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Abstract. Symbolic analysis of cryptographic protocols is dramatically
simpler than full-fledged cryptographic analysis. In particular, it is sim-
ple enough to be automated. However, symbolic analysis does not, by
itself, provide any cryptographic soundness guarantees. Following recent
work on cryptographically sound symbolic analysis, we demonstrate how
Dolev-Yao style symbolic analysis can be used to assert the security of
cryptographic protocols within the universally composable (UC) security
framework. Consequently, our methods enable security analysis that is
completely symbolic, and at the same time cryptographically sound with
strong composability properties.
More specifically, we concentrate on mutual authentication and key-
exchange protocols. We restrict attention to protocols that use public-key
encryption as their only cryptographic primitive and have a specific re-
stricted format. We define a mapping from such protocols to Dolev-Yao
style symbolic protocols, and show that the symbolic protocol satisfies a
certain symbolic criterion if and only if the corresponding cryptographic
protocol is UC-secure. For mutual authentication, our symbolic criterion
is similar to the traditional Dolev-Yao criterion. For key exchange, we
demonstrate that the traditional Dolev-Yao style symbolic criterion is
insufficient, and formulate an adequate symbolic criterion.
Finally, to demonstrate the viability of our treatment, we use an exist-
ing tool to automatically verify whether some prominent key-exchange
protocols are UC-secure.

1 Introduction

The analysis of cryptographic protocols is a complex and subtle business. One
main reason is the need to capture an adversary that is very powerful in terms
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of communication, while being computationally bounded. Furthermore, security
typically holds only in a probabilistic sense, and only under computational in-
tractability assumptions. Indeed, developing adequate mathematical models and
formulations of security properties has been a main endeavor in modern cryp-
tography from its early stages, beginning with the notions of pseudo-randomness
and semantic security of encryption [13, 14, 41, 25], through zero-knowledge, non-
malleability, and general cryptographic protocols, e.g. [27, 28, 23, 26, 42, 9, 16, 49,
17]. Consequently, we now have a variety of mathematical models where one can
represent cryptographic protocols, specify the security requirements of crypto-
graphic tasks, and then potentially prove that (the mathematical representation
of) a protocol meets the specification in a way that is believed to faithfully
represent the security of actual protocols in actual systems.

However, the models above are complex and delicate, even for relatively
simple protocols for simple tasks. In particular, they directly represent adver-
saries as resource-bounded and randomized entities, and directly bound their
success probabilities with a function of the consumed resources. This entails ei-
ther asymptotic formalisms or alternatively parameterized notions of concrete
security. Furthermore, since these notions are typically satisfied only under some
underlying hardness assumptions, proofs of security typically require a reduction
to the underlying hard problem. Coming up with such reductions typically re-
quires “human creativity” which is hard to mechanize. Consequently, full-fledged
cryptographic analysis of even moderately complex cryptographic systems is a
daunting prospect.

Several alternatives to this “computational” approach to protocol security
analysis have been proposed, such as the Dolev-Yao model [24] and its many
derivatives (e.g. [54, 22]), the BAN logic [15], and a number of process calculi
and other models, e.g. [2, 33, 34, 37]. In these approaches, cryptographic primi-
tives are represented as symbolic operations which guarantee a set of idealized
security properties by fiat. (For instance, transmission of encrypted data is mod-
eled as communication that is inaccessible to the adversary, e.g. [15], or as a
symbolic operation that completely hides the message, e.g. [24].) Consequently,
the model becomes dramatically simpler. There is no need for computational
assumptions; randomization can be replaced by non-determinism; and protocols
can be modeled by simple finite constructs without asymptotics. Indeed, proto-
col analysis in these models is much simpler, more mechanical, and amenable to
automation (see e.g. [36, 39, 53, 46, 11]). These are desirable properties when at-
tempting to analyze large-scale systems. Until recently, however, there has been
no concrete justification for this high level of abstraction. Thus, these models
could not be used to prove that protocols remain secure when the abstract se-
curity primitives are realized by actual algorithms.

Within the past few years, however, there have been several efforts towards
devising symbolic models that enjoy the relative simplicity of “abstract cryp-
tography” while maintaining cryptographic soundness. One attractive approach
towards this goal was introduced in the ground-breaking work of Abadi and Ro-
gaway [4] in the context of passive security of symmetric encryption schemes.



Essentially, they showed that proving indistinguishability of distribution ensem-
bles of a certain class can be done by translating these ensembles to symbolic
forms and verifying a symbolic criterion on these forms. This work has been
extended several times ([44, 3, 31, 5]). Of particular importance is the work of
Micciancio and Warinschi [45] who extend this approach to include active ad-
versaries. Specifically, they provide a formal criteria for two-party protocols, and
show that symbolic protocols which satisfy this criteria achieve mutual authen-
tication (as defined in [10]) if they are implemented with public-key encryption
secure against chosen-ciphertext attacks (as in [51, 23]).

An alternative approach was taken in the works of Backes, Pfitzmann and
Waidner, and Canetti (e.g. [49, 17, 6, 7, 18]). Here, the idea is to define idealized
abstractions of cryptographic primitives directly in a full-fledged cryptographic
model. These abstractions are realizable by actual concrete protocols in a cryp-
tographic setting, but can at the same time be used as abstract primitives by
higher-level protocols. Soundness for this style of abstraction provided via a
strong composition theorem. This approach is attractive due to its generality
and the strong compositional security properties it guarantees when the proto-
col runs together with arbitrary other protocols. Furthermore, the analysis of
the higher-level protocols becomes more straightforward and mechanical when
the lower-level primitives are replaced by their abstractions. However, this model
still requires the analyst to directly reason about protocols within a full-fledged
cryptographic model, with its asymptotics, error probabilities etc., and so this
approach retains much of the original complexity of the problem.

Our approach. This work demonstrates how formal and symbolic reasoning in
a simple finite model can be used to simplify analyzing the security of protocols
within a full-fledged cryptographic model with strong composability properties.
Specifically, we use the universally composable (UC) security framework [17].
The overall approach follows that of [4, 45]: We want to assert whether a given
concrete, fully specified protocol satisfies a concrete security property. (In our
case, the concrete property is realizing a given ideal functionality within the UC
framework.) Instead of proving this assertion directly, we proceed as follows. The
first step is to abstract out from the cryptographic primitives, and use instead
ideal functionalities that represent these primitives in an idealized manner. This
step is done still within the UC framework, and its soundness comes from secure
composability. The next step is to translate this semi-abstract protocol to a sim-
pler, symbolic (“Dolev-Yao style”) protocol. Now, standard tools for symbolic
protocol analysis are used to prove that the symbolic protocol satisfies a certain
symbolic criterion. Finally, we show that this implies that the concrete protocol
satisfies the concrete security property (i.e., realizes the given ideal functional-
ity). The main gain here is that all steps, except for one, can be done once and
for all. Only the symbolic analysis of the protocol at hand needs to be done
per protocol. This analysis typically considerably simpler than full-fledged cryp-
tographic analysis within the UC framework. The approach is summarized in
Figure 1.
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Fig. 1. Using symbolic (formal) analysis to simplify cryptographic analysis. Instead of
directly proving that a given concrete protocol π realizes a concrete ideal functionality
F, translate π to a symbolic protocol, verify that the symbolic protocol satisfies a simple
symbolic criterion, and use this to show that π realizes F. The first and third steps are
general and proven once and for all. Only the second step needs to be repeated per
protocol.

In a way, this approach takes the best of the two approaches described above:
On the one hand, it guarantees the strong security and composition properties of
the ideal-functionality approach. On the other hand, we end up with a relatively
simple, finite symbolic model, and symbolic criteria to verify within that model.
In fact, our analysis is even simpler than current ones: The strong compositional
security properties of the UC framework allow us to specify and analyze protocols
in terms of a single instance of the protocol in question. Security in a setting,
where an unbounded number of instances of a protocol may run concurrently
with each other and with arbitrary other protocols, is guaranteed via the UC
and UC with joint state theorems [17, 21]. In contrast, existing symbolic models
(e.g. [24, 54, 22]) directly address the more complex multi-session case, even in
the symbolic model. Consequently, our symbolic modeling involves fewer runtime
states and thus lends to more effective mechanical analysis.

This work. In this work, we apply the above approach to the problems of
mutual-authentication and key-exchange protocols. In particular, we progress as
follows.

First, we translate concrete protocols to their symbolic counterparts. We fol-
low the approach of [45], and concentrate on a restricted class of concrete cryp-
tographic protocols. We call such protocols simple protocols. Simple protocols
use public-key encryption as their only cryptographic operations and conform
to a restrictive format, or “programming language.” (The reason to use a re-
stricted class of protocols is that existing symbolic models can only handle such
protocols. Indeed, any enrichment in the symbolic model would translate to an
analogous enrichment in the definition of simple protocols, while preserving the
validity of the treatment.) We note that, while restricted, this format is still very
meaningful; in particular, it allows expressing known ‘benchmark’ protocols such
as several variants of the Needham-Schroeder-Lowe (NSL) protocol [47, 35, 36],
and the Dwork-Dolev-Naor [23] protocol.

In order to further simplify the treatment, we require simple protocols to
use an “ideal encryption functionality” rather than directly using some concrete



encryption scheme. This ideal functionality, denoted Fcpke (for “certified public-
key encryption”) allows the parties to encrypt and decrypt messages in an ideally
secure way. Using Fcpke instead of concrete encryption simplifies the analysis in
two ways: first, it allows the entire analysis to be done in terms of a single session
of the protocol at hand. Next, the entire analysis is unconditional, and does not
make use of computational bounds on the adversaries. As we demonstrate below,
soundness for the case where the parties use concrete encryption schemes and
multiple instances of the protocol run concurrently is guaranteed via the UC and
UC with joint state theorems.

Next, we consider the symbolic and computational criteria for mutual authen-
tication and key exchange. The computational criteria are expressed in terms of
UC functionalities. The symbolic criterion for mutual authentication is tradi-
tional and drawn from the existing literature, but the symbolic criterion for
key-exchange is not. In fact, we demonstrate that the traditional symbolic cri-
terion for key-exchange is strictly weaker than the computational one. This is
done via by example: We show that a natural way to extend the NSL authenti-
cation protocol to key exchange results in a protocol that satisfies the traditional
symbolic secrecy criterion for the key, but whose computational counterpart can
be easily broken. In particular, the computational counterpart is not UC-secure.
We thus define a new symbolic criterion for key exchange which is closer in spirit
to traditional computational criteria.

Finally we show that:

1. The original, concrete protocol realizes the mutual authentication function-
ality in the UC framework if and only if its translation into the symbolic
model fulfills the symbolic mutual authentication criterion, and

2. The original, concrete protocol realizes the key exchange functionality in the
UC framework if and only if its translation into the symbolic mode fulfills
our new symbolic criterion.

We stress that, as in [4], the symbolic criterion is formulated in terms of a finite
and relatively simple model, whereas the concrete criterion (realizing an ideal
functionality) is formulated in the standard asymptotic terms of cryptographic
security. Still, equivalence holds.

As a result, both vertical arrows of Figure 1 are firmly established for mutual
authentication and key exchange. The only work that remains is to show that
particular symbolic protocols fulfill the symbolic criteria. However, this last step
is protocol specific and rather mechanical. In particular, as we demonstrate, it
can be readily automated.

Automated analysis: Proof of concept. Since our symbolic key secrecy
criterion is not standard, one might wonder whether this criterion retains the
main advantage of the symbolic model, namely amenability to automation. We
demonstrate that it does, by applying the ProVerif [12] automated verification
tool to verify whether our symbolic key exchange criterion is satisfied by known
protocols.

Specifically, we consider two very natural extensions of the NSL protocol
to key exchange: In one extension the output key is the nonce generated by the



initiator, and in the other extension the output key is the nonce generated by the
responder. As we demonstrate within, one extension is demonstrably insecure,
while the other extension seems secure. The automated analysis supports these
impressions: The insecure extension fails the automates test, while the seemingly
secure extension passes the test. In fact, the tool now provides a proof of security
for this extension.

1.1 Related work

Pfitzmann and Waidner [49] provide a general definition of integrity proper-
ties and prove that such properties are preserved under protocol composition
in their framework. Our symbolic mutual authentication criterion can be cast
as such an integrity property. In addition, Backes, Pfitzmann and Waidner [7],
building on the idealized cryptographic library in [6], demonstrate that several
known protocols satisfy a property that is similar to our symbolic mutual au-
thentication criterion. However, these results do not answer the question which
is the focus of this work, namely whether a given concrete cryptographic proto-
col realizes an ideal functionality (say, the mutual authentication functionality)
in a cryptographic model (say, the UC framework.) Furthermore, since the [6]
abstraction is inherently multi-session, the [7] analysis has to directly address
the more complex multi-session case.

Our results for mutual authentication protocols follow the lines of Miccian-
cio and Warinschi [45]. However, since we use the UC abstraction of idealized
encryption, our characterization results are unconditional (rather than based on
computational assumptions), can be meaningfully stated in the simpler terms of
a single session, and provide the stronger security guarantees of the UC frame-
work.

Laud [32] investigates the concrete cryptographic properties guaranteed by
certain symbolic secrecy criteria for protocols using symmetric encryption. He
also shows how these symbolic criteria can be automatically verified. However,
these criteria are different from the ones discussed here. Specifically, following the
traditional symbolic formulation, it is only required that the adversary obtains no
information about the key during the course of the protocol, and “real-or-random
secrecy” against active adversaries is not considered. Consequently, these criteria
do not guarantee secure key exchange, nor are they preserved under composition.

Concurrently to this work, Cortier and Warinschi [52] formulate another sym-
bolic secrecy criterion for key exchange protocols, demonstrate how to automat-
ically verify this criterion, and show that this criterion implies a cryptographic
secrecy criterion in the style of “real-or-random” secrecy against active adver-
saries. However, also in that work the symbolic criterion follows the tradition
of only requiring that the adversary obtains no information on the secret key.
Consequently, their cryptographic criterion falls short of guaranteeing secrecy
in a general protocol setting, as exhibited in [50, 20]. In particular, their crite-
rion admits the above-mentioned buggy extension of the NSL protocol to key
exchange.



Blanchet [11] provides a symbolic criterion (cast in a variant of the spi-
calculus [1]) that captures a secrecy property, called “strong secrecy”, that is
similar to our symbolic secrecy criterion for the exchanged key. Essentially, the
criterion says that the view of any adversarial environment remains unchanged
(modulo renaming of variables) when the symbol representing the secret key is
replaced by a fresh symbol that’s unrelated to the protocol execution. In addi-
tion, an automated tool for verifying this criterion is provided. Indeed, Blanchet’s
tool is the one we use for the automated analysis reported above.

Concurrently to this work, Backes and Pfitzmann [8] propose an abstract
secrecy criterion for key-exchange protocols that use their cryptographic library,
and demonstrate that this criterion suffices for guaranteeing cryptographically
sound secrecy. However, their criterion is still formulated within their full-fledged
cryptographic framework, rather than in a simplified symbolic model as done
here. Furthermore, it does not carry any secure composability guarantees.

Herzog, Liskov and Micali [30] provide an alternative cryptographic real-
ization of the Dolev-Yao abstraction of public-key encryption. Their realiza-
tion makes stronger cryptographic requirements from encryption scheme in use
(namely, they require “plaintext aware encryption”), and assumes a model where
both the sender and the receiver have public keys. Herzog later relaxes this re-
quirement to standard CCA-2 security [29], but that work (lacking any com-
position theorems) still considers the multi-session case. Furthermore, it only
connects executions of protocols in the concrete setting to executions of pro-
tocols in the symbolic setting. It does not investigate whether security in the
symbolic setting implies or is implied by security in the concrete setting, which
the main focus of this work.

Micciancio and Panjwani [43] study computationally sound symbolic analysis
of group key agreement protocols with adaptively changing membership. How-
ever, both their symbolic and concrete secrecy criteria are very different than
the ones here. In particular, their symbolic criterion is a trace property, rather
than a “real-or-random” style criterion as the one here.

Patil [48] extends the present work to handle also mutual authentication
and key exchange protocols that use digital signatures in addition to public-
key encryption. That work demonstrates the flexibility and modularity of the
approach initiated here.

Organization. This paper is an extended abstract of the work presented in [19].
Section 2 contains a very high-level overview of the UC framework and the Dolev-
Yao style symbolic model. Section 3 defines simple protocols and presents two
variants of the NSL protocol, written as simple protocols. It also sketches how
simple protocols can be instantiated using concrete, fully-specified encryption
schemes. Section 4 presents the Mapping lemma, which translates between traces
of simple protocols and symbolic protocols. This lemma plays a central role in
our analysis.

We then turn to the specific tasks of mutual authentication and key-exchange.
Due to lack of space, we omit the treatment of mutual authentication from
this abstract. (Full treatment appear in [19].) The treatment of key exchange is



sketched in Section 5. This includes a discussion of the inadequacy of the tradi-
tional symbolic secrecy criterion, the new symbolic criterion, and the equivalence
with the UC notion of realizing the ideal key exchange functionality. We conclude
by discussing future research directions.

2 Background

2.1 The UC framework.

The UC framework provides a general way for specifying the security require-
ments of cryptographic tasks, and asserting whether a given protocol realizes
the specification. A salient property of this framework is that it provides strong
composability guarantees: A protocol that realizes the specification continues
to realize the specification regardless of the activity in the rest of the network,
without “unexpected side-effects”.

The security requirements of tasks are specified by envisioning an “ideal pro-
cess” where the participants can hand their inputs for the task to an imaginary
“trusted party”, who locally computes the desired outputs and hands them back
to the parties. The code run by the trusted party is called an ideal functionality.
This code is intended to capture the security and correctness requirements of
the cryptographic task at hand.

Deciding whether a protocol π UC-realizes an ideal functionality F (namely,
whether π is a secure protocol for the corresponding task) is done in three
steps, as follows. We first formulate a model for executing the protocol. This
model consists of the parties running the protocol, plus two adversarial entities:
the environment Z, which generates the inputs for the parties and reads their
outputs, and the adversary A, which reads the outgoing messages generated by
the parties, and delivers incoming messages to the parties. The adversary and
the environment can interact freely during the protocol execution. (In fact, in
this model one can treat them as a single entity without losing generality.)

Next, we consider an “ideal process” for realizing the given ideal functionality
(i.e., the task). This process is similar to the process of executing the protocol π,
with two important exceptions. First, the inputs that the environment generates
for the parties running the protocol are given to a trusted party that executes
the code of the ideal functionality F. Similarly, the outputs generated by F are
given to the environment as the outputs coming from the parties. Second, the
adversary A for interacting the protocol is replaced by an adversary S that does
not interact directly with the parties; instead, S interacts directly with F (in a
way specified by F). The communication between S and Z remains arbitrary.

Finally, we say that π UC-realizes functionality F if for any adversary A there
exists an adversary S such that no (polytime) environment Z can tell with non-
negligible probability whether it is interacting with and execution of π with
adversary A, or alternatively with the ideal process for F and adversary S. This
in particular means that the I/O behavior of the good parties in the protocol
execution is essentially the same as that of the ideal functionality; in addition,



the information that the environment learns from A on the execution of π can
be generated (or, “simulated”) by S, given only the information that it learns
legally from interacting with F.

The following universal composition theorem holds in this framework. Let π is a
protocol that UC-realizes functionality F, and let ρ be a protocol that makes calls
to (multiple instances of) the trusted party running F. Let ρπ be the “composed
protocol” which is identical to ρ except that calls to F are replaced by calls to
π. Then, protocol ρπ behaves in an indistinguishable way from the original ρ. In
particular, if ρ UC-realizes some ideal functionality G then so does ρπ.

An additional theorem that will be useful for substantiating our treatment is
universal composition with joint state (JUC) [21]. Notice that the UC theorem only
applies to protocols ρπ where the honest parties maintain completely disjoint
local states for the different instances of π. In contrast, the JUC theorem applies
to cases where the different instances of π have some joint state. Specifically,
let π̂ be a protocol that, in one instance, UC-realizes multiple instances of ideal
functionality F. (Formally, let F̂ be the ideal functionality that exhibits, in a
single instance, the behavior of multiple instances of F. Then π̂ is a protocol
that UC-realizes F̂. ) Let ρ be an arbitrary protocol that uses multiple instances
of F, and let π[π̂] be the composed protocol where each party runs a single
instance of ρ plus a single instance of π̂, and where all the inputs provided by
π to all the instances of F are forwarded to the instance of π̂. Similarly, the
outputs of the single instance of π̂ are given to ρ as coming from the various
instances of F. Then, the JUC theorem states that protocol ρ[π] UC-emulates
the original protocol ρ. Then, the JUC theorem states that protocol ρ[π] behaves
in an indistinguishable way from the original ρ. In particular, if ρ UC-realizes
some ideal functionality G then so does ρπ.

2.2 The symbolic model.

The symbolic model (also called the “Dolev-Yao” model) is a simplified model for
analyzing protocols that use cryptographic primitives. In this model, messages
are represented as strings of symbols, explicitly describing their parse trees, and
encryption is represented as an abstract operation. Thus, Enc(M ; K) is not the
application of an algorithm to a pair of bit-strings, but the sequence of charac-
ters “Enc(M ; K)” (or the parse-tree created when the encryption constructor is
applied to the sub-trees M and K). Because of its simplicity, this model allows
the analyst to focus on the structure of protocols independently of the specific
algorithms used to implement them. While the full-fledged Dolev-Yao model in-
cludes a variety of primitives such as symmetric encryption and signatures, we
focus on a sub-model which includes only asymmetric encryption.

The symbolic mode has several components. Firstly, the model uses a sym-
bolic algebra A to represent messages of a protocol. The atomic elements of the
algebra are used to represent primitive structures such as party identifiers, public
encryption keys, random challenges (“nonces”), and secret keys. (The party iden-
tifiers and public keys can be either honest, or corrupted.) The two operations
of the algebra represent abstracted pairing (or concatenation) and encryption.



Thus, the compound elements of the algebra (i.e., those messages produced by
the operations) represent those messages that pair or encrypt primitive mes-
sages (or other, simpler, compound messages). Lastly, the algebra is defined to
be free: each message has exactly one representation. Put another way, the alge-
bra admits no equalities other than identity: two distinct parse-trees will always
represent two distinct messages.

Secondly, symbolic protocols are defined simply as sets of roles, which are
themselves defined by a state transition table. Participants that engage in a role
must maintain their current state. (For convenience, this state is defined to
be the sequence of messages they have seen and sent so far.) Then, when a
participant receives a message, it cross-indexes that message and its current state
in the state transition table to discover (1) the message it must then transmit,
and (2) possibly a message to output locally. It then updates its internal state
accordingly. Here all inputs, outputs, and messages are compound messages from
the algebra.

Definition 1. A role R in a symbolic protocol P is a mapping from the set of
states S = (A)∗, an element in the algebra A representing the incoming message,
and a name from the set of names M representing the name of the participant,
to a pair of values from A representing values to transmit and (locally) output
respectively, and a new state (which is the old state with the addition of the new
incoming message). That is:

R : S ×A×M→ A×A× S.

Thirdly, the symbolic model considers a very restricted symbolic adversary.
In particular, the adversary is defined in two parts: its initial knowledge (a set
of symbolic messages), and the adversary operations it can use to deduce new
messages from known ones. (These known messages can include not only its ini-
tial knowledge, but also the messages sent during the protocol execution.) These
adversary operations are extremely limited. Specifically, the adversary can con-
catenate messages, de-concatenate elements of a message, encrypt a message with
a given public key, or decrypt a given symbolic ciphertext if the corresponding
public key is corrupted. Note that this list of adversary operations implicitly
defines the strength of “ideal” encryption: it is strong enough to prevent the
adversary from performing any other operations to ciphertexts. The adversary
may, however, combine these basic operations in any way that it pleases. This
gives rise to the definition of closure: the closure of a message (or a set of mes-
sages) is the set of all messages that the adversary can potentially derive from
the given message (or set). That is, the closure operation defines the messages
which the adversary can create and transmit at any point.

With this, the symbolic model defines (in the straightforward way) how sym-
bolic protocols execute in the presence of a symbolic adversary. That is, an exe-
cution consists of a sequence of events where each event is either:

– The delivery of a message to a participant and the participant replying in
accordance with its role, or



– The adversary intercepting a message and replacing it with a message drawn
from the closure.

The trace of an execution is the sequence of these events. The security properties
of the symbolic model are typically (but not always) predicates on sets of traces:
a protocol satisfies such a security property if the predicate is satisfied by the
set of that protocol’s possible (or valid) traces.

The true power of the symbolic model comes from the fact that so many
aspects of execution (such as complexity-classes and probabilities) are simply
abstracted away, allowing the analyst to focus on “structural flaws”. Also, be-
cause the symbolic adversary is easily described as a simple, non-deterministic
machine, it becomes possible to create specialized algorithms to analyze proto-
cols in this setting. Examples of this abound (e.g. [36, 40, 46, 38]) and later in
this work we use one such automated tool to perform a symbolic analysis which
we have (by then) shown to be computationally sound in the UC model.

3 Simple Protocols

Although the UC framework and the symbolic model were both designed for
the purpose of security analysis, they differ in some very important ways. For
example, the symbolic model does not explicitly represent the internal workings
of the honest participants, and therefore makes no guarantee that the transition
tables of the honest participants can be efficiently computed. The UC frame-
work, on the other hand, imposes very little structure on the format of messages
and allows participants to create messages using computations that cannot be
modeled in the symbolic model.

Thus, to reconcile these two frameworks, we limit our attention to a particular
class of protocols called simple protocols. These protocols are still sets of roles
(for our purposes, the two roles of initiator and responder) but these roles are
programs written in the programming language of Figure 2.

The language of simple protocols is defined in terms of the UC framework.
Still, the commands of this language reflect the structure of the symbolic model.
Furthermore, the encryption operation of this language is defined in terms of
the abstract UC ‘certified public-key encryption’ functionality Fcpke in Figure 4.
This functionality captures, in an idealized way, the properties of public-key en-
cryption in the case where parties know the public keys of each other in advance.
In [19] we show how Fcpke can be realized given a certification authority plus
any encryption scheme that is secure against chosen ciphertext attacks.

To demonstrate the expressive power of the programming language that de-
fines simple protocols, we express in this language two protocols. One protocol is
the Dolev-Dwork-Naor authentication protocol which was originally presented in
concrete cryptographic terms [23]. The other protocol is the Needham-Schroeder-
Lowe (NSL) protocol, which is traditionally presented in symbolic form [47, 35,
36]. In fact, we extend the traditional description of NSL (which treat the proto-
col as a mutual authentication protocol) to a key exchange protocol. That is, we
prescribe a way for the parties to locally output a key. Furthermore, we present



two alternative methods for computing the output key. While these two methods
look very similar, they turn out to have very different security properties. See
more details in Section 5. These two variants of NSL are shown in Figure 3.

3.1 From simple protocols to fully-specified protocols

Simple protocols are by themselves somewhat abstract, in that they use Fcpke

rather than some fully-specified public-key encryption. This abstraction is jus-
tified as follows. In [19] we show how Fcpke can be realized using functionality
Fpke (which represents the basic properties of public-key encryption schemes)
and functionality Freg (which represents some basic properties of a certification
service). Furthermore, it is shown in [17] how to realize Fpke given any public-key
encryption scheme that is secure against chosen ciphertext attacks.

These facts, combined with the UC theorem, provide a straightforward way of
instantiating simple protocols, while preserving security: replace each instance of
Fcpke by an instance of a CCA-secure encryption scheme, and use the certification
authority to publicize the public keys. However, this method results in highly
inefficient protocols, where each instance of the instantiated simple protocol uses
its own instance of the public-key encryption scheme. Instead, we would like
to obtain a protocol where each party uses a single instance of the public-key
encryption scheme for multiple instances of the instantiated simple protocol.

One way to do that would be to consider the entire multi-session interaction
as a single instance of a more complex protocol. That protocol can now use a
single instance of Fcpke per party. But this approach would force us to directly
analyze the more complex multi-session protocols as a single unit. Instead we
would like to be able to specify and analyze simple protocols n terms of a single
instance (e.g., a single exchange of a key in the case of key-exchange), while
making sure that the instantiated protocol uses only a single instance of Fcpke

per party. This can be obtained using the UC with joint state theorem, along
with an additional simple technique from [21].

We first observe that the following protocol realizes, in a single instance,
multiple instances of Fcpke (which has the same decryptor), using only a sin-
gle instance of Fcpke : Whenever some party asks to encrypt a message m for
an instance of Fcpke with session identifier sid, the protocol encrypts the pair
(m, sid). Whenever some party asks to decrypt a ciphertext c for an instance sid,
the protocol decrypts c, verifies that the decrypted value is of the form (m, sid′)
for some m, verifies that sid′ = sid, and returns m. If sid′ 6= sid then an error
value is returned. Denote this protocol by es, for “encrypt the session ID”. (This
protocol and its analysis are analogous to the [21] protocol for realizing multiple
instances of an ideal signature functionality using a single instance.)

Now, consider some protocol Π that involves multiple instances of a simple
protocol π. (Protocol Π may simply describe an adversarially-controlled invo-
cation of multiple instances of π, or alternatively Π may be geared towards
realizing some other ideal functionality, potentially calling other protocols as
subroutines.) In Π , each party uses a different instance of Fcpke per instance of
π. We can now use the JUC theorem to assert that the protocol Π [es] behaves



Π ::= begin; statementlist

begin ::= input(SID, PID0, PID1, RID);
(Store 〈“sid”, SID〉, 〈“pid”, PID0〉, 〈“pid”, PID1〉, 〈“role”, RID〉)
in local variables MySID, MyName, PeerName and MyRole)

statementlist ::= statement statementlist

| finish

statement ::= newrandom(v)
(generate a k-bit random string r and store 〈“random”, r〉 in
v)

| encrypt(v1, v2, v3)
(Send (Encrypt, 〈PID, SID〉 , v2) to Fcpke where
v1 = 〈“pid”, PID〉, receive c, and store
〈“ciphertext”, c, 〈PID1, SID〉〉 in v3)

| decrypt(v1, v2)
(If the value of v1 is 〈“ciphertext”, c′〉 then send
(Decrypt, 〈PID0, SID〉 , c′) to Fcpke instance 〈PID0, SID〉,
receive some value m, and store m in v2. Otherwise, end.)

| send(v)
(Send value of variable v)

| receive(v)
(Receive message, store in v)

| output(v)
(Send value of v to local output)

| pair(v1, v2, v3)
(Store 〈“pair”, σ1, σ2〉 in v3, where σ1 and σ2 are the values of
v1 and v2, respectively.)

| separate(v1, v2, v3)
(If the value of v1 is 〈“join”, σ1, σ2〉, store σ1 in v2 and σ2 in
v3 (else end))

| if (v1 == v2 then statementlist else statementlist

(where v1 and v2 are compared by value, not reference)
finish ::= output(〈“finished”, v〉); end.

The symbols v, v1, v2 and v3 represent program variables. It is assumed that
〈“pair”, σ1, σ2〉 encodes the bit-strings σ1 and σ2 in such a way that they can be
uniquely and efficiently recovered. A party’s input includes its own PID and the PID
of its peer. Recall that the SID of an instance of Fcpke is an encoding 〈SID, PID〉 of the
PID and SID of the legitimate recipient.

Fig. 2. The grammar of simple protocols



In the standard notation of the symbolic model, the protocol is usually written as:

1. A→ B : Enc(A Na; KB)
2. B → A : Enc(b Na Nb; KA)
3. A→ B : Enc(Nb; KB)

where A→ B : M indicates that A sends the message M to B, Na and Nb are random
values (generated by A and B respectively, and KA and KB are the public encryption
keys of A and B respectively. In Version 1 of the protocol, the parties output Na as
their secret key. In Version 2, As a simple protocol, the parties output Nb as the secret
key. Written as a simple protocol, the protocol involves two roles, as follows:

On input (p1 : PID; r1 : RID; s : SID), (p2 : PID; r2 : RID), do:

Initiator (Minit):

send((p1; r1; s), (p2; r2));
newrandom(na);
pair(p1, na, a na);
encrypt(p2, s, r2, a na, a na enc);
send(a na enc);
receive(b na nb enc);
decrypt(b na nb enc, b na nb);
separate(b na nb,b, na nb);
if (b == p2) then
separate(na nb, na2, nb);
if (na == na2) then
encrypt(p2, s, r2, nb, nb enc);
send(nb enc);
pair(p1, p2, a b);
pair(a b, x , output);
output(〈“finished”, output〉);
end.

else send(〈“finished”,⊥〉); end.
else send(〈“finished”,⊥〉); end.

Responder (Mresp):

receive(a na enc);
decrypt(a na Enc(, ; a) na);
separate(a na, a, na);
if (b == p2) then
newrandom(nb);
pair(p1, na, b na);
pair(b na, nb, b na nb);
encrypt(p2, s, r2, b na nb,b na nb enc);
send(b na nb enc);
receive(nb enc);
decrypt(nb enc, nb2);
if (nb == nb2) then
pair(p1, p2, b a);
pair(b a, x , output);
output(〈“finished”, output〉);
end.

else send(〈“finished”,⊥〉); end.
else send(〈“finished”,⊥〉); end.

Version 1: x=na (Initiator’s nonce output as secret key)
Version 2: x=nb (Responder’s nonce output as secret key)

Fig. 3. The Needham-Schroeder-Lowe (NSL) protocol



Functionality Fcpke

Fcpke proceeds as follows, when parameterized by message domain M , a prob-
abilistic function E with domain M and range {0, 1}∗, and a probabilistic
function D of domain {0, 1}∗ and range M ∪ error. The SID is assumed to
consist of a pair SID = (PIDowner, SID′), where PIDowner is the identity of a
special party, called the owner of this instance.

Encryption: Upon receiving a value (Encrypt, SID, m) from a party P proceed
as follows:
1. If m /∈M then return an error message to P.
2. If m ∈M then:

– If party PIDowner is corrupted, then let ciphertext← Ek(m).
– Otherwise, let ciphertext← Ek(1|m|).

Record the pair (m, c), and return c.
Decryption: Upon receiving a value (Decrypt, SID, c) from the owner of this

instance, proceed as follows. (If the input is received from another party
then ignore.)
1. If there is a recorded pair (c, m) for some m, then hand m to P. (If

there is more than a single recorded pair for c entry then return an
error message.)

2. Otherwise, compute m = D(c), and hand m to P.

Fig. 4. The certified public-key encryption functionality, Fcpke

in the same way as Π . Furthermore, in Π [es] each party uses a single instance
of Fcpke throughout the interaction.

4 The mapping lemma

While simple protocols are concrete protocols within the UC framework and
are expressed in terms of interactive Turing machines, etc., they can be can be
thought of as lying in the intersection of the UC framework and the symbolic
model. This intuition is formalized via a protocol mapping which translates a
concrete simple protocol p into a symbolic protocol symb(p). The variables of
the ‘program’ are interpreted as elements of the symbolic message algebra A.
Symbols are used instead of values for names and fresh randomness. Instead of
using the functionality Fcpke for encryption and decryption, the symbolic con-
structor is applied or removed. Lastly, the symbolic pairing operator is applied
or removed in the place of bit-string concatenation or separation.

We proceed as follows. First, we define the trace of an execution of a simple
protocol in the presence of an adversarial environment within the UC frame-
work. The trace provides a global view of the execution, including the views
of the environment and the participants. It consists of a sequence of input,
outputs, messages, and local variables (represented in strings). It also contains



the participants’ calls to Fcpke, thus capturing their internal cryptographic op-
erations. Similarly, we define the trace of an execution of a symbolic protocol
within the symbolic model. Again, the trace represents a global view of the (now
symbolic) execution. Here, the trace consists of a sequence of expressions from
the underlying symbolic algebra, but as opposed to concrete traces the internal
cryptographic operations of participants are not represented.

Next, we define a trace mapping, also denoted symb(), which translates a trace
of a concrete simple protocol into a symbolic trace. This mapping is straightfor-
ward except that the calls to Fcpke in the concrete trace do not map to events in
the symbolic trace, but are instead used as intermediate values in the mapping.

Finally, we show that this mapping provides soundness to trace properties
in the symbolic protocol. That is, symb() almost always translates traces of a
concrete simple protocol to a trace of the corresponding symbolic protocol that
is valid (meaning: one that could have been produced by the symbolic adversary
and symbolic protocol). That is, we prove the following mapping lemma:

Lemma 1. For all simple protocols p, adversaries A, environments Z, and in-
puts z of length polynomial in the security parameter k, the probability

Pr [t← tracep,A,Z(k, z) : symb(t) is not a valid DY trace for symb(p)]

is negligible.

Thus, the adversary in the UC setting can do nothing with its general computa-
tional power that the symbolic adversary cannot also do (except with negligible
probability).

We note that the statement of the mapping lemma is unconditional. Fur-
thermore, it applies even to computationally unbounded environments and ad-
versaries. In fact, the only source or error in the mapping is in cases where the
environment in the concrete model “guesses” the value of some nonce. Since
nonces are chosen at random from a large enough domain, the probability of
error is negligible (in fact, it is exponentially small in the security parameter).

The mapping lemma is a central technical tool in our proofs of equivalence
of the symbolic and concrete security criteria for mutual authentication and key
exchange. Indeed, mutual authentication follows almost immediately from this
lemma. (One can interpret this lemma as saying that trace properties of the
symbolic protocol must also be trace properties of the original simple protocol,
and mutual authentication is a trace property.) The lemma also seems to be of
general interest beyond the rest of this work.

Finally, we note that the approach of mapping computational traces to sym-
bolic ones comes from [45]. However, there the mapping holds only for compu-
tationally bounded adversaries and only under computational hardness assump-
tions.

5 Key Exchange

Key-exchange protocols require two security guarantees: an agreement property,
establishing that the two parties share a common key, and a secrecy property



for the agreed key. That is, the agreement property requires that if two parties
P and P ′ obtain keys and associate these keys with each other, then the two
keys are equal. The secrecy requirement requires that in this case the joint key
should be “unknown” to the adversary.

In the UC model, these requirements are both captured in the ideal func-
tionality F2ke (Figure 5). This functionality waits to receive requests from two
parties to exchange a key with each other, and then hands a secretly chosen
random key to the parties. (Each party gets the output key only when the ad-
versary instructs. Furthermore, the key is guaranteed to be random and secret
only if both parties are uncorrupted.3)

Functionality F2ke

F2ke proceeds as follows, running with security parameter k. At the first acti-

vation, choose and record a value κ
R

← {0, 1}k. Next:

1. Upon receiving an input (EstablishSession, SID, P, P′, RID) from some
party P send this input to the adversary. In addition, if no pair is recorded,
or the pair (P′, P) is recorded, then record (P, P′). (Note that at most two
pairs are ever recorded, and if there are two pairs, then they consist of the
same party identities in reverse order.)

2. Upon receiving a request (SessionKey, SID, P′′, k̃) from the adversary, do:
(a) If a tuple (P′′, P′′′) is recorded, and P′′′ is corrupted, then output

(Finished, sid, k̃) to P′′. (Here the adversary determines the key.)
(b) If P′′′ is uncorrupted, then Output (Finished, SID, κ) to P′′.
(c) If no tuple (P′′, P′′′) is recorded, then ignore the request.

Fig. 5. The Key Exchange functionality

Providing a sound symbolic security criterion for key-exchange turns out be a
more delicate task. The traditional symbolic criterion for key exchange requires
these two properties in a straightforward way. Agreement is represented as a trace
property: in any valid trace where both parties output a key symbol, it must be
the same key symbol which is output. Secrecy, on the other hand, is represented
by the separate trace property that there be no valid trace in which the adversary
transmits the shared key ‘in the clear.’ Because the symbolic adversary is able to
transmit any message it can derive, such a requirement implies that the session
key will never be something which the symbolic adversary can learn.

However, notice that this symbolic secrecy property differs in flavor from the
standard definitional approach of the computational model. The traditional sym-
bolic definition requires only that the adversary be unable to derive the value of

3 The present formulation of F2ke is slightly different than the formulation in [17]. But
the difference only affects the expected order of receiving the initial inputs from the
parties, and does not affect the secrecy and authenticity properties of the exchange.



the key. However, the UC definition (following other computational definitions,
e.g. [20]) require that the adversary be unable to distinguish between the real
key and a random key even when given the candidate value during the protocol
execution. It is tempting at first to believe that, since in the symbolic model the
security guarantees are “all or nothing” in flavor, the ability to symbolically gen-
erate a secret and the ability to distinguish it from random should be equivalent.
However, it turns out that this is not the case. That is, there exists a protocol
which provably secure in the sense of the traditional symbolic definition, , but
is insecure when instantiated by real cryptographic primitives. In particular, it
does not realize the functionality F2ke.

Consider the NSL protocol from Figure 3. This protocol was originally pro-
posed for mutual authentication only, but it has long been recognized that either
of the two random values used in the protocol (Na and Nb in the symbolic nota-
tion, na and nb in the simple protocols) could be regarded as a secret session key.
Furthermore, it has been proven many times (e.g., [36, 54]) that both of these
values are secret in the sense of the symbolic definition. However, as seen by the
attack below, the NSL variant which outputs nb as the shared key (version 1
of Figure 3) is insecure in any reasonable protocol setting. In particular, it does
not implement F2ke.

Consider an execution of the NSL protocol that proceeds normally until
the initiator has sent the third message, but before the responder receives that
message. At this point, the responder is expecting to receive the random value nb,
encrypted in his public encryption key. However, initiator has already completed
the protocol and terminated, and so the attacker has already received the value
nb and must distinguish it from a random value. Rephrased in terms of the
UC framework, the environment has received the local output from one of the
participants but it doesn’t know if this is the real key nb (as in the protocol
setting) or a random key (as in the functionality and simulator setting). The
third message of the protocol provides an straightforward way of distinguishing
these two cases.

We provide a detailed specification of the attack in terms of the UC frame-
work. We stress however that the attack is quite generic, and does not depend
on the specific formulation of one model or another.

The adversary flips a coin to choose a value. If the coin is ‘heads,’ the ad-
versary chooses the candidate key. If the coin is ‘tails,’ on the other hand, the
adversary chooses a new random key of the same length. In either case, the ad-
versary encrypts the chosen value in the public key of the responder and sends
it to that party.

– If the adversary is in the protocol setting, then the responder will be able to
distinguish between the candidate key (which is the actual key) and a new
random value, and progress accordingly.

– If the adversary is in the functionality/simulator setting, the simulator (who
must simulate the responder’s behavior) does not see the session key pro-
duced by F2ke. This it will be unable to determine the coin-flip of the adver-



sary. Thus, the simulator will be able to accurately simulate the responder
with only 50% probability.

The salient point here is that, while the protocol never explicitly leaks the key,
it give the adversary an opportunity to verify candidate values for the key. Thus,
this protocol cannot fulfill the UC definition of key-secrecy, even though it has
been shown to fulfill the traditional symbolic definition. Thus, computational
soundness against the UC framework requires a new symbolic definition of se-
crecy.

The new symbolic criterion. Unlike the traditional symbolic criterion, our
new definition is not expressed as a predicate on valid traces. Instead, it trans-
lates into the symbolic model the intuition behind the real-or-random secrecy
criterion from cryptographic definitions of secrecy. To do that, we formalize the
notion of a symbolic adversary strategy.

Definition 2 (Adversary Strategy). Let an adversary strategy be a sequence
of adversary events that respect the Dolev-Yao assumptions. That is, a strategy
Ψ is a sequence of instructions I1, I2. . . In, where each Ii has one of the following
forms, where i, j, k are integers:

[“receive”, i] [“enc”, j, k, i] [“dec”, j, k, i]
[“pair”, j, k, i] [“extract-l”, j, i] [“extract-r”, j, i]
[“random”, i] [“name”, i] [“pubkey”, i]

[“deliver”, j, Pi]

When executed against protocol P, a strategy Ψ produces the following Dolev-Yao
trace Ψ(P). Go over the instructions in Ψ one by one, and:

– For each [“receive”, i] instruction, if this is the first activation of party Pi,
or Pi was just activated with a delivered message m, then add to the trace
a participant event (P ′

j ,L, m) which is consistent with the protocol P. Else
output the trace ⊥.

– For any other instruction, add the corresponding event to the trace, where
the index i is replaced by mi, the message expression in the ith event in the
trace so far. (If adding the event results in an invalid trace then output the
trace ⊥.)

We also need to define the ‘observable portion’ of a trace, which we do using
public-key patterns (due originally to Abadi and Rogaway [4].)

Definition 3 (Public-key pattern[4, 29]). Let T ⊆ KPub (public keys) and
m ∈ A. We recursively define the function p(m, T ) to be:

– p(K, T ) = K if K ∈ K (public keys)
– p(A, T ) = A if A ∈ M (names/party identifiers)
– p(N, T ) = N if N ∈ R (random challenges/nonces)
– p(N1|N2, T ) = p(N1, T )|p(N2, T ) (pairing)

– p(Enc(m; K) , T ) =

{

Enc(p(m, T ); K) if K ∈ T

〈|T |〉K (where T is the type tree of m) o.w.



Then patternpk (m, T ), the public-key pattern of an Dolev-Yao message m rela-
tive to the set T , is

p(m,KPub ∩ C[{m} ∪ T ]).

If t = H1,H2, . . .Hn is a Dolev-Yao trace where event Hi contains message mi

then patternpk (t , T ) is exactly the same as t except that each mi is replaced
by p(mi,KPub ∩ C[S ∪ T ]) where S = {m1, m2, . . . mn}. The base pattern of a
message m, denoted pattern (m), is defined to be patternpk (m, ∅), and pattern (t)
is defined to be patternpk (t , ∅).

Our new symbolic definition of secure key-exchange requires that, for all adver-
sary strategies, when a given strategy is applied to the protocol, the observable
portion of the resulting trace looks the same when the shared key is the output
of the protocol and when it is a fresh key symbol (representing a fresh random
key).

Definition 4 (Variable Renaming). Let R1, R2 be random-strings symbols,
and let t be an expression in the algebra A. Then t[R1 7→R2] is the expression
where every instance of R1 is replaced by R2.

Definition 5 (Symbolic Criterion for Key Exchange). A Dolev-Yao pro-
tocol P provides Dolev-Yao two-party secure key exchange (DY-2SKE) if

1. (Agreement) For all P0 and P1 6∈ MAdv and Dolev-Yao traces valid for P in
which P0 outputs 〈Starting|P0|P1|m〉 and P1 outputs 〈Starting|P1|P0|m′〉, if
participant P0 produces output message 〈Finished |m0〉 and participant P1

produces output message 〈finished|m1〉, then m0 = P0|P1|R and m1 =
P1|P0|R for some R ∈ R.

2. (Real-or-random secrecy) Let Pf be the protocol P except that a fresh fake
key Rf is output by terminating participants in place of the real key Rr. Then
for every adversary strategy Ψ ,

pattern (Ψ(P)) = pattern
(

Ψ(Pf )[Rf 7→Rr]

)

Finally, we demonstrate that the new symbolic security criterion for key
exchange is equivalent to the UC criterion. (Again, equivalence holds uncondi-
tionally.)

Theorem 1. Let p be a simple protocol. Then p UC-realizes F2ke if and only if
symb(p) achieves Dolev-Yao secure key-exchange.

To demonstrate the “only if” part (namely, the completeness of the symbolic
condition) we show how to turn any symbolic trace of symb(p) that violates the
symbolic key exchange criterion into a strategy of a concrete environment for
distinguishing between an execution of p and the ideal process for F2ke.

The “if” part (namely, the soundness of the symbolic condition) is proven as
follows. Given a simple protocol p, we construct a general strategy for a simulator
(i.e, an ideal-process adversary) within the UC framework. We then show that,
except with negligible probability, any environment that distinguishes between



real and ideal executions can be turned into a (single) symbolic trace of symb(p)
that violates the symbolic key exchange criterion.

This sketch omits many details however; the proof is rather delicate. In par-
ticular, demonstrating the second property with respect to the symbolic secrecy
criterion requires some work.

6 Future research

This work demonstrates that completely symbolic analysis of security properties
within a simulation-based, compositional cryptographic framework is possible.
Furthermore, the chosen symbolic framework is one that is very close to the
language of known automated verification tools. As such, it opens the door to a
number of questions and challenges. For example one might wish to generalize
our results to a richer and less restrictive “programming language” for proto-
cols. One direction is to enlarge the set of allowed operations and to incorporate
other cryptographic primitives, while retaining the ability to analyze only a
single session of the protocol in question. Natural candidates include the Diffie-
Hellman exchange, signatures schemes, pseudo-random functions, and message
authentication codes. Other generalizations include adaptive security (i.e. secu-
rity against adversaries that corrupt parties throughout the computation), and
protocols where even their symbolic counterparts are randomized.

A second direction is to apply a similar analytical methodology to other cryp-
tographic tasks, and even tasks that were never before addressed using formal
tools. For instance, it may be possible to come up with a symbolic representation
of, say, two-party protocols that use commitment schemes, and provide a sym-
bolic criterion for when such protocols are zero-knowledge protocols (e.g., satisfy
the ideal zero-knowledge functionality). Similarly, one can potentially come up
with symbolic criteria as to when a protocol UC-realizes an arbitrary given ideal
functionality.
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