
Intrusion-Resilience via the Bounded-Storage

Model⋆

Stefan Dziembowski⋆⋆

Institute of Informatics,
Warsaw University, Poland

and

Institute for Informatics and Telematics
CNR Pisa, Italy

Abstract. We introduce a new method of achieving intrusion-resilience
in the cryptographic protocols. More precisely we show how to preserve
security of such protocols, even if a malicious program (e.g. a virus) was
installed on a computer of an honest user (and it was later removed).
The security of our protocols relies on the assumption that the amount of
data that the adversary can transfer from the infected machine is limited
(however, we allow the adversary to perform any efficient computation
on user’s private data, before deciding on what to transfer). We focus
on two cryptographic tasks, namely: session-key generation and entity
authentication. Our method is based on the results from the Bounded-
Storage Model.

1 Introduction

In the contemporary Internet environment, computers are often exposed to at-
tacks of malicious programs, which can monitor the machines and steal the secret
data. This type of software can be secretly attached to seemingly harmless pro-
grams, or can be installed by worms or viruses. In order to protect against these
threats a user is usually advised to use virus and spyware removal tools. These
tools need to be frequently updated (as the new viruses spread out very quickly).
Nevertheless, for an average PC user it is quite inevitable that his computer is
from time to time infected by a malicious process (which is later removed by an
appropriate tool).

This phenomenon can be particularly damaging if the user runs some crypto-
graphic programs on his machine. This is because in most of cryptographic tasks
(encryption, authentication) the user needs to posses (and store somewhere) a
secret key s. If the user does not store s outside of the machine (e.g. on a trusted

⋆ This is an extended version of a report [Dzi05] that appeared on the eprint archive.
⋆⋆ Partially supported by the EU ECRYPT grant IST-2002-507932 and by the Polish

KBN grant 4 T11C 042 25. Part of this work was carried out during the tenure of
an ERCIM fellowship. Another part of this work was done when the author was
employed at the Institute of Mathematics of the Polish Academy of Sciences.

hardware that will later participate in the protocol), then it seems that there
is little that can be done to preserve the security, as the malicious process can
always steal s (and then impersonate the honest user, or decrypt his private com-
munication). If the protocol is based on a password memorized by the user then
the virus can wait until the password is typed and then record the key-strokes.

In this paper we propose a method for constructing intrusion-resilient crypto-
graphic protocols, i.e. such protocols that remain secure even after the adversary
gained access to the victim’s machine (and later lost this access). The security of
our protocols is based on a novel assumption that the amount of data that the
adversary is allowed to transfer from the victim’s machine is limited (however,
we allow the adversary to perform any efficient computation on user’s private
data, before deciding on what to transfer). In the security proofs we make use
of the theory of the Bounded Storage Model (see Section 3).

1.1 Previous work

Intrusion-resilience was introduced in [IR02] (see also [DFK+03]) and can be
viewed as a combination of forward and backward security.1 A cryptosystem
is forward-secure if an exposure of a secret key at some particular time t does
not affect the security of the sessions of the protocol that ended before t. It was
studied in context of key-exchange (see e.g. [DvOW92,Kra96]), digital signatures
(this research was initiated by Ross Anderson, see [And02]) and public-key en-
cryption [CHK03]. A cryptosystem is backward-secure if the exposure of a secret
key at time t does not affect the security of the sessions of the protocol that
started after t. So far this was achieved by distributing the secret key among a
group of participants (e.g. in [IR02] this group consist of two players: a signer
and a home base). One has to make an assumption that the entire group is never
compromised by the adversary at the same time.

Cryptosystems that remain secure even in case of a partial leakage of the
secret key were already studied in the area of Exposure-Resilient Cryptography
(see e.g. [Dod00]). The differences from our model are as follows: (1) they con-
sider only the leakage of individual bits of the secret keys and (2) the keys in
their protocols are short.

Our model can be viewed as a generalization of the model of Kelsey and
Schneier [KS99]. In their model the adversary is allowed to access individual
bits of the secret key (this is justified by an assumption that the access to the
memory is slow). In this model they show a simple authentication protocol (the
secret key is a long random string of bits; in order to verify the authenticity of
the client the server asks for the values of some randomly chosen positions of the
secret key). In Sect. 5.2 we show that this protocol is also secure in our model.

Independently2 (but earlier) a similar model was introduced by Dagon et al.
[DLL05]. They propose a system (called VAST) for securely storing secret data

1 There seems to be some confusion in the literature about the terminology. What is
called forward security in [And02] is called backward security in [IR02,DFK+04]. In
this paper we use the terminology of [IR02].

2 We became aware of this work after submitting our paper to TCC.

on devices that can be subject to an intrusion e.g. by a virus. They assume that
such data is encrypted by a weak (human-memorized) password (let T denote
the resulting ciphertext and let π be the password). To prevent the adversary
from downloading T and cracking the password (i.e. performing a dictionary
attack on π) on his own machine, they design their protocols so that T is too
large to be fully downloaded. In order for this to make sense they need to assume
that the computing power of the virus is limited (so the virus cannot perform the
password-cracking on the victim’s machine). This is in contrast to our model,
where we can grant the virus a right to perform an arbitrary (polynomial-time)
computation on the victim’s data. Another difference is that they assume that
the adversary does not have a full access to the victim’s machine. In particular
when the user is interacting with VAST the virus should not have access to the
keyboard. This is because when the user enters the password π to the machine
the virus can learn π by recording the key-strokes.

1.2 Our contribution

We propose a new method for constructing intrusion-resilient protocols for the
session-key generation and entity authentication (the main novelty of our ap-
proach is the new method of achieving backward-security; the forward-security
is achieved in a fairly standard way). The assumption that we make is that
the secret key is of huge size (e.g. K is of size 5 GB). More precisely, we will
grant the adversary the power to break into the honest user’s machine and take
full control over it. We will assume that the adversary is able to perform arbi-
trary (efficient) computation on victim’s data. Clearly, during the period of the
break-in one cannot hope for much security, since the adversary has a complete
knowledge about the behavior of one of the honest users (and hence she can e.g.
impersonate the user or steal the session key). So the intrusion-resilience is the
maximum what we can hope for. We achieve it by assuming that the amount of
data that the adversary can retrieve is much smaller than K (say it is 0.5 GB).
This assumption may be quite practical as in many situations transmitting un-
noticeably 0.5 GB of data is hard. Observe that if the secret key is of size 1 KB
then the virus can e.g. post it on some Usenet group, so that the author of the
virus can download it anonymously. Clearly this is much harder if the secret is
huge.

Another motivation is that protocols that are secure in our model have a
high level of resiliency against side-channel analysis [KSWH00]. Recall that the
side-channel attacks allow the adversary to obtain some information about the
users’ secrets by observing the behavior of the implementation of the protocol.
In practice the full protection against such attacks is hard, and we can only
hope for minimizing the amount of leaked information. The assumptions that
we make in our model guarantee that even if some information about the secrets
is leaked, the protocols are still secure.

Our method is based on the theory of the Bounded-Storage Model (see
Sect. 3). In the BSM one constructs protocols secure under the assumption that
the amount of data that the adversary can store is smaller that the amount of

data that can be broadcasted (e.g. by a satellite). The fact that he theory of
the BSM has applications here may seem surprising at the first sight, as in some
sense the assumptions in the BSM are opposite to ours. However, as it turns
out, these models show similarities and in fact theorems that were proven in the
BSM are useful for us.

Our exposition is rather informal, as we mostly aim at introducing the model
and showing its power, not at providing ready to use practical solutions for
concrete problems. For the same reason we do not provide numerical examples
and we do not give comparisons between security levels of different schemes
presented in the paper. Nevertheless, we believe that the protocols provided
here (or their variants) may find practical applications.

Finally, let us note that our results are proven in the random oracle model
(see Sect. 2.4).

1.3 The contribution of [CDD+05]

The entity authentication protocol that we present in our paper was indepen-
dently constructed and analyzed by Cash et al. [CDD+05]. Moreover, they im-
prove our results by constructing a session-key generation protocol without the
random oracle assumption. They also provide some concrete numerical examples
of the parameter values that can be used in practical implementations.

2 Preliminaries

2.1 Probability theory

The min-entropy of a probability distribution PX is defined as

H∞(X) := min
x∈X

(− log2(PX(x))).

If X is a random variable and A is an event then PX is the distribution of
X and PX|A is a conditional distribution of X given A. In this case we define
H∞(X) := H∞(PX) and H∞(X | A) := H∞(PX|A). For more on min-entropy
and its relation to the standard Shannon entropy see e.g. [Cac97].

Let the statistical distance between random variables X and X ′ distributed
over the same set X be defined as

δ(X,X ′) :=
1

2

∑

x∈X

|X(x) − X ′(x)|

We will also say that X is δ(X,X ′)-far from X ′. If U is a random variable with
uniform distribution over X then define d(X) := δ(X,U). The above notation
extends in a natural way to probability distributions.

2.2 Message Authentication Codes

We will use the following (simplified) security definition of the Message Authen-
tication Codes (MAC s). For a more complete definition the reader may consult
e.g. [Gol04]. MAC is an algorithm which takes as an input a security parame-
ter 1k, a random secret key S ∈ {0, 1}λ(k) (where λ is some polynomial) and
a message M ∈ {0, 1}∗. It outputs an authentication tag MACS(M, 1k)) (we
will sometimes drop 1k). It is secure against an adaptive chosen-message attack
if any probabilistic polynomial time (PPT) adversary (taking as input 1k) has
negligible3 (in k) probability of producing a valid pair (M,MACS(M, 1k)), after
seeing an arbitrary number of pairs

(M1,MACS(M1, 1
k)), (M2,MACS(M2, 1

k)) . . .

(where M 6∈ {M1,M2, . . .)), even when M1,M2, . . . were adaptively chosen by
the adversary.

2.3 Public-Key Encryption

A public-key encryption scheme is a triple (G, encr , decr), where G is a PPT
key-generation algorithm taking as input 1k and returning as output a (private-
key,public-key) pair (E,D), encr is an polynomial-time algorithm taking as input
1k, a message M ∈ {0, 1}∗ and a public key E and returning a ciphertext C =
encrE(M), and decr is an algorithm taking as input a private key D a ciphertext
C and returning a message M ′ = decrD(C). We require that always M =
decrD(encrE(M)). Let E be a polynomial time adversary which is given 1k

and E. Her goal is to win the following game. She produces two messages M0

and M1 (of the same length). Then, she is given a ciphertext C = encrS(Mr),
where r ∈ {0, 1} is random. She has to guess r. We say that (G, encr , decr)
is semantically secure [GM84] if any polynomial time adversary has chances at
most negligibly (in k) better that 0.5. More on the definitions of secure public-key
encryption can be found e.g. in [Gol04].

2.4 Random Oracle Model

We prove the security of our protocol in the Random Oracle Model [BR93]. More
precisely, we will model a hash function H : {0, 1}i → {0, 1}j as a random oracle,
i.e. a black box containing a random function h : {0, 1}i → {0, 1}j . We assume
that every party (including the adversary) has access to this oracle, i.e. can ask
it for the value of h on any (chosen by her) arguments.

3 A function f : N → R is negligible (in k) if for every c ≥ 1 there exists k0 such that
for every k ≥ k0 we have |f(k)| ≤ k−c.

3 Bounded Storage Model

We will use the results from the Bounded-Storage Model, introduced by Mau-
rer in [Mau92]. So far, this model was studied in the context of information-
theoretically secure encryption [ADR02,DM04b,Lu04,Vad04,Din05], key-agree-
ment [CM97,DM04a], oblivious transfer [CCM98,Din01,DHRS04] and time-stam-
ping [MSTS04]. In this model one assumes that a random t-bit string R (called a
randomizer) is either temporarily available to the public (e.g. the signal of a deep
space radio source) or broadcast by one of the legitimate parties. We assume that
the memory s of the adversary is smaller than t and therefore she can store only
partial information about R. It has been shown in [ADR02,DM04b,Lu04,Vad04]
that under this assumption the legitimate parties, Alice and Bob, sharing a
short secret key Y initially, can generate a very long n-bit one-time pad X with
n ≫ |Y | about which the adversary has essentially no information.

More formally, Alice and Bob share a short secret initial key Y , selected
uniformly at random from a key space Y, and they wish to generate a much
longer n-bit expanded key X (i.e. n ≫ log2 |Y|). In a first phase, a t-bit random
string R is available to all parties, i.e., the randomizer space is R = {0, 1}t. Alice
and Bob apply a known key-expansion function

f : R× Y → {0, 1}n

to compute the expanded key as X = f(R, Y). Of course, the function f must
be efficiently computable and based on only a very small portion of the bits of
R, so that Alice and Bob need not read the entire string R.

The adversary Eve E can store arbitrary s bits of information about R, i.e.,
she can apply an arbitrary storage function

h : R → U

for some U with the only restriction that |U| ≤ 2s. The memory size during
the evaluation of h does not need to be bounded. The value stored by Eve is
U = h(R). After storing U , Eve looses the ability to access R. All she knows
about R is U . In order to prove as strong a result as possible, one assumes that
Eve can now even learn Y , although in a practical system one would of course
keep Y secret.

A key-expansion function f is secure in the bounded-storage model if, with
overwhelming probability4, Eve, knowing U and Y , has essentially no informa-
tion about X. To be more precise, let us introduce a security parameter k which
is an additional input of f and of Eve. Let us assume that the length of the ran-
domizer, the size of Eve’s memory and the length of the output of f are functions
of k, i.e. t = τ(k), s = σ(k), and n = ν(k) (with ν(k) ≥ k). Also, assume that
the set of the initial keys is always equal to {0, 1}µ(k), for some function µ.
We say that function f is (σ, τ, ν, µ)-secure in the bounded-storage model if for

4 Formally, a sequence of probabilities p0, p1, . . . is overwhelming if the function f(k) =
1 − pk is negligible.

any Eve (with memory at most σ(k)) the statistical distance of the conditional
probability distribution PX|U=u,Y =y from uniform distribution over the ν(k)-bit
strings is negligible, with overwhelming probability over values u and y. Above
we assumed that the adversary and the function f are deterministic, but note
that we would not loose any security by allowing them to be randomized.5

Several key expansion functions were proven secure in the past couple of years
(see for example [ADR02,DM04b,Lu04,Vad04]). In the next section we present
an example of such a function, taken from [DM04b]. We have chosen the function
of [DM04b] because we believe that it is the simplest one. The reader familiar
with the BSM literature can safely skip the next section.

3.1 The scheme of [DM04b].

The randomizer R ∈ R = {0, 1}t is interpreted as being arranged in a matrix
with m rows, denoted R(1), . . . , R(m), for some m ≥ 1 called the height of the
randomizer. Each row consists of l+n−1 bits, for some l ≥ 1 called the width of
the randomizer. Hence t = m(l+n−1) and R can be viewed as an m×(l+n−1)
matrix (see Fig. 1). The initial key Y = (Y1, . . . , Ym) ∈ Y = {1, . . . , l}m selects
one starting point within each row, and the expanded key X = (X1, . . . ,Xn) is
the component-wise XOR of the m blocks of length n beginning at these starting
points Yi, i.e.,

X = f(R, Y),

where f : R×Y → {0, 1}n is defined as follows. For r ∈ R and Y = (Y1, . . . , Ym) ∈
Y,

f(R, Y) :=

(

m
⊕

i=1

R(i, Yi), . . . ,
m
⊕

i=1

R(i, Yi + n − 1)

)

, (1)

where R(i, j) denotes the jth bit in the ith row of R. This is illustrated in Fig. 1.
The above function f was proven secure in [DM04b], assuming that memory

of the adversary has a size that is a constant fraction c < 1 of the randomizer.
For the practically looking parameters this constant should be around 8%, i.e.
σ(k) := τ(k) · 0.08. See [DM04b] for details.

4 Intrusion-Resilient Session-Key Generation

By session-key generation we mean a protocol that allows two parties (that share
a long-term symmetric key) to agree securely on a session key even in presence of
a malicious adversary that can obstruct their communication. Below, we describe
what we mean by intrusion-resilient session-key generation.

5 Formally we could do it by allowing E and f to take extra random inputs rE and rf ,
resp. This does not give any extra power to the adversary, for the following reasons:
(1) the input rf is obsolete since if E is randomized then having rf clearly does not
change anything as E can simply choose rf herself and encode it into the description
of f ; (2) the input rE is obsolete since a computationally unbounded E can always
(for any value of k) find the optimal rE .

������������������������

������������������������
������

���
���
���
���

������������������������

������������������������

���
���
���
���

���
���
���
���

������������������������
������������������������

���
���
���
���

���
���
���
���

R(1) Y1

...

R(m) Ym

block of length l + n − 1

block of length n

height

width l

m

Y2

Fig. 1. Illustration of the scheme for deriving an expanded n-bit key X = (X1, . . . , Xn),
to be used as a one-time pad, from a short secret initial key Y = (Y1, . . . , Ym). The
randomizer R is interpreted as a m × (l + n − 1) matrix with rows R(1), . . . , R(m) of
length l+n−1. The expanded key X is the component-wise XOR of m blocks of length
n, one selected from each row, where Yi is the starting point of the ith block within
the ith row R(i).

4.1 An informal description of the model

First, let us fix the basic terminology. The honest users Alice A and Bob B will
be attacked by a (polynomially bounded) adversary Eve E . The adversary is
allowed (1) to eavesdrop and to store the entire communication between Alice
and Bob (2) to fabricate messages or to prevent them from arriving and (3)
to (periodically) install malicious programs on the honest user’s machines (see
below). Such a program will be called a virus. We assume that the honest users
share a long-term secret key K generated randomly. The time is divided into
sessions T1, T2, . . . (the number of sessions will be bounded). At the beginning
of the session the users are allowed to get some fresh random input. At the end
of each session Ti the users output a new session key κi. (In practice, once κi

is generated, the users will utilize κi for secure communication.) For simplicity
assume that each execution of the protocol is always initiated by Alice. After
being installed, the virus can do the following.

1. Read all the internal data of the victim.
2. Compute an arbitrary function Γ on this data. We will model it by asking

the adversary to produce a description of Γ as a boolean circuit. The only
restriction that we put on Γ is that the length of its output is limited (observe
however that since Eve is polynomially-bounded the size of Γ has to be
polynomial). Note also that we do not need to consider the case of interactive
viruses (that would be allowed to engage in a interactive massage exchange
with the adversary), since the circuit may contain the description of the
entire state of the adversary.

3. Send the result of the computation back to the adversary.

Note, that we assume that the adversary is not allowed to modify the programs
running on the users’ machines. Informally speaking the goal of the adversary is

to successfully break some test session Ttest (of her choice), by achieving one of
the following goals:

1. learn κtest ,
2. convince at least one of the players to accept some κ′

test
about which the

adversary has some significant information, or
3. make A and B agree on different keys.

Clearly, if the adversary installs a virus on one of the users’ machines in session
Ttest then she can instruct the virus to retrieve κtest (since in a usual scenario
the session key κi is short6). Therefore, we are interested only in the adversary
breaking those sessions Ttest during which no virus was installed (neither on the
machine of A nor on the one of B).

Traditionally when considering forward security (see e.g. [Kra96]) one allows
the adversary to learn all the session keys except of the challenge key κtest . In our
model this ability of E comes from the fact that the adversary can compromise
all sessions except of Ttest (we will actually allow the adversary to ,,compromise
a session” that has already ended some time ago). Finally, let us remark that in
this model we assume that the players can reliably erase their data (in particular,
after the session Ti the players would erase κi). Actually, we will assume that
the only data that is not erased between the sessions is the secret key K.

4.2 A more formal description of the model

We are now going to define the model more formally. Our definitions are inspired
by the definitions of the security of key-exchange protocols (esp. [CK01]). For
the sake of simplicity we assume that the protocol is executed just between
two fixed parties, and concurrent execution of the sessions is not allowed, i.e.
the users simply execute one session after another. Giving a complete definition
(e.g. in the style of [CK01]) remains an open task.

The session-key generation scheme is a tuple (A,B, α, β, γ, δ, χ), where α, β,
γ, δ, χ are some polynomials and A and B are interactive Turing machines, taking
as input a security parameter 1k and a secret key K ∈ {0, 1}α(k). The adversary
E is a PPT Turing Machine taking as input 1k. The execution is divided into
the sessions T1, T2, . . . , Tχ(k). The execution of each Ti looks as follows:

1. The machines A and B receive uniformly (and independently) chosen random
inputs rA ∈ {0, 1}β(k) and rB ∈ {0, 1}β(k) (respectively).

2. Machines start exchanging messages. The adversary can eavesdrop the mes-
sages. She can also prevent some of the messages from arriving to the des-
tination and fabricate new messages. At the beginning A sends a unique
message start to B (so the adversary knows that a new session started).

3. At the end of the session the machines (privately) output an agreed key
κi ∈ {0, 1}δ(k). If the traffic was not disturbed by the adversary then they
have to output the same value.

6 Even if one would develop a scheme in which κi is too large to be retrieved, the
adversary could simply tell the virus to steal the data that is encrypted with κi.

4. Now the adversary may choose to compromise the session Ti (each session Ti

may be compromised at most once in the entire execution of the protocol).
In this case the following happens.
(a) Eve produces a description of a boolean circuit C (which models the

virus) computing a function Γ : {0, 1}w → {0, 1}γ(k) (w is an arbitrary
value). Clearly we will always have γ(k)χ(k) < α(k), since otherwise Eve
could retrieve the entire secret key K. The size of C is arbitrary (however,
it has to be polynomial in the security parameter, as the adversary is
polynomially-bounded).
Note that we assume a uniform bound γ(k) on the amount of bits that
the adversary is allowed to steal in each compromised session. More
generally, one could give a bound on the total number of bits retrieved
by the adversary in all compromised sessions.

(b) Eve learns the value of Γ (rA, rB ,K).

Observe that the function Γ ,,has a complete view” of the internal states of
the parties during the session. Thus in particular the value of Γ (rA, rB ,K)
may include the encoding of κi (if this is the wish of the adversary). Also
note that our model is actually stronger than what we need in practice (as we
assume that Γ has simultaneous access to both A and B, without restricting
the amount of data that she needs to transfer between the parties, to perform
the computation).

5. The adversary may decide to compromise a session (in the same way as in
Point 4) even long time after the session Ti is finished (one can imagine that
the descriptions of the states of A and B at the end of Ti are deposited
somewhere and the adversary may decide to access them at any later time).
This may seem an artificial strengthening of the model. However, in fact it
simplifies things, as it allows us to model the fact that κi may become known
to the adversary at some later point. Alternatively, we could introduce a
special type of session-key-queries [CK01] that the adversary may ask to
learn κi after the end of Ti.

Let C be the set of all compromised sessions. Clearly, the adversary wins if for
some session Ti 6∈ C users A and B outputted different keys. If this is not the
case then at the end of the execution the adversary decides that some Ttest 6∈ C
will be her test-session. In this case her task will be to distinguish κtest from a
truly random key of the same length. Of course we need to require that at least
one of A and B actually outputted some key κtest (by blocking the message flow
the adversary can clearly prevent the parties from reaching any agreement). The
distinguishing game is as follows:

1. Let r ∈ {0, 1} be random.
2. If r = 0 then pass κtest to the adversary. Otherwise generate a random

κ′ ∈ {0, 1}δ(k) and pass it to the adversary. The adversary outputs some
r′ ∈ {0, 1}. We say that she won the distinguishing game if r = r′.

Definition 1. We say that a key generation scheme (A,B, α, β, γ, δ, χ) as above
is intrusion-resilient if for any PPT E

1. the chances that in some session Ti 6∈ C machines A and B outputted differ-
ent keys are negligible (in k), and

2. the chances that E wins the distinguishing game, are at most negligibly (in
k) greater than 1/2.

4.3 The protocol for intrusion-resilient session-key generation

Preliminaries Let f be (σ, τ, ν, µ)-secure in the BSM. Let MAC be a message
authentication scheme secure against adaptive chosen message attack. Assume
that for a security parameter 1k the length the secret key of MAC is λ(k). Let
H : {0, 1}ν(k) → {0, 1}λ(k) be a hash function (modeled as a random oracle). Let
(G, encr , decr) be a semantically secure public-key encryption scheme. In order
to achieve forward-security we will use the public-key encryption in a standard
way (see e.g. [DvOW92,Kra96]): Alice will (1) generate an ephemeral (public
key, private key) pair7 and (2) send the public key (in an authenticated way)
to Bob, Bob will generate the session key κ and send it (encrypted with Alice’s
public key) back to Alice (who can later decrypt κ).8 Afterwards, the ephemeral
keys are erased.

The protocol Fix some value of the security parameter k. Let R = {0, 1}τ(k)

and let Y = {0, 1}µ(k). Assume that Alice and Bob share a random secret key
K = (RA, RB) ∈ R2 and hence α(k) := 2 · τ(k). In each session Ti the players
execute the following protocol.

1. Alice generates a random YA ∈ Y and sends it to Bob.

2. Bob generates a random YB ∈ Y and sends it to Alice.

3. Both parties calculate S := f(RA, YA) ⊕ f(RB , YB) and S′ := H(S).

4. Alice generates a public key E and sends (E,MACS′(A:E)) to Bob.

5. Bob verifies the correctness of the authentication tag. If it is correct then he
generates a random κi and sends (encrE(κi),MACS′(encrE(B:κi)) to Alice.
He outputs κi.

6. Alice verifies the correctness of the authentication tag. If it is correct then
she decrypts κi and outputs it.

7. The players erase all their internal data (including κi and random inputs),
except of the long-term key K.

The role of labels ,,A:” and ,,B:” is to prevent the adversary from bouncing the
message sent by Alice in Step 4 back to her in Step 5.

7 Ephemeral key is a key that is generated just for some particular session (and it is
erased later).

8 In [DvOW92,Kra96] it is actually done by exchanging Diffie-Hellman ephemeral keys,
i.e. doing authenticated Diffie-Hellman key agreement.

The bound on the amount of retrieved data An important parameter that
needs to be fixed is the amount of data that the virus can retrieve in each session,
i.e. the value of γ(k). If the adversary compromises some sessions than at any
point of the execution of the scheme, then she knows the value of some function
h̃ of K. We can think about h̃ as changing dynamically after each session. After
execution of i sessions the length of the output of h̃ is at most the sum of

• i · γ(k) (since she could have compromised at most i sessions do far), and
• i · λ(k) (since she could have learned i keys of the MAC scheme9)

Since the maximal number of sessions is χ(k) we know that the output of h̃ is
of a length at most

χ(k) · (γ(k) + λ(k)).

Therefore if we want this value to be at most σ(k) we have to set

γ(k) := σ(k)/χ(k) − λ(k). (2)

This ensures that the information that Eve has about K is at most σ(k) bits.

4.4 The security of the protocol

We prove the following.

Theorem 1. The protocol in Sect. 4.3 is intrusion resilient.

Proof (sketch). Fix some uncompromised session Ti. Let us first consider the case
when the adversary wants to break it by disrupting (by stealing and substituting
messages) the communication. Let SA and SB be the values of S computed by A
and B (resp.) in Step 3. If the execution of the protocol was not disturbed by the
adversary then we have SA = SB. By the security of f in the BSM, the adversary
has almost no information about the values SA and SB (i.e. their distribution is
negligibly far from uniform from her point of view). Note that this holds even if
she was disrupting the communication between the parties. The only thing that
the adversary could possibly do is to force SA and SB to be such that they are
not equal, but they are not independent either. For example by modifying the
message YA (sent in Step 1) she could make SA ⊕ SB to be equal to some value
S⊕ chosen by her.10

This is why, before using S, we hash it (in Step 3): S′ := H(S). Let S′
A :=

H(SA) and let S′
B := H(SB). Clearly the chances of E of guessing SA or SB are

9 We have to add it because the definition of the security of MAC does not imply the
secrecy of all the bits of the key.

10 Consider for example the scheme from Sect. 3.1. Write YA = (Y1, . . . , Ym). Suppose
the adversary stored the first row (RA(1)) of RA (she should have enough memory
to do it) and she modified YA = (Y1, . . . , Ym) (sent is Step 1) only on the first
component (Y1). Let Y ′

A be the result of this modification. Clearly almost always
fA(RA, YA) 6= fA(RA, Y ′

A); however, fA(RA, YA)⊕ fA(RA, Y ′

A) (and hence SA ⊕SB)
is known to the adversary.

negligible. This is because the distributions of SA and SB are negligibly far from
a uniform distribution over {0, 1}ν(k) and we assumed that ν(k) ≥ k. Therefore
(since we model the hash function as a random oracle) we can assume that
(except with negligible probability) from the point of view of E the distributions
of the values S′

A and S′
B are entirely uniform. Moreover, one of the following has

to hold (except with negligible probability):

1. S′
A = S′

B , or
2. S′

A and S′
B are independent.

Assume that the first case holds. Then, the adversary is not able to fabricate
messages in Steps 4 and 5, without breaking the MAC. The security of κi follows
now from the security of the encryption scheme (if the adversary could distin-
guish κi from a random key, then she could clearly break the semantic security
of (G, encr , decr)).

In the second case, the parties easily discover that the adversary was interfer-
ing with their communication. This is because if the adversary wants to prevent
them from discovering this, then she needs to create (in Steps 4 and 5) valid
pairs (message,MAC), without having any information about the secret keys.
Again, she cannot do it without breaking the MAC .

Now suppose that the adversary wants to distinguish κi from a random key,
after the session is completed. If she compromises some future session Tj then she
can of course recover the key S′ used in session Ti (if she stored YA and YB from
Ti). However, now it is too late (as the key S′ is used only for authentication).
Therefore, the security of κi again follows from the semantic security of the
encryption scheme. ⊓⊔

4.5 An alternative protocol

In this section we show another variant of the protocol from Sect. 4.3. The
main difference is that instead of using a BSM-secure key derivation function
f , we will use a function f̃ : R × Y → {0, 1}k that is not BSM-secure, but
still works for our purposes. Again, let k be a security parameter and suppose
that the randomizer R is a random element from R = {0, 1}τ(k). Let Y :=
{

(Y1, . . . , Yk) ∈ {1, . . . , τ(k)}k | Y1 < · · · < Yk

}

. Thus Y can be viewed as a set
of all k-element subsets of {1, . . . , τ(k)}. First, define

ϕ((R1, . . . , Rτ(k)), (Y1, . . . , Yk)) := (RY1
, . . . , RYk

).

Let H be a hash function. We set

f̃(R, Y) := H(ϕ(R, Y)).

In other words: we just pick random positions of the secret key, concatenate
them and hash the result. Of course usually f̃ is not secure in the BSM as the
hash functions belong to the complexity-theoretic world. However, if we model
H as a random oracle, then the value of f̃(R, Y) is random from the point of

view of the adversary, unless she managed to guess the value of ϕ(R, Y). So, if we
want to use f̃ instead of f in the protocol from Sect. 4.3, then we have to show
that the probability of any adversary of guessing ϕ(R, Y) correctly, is negligible
(for the appropriate choice of the parameters), even when the adversary is given
h(R) and Y (for some h : {0, 1}τ(k) → {0, 1}σ(k) chosen by her). If we model the
adversary’s guess as a function g we can formalize this requirement as follows.

Lemma 1. Suppose σ(k) = (1−δ)τ(k)−k, for an arbitrary δ > 0. For arbitrary
functions h : {0, 1}τ(k) → {0, 1}σ(k) and g : {0, 1}σ(k) → {0, 1}k we have that

P (ϕ(R, Y) = g(h(R), Y)) (3)

is negligible.

For the proof we need two other lemmas. The first lemma (proven in [CM97],
see Lemma 3) is quite simple. It roughly states that the knowledge of s bits of a
random string R reduces its min-entropy by around s, with a high probability.

Lemma 2 ([CM97]). Let R be a random variable uniformly distributed over
{0, 1}t. Let h : {0, 1}t → {0, 1}s be an arbitrary function. Then, with probability
at least 1 − 2k the variable h(R) takes a value u such that

H∞(R | h(R) = u) ≥ t − s − k.

The second lemma (proven in [NZ96], see Lemma 11) is more complicated. Infor-
mally speaking, it states that if R ∈ {0, 1}t is a random string with min-entropy
δ · t and Y ∈ Y is chosen uniformly at random, then ϕ(R, Y) ∈ {0, 1}k has (with
high probability) a min-entropy close to δ′k, where δ′ is some constant.

Lemma 3 ([NZ96]). Let PR be a probability distribution over {0, 1}t with min-
entropy δt. Suppose R is chosen according to PR. Then, with probability at least
1 − ǫ (over the choice of y = Y) the distribution of Pϕ(R,y) is ǫ-far from some
distribution PX′ whose min-entropy is δ′k where δ′ := cδ/ log(δ−1) and ǫ :=
max(2−ck, 2−cδ′l) for some constant c.

Actually, the lemma that is proven in [NZ96] is stronger, as it does not require
Y to be entirely uniform (see [NZ96] for details). We are now ready for the proof
of Lemma 1.

Proof (of Lemma 1). To simplify the notation we set s := σ(k) and t := τ(k).
First, observe that by Lemma 2 we have that (except with a negligible probability
2−k) the variable h(R) takes a value u such that

H∞(R | h(R) = u) ≥ t − s − k = δt. (4)

So, suppose that such u was selected. We are now going to apply Lemma 3. Thus

set δ′ = cδ/(log δ−1) and ǫ = max
(

2−ck, 2−cδ′k
)

(where c is some constant).

Observe that δ′ is constant and ǫ is negligible. Therefore (by Lemma 3) we know

that with overwhelming probability Y took a value y such that the conditional
distribution of

Pϕ(R,Y) | h(R)=u,Y =y (5)

is at most ǫ-far from a distribution PX′ with min-entropy δ′t. Assume that this
indeed happened. If we want to maximize (3) we have to let g choose an element
with the maximal probability according to the distribution Pϕ(R,Y) | h(R)=u,Y =y.

Clearly this probability is at most 2−H∞(P
X′) + ǫ = 2−δ′t + ǫ which is negligible

in k.

5 Intrusion-Resilient Entity Authentication

In this section we informally describe a practical intrusion-resilient method for
entity authentication. In order to achieve such entity authentication one could of
course use the scheme from Sect. 4; however, this is an overkill and for practical
applications a much simpler method suffices. The idea is as follows. We will
construct an intrusion-resilient scheme that allows a user U to authenticate to a
server S. We will consider only intrusions into U . This corresponds to a practical
situation in which the computers of the users are usually much more vulnerable
for the attacks then the computer of the server.

Assume that the parties have already established a channel C between S
and U that is authentic only from the point of view of the user, i.e. U knows
that (1) whatever comes through this channel is sent by U and (2) whatever is
sent through it can be read only by U . Now, the user wants to authenticate to
the server. This is a typical scenario on the Internet, where C is established e.g.
using SSL (and the server authenticates with a certificate). In practice usually
U authenticates to S by sending his password over C. This method is clearly
not intrusion-resilient because once a virus enters the machine of U he can re-
trieve the password (or record the key-strokes if the password is memorized by
a human).

In this section we propose an authentication method that is intrusion-resilient
(in the same sense as the protocols in the previous sections). Again, we will
use the assumption that the secret key K of the user is too large to be fully
downloaded. We allow the virus to perform arbitrary computations11 of the
victim’s machine.

5.1 Our protocol

Let f be a function that is (σ, τ, ν, µ)-secure in the BSM. Fix some security
parameter k. The secret key K is simply the randomizer R ∈ {0, 1}τ(k). The key
is stored both on the user’s machine and on the server. The protocol is as follows
(all the communication is done via the channel C).

1. The server selects a random Y ∈ {0, 1}µ(k) and sends it to Bob.

11 The computational power of the virus does not need to be limited in this case.

2. Bob replies with f(R, Y).
3. Alice verifies the correctness of Bob’s reply.

Now assume that the adversary retrieved at most σ(k) bits of R. More precisely,
assume that the adversary knows a value h(R), where h is a function with the
range {0, 1}σ(k). It is easy to see that (by the security of f) she has negligible
chances of being able to reply correctly to the challenge Y . Observe that if the
adversary replies (in Step 2) with some value X, and Alice rejects this answer,
than the adversary learns exactly one bit of information about R (namely that
f(R, T) 6= X), which should be added to the total number of ,,retrieved” bits (if
one want to achieve the security against multiple impersonation attempts).

Note that since we assume that the server is secure (i.e. there are no intrusions
to him) hence one could generate K pseudo-randomly and just store the seed
on the server. For example: the seed s could be a key to the block-cipher B and
one could set K := (Bs(1), Bs(2), . . . , Bs(j)), for some appropriate parameter j
(this method allows for a quick access to any part of K).

5.2 The protocol of [KS99]

In this section we note that in the protocol from Sect. 5.1 one can use a simpler
function f than the functions secure in the BSM. Namely, the server can simply
ask (in Step 1) for the values of k random positions on K. Formally, the challenge
in Step 1 is a random k-element subset of the set {1, . . . , τ(k)}. The function f
in Step 2 is replaced with ϕ (where ϕ was defined in Sect. 4.5). This is exactly
the protocol of [KS99] (however in that paper it was analyzed in a weaker model
where the adversary is allowed to access only the individual bits of the secret
key). The security of this protocol follows from the analysis in Sect. 4.5.

6 Discussion

The main drawback of our protocols is that during the intrusion the virus can
impersonate the user (and the user may not even be aware that something wrong
is happening). As a partial remedy we suggest that the user could be required
to split the private key into 2 halves K1 and K2, and to store each of them on a
separate DVD disc. In this case the authentication process would require physical
action of replacing one DVD with another (assuming that there is only one DVD
drive in the machine). Note that this method does not work if we assume that
the adversary is able to store large amounts of data on user’s hard-disc (as in
this case she can make a local copy of the DVDs containing the key).

7 Open Problems

It remains an open problem to examine which variant of the protocols described
above is the best for practical applications. We did not provide a comparison

between the protocols based on the BSM key-expansion function and the pro-
tocols based on the function ϕ (Sect. 4.5 and 5.2), as such comparison should
depend on the concrete parameters that one wants to optimize (the size of the
communicated data, computing time, level of security). For some choice of these
parameters (long computing time, high level of security) it may be even prac-
tical to use protocols that perform computations on the entire randomizer. For
example in the protocol in Sect. 4.5 one could use function f̃ that simply hashes
the entire randomizer R concatenated with Y (i.e. set f̃(R, Y) = H(R · Y)).

Another open problem is to implement other cryptographic tasks (as asym-
metric encryption and signature schemes) in our model.

8 Acknowledgments

We would like to thank Krzysztof Pietrzak and Bartosz Przydatek for helpful
discussions, and the anonymous referees for their comments.

References

[ADR02] Y. Aumann, Y. Z. Ding, and M. O. Rabin. Everlasting security in
the bounded storage model. IEEE Transactions on Information Theory,
48(6):1668–1680, 2002.

[And02] R. Anderson. Two remarks on public key cryptology. Technical report,
University of Cambridge, Computer Laboratory, 2002.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In ACM Conference on Computer and
Communications Security, pages 62–73, 1993.

[Cac97] Christian Cachin. Entropy Measures and Unconditional Security in Cryp-
tography. PhD thesis, ETH Zurich, 1997. Reprint as vol. 1 of ETH Series
in Information Security and Cryptography, ISBN 3-89649-185-7, Hartung-
Gorre Verlag, Konstanz, 1997.

[CCM98] C. Cachin, C. Crepeau, and J. Marcil. Oblivious transfer with a memory-
bounded receiver. In 39th Annual Symposium on Foundations of Computer
Science, pages 493–502, 1998.

[CDD+05] D. Cash, Y. Z. Ding, Y. Dodis, W. Lee, R. Lipton, and S. Walfish.
Intrusion-resilient authentication and key agreement in the limited com-
munication model. Manuscript, 2005.

[CHK03] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption
scheme. In Advances in Cryptology - EUROCRYPT 2003, International
Conference on the Theory and Applications of Cryptographic Techniques,
Warsaw, Poland, May 4-8, 2003, Proceedings, volume 2656 of Lecture
Notes in Computer Science, pages 255–271, 2003.

[CK01] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their
use for building secure channels. In Advances in Cryptology - EURO-
CRYPT 2001, International Conference on the Theory and Application of
Cryptographic Techniques, Innsbruck, Austria, May 6-10, 2001, Proceed-
ing, volume 2045 of Lecture Notes in Computer Science, pages 453–474,
2001.

[CM97] C. Cachin and U. Maurer. Unconditional security against memory-
bounded adversaries. In Burton S. Kaliski Jr., editor, CRYPTO, volume
1294 of Lecture Notes in Computer Science, pages 292–306. Springer, 1997.

[DFK+03] Y. Dodis, M. K. Franklin, J. Katz, A. Miyaji, and M. Yung. Intrusion-
resilient public-key encryption. In Topics in Cryptology - CT-RSA 2003,
The Cryptographers’ Track at the RSA Conference 2003, San Francisco,
CA, USA, April 13-17, 2003, Proceedings, volume 2612 of Lecture Notes
in Computer Science, pages 19–32, 2003.

[DFK+04] Y. Dodis, M. K. Franklin, J. Katz, A. Miyaji, and M. Yung. A generic
construction for intrusion-resilient public-key encryption. In Tatsuaki
Okamoto, editor, CT-RSA, volume 2964 of Lecture Notes in Computer
Science, pages 81–98. Springer, 2004.

[DHRS04] Y. Z. Ding, D. Harnik, A. Rosen, and R. Shaltiel. Constant-round oblivious
transfer in the bounded storage model. In M. Naor, editor, TCC, volume
2951 of Lecture Notes in Computer Science, pages 446–472. Springer, 2004.

[Din01] Y. Z. Ding. Oblivious transfer in the bounded storage model. In Joe Kilian,
editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science,
pages 155–170. Springer, 2001.

[Din05] Y. Z. Ding. Error correction in the bounded storage model. In J. Kilian,
editor, TCC, volume 3378 of Lecture Notes in Computer Science, pages
578–599. Springer, 2005.

[DLL05] D. Dagon, W. Lee, and R. J. Lipton. Protecting secret data from insider
attacks. In Financial Cryptography and Data Security, 9th International
Conference, FC 2005, Roseau, The Commonwealth of Dominica, February
28 - March 3, 2005,, pages 16–30, 2005.

[DM04a] S. Dziembowski and U. Maurer. On generating the initial key in the
bounded-storage model. In Jan Camenisch and Christian Cachin, editors,
Advances in Cryptology — EUROCRYPT ’04, volume 3027 of Lecture
Notes in Computer Science, pages 126–137. Springer-Verlag, May 2004.

[DM04b] S. Dziembowski and U. Maurer. Optimal randomizer efficiency in the
bounded-storage model. Journal of Cryptology, 17(1):5–26, January 2004.

[Dod00] Y. Dodis. Exposure-Resilient Cryptography. PhD thesis, Massachussetts
Institute of Technology, August 2000.

[DvOW92] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and
authenticated key exchanges. Designs, Codes and Cryptography, 2(2):107–
125, 1992.

[Dzi05] S. Dziembowski. Intrusion-resilience via the bounded-storage model. Cryp-
tology ePrint Archive, Report 2005/179, 2005. http://eprint.iacr.org/.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Com-
puter and System Sciences, 28(2):270–299, 1984.

[Gol04] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, New York, NY, USA, 2004.

[IR02] G. Itkis and L. Reyzin. Sibir: Signer-base intrusion-resilient signatures.
In Advances in Cryptology - CRYPTO 2002, 22nd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 18-22,
2002, Proceedings, volume 2442 of Lecture Notes in Computer Science,
pages 499–514, 2002.

[Kra96] H. Krawczyk. A versatile secure key-exchange mechanism for the internet.
In Proceedings of the 1996 Symposium on Network and Distributed System
Security (SNDSS ’96), pages 114–127. IEEE Computer Society, 1996.

[KS99] J. Kelsey and B. Schneier. Authenticating secure tokens using slow mem-
ory access. In USENIX Workshop on Smart Card Technology, pages 101–
106. USENIX Press, 1999.

[KSWH00] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side channel cryptanalysis
of product ciphers. Journal of Computer Security, 8(2/3), 2000.

[Lu04] C.-J. Lu. Encryption against storage-bounded adversaries from on-line
strong extractors. Journal of Cryptology, 17(1):27–42, January 2004.

[Mau92] U. Maurer. Conditionally-perfect secrecy and a provably-secure random-
ized cipher. Journal of Cryptology, 5(1):53–66, 1992.

[MSTS04] T. Moran, R. Shaltiel, and A. Ta-Shma. Non-interactive timestamping
in the bounded storage model. In Advances in Cryptology - CRYPTO
2004, 24th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 2004, Proceedings, volume 3152 of Lecture
Notes in Computer Science, pages 460–476, 2004.

[NZ96] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of
Computer and System Sciences, 52(1):43–52, 1996.

[Vad04] S. P. Vadhan. Constructing locally computable extractors and cryptosys-
tems in the bounded-storage model. Journal of Cryptology, 17(1):43–77,
January 2004.

