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Abstract. We introduce the notion of resource-fair protocols. Infor-
mally, this property states that if one party learns the output of the
protocol, then so can all other parties, as long as they expend roughly
the same amount of resources. As opposed to similar previously proposed
definitions, our definition follows the standard simulation paradigm and
enjoys strong composability properties. In particular, our definition is
similar to the security definition in the universal composability (UC)
framework, but works in a model that allows any party to request ad-
ditional resources from the environment to deal with dishonest parties
that may prematurely abort.
In this model we specify the ideally fair functionality as allowing parties
to “invest resources” in return for outputs, but in such an event offer-
ing all other parties a fair deal. (The formulation of fair dealings is kept
independent of any particular functionality, by defining it using a “wrap-
per.”) Thus, by relaxing the notion of fairness, we avoid a well-known
impossibility result for fair multi-party computation with corrupted ma-
jority; in particular, our definition admits constructions that tolerate
arbitrary number of corruptions. We also show that, as in the UC frame-
work, protocols in our framework may be arbitrarily and concurrently
composed.
Turning to constructions, we define a “commit-prove-fair-open” function-
ality and design an efficient resource-fair protocol that securely realizes
it, using a new variant of a cryptographic primitive known as “time-
lines.” With (the fairly wrapped version of) this functionality we show
that some of the existing secure multi-party computation protocols can
be easily transformed into resource-fair protocols while preserving their
security.

1 Introduction

Secure multi-party computation (MPC) is one of the most fundamental problems
in cryptography, and has been investigated thoroughly over many years [54, 55,
38, 7, 18, 37]. Defining security is one of the first challenges in achieving this [37,
13, 48, 14, 40, 43, 3, 50]. The universal composability (UC) framework of Canetti
[14] is among the models that provide perhaps the strongest security guarantees.



2 Juan Garay, Philip MacKenzie, Manoj Prabhakaran, and Ke Yang

A protocol π that is secure in this framework is guaranteed to remain secure
when arbitrarily composed with other protocols, by means of a “composition
theorem.”

In this paper we investigate a less studied aspect of multiparty computation,
namely fairness. Informally, a protocol is fair if either all the parties learn the
output of the function, or no party learns anything (about the output).1 Clearly,
fairness is a very desirable property for secure MPC protocols, and in fact, many
of the security definitions cited above imply fairness. (See [40] for an overview
of different types of fairness, along with their corresponding histories.) Here we
briefly describe some known results about (complete) fairness. Let n be the total
number of participating parties and t be the number of corrupted parties. It is
known that if t < n/3, then fairness can be achieved without any set-up assump-
tions, both in the information-theoretic setting [7, 18] and in the computational
setting [38, 37] (assuming the existence of trapdoor permutations). If t < n/2,
one can still achieve fairness if all parties have access to a broadcast channel;
this also holds both information theoretically [51] and computationally [38, 37].

Unfortunately, the above fairness results no longer hold when t ≥ n/2, i.e.,
when a majority of the parties are corrupted. In fact, it was proved that there
do not exist fair MPC protocols in this case, even when parties have access to a
broadcast channel [19, 37]. Intuitively, this is because the adversary, controlling
a majority of the corrupted parties, can abort the protocol prematurely and
always gain some unfair advantage. This impossibility result easily extends to
the common reference string (CRS) model (where there is a common string
drawn from a prescribed distribution available to all the parties).

Nevertheless, fairness is still important (and necessary) in many applications
in which at least half the parties may be corrupted. One such application is
contract signing (or more generally, the fair exchange of signatures) by two par-
ties [8]. To achieve some form of fairness, various approaches have been explored.
One such approach adds to the model a trusted third party, who is essentially
a judge that can be called in to resolve disputes between the parties. (There
is a large body of work following this approach; see, e.g., [2, 12] and references
therein.) This approach requires a trusted external party that is constantly avail-
able. Another recent approach adds an interesting physical communication as-
sumption called an “envelope channel,” which might be described as a “trusted
postman” [42].

A different approach that avoids the available trusted party requirement uses
a mechanism known as “gradual release,” where parties take turns to release
their secrets in a “bit by bit” fashion. Therefore, if a corrupted party aborts
prematurely, it is only a little “ahead” of the honest party, and the honest party
can “catch up” by investing an amount of time that is comparable to (and maybe
greater than) the time spent by the adversary. (Note that this is basically an
ad hoc notion of fairness.) Early works in this category include [8, 27, 30, 39, 4,

1 This property is also known as “complete fairness,” and can be contrasted with
“partial fairness,” where fairness is achieved only when there are certain restrictions
on corruption of parties [40].
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23]. More recent work has focused on making sure — under the assumption
that there exist problems, such as modular exponentiation, that are not well
suited for parallelization2 — that this “unfairness” factor is bounded by a small
constant [11, 36, 49]. As we discuss below, our constructions also use a gradual
release mechanism secure against parallel attacks.

Resource fairness. In this paper we propose a new notion of fairness with a
rigorous simulation-based security definition (without a trusted third party),
that allows circumvention of the impossibility result discussed above in the case
of corrupted majorities. We call this new notion resource fairness. In a nutshell,
resource fairness means that if any party learns the output of a function, then
all parties will be able to learn the output of the function by expending roughly
the same amount of resources. (In our case, the resource will be time.) In order
to model this, we allow honest parties in our framework (both in the real world
and in the ideal process) to request resources from the environment, and our
definition of resource fairness relates the amount of requested resources to the
amount of resources available to corrupted parties.

Slightly more formally, a resource-fair functionality can be described in two
steps. We start with the most natural notion for a fair functionality F . A critical
feature of a fair functionality is the following:

– There are certain messages that F sends to multiple parties such that all
of them must receive the message in the same round of communication.
(For this it is necessary that the adversary in the ideal process cannot block
messages from F to the honest parties.3)

Then we modify it using a “wrapper” to obtain a functionality W(F). The
wrapper allows the adversary to make “deals” of roughly the following kind:

– Even if F requires a message to be simultaneously delivered to all parties,
the adversary can “invest” computational resources and obtain the message
from W(F) in an earlier communication round.

– However, in this case, W(F) will offer a “fair deal” to the honest parties:
each of them will be given the option of obtaining its message by investing
(at most) the same amount of computational resources as invested by the
adversary.

Once we define W(F) as our ideal notion of a fair functionality, we need to
define when a protocol is considered to be as fair as W(F). We follow the same
paradigm as used in the UC framework for defining security: A protocol π is said

2 Indeed, there have been considerable efforts in finding efficient exponentiation algo-
rithms (e.g., [1, 53]) and still the best methods are sequential.

3 In the original formulation of the UC framework [14], the adversary in the ideal
process could block the outputs from the ideal functionality to all the parties. Thus,
the ideal process itself is already completely unfair, and therefore discussing fair
protocols is not possible. The new version [15] also has “immediate functionalities”
as the default—see Section 2.1.
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to be as fair asW(F) if for every real adversaryA there exists an ideal adversary
(simulator) S such that no environment can distinguish between interacting with
A and parties running a protocol π (the real world), and interacting with S and
parties talking to W(F) (the ideal world). But in addition we require that S
cannot invest much more resources than A has.

This last condition is crucial for the notion of resource fairness. To see this,
note the following:

– In the ideal world, in the event of the adversary S obtaining a message by
investing some amount of resources, an honest party can be required to invest
the same amount of resources to get its message.

– By the indistinguishability condition, this is the same as the amount of
resources required by the honest parties in the real world. Thus, the resources
required by the honest parties in the real world can be as much as that
invested by the adversary S in the ideal world.

Recall that the (intuitive) notion of resource fairness requires that the resources
required by an honest party in the real world should be comparable to what the
adversary A (in the real world) expends, to obtain its output. Thus, to achieve
the notion, we must insist that the amount of resources invested by the ideal
world adversary S is comparable to what the real world adversary A expends.

Note that for these comparisons, the resources in the ideal world must be
measured using the same units as in the real world. However, these invested
resources do not have a physical meaning in the ideal world: it is just a “currency”
used to ensure that the fairness notion is correctly reflected in the ideal world
process.

The only resource we shall consider in this work is computation time.

Fairness through gradual release. Our definition is designed to capture the fair-
ness guarantees offered by the method of gradual release. The gradual release
method by itself is not new, but our simulation-based definition of fairness is.

Typical protocols using gradual release consist of a “computation” phase,
where some computation is carried out, followed by a “revealing” phase, where
the parties gradually release their private information towards learning a result
y. Our simulation-based definition requires one to be able to simulate both the
computation phase and the release phase. In contrast, previous ad hoc security
definitions did not require this, and consisted, explicitly or implicitly, of the
following three conditions:

1. The protocol must be completely simulatable up to the revealing phase.
2. The revealing phase must be completely simulatable if the simulator knows

y.
3. If the adversary aborts in the revealing phase and computes y by brute force

in time t, then all the honest parties can compute y in time comparable to
t.4

4 As we discussed before, an honest party typically will spend more time than the
adversary in this case.



Resource Fairness and Composability of Cryptographic Protocols 5

While carrying some intuition about security and fairness, we note that these
definitions are not fully simulation-based. To see this, consider a situation where
an adversary A aborts early on in the revealing phase, such that it is still in-
feasible for A to find y by brute force. At this time, it is also infeasible for the
honest parties to find y by brute force. Now, how does one simulate A’s view in
the revealing phase? Notice that the revealing phase is simulatable only if the
ideal adversary S knows y. However, since nobody learns y in the real world,
they should not learn y in the ideal world, and, in particular, S should not learn
y. Thus, the above approach gives no guarantee that S can successfully simulate
A’s view. In other words, by aborting early in the revealing phase, A might gain
some unfair advantage. This can become an even more serious security problem
when protocols are composed.

Environment’s role. In our formulation of fairness, if a protocol is aborted, the
honest parties get the option of investing resources and recovering a message
from the functionality. However, the decision of whether to exercise this option
is not specified by the protocol itself, but left to the environment. Just being
provided with this option is considered fair.5 The fairness guarantee is that the
amount of resources that need to be invested by the adversary to recover the
message will be comparable to what the honest party requires. Whether the
adversary actually makes that investment or not is not known to the honest
parties.

Leaving the recovery decision to the environment has the consequence that
our notion of fairness becomes a robust “relative” notion. In some environments
the execution might be (intuitively) unfair if, for instance, the environment re-
fuses to grant any requests for resources. However, this is analogous to the sit-
uation in the case of security: Some environments can choose to reveal all the
honest parties’ inputs to the adversary. The protocol’s guarantee is limited to
mimicking the ideal functionality (which by definition is secure and fair). We
do not seek to incorporate absolute guarantees of fairness (or security) into the
protocol, as they are dependent on the environment.

Our results. We now summarize the main results presented in this paper.

1. A fair multi-party computation framework. We start with a frame-
work for fair multi-party computation (FMPC), which is a variation of the
UC framework, but with modifications so that it is possible to design func-
tionalities such that the ideal process is (intuitively) fair.We then present a
generic wrapper functionality, denoted W(·), that converts a fair function-
ality into one that allows for a resource-fair realization in the real world.

5 In a previous version of this work [35], we insisted that the protocol itself must
decide whether or not to invest computational resources and recover a message from
an aborted protocol. Further, for being fair, we required that if the adversary could
have obtained its part of the message, then the protocol must carry out the recovery.
This leads to the unnatural requirement that the protocol must be aware of the
computational power of the adversary (up to a constant).
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We then present definitions for resource-fair protocols that securely real-
ize functionalities in this framework. We emphasize that these definitions
are in the (standard) simulation paradigm6 and admit protocols that tol-
erate an arbitrary number of corruptions. Finally, we prove a composition
theorem similar to the one in the UC framework.

2. The “commit, prove and fair-open” functionality. We define a commit-
prove-fair-open functionality FCPFO in the FMPC framework. This func-
tionality allows all parties to each commit to a value, prove relations about
the committed value, and more importantly, open all committed values si-
multaneously to all parties. This functionality (more specifically, a wrapped
version of it) lies at the heart of our constructions of resource-fair MPC
protocols. We then construct an efficient resource-fair protocol GradRel that
securely realizes FCPFO, assuming static corruptions. Our protocol uses a
new variant of a cryptographic primitive known as time-lines [31], which
enjoys a property that we call strong pseudorandomness. In turn, the con-
struction of time-lines hinges on a refinement of the generalized BBS as-
sumption [11], which has broader applicability.

3. Efficient and resource-fair MPC protocols. By using the W(FCPFO)
functionality, many existing secure MPC protocols can be easily trans-
formed into resource-fair protocols while preserving their security. In par-
ticular, we present two such constructions. The first construction converts
the universally composable MPC protocol by Canetti et al. [17] into a
resource-fair MPC protocol that is secure against static corruptions in the
CRS model in the FMPC framework. Essentially, the only thing we need to
do here is to replace an invocation of a functionality in the protocol called
“commit-and-prove” by our W(FCPFO) functionality.

The second construction turns the efficient MPC protocol by Cramer et
al. [21] into a resource-fair one in the “public key infrastructure” (PKI)
model in a similar fashion. The resulting protocol becomes secure and re-
source fair (assuming static corruptions) in the FMPC framework, while
preserving the efficiency of the original protocol — an additive overhead of
only O(κ2n) bits of communication and an additional O(κ) rounds, for κ
the security parameter.

Organization of the paper. The paper has two main components: the formaliza-
tion of the notion of resource-fairness, and protocol constructions satisfying this
notion. In Section 2 we present the new notion, and Section 3 is dedicated to
explaining the protocol constructions. Within Section 2, we describe the FMPC
framework, describe “wrapped” functionalities, give security and fairness defini-
tions and finally state a composition theorem. In Section 3 we present the FCPFO

functionality and show a protocol that realizes a wrapped version of it, which
we then use to achieve resource-fair MPC. Due to space limitations, proofs,

6 Indeed, as explained in Section 2.4, our definition of resource fairness subsumes the
UC definition of security.
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detailed remarks and extensions are omittied from this extended abstract and
can be found in the full version of the paper [32].

2 FMPC Framework and Resource Fairness

2.1 The FMPC framework

We now define the new framework used in our paper, which we call the fair multi-
party computation (FMPC) framework. It is similar to the universal composabil-
ity (UC) framework [14, 15]. In particular, there are n parties, P1, P2, ..., Pn, a
real-world adversary A, an ideal adversary S, an ideal functionality F , and an
environment Z . However, FMPC contains some modifications so that fairness
becomes possible. We stress that the FMPC framework still inherits the strong
security of UC, and we shall prove a composition theorem in the FMPC frame-
work similar to UC.

Instead of describing the FMPC framework from scratch, we only discuss its
most relevant features and differences from the UC framework. Refer to [15] for
a detailed presentation of the UC framework. The critical features of the FMPC
framework are:

Interactive circuits/PRAMs. Instead of interactive Turing machines, we as-
sume the computation models in the FMPC framework are non-uniform inter-
active PRAMs (IPRAMs).7 This is a non-trivial distinction, since we will work
with exact time bounds in our security definition, and the “equivalence” between
various computation models does not carry over there. The reason to make this
modification is that, we will need to model machines that allow for simulation
and subroutine access with no significant overhead. Thus, if we have two proto-
cols, and one calls the other as a black-box, then the total running time of the
two protocols together will be simply the sum of their running times. Obviously,
Turing machines are not suitable here.

We say an IPRAM is t-bounded if it runs for a total of at most t steps.8 We
always assume that t is a polynomial of the security parameter κ, though for
simplicity we do not explicitly write t(κ). We can view a t-bounded IPRAM as
a “normal” IPRAM with an explicit “clock” attached to it that terminates the
execution after a total number of t cumulative steps (notice that an IPRAM is
reactive: i.e., it maintains state across activations).

Synchronous communication with rounds. In the UC framework, the com-
munication is asynchronous, and controlled by the adversary, and further there
is no notion of time. This makes fair MPC impossible, since the adversary may,
for example, choose not to deliver the final protocol message to an uncorrupted
party Pi. In this case, Pi will never obtain the final result because it is never

7 IPRAMs are simply extensions to the PRAM machines with special read-only and
write-only memories for interacting with each other.

8 For simplicity, we assume that an IPRAM can compute a modular squaring operation
(i.e., compute x2 mod M on input (x,M)) in constant time.
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activated again. What is needed is to let parties be able to time out if they do
not receive an expected message within some time bound. However, instead of
incorporating a full-fledged notion of time into the model, for simplicity we shall
work in a “synchronous model.” Specifically, in the FMPC framework there will
be synchronous rounds of communication in both the real world and the ideal
process. (See [41, 45] for other synchronous versions of the UC framework.)

In each round we allow the adversary to see the messages sent by other parties
in that round, before generating its messages (i.e., we use a rushing adversary
model.

Note that this model of communication is used in both the real and ideal
worlds used for defining security. (As we shall see later, a resource-fair ideal
functionality is designed to be aware of this round structure. This is necessary
because the amount of resources required by an honest party to retrieve messages
that the adversary blocks, is directly related to the number of communication
rounds in the protocol that pass prior to that.) This allows also the environment
to be aware of the round structure.

We stress that in our protocols, we use the synchronous communication model
only as a substitute for having time-outs on messages (which are sequentially
numbered). Our use of the synchronous model is only that if a message does not
arrive in a communication round in which it is expected, then the protocol can
specify an action to take.

For simplifying our protocols, we also incorporate an authenticated broadcast
capability into our communication model. (This is not essential for the defini-
tions and composition theorem.) The broadcast can be used to ensure that all
parties receive the same message; however no fairness guarantee is assumed: some
parties may not receive a message broadcast to them. Indeed, such a broadcast
mechanism can be replaced by resorting to, for instance, the broadcast protocol
from [40] (with a slight modification to the ideal abstraction of broadcasting, to
allow for the round structure in our synchronous model).

Guaranteed-round message delivery from functionalities. Following the
revised formulation of the UC framework [15], in our model the messages from
an ideal functionality F are forwarded directly to the uncorrupted parties and
cannot be blocked by S.9 (Note that this is not guaranteed by the previous
specification regarding synchronous communication.) Specifically, F may out-
put (fairdeliver, sid,msg-id, {(msg1, Pi1), . . . , (msgm, Pim

)}, j), meaning that each
message msgi will be delivered to the appropriate party Pi at round j. We will
call this feature guaranteed-round message delivery.

Resource requests. Typically, an honest party’s execution time (per activa-
tion) is bounded a priori by a polynomial in the security parameter. But in our
model, an honest party can “request” the environment to allow it extra compu-
tation time. If the request is granted, then the party can run for longer in its

9 In the original UC formulation, messages from the ideal functionality F were for-
warded to the uncorrupted parties by the ideal adversary S, who may block these
messages and never actually deliver them. The ability of S to block messages from
F makes the ideal process inherently unfair.
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activations, for as many computation steps as granted by the environment. More
formally, an honest party in the real-world execution can send a message of the
form (dealoffer, sid,msg-id, β) to the environment; if the environment responds
to this with (dealaccept, sid,msg-id), then the party gets a “credit” of β extra
computational steps (which gets added to the credits it accumulated before). In
a hybrid model, these credits may also be used to accept deals offered by sub-
functionality instances. Note that the environment can decide to grant a request
or not, depending on the situation.

2.2 A fair SFE functionality

Before we introduce the notion of “wrapped functionalities,” it is useful to note
that in the model described above, we can construct a functionality that can be
considered a fair secure function evaluation functionality Ff . This functionality
is similar to the homonymous functionality in the UC framework [14], except
for (1) the fact that there is no reference to the number of corrupted parties, as
in our case it may be arbitrary, (2) the output is a single public value, instead
of private outputs to each party10, (3) the added round structure—in particu-
lar, the adversary specifies the round at which the outputs are to be produced
(deliverat message)11, and (4) the use of the fair delivery mechanism of the FMPC
framework.

Functionality Ff

Ff proceeds as follows, running with security parameter κ, parties P1, . . . , Pn, and
an adversary S.

Upon receiving a value (input, sid, v) from Pi, set xi← v.

As soon as inputs have been received from all parties, compute
y← f(x1, . . . , xn).

Wait to receive message (deliverat, sid, s) from S. As soon as the message is
received, output (fairdeliver, sid, 0, {((output, y), Pi)}1≤i≤n, s), that is, set up
a fair delivery of message (output, sid, y) to all parties for delivery in the sth
round.

Fig. 1. The SFE functionality for evaluating an n party function f .

We emphasize that in the FMPC framework, and because Ff uses the fair
delivery mechanism, it is easy to see that in the ideal model, the functionality Ff

10 This can be easily extended to the case where each party receives a different private
output, since y may contain information for each individual party, encrypted using a
one-time pad. In fact, the framework developed here accommodates interactive func-
tionalities with even more general fairness requirements, where different messages
from the functionality can be fairly delivered to different sets of parties at multiple
points in the execution.

11 Alternatively, the functionality could take the number of rounds as a parameter.



10 Juan Garay, Philip MacKenzie, Manoj Prabhakaran, and Ke Yang

satisfies the intuitive definition of fairness for secure function evaluation. (This is
called “complete fairness” in [40].) Specifically, if one party receives the output,
all parties receive the output.

2.3 Wrapped functionalities

As we have stated previously, according to the result of Cleve [19], it is impos-
sible to construct fair protocols, and thus there is no protocol that could realize
the functionality Ff describe above. Therefore we will create a relaxation of Ff

that can be realized, and that will be amenable to analysis in terms of resource
fairness. To do this, we will actually construct a more general wrapper func-
tionality which provides an interface to any functionality and will be crucial to
defining resource fairness. We denote the wrapper functionality as W(), and a
wrapped functionality as W(F).12

The wrapper operates as follows. For ease of explanation, assume the func-
tionality F schedules a single fair delivery to all parties with the same message.
Basically, the wrapper handles this fair delivery by storing the message inter-
nally until the specified round for delivery, and then outputing the message to
be delivered immediately to each party. It also allows the adversary S to invest
resources and obtain the message in advance. (Of course, in the ideal process,
this investment is simply notational - the adversary does not actually expend any
resources.) It will still deliver the message to each party at the specified round
unless S offers a deal to a party to “expend” a certain amount of resources. If
that party does not take the deal, then the wrapper will not deliver the mes-
sage at any round. The wrapper enforces the condition that it only allows S to
offer a deal for at most the amount of resources that S itself invested. Except
for the messages discussed above, all communication to and from F are simply
forwarded directly to and from F .

The formal definition ofW(F) is given in Figure 2. Here we provide some in-
tuition behind some of the labels and variables. Let F (msg-id) denote a fairdeliver

message record (containing message-destination pairs (msgi, Pi) and (msgS ,S)),
with identifier msg-id. Associated with any such record is a round number, which
specifies the communication round in which the messages in that record will be
delivered to all the parties and S. Initially each such record is marked unopened

to signify that no party has received any of the messages yet. At any round
the adversary S has the option of obtaining its messages (i.e., messages for the
corrupt players and S) by investing αmsg-id amount of resources.13 If it does so,
then the record is marked opened. Once a message is marked opened, W(F) will

12 Assuming F is a fair functionality, one could say that W(F) is a “resource-fair”
functionality. However, there is an important distinction: a protocol that securely
realizes F would be called a “fair” protocol, while a protocol that securely realizes
F would not be called a “resource-fair” protocol unless it satisfies an additional
requirement, as is discussed below.

13 This simply means that the adversary sends a message (invest, sid,msg-id, αmsg-id)
to W(F), and the amount αmsg-id is counted towards the total amount of resources
invested by S.
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Wrapper functionality W(F)
W(F) proceeds as follows, running with parties P1, . . . , Pn, and an adversary S: It
internally runs a copy of F .

– Whenever it receives an incoming communication, which is not one of the spe-
cial messages (invest, noinvest, dealoffer and dealaccept), it immediately passes
this message on to F .

– Whenever F outputs any message not marked for fair delivery, output this
message (i.e., pass it on to its destination, allowing the adversary to block this
messagea ).

– Whenever F outputs a record (fairdeliver, sid,msg-id, {(msg1, Pi1 ), . . . ,
(msgm, Pim), (msgS ,S)}, j),b W(F) stores this for future delivery (in commu-
nication round j). The message record is marked unopened to indicate that the
adversary has not yet obtained this message. Also all the pairs (msgi, Pi) in
the record are marked undealt to indicate that no deal has been offered to the
party Pi for obtaining this message.

– If a record with ID msg-id is marked as unopened and the adversary sends a
message (noinvest, sid,msg-id), then that record is erased (and the messages in
it will not be delivered to any party).

– If msg-id is marked as unopened and the adversary S sends a message
(invest, sid,msg-id, α), then

the record with ID msg-id is marked as opened, and α is stored as αmsg-id.
For each corrupt party Pi, if the record contains the message (msg, Pi),
that message is delivered to S immediately (even if the round j has not
yet been reached). If the record contains (msgS ,S) then that message is
also delivered to S at this point.

– At any round in which a fairdeliver record (marked unopened or opened) is
stored for delivery at that round, for every pair (msg, P ) in that record marked
undealt, msg is output for immediate delivery to P (i.e., using the fair delivery
mechanism). Then that record is erased.

– If a record msg-id is marked as opened and the adversary sends
(dealoffer, sid,msg-id, Pi, β) for some honest party Pi, then

W(F) marks the pair (msgi, Pi) in the record msg-id as dealt, and sends
(dealoffer, sid,msg-id, β′) to Pi, where β′ = min(β, αmsg-id).

– If an honest party Pi responds to (dealoffer, sid,msg-id, β) with
(dealaccept, sid,msg-id, β), then the stored message msgi is immediately
delivered to Pi, and erased from the stored record.

a In a typical fair functionality, all messages from F could be marked for fair
delivery. However we allow for non-fair message delivery also in the model.

b A message record is identified using the ID msg-id, which F will ensure is unique
for each record.

Fig. 2. The wrapper functionality W(F).

ensure that each honest party is offered a fair deal. For each honest party Pi

this can happen in one of two ways: either the adversary offers a deal to the
honest party to obtain its message msgi by investing at most αmsg-id amount of
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resources (in which case the pair (msgi, Pi) is marked dealt), or if the adversary
makes no such offer, then Pi receives the message at the specified round without
having to make any investment at all.

The following fact is easy to verify.

Fact 1 If the adversary obtains a message that was set for fair delivery with
message ID msg-id, every honest party that is set to receive a message in the
fair delivery with message ID msg-id will either receive it at the specified round,
or will be offered a deal for at most the amount invested by the adversary.

Conventions. Below we clarify some of the conventions in the new framework.

– Using resource-requesting subroutines. A protocol interfaces with a
resource-requesting subroutine in a natural way. When a protocol ρ uses
a subroutine π which makes resource requests (for instance, if π accesses a
wrapped functionalityW(F), or if π securely realizes a wrapped functionality
W(F)), it is for ρ to decide when to grant resource requests made by π. ρ
can grant resource requests only using resources it already has (which is
either part of its running time, or part of resources granted to it by its
environment). In the cases we consider, the outer protocol ρ will simply
transfer resource requests it receives to its environment, and will transfer
the resources granted to it back to the subroutine.

– Resource requests granted by the environment. We do not impose
any restriction on the amount of resources that the environment can grant
to the honest parties. In particular, the environment could grant a super-
polynomial amount of resources to an honest party. This allows a wider class
of environments for which the security guarantee holds. Jumping ahead,
we point out that this does not render the system insecure, because of an
extra condition that the entire system be simulatable in polynomial time,
independent of the amount of resources granted by the environment. This
requirement is captured in the definition of security using a device called the
full simulator (see Definition 1).

– Dummy honest parties in the ideal world. An honest party in the
ideal world is typically a “dummy” party. In the original UC framework this
means that it acts as a transparent mediator in the communication between
the environment and the ideal functionality. In our framework too this is
true, but now the interaction also involves dealoffer and dealaccept messages.

– A’s resources in a hybrid model. When working inW(F)-hybrid model,
the convention regarding bounding the resources of the adversary A needs
special attention: any amount of resources that A sends as investment to
W(F) gets counted towards its running time. That is, if A is a t-bounded
IPRAM, then the total amount invested by it plus the total number of steps
it runs is at most t.

2.4 Security and fairness definitions

So far, we have described the ideal world notion of fairness. As mentioned in
Section 1, for a protocol to be resource-fair, for each real world adversary A,
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the ideal world adversary S built to simulate the protocol should be such that
the amount of resources S invests is not much more than that available to A.
Below we shall quantify the resource fairness of a protocol by the ratio of the
amount of resources that S invests to the actual resources available to A (which
technically also includes those available to the environment).

The typical order of quantifiers in the simulation-based security definitions
allows the ideal-world adversary to depend on the real-world adversary that
it simulates, but it should be independent of the environment (i.e., ∀A∃S∀Z).
A stronger definition of security (which all current constructions in the UC
framework satisfy) could require the ideal-world adversary to be a “black-box”
simulator which depends on A only by making black-box invocations of A. We
employ a slight weakening of this definition: we pass S a bound t on the running
times of A and Z , as an input parameter. More formally we model A and Z as
bounded IPRAMs. Our security definition will use the order of quantifiers ∃S
∀t-bounded A and Z , and it will refer to SA(t). Now recall that we allow the
ideal-world adversary to invest resources with an ideal functionality. An ideal-
world adversary S with input parameter t (see above) is said to be λ-restricted
if there is a polynomial ζ(κ) such that the sum of all investments sent by S to
the ideal functionality is bounded by λt + ζ(κ).

The definition of security and fairness using the simulator captures the in-
tuitive requirements of these notions. However, this by itself does not give us
universal composability. We shall strengthen the definition as described below
to guarantee universal composition as well.

The full simulator. The strengthening is by requiring that (in addition to the
security requirement above) there should exist a “full simulator” which can re-
place A and the honest parties running the protocol in the real world, without an
environment being able to detect the change. We call it a full simulator because
it simulates all of the execution of a session to the environment, in contrast to a
simulator which does not control the honest parties. In this new scenario, since
there are no more honest parties involved in the execution, there is no ideal
functionality involved. Such a full simulation would be trivial, because the full
simulator has access to all the inputs of A as well as of the honest parties, and it
can simply execute the code of these parties in its simulation. The non-triviality
comes from another requirement: the running time of full simulator should be
bounded by a fixed polynomial, independent of the resource-requests granted by
Z .

We shall denote the random variable corresponding to the output produced
by Z on interaction with a full simulator X by FSIMXA,Z .

Definition 1 (Securely Realizing Functionalities). Let W1 and W2 be two
functionalities. We say a protocol π securely realizes the functionality W1 in the
W2-hybrid model if there exist an ideal world adversary S and a full simulator
X , such that for all t-bounded A and Z

1. HYBW2

ρ,A,Z ≈ IDEALW1,SA(t),Z , and
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2. HYBW2

ρ,A,Z ≈ FSIMXA,Z .

Furthermore, if S is λ-restricted, then π securely realizes W1 with λ-investment
(in the W2-hybrid model).

Although the definition above is stated with respect to general functionalities
(and this will be useful in proving our composition theorem), this notion of
realizing a functionality with λ-investment will be particularly relevant in the
case when W1 is a wrapped functionality, and specifically a wrapped “fair”
functionality. To elaborate, let us consider the case where W1 is W(F) for some
F . (The functionality W2 can be a wrapped or non-wrapped functionality, i.e.,
W2 above can be a non-wrapped functionality like FCRS, or it can be a wrapped
functionality which we use as a module in a larger protocol.) Then we make the
following definition.

Definition 2. Let π be a protocol that securely realizesW(F) with λ-investment.
Then π λ-fairly realizes F .

Let us give some intuition behind this definition. First, by Fact 1,W guarantees
that any time a corrupted party (or in particular, the ideal adversary that has
corrupted that party) receives its fairdeliver message, then every honest party is
at least offered a deal to receive its fairdeliver message, and this deal is bounded
by the amount that the ideal adversary invests. Second, by the definition above,
the ideal adversary invests an amount within a factor of λ to the resources
available to the real adversary. Thus, by expending resources at most a factor
λ more than the amount available to the real adversary, an honest party in the
ideal world may obtain its message. Since the ideal world is indistinguishable
from the real world, the honest party in the real world may also obtain the
message expending that amount of resources.

To summarize, we use the term λ-fairly to denote “resource fairness” where an
honest party may need to spend at most a factor of λ more resources (i.e., time)
than an adversary in order to keep the fair deliveries “fair.” Now we consider
the case where F is in fact the fair SFE functionality Ff , and formally define
resource fairness and (standard) fairness.

Definition 3. Let π be a protocol that securely realizesW(Ff ) with λ-investment.
Then we say π is λ-fair. If λ = O(n), then we say π is resource fair, and if λ = 0,
then we say π is fair.

Note that in a “fair” protocol, only a fixed polynomial investment is made by
the ideal adversary, and thus all deals are bounded by a fixed polynomial. This
could simply be incorporated into the protocol, and thus no deals would need
to be made. Thus the protocol would actually securely realize Ff . (Of course,
as discussed above, if the adversary may corrupt more than a strict minority of
parties, then no such protocol exists.)

On choosing λ = O(n). The intuition behind the choice of λ = O(n) for resource-
fair protocols is as follows. As discussed before, since corrupted parties can abort



Resource Fairness and Composability of Cryptographic Protocols 15

and gain unfair advantage, an honest party needs more time to catch up. In the
worst case, there can be (n − 1) corrupted parties against one honest party.
Since the honest party may need to invest a certain amount of work against
every corrupted party, we expect that the honest party would run about (n− 1)
times as long as the adversary. Thus, we believe that O(nt) is the “necessary”
amount of time an honest party needs for a t-bounded adversary. On the other
hand, as we show in the sequel, there exist O(n)-fair protocols in the FMPC
framework, and thus λ = O(n) is also sufficient.

Security of resource-fair protocols. Our definition of resource fairness subsumes
the UC definition of security. First of all, if a protocol π λ-fairly realizes F ,
then, by definition it is also a secure realization of W(F). However it is not a
secure realization of F itself, because W(F) offers extra features. But note that
for adversaries which never use the feature of sending an invest message, F and
W(F) behave identically. In fact, F in the original (unfair) UC model of [14] can
be modeled using a rigged wrapper: consider W ′(F) which behaves like W(F)
except that it does not offer any deals to the honest parties (but interacts with
the adversary in the same way: in particular, it allows the adversary to obtain its
outputs by “investing” any amount of resources). Except for the round structure
we use, W ′(F) is an exact modeling of F in the original UC framework. Clearly
W(F), is intuitively as secure as W ′(F) (but is also fair).

2.5 A composition theorem

We now examine the composition of protocols. It turns out that the composi-
tion theorem of the UC framework does not automatically imply an analog in
the FMPC framework. The main reason for this is that the running time of a
resource-requesting protocol is not bounded a priori, as there is no bound on
the amount of time the environment may decide to grant it in response to a re-
quest. This is the reason we introduced the full simulator, whose running time is
bounded by a polynomial, independent of the environment, and added the extra
requirement concerning the full simulator in our definition of security. Using this
extra requirement, we are able to prove the composition theorem below.

For simplicity, we shall modify Definition 1, so that the simulator S is passed
t which is a bound on the sum of the running times of the environment Z and
the adversary A (rather than on the maximum of these two). We state the
composition theorem accordingly. This makes a difference of at most a constant
factor in the parameters below.

Theorem 2 (Universal Composition of Resource-Fair Protocols). Let
W2 be an ideal functionality. Let π be a protocol in the W2-hybrid model, which
uses atmost ` sessions of W2. Let ρ be a protocol that securely and λ-fairly
realizes W2. Then there exists a λ′-restricted black-box hybrid-mode adversary
H, such that for all t, for any t1-bounded real-world adversary A and t2-bounded
environment Z such that t1 + t2 ≤ t, we have

REALπρ,A,Z ≈ HYBW2

π,HA(t),Z , (1)
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where λ′ = λ`.

Corollary 1. Let W1 and W2 be ideal functionalities. Let π be a protocol that
securely realizes W1 with λ-investment in the W2-hybrid model. Let ρ be a pro-
tocol that securely realizes W2 with λ′-investment. Then the protocol πρ securely
realizes W1 with λ′′-investment. Here, if ` is an upperbound on the number of
sessions of W2 used by π, then λ′′ = λ(`(λ′ + 1)).

3 Resource-Fair Protocols

3.1 The commit-prove-fair-open functionality

We first present the “commit-prove-fair-open” functionality FCPFO, and then
show how to construct a protocol, GradRel, that securely realizesW(FCPFO) with
O(n)-investment using “time-lines.” Functionality FCPFO is described below.

Functionality FR
CPFO

FR
CPFO is parameterized by a polynomial-time computable binary relation R. It

proceeds as follows, running with parties P1, P2, ..., Pn and an adversary S.

Round 1 – commit phase: Receive message (commit, sid, xi) from every party
Pi and broadcast (RECEIPT, sid, Pi) to all parties and S.

Round 2 – prove phase: Receive message (prove, sid, yi) from every party Pi,
and if R(yi, xi) = 1, broadcast (PROOF, sid, Pi, yi) to all parties and S.

Oopen phase: Wait to receive message (open, sid) from party Pi,
1 ≤ i ≤ n, and a message (deliverat, sid, s) from S. As
soon as all n open messages and the deliverat message are re-
ceived, output (fairdeliver, sid, 0, {((DATA, (x1, x2, ..., xn)), Pi)}1≤i≤n ∪
{((DATA, (x1, x2, ..., xn)),S)}, s).

Fig. 3. The commit-prove-fair-open functionality FCPFO with relation R.

Functionality FCPFO is similar to the “commit-and-prove” functionality FCP

in [17] in that both functionalities allow a party to commit to a value v and
prove relations about v. Note that although FCP does not provide an explicit
“opening” phase, the opening of v can be achieved by proving an “equality”
relation. However, while FCP is not concerned with fairness, FCPFO is specifically
designed to enforce fairness in the opening. In the open phase, FCPFO does not
require the outputs to be handed over to the parties as soon as the parties request
an opening. Instead, it specifies (to W(FCPFO)) a round s in the future when
the outputs are to be handed over. We allow the adversary to determine this
round by sending a deliverat message to FCPFO. (Implicitly we assume that if the
round number in the deliverat message is less than the current round number,
then the functionality will ignore it.)
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Later in the paper, we shall see that by replacing some invocations to the FCP

functionality by invocations to W(FCPFO), we can convert the MPC protocol
by Canetti et al. (which is completely unfair) into a resource-fair protocol.

Before showing a protocol that securely realizes W(FCPFO), we present a
variant of a cryptographic primitive known as “time-lines” [31] that will play an
essential role in the construction of resource-fair protocols. Before doing that,
we present the assumptions used by these protocols

Preliminaries for protocol constructions. Let κ be the cryptographic security
parameter. A function f : Z→ [0, 1] is negligible if for all α > 0 there exists an
κα > 0 such that for all κ > κα, f(κ) < |κ|−α. All functions we use in this paper
will include a security parameter as input, either implicitly or explicitly, and
we say that these functions are negligible if they are negligible in the security
parameter. (They will be polynomial in all other parameters.) Furthermore, we
assume that n, the number of parties, is polynomially bounded by κ as well.

A prime p is safe if p′ = (p − 1)/2 is also a prime. A Blum integer is a
product of two primes, each equivalent to 3 modulo 4. We will be working with
a special class of Blum integers N = p1p2 where p1 and p2 are both safe primes.
We call such numbers safe Blum integers.

The assumptions used in this paper are the composite decisional Diffie-
Hellman assumption (CDDH) [10], the decision composite residuosity assump-
tion (DCRA) [46], and a further refinement of the generalized Blum-Blum-Shub
assumption (GBBS) [11], which we now state.14

Given security parameter κ, let N = p1p2 be a safe Blum integer with
|p1| = |p2| = κ, and let k be an integer bounded from below by κc for some
positive c. Let a be an arbitrary `-dimensional vector where 0 = a[1] < a[2] <
· · · < a[`] < 2k, and x be an integer between 0 and 2k such that Dist(x, a) = S,
where Dist(x, a) denotes the minimal absolute difference between x and elements
in a. (Note that, in particular, we have x ≥ S, since a[1] = 0.) Let g be a ran-
dom element in Z

∗
N ; define the “repeated squaring” function as RepSqN,g(x) =

g2x

mod N . Let u be an `-dimensional vector such that u[i] = RepSqN,g(a[i]),
for i = 1, ..., `.

Now let A be a PRAM algorithm whose running time is bounded by δ ·S for
some constant δ, and let R be a random element in Z

∗
N . The GBBS assumption

states that there exists a negligible function ε(κ) such that for any A,

∣

∣Pr[A(N, g, a, u, x, RepSqN,g(x)) = 1]− Pr[A(N, g, a, u, x, R2) = 1]
∣

∣ ≤ ε(κ).
(2)

In this paper we present protocols that work in the CRS model and in the
PKI model. In the CRS model, there is a common reference string (CRS) gener-
ated from a prescribed distribution accessible to all parties at the beginning of
the protocol. The FCRS functionality simply returns the CRS. The public key

14 Refer to [32] for remarks on the differences between the version presented here and
the original one.
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infrastructure (PKI) model is stronger. Upon initial activation, a PKI function-
ality, FPKI, generates a public string as well as a private string for each party.
We note that both models can be defined in the UC and the FMPC frameworks.

Time-lines. We present a definition of a time-line suitable for our purposes,
followed by an efficient way to generate them (according to this definition), the
security of which relies on GBBS and CDDH-QR.

Definition 4. Let κ be a security parameter. A decreasing time-line is a tuple
L = 〈N, g, u〉, where N = p1p2 is a safe Blum integer where both p1 and p2

are κ-bit safe primes, g is an element in Z
∗
N , and u is a κ-dimensional vector

defined as u[i] = RepSqN,g(2
κ − 2κ−i) for i = 1, 2, ..., κ. We call N the time-line

modulus, g the seed, the elements of u the points in L, and u[κ] the end point
in L.

To randomly generate a time-line, one picks a random safe Blum integer N

along with g
R

← Z
∗
N as the seed, and then produces the points. Naturally, one can

compute the points by repeated squaring: By squaring the seed g 2κ−1 times, we
get u[1], and from then on, we can compute u[i] by squaring u[i−1]; it is not hard
to verify that u[i] = RepSqN,u[i−1](2

κ−i), for i = 2, ..., κ. Obviously, using this
method to compute all the points would take exponential time. However, if one
knows the factorization of N , then the time-line can be efficiently computed [11].

Alternatively, and assuming one time-line is already known, Garay and Jakob-
sson [31] suggested the following way to efficiently generate additional time-lines.
Given a time-line L, one can easily derive a new time-line from L, by raising the
seed and every point in L to a fixed power α. Clearly, the result is a time-line
with the same modulus.

Definition 5. Let L = 〈N, g, u〉 and L′ = 〈N, h, v〉 be two lines of identical
modulus. We say that time-line L′ is derived from L with shifting factor α if
there exists an α ∈ Z[1, N−1

2
] such that h = gα mod N . We call L the master

time-line.

Note that the cost of derivation is just one exponentiation per point, and there
is no need to know the factorization of N . In fact, without knowing the master
time-line L, if an adversaryA of running time δ ·2` sees only the seed and the last
(` + 1) points of a derived time-line L′, the previous point (which is at distance
2` away) appears pseudorandom to A, assuming that the GBBS assumption
holds. Obviously, this pseudorandomness is no longer true if A also knows the
entire master time-line L and the shifting factor α, since it can then use the
deriving method to find the previous point (in fact, any point) on L′ efficiently.
Nevertheless, as we state in the following lemma, assuming CDDH and GBBS,
this pseudorandomness remains true if A knows L, but not the shifting factor
α.

Lemma 1 (Strong Pseudorandomness). Let L = 〈N, g, u〉 be a randomly
generated decreasing time-line and L′ = 〈N, h, v〉 be a time-line derived from L
with random shifting factor α. Let κ and δ be as in the GBBS assumption. Let
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w be the vector containing the last (`+1) elements in v, i.e., w = (v[κ−`], v[κ−
` + 1], ..., v[κ]). Let A be a PRAM algorithm whose running time is bounded by
δ · 2` for some constant δ. Let R be a random element in Z

∗
N . Then, assuming

CDDH and GBBS hold, there exists a negligible function ε(·) such that, for any
A,

∣

∣Pr[A(N, g, u, h, w, v[κ− `− 1]) = 1]− Pr[A(N, g, u, h, w, R2) = 1]
∣

∣ ≤ ε(κ).
(3)

Realizing W(FCPFO): Protocol GradRel. Now we construct a protocol, GradRel,
that securely realizes wrapped functionality W(FCPFO) in the (FCRS, F̂ZK)-
hybrid model using the time-lines introduced above. We use the multi-session
version of the “one-to-many” F̂ZK functionality from [17], which is shown in Fig-
ure 4.15 In particular, we need the F̂ZK functionality for the following relations.

Functionality F̂R
ZK

F̂R
ZK proceeds as follows, running parties P1, . . . , Pn, and an adversary S:

– Upon receiving (zk-prove, sid, ssid, x,w) from Pi: If R(x,w) does not hold, ig-
nore. Otherwise, request S for permission to send (ZK-PROOF, sid, ssid, Pi, x)
to each of Pj (j 6= i). Send the messages as permissions are granted.

Fig. 4. The (multi-session) zero-knowledge functionality for relation R.

Discrete log: DL = {((M, g, h), α) | h = gα mod M}
Diffie-Hellman quadruple: DH = {((M, g, h, x, y), α) | h = gα mod M ∧ y =

xα mod M}
Blinded relation: Given a binary relation R(y, x), we define a “blinded” rela-

tion R̂ as: R̂((M, g, h, w, z, y), α) = (h = gα mod M) ∧ R(y, z/wα mod M).

Intuitively, R̂ “blinds” the witness x using the Diffie-Hellman tuple (g, h, w, z/x).
Obviously R̂ is an NP relation if R is.

We now describe protocol GradRel informally. The CRS in GradRel consists of
a master time-line L = 〈N, g, u〉. To commit to a value xi, party Pi derives a new
time-line Li = 〈N, gi, vi〉, and uses the tail of Li to “blind” xi. More precisely,
Pi sends zi = vi[κ] · xi as a “timeline-commitment” to xi together with a zero-
knowledge proof of knowledge (through F̂DL

ZK) that it knows Li’s shifting factor,
and thus, xi. Note that any party can force-open the commitment by performing
repeated squaring from points in the time-line. However, forced opening can take
a long time, and in particular, since vi[κ] is (2κ − 1) steps away from the seed
gi, it appears pseudorandom to the adversary.

15 In [17] the framework used is that originally presented in [14]. However, since we are
using the modified version from [15], we modify the functionality F̂ZK by explicitly
allowing the adversary to block messages from the functionality to the parties.
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The prove phase is directly handled by the F̂ R̂
ZK functionality. The opening

phase consists of κ rounds. In the i-th round, all parties reveal the ith point
in their derived time-lines, followed by a zero-knowledge proof that this point
is valid (through F̂DH

ZK), for i = 1, 2, ...κ. If at any time in the gradual opening
stage, an uncorrupted party does not receive a ZK-PROOF message in a round
when it is expected (possibly because the adversary blocked it, or a corrupted
party did not send a proper zk-prove message to an F̂ZK functionality) then
it enters the panic mode. In this mode, an uncorrupted party requests time
from the environment to force-open the commitments of all other parties. If the
environment accepts, the party forces-open the commitment; otherwise it aborts.

The detailed description of the protocol is given in Figure 5. The security of
this protocol is based on CDDH, DCRA, and GBBS. The δ in the protocol is
the constant δ from the GBBS assumption. As a technical note, GradRel assumes
that all the committed values are quadratic residues in Z

∗
N . In [32] we discuss how

this assumption can be removed. Clearly, protocol GradRel uses O(κ2n) bits of
communication. As mentioned in Section 2.1, the protocol employs a broadcast
channel for convenience.

We can show an ideal adversary for W(FR
CPFO) that invests nt/δ and pro-

duces a simulation indistinguishable from GradRel. Therefore, GradRel securely
realizes W(FR

CPFO) with n/δ-investment.

Theorem 3. Assume that GBBS and CDDH hold. Then protocol GradRel se-
curely realizes the ideal functionality W(FR

CPFO) with O(n)-investment in the

(FCRS, F̂DL

ZK, F̂DH

ZK , F̂ R̂
ZK)-hybrid model, assuming static corruptions.

Refer to [32] for the proof of this theorem. Here we sketch the essential
new elements involving the wrapper. In constructing a simulator S, the most
interesting aspect is the simulation of the fair-open phase. Note that the opening
takes place in rounds, with the value released in each round being “closer” to
the value to be revealed.

– S internally runs the adversary A, and simulates to it the protocol messages
from the honest parties. Initially S uses random values to simulate the values
released by the honest parties in each round.

– However, once the released value gets sufficiently close to the final value,
S can no longer use random values, because even a t-bounded adversary
and environment can distinguish between that and the values released by
the honest party in an actual execution. So, before that point, S will in-
vest sufficient amount of time with W(FCPFO) and obtain the value to be
opened. (The “sufficient” amount is the same as what an honest party en-
tering the panic mode at this point would have requested the environment.)
Further rounds in the simulation are carried out using the value obtained
from W(FCPFO) (and hence in those rounds the simulation is perfect).

– At this point a deal is still not offered by W(FCPFO) to any honest party.
But if in a future round, the adversary A causes a release or a ZK-PROOF

message not to reach an honest party P (which in the real execution would
prompt P to enter the panic mode), at that point S would requestW(FCPFO)
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Protocol GradRelR

Set-up: The CRS consists of a master time-line L = 〈N, g, u〉.
Round 1 (commit phase) For each party Pi, 1 ≤ i ≤ n, upon receiving input

(commit, sid, xi), do:

1. Pick αi
R
← [1, N−1

2
], set gi← gαi mod N , and compute from L a derived

time-line Li = 〈N, gi, vi〉.

2. Set zi← vi[κ] ·xi = (u[κ])αi ·xi mod N and broadcast message (commit,

sid, Pi, gi, zi).

3. Send message (zk-prove, sid, 0, (N, g, gi), αi) to the F̂DL

ZK functionality.

All parties output (RECEIPT, sid, Pi) after receiving (ZK-PROOF, sid, 0, Pi,

(N, g, gi)) from F̂DL

ZK.
Round 2 (prove phase) For each party Pi, 1 ≤ i ≤ n, upon receiving input

(prove, sid, yi), do:

1. Send message (zk-prove, sid, 0, (N, g, gi, u[κ], zi, yi), α) to the F̂ R̂
ZK func-

tionality.

2. After receiving messages (ZK-PROOF, sid, 0, Pi, (N, g, gi, u[κ], zi, yi))

from F̂ R̂
ZK, all parties output (PROOF, sid, Pi, yi).

Round r = 3, . . . , (κ + 2) (open phase) Let ` = r − 2. For each party Pi, 1 ≤
i ≤ n, do:

1. Broadcast (release, sid, vi[`]) and send message (zk-prove, sid, r,

(N, g, gi, u[`], vi[`]), αi) to ideal functionality F̂DH

ZK.

2. After receiving all n release and ZK-PROOF messages, proceed to the
next round. Otherwise, if any of the broadcast messages is missing, go to
panic mode.

At the end of round (κ+2), compute xj = zj · (vj [κ])−1 mod N , for 1 ≤ j ≤ n,
output (DATA, sid, x1, x2, ..., xn) and terminate.

Panic mode: For each party Pi, 1 ≤ i ≤ n, do:
– Send (dealoffer, sid, ∅, nδ · 2κ−`+1) to the environment.
– If the environment responds with (dealaccept, sid, ∅), for j = 1, 2, ..., n, and

use vj [` − 1] from the previous round to directly compute xj committed

by Pj as xj = zj ·
“

RepSqN,vj [`−1](2
κ−`+1 − 1)

”−1

mod N . Then output

(DATA, sid, x1, x2, ..., xn) in round (κ + 2) and terminate.
– Otherwise, output ⊥ in round (κ + 2) and terminate.

Fig. 5. Protocol GradRel, running in the CRS model in (κ + 2) rounds.

to send a deal to P , with investment required from P being the actual time
that the protocol would request the environment then. This amount will be
no more than what S invested.

– In the ideal world protocol, if P receives a deal offer from W(FCPFO), then
it would pass it on to the environment, and if the deal is accepted by the
environment, then P will invest the amount of time specified in the deal, and
obtain the committed value from W(FCPFO). In the real world protocol, if
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P enters the panic mode it will send the deal offer to the environment, and
if the deal is accepted by the environment, then P will use the amount of
time specified in the deal offer to force-open the computed value. In either,
case the environment sees the same behavior from P .

To show that this simulation is good, we depend on the fact that the values
released in the initial rounds of the actual execution are pseudorandom, and that
in the simulation S switches to the actual values before this pseudorandomness
ceases to hold. The O(n) factor in the amount invested by S is because of the
fact that S has to make the advance investment for commitments by all honest
parties (at most n), whereas the adversary A might choose to attack any one
of them. The O(n) factor also includes (in the constant) the factor δ from the
GBBS assumption.

To prove the theorem we must also show a full simulator. A full simulator is
essentially a faithful execution of the adversary and the honest parties. The only
non-triviality resides in that its running time should not depend on the amount
of resources granted by the environment. This is not a problem, since the full
simulator will know the committed values and need not extract it as the honest
parties do in the protocol.

By “plugging in” the UCZK protocol from [17] into protocol GradRel, we
have the following corollary.

Corollary 2. Assume GBBS and CDDH hold, and that enhanced trapdoor per-
mutations exist. Then there exists a protocol that securely realizes W(FR

CPFO)
with O(n)-investment in the FCRS-hybrid model, assuming static corruptions.

3.2 Resource-fair multi-party computation

We show how to construct resource-fair protocols that securely realize the (wrapped)
SFE functionality in the FMPC framework. At a high level, our strategy is very
simple. Typical secure multi-party protocols (e.g., [21, 17, 25]) contain an “out-
put” phase, in which every party reveals a secret value, and once all secret values
are revealed, every party computes the output of the function. We modify the
output phase to have the parties invoke theW(FCPFO) functionality. A bit more
concretely, assuming each party Pi holds a secret value vi to reveal, each Pi first
commits to vi and then proves its correctness. Finally W(FCPFO) opens all the
commitments simultaneously.

In the full paper, we present two constructions that convert the MPC proto-
cols of Canetti et al. [17] and Cramer et al. [21] into resource-fair MPC protocols.
Here we state the results.

Theorem 4. Assuming the existence of enhanced trapdoor permutations, for
any polynomial-time computable function f , there exists a polynomial-time proto-
col that securely realizesW(Ff ) with O(n)-investment in the (FCRS,W(FCPFO))-
hybrid model in the FMPC framework, assuming static corruptions.
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Corollary 3. Assuming GBBS, CDDH, and the existence of enhanced trap-
door permutations, for any polynomial-time computable function f , there exists
a resource-fair protocol that securely realizes W(Ff ) in the FCRS-hybrid model
in the FMPC framework, assuming static corruptions.

Theorem 5. Assuming GBBS, CDDH, DCRA, and strong RSA, for any poly-
nomial-time computable function f , there exists a resource-fair protocol that
securely realizes W(Ff ) in the (FPKI,W(FCPFO))-hybrid model in the FMPC
framework, assuming static corruptions. Furthermore, this protocol has commu-
nication complexity O(κn|C| + κ2n) bits and consists of O(d + κ) rounds.
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