi

An easy calculation now yields that for w ←R T and p←R {0, 1} the probabillity
that

1⊕ p⊕A′′(g(w)‖p) = P (w)

is at least 1
2 + γ−ε

k . Since this works for any T with |T | ≥ (α + φ)2n, and thus
for every T with |T | ≥ (H(P (W )|g(W ))+φ)2n, we can apply Proposition 3 and
get the lemma. ut

With this lemma, we can now prove Theorem 1.

Proof (of Theorem 1). Given ε and φ, we use the construction of Lemma 4 to
get a predicate which we use in the construction of Lemma 5 for 16n

φ2 differ-
ent values of α and β (note that 0 ≤ H(g(W )) ≤ n), such that for at least
one of those choices the requirements of Lemma 5 hold. Further, in those ap-
plications we use ε′ := Ω(εφ4

n5 ) in place of ε. Since ε′ = Ω(ε10), this satisfies
O(log(1

ε )) = O(log( 1
ε′ )).

For every choice of α and β we concatenate hα,β,ε′,φ : {0, 1}` → {0, 1}`+1

with itself, in order to obtain a function h′α,β,ε′,φ : {0, 1}` → {0, 1}16nφ−2`+1, i.e.,
the first part of the output of hα,β,ε′,φ is used to call hα,β,ε′,φ again, and this
process is repeated 16nφ−2` ∈ O(n5 1

φ4 ) times, and every time we get one more
bit of the final output.

The function hε,φ : {0, 1}16nφ−2` → {0, 1}16nφ−2`+1 divides its input into 16n
φ2

blocks of length `, calls the functions h′α,β,ε′,φ with seperate blocks, and XORs
the outputs.

Assume now that an algorithm A can distinguish the output of hε,φ from
a unifrom random string with advantage γ. For every choice of α and β (and
in particular the choice which satisfies the requirements of Lemma 5) we try



the following to invert f . First, since we can simulate the other instances, we
see that we have advantage γ in distinguishing the output of h′α,β,ε′,φ from a
random string. We can use the hybrid argument to get an algorithm which
has advantage γ′ := Ω(γφ4n−5) in distinguishing the output of hα,β,ε′,φ from a
random string. From Lemma 5 we get an algorithm which predicts P from g with
advantage at least 1−H(P (W )|g(W ))− φ, and the number of calls is bounded
by poly( 1

γ′−ε′ , n) = poly( 1
γ−ε , n). Finally, Lemma 4 implies that we can get an

inverter with the claimed complexity and success probability. ut
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