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Abstract. The generalized knapsack function is defined as fa(x) =P
i ai · xi, where a = (a1, . . . , am) consists of m elements from some

ring R, and x = (x1, . . . , xm) consists of m coefficients from a specified
subset S ⊆ R. Micciancio (FOCS 2002) proposed a specific choice of the
ring R and subset S for which inverting this function (for random a,x) is
at least as hard as solving certain worst-case problems on cyclic lattices.

We show that for a different choice of S ⊂ R, the generalized knapsack
function is in fact collision-resistant, assuming it is infeasible to approx-
imate the shortest vector in n-dimensional cyclic lattices up to factors
Õ(n). For slightly larger factors, we even get collision-resistance for any
m ≥ 2. This yields very efficient collision-resistant hash functions having
key size and time complexity almost linear in the security parameter n.
We also show that altering S is necessary, in the sense that Micciancio’s
original function is not collision-resistant (nor even universal one-way).

Our results exploit an intimate connection between the linear algebra
of n-dimensional cyclic lattices and the ring Z[α]/(αn − 1), and cru-
cially depend on the factorization of αn − 1 into irreducible cyclotomic
polynomials. We also establish a new bound on the discrete Gaussian
distribution over general lattices, employing techniques introduced by
Micciancio and Regev (FOCS 2004) and also used by Micciancio in his
study of compact knapsacks.

1 Introduction

A function family {fa}a∈A is said to be collision-resistant if given a uniformly
chosen a ∈ A, it is infeasible to find elements x1 6= x2 so that fa(x1) = fa(x2).
Collision-resistant hash functions are one of the most widely-employed crypto-
graphic primitives. Their applications include integrity checking, user and mes-
sage authentication, commitment protocols, and more.

Many of the applications of collision-resistant hashing tend to invoke the hash
function only a small number of times. Thus, the efficiency of the function has a
direct effect on the efficiency of the application that uses it. This is in contrast
to primitives such as one-way functions, which typically must be invoked many
times in their applications (at least when used in a black-box way) [9].
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Collision-resistance can be obtained from many well-studied complexity as-
sumptions, but the resulting hash functions are not efficient enough for practical
use. Instead, faster heuristic constructions such as MD5 and SHA-1 are often
employed. Unfortunately, recent cryptanalytic analysis of many popular hash
functions casts doubt on the heuristic approach [22, 21]. This presents the the-
oretical community with a great opportunity and challenge: propose a practical
hash function with rigorous security guarantees.

In this paper we present an efficient collision-resistant hash function whose
security is based on a well-defined and plausible complexity assumption.

1.1 Generalized Knapsacks

Our constructions are based on a generalization of the well-known knapsack
function. For a ring R, key a = (a1, . . . , am) ∈ Rm, and input x = (x1, . . . , xm),
the generalized knapsack function is defined as

fa(x) =
m∑

i=1

ai · xi,

where each xi is restricted to some large subset S ⊆ R. This generalization was
proposed by Micciancio, who suggested a specific choice of the ring R and subset
S for which inverting the function (for random a,x) is at least as hard as solving
certain worst-case problems on cyclic lattices [14].

Knapsacks have a long and infamous history in cryptography; we refer the
interested reader to Micciancio’s account of various knapsack proposals and their
cryptanalysis [14]. The bottom line is that even though many knapsack systems
have been broken heuristically, there is still no asymptotically-efficient attack on
the general function.

Micciancio’s result might be viewed as an indication that knapsack functions
(or at least, some version of them) are secure after all. In this paper, we continue
Micciancio’s line of study, and show that, for a different choice of S ⊂ R, the
generalized knapsack function can enjoy even stronger cryptographic properties.

1.2 Lattices, Hardness, and Cryptography

Lattices are a great source of cryptographic hardness. First of all, lattices have
been subject to hundreds of years of mathematical scrutiny, which lends support
to conjectures on the computational hardness of problems related to lattices.
Indeed, many lattice problems are NP-hard to approximate for small factors,
e.g. the closest vector [20, 4, 7] and shortest vector problems [2, 5, 15, 12].

Secondly, lattices admit worst-case to average-case reductions. In his ground-
breaking result, Ajtai first constructed a one-way function [1], which was later
observed to also be collision-resistant [10]. Public-key cryptosystems [11, 3, 18,
19] soon followed, based on presumably stronger worst-case assumptions. As a
bonus, these constructions tended to be asymptotically more efficient than those
based on, e.g., modular exponentiation.



An interesting special case is presented by cyclic lattices. A lattice Λ is said
to be cyclic if for any vector x ∈ Λ, its cyclic rotation also belongs to Λ. The
cyclic rotation of x = (x0, . . . , xn−1)T ∈ Rn is defined as (xn−1, x0, . . . , xn−2)T .

Micciancio’s work [14] opened the door to the use of cyclic lattices as a new
source of hardness assumptions, and motivates their study from a computational
perspective. Currently no hardness results are known for problems on cyclic
lattices (even in their exact versions), and the additional structure may indeed
reduce the underlying hardness.

However, state-of-the-art lattice algorithms appear not to benefit from cyclic-
ity, and it seems reasonable to conjecture that standard problems on cyclic lat-
tices are intractable, at least for small approximation factors.

1.3 Our Results

Our main result is that certain instantiations of the generalized knapsack func-
tion are collision-resistant, assuming it is infeasible to approximate the shortest
vector in cyclic lattices up to factors Õ(n) almost linear in the dimension n.

Assuming hardness for slightly larger approximation factors n1+ε, our func-
tions remain secure even when m is taken to be a constant. The functions have
key size almost linear in the security parameter n and can be evaluated with m
Fast Fourier Transform operations, making them potentially practical. To mo-
tivate our choice of knapsack function, we also show that Micciancio’s original
one-way function is not collision-resistant, nor even universal one-way.

In the course of proving our main results, we formulate special worst-case
problems on cyclic lattices, and relate them to the more standard lattice prob-
lems. Most interestingly, we demonstrate that for cyclic lattices of prime dimen-
sion n, the short independent vectors problem SIVP reduces to (a slight variant
of) the shortest vector problem SVP with only a factor of 2 loss in approxima-
tion factor. For general lattices, the best known reduction loses a

√
n factor [16];

furthermore, that reduction performs manipulations on its input lattice that
can destroy the cyclicity property. Hence our reduction can be seen as the first
connection between SIVP and SVP on cyclic lattices.

Finally, in using the Gaussian techniques of [17], we also establish a new
bound on the discrete Gaussian distribution over general lattices, which may be
of independent interest.

1.4 Techniques and Ideas

The overarching theme of our paper is the tight relationship shared by cyclic
lattices, the algebra of polynomials modulo (αn−1), and linear algebra in Rn.

Cyclic lattices are closed under cyclic convolution with integer vectors. Fur-
thermore, the lattice points naturally correspond to polynomials in Z[α]/(αn−1).
Because convolution is equivalent to polynomial multiplication in Z[α]/(αn−1),
this implies that integer cyclic lattices are isomorphic to ideals in Z[α]/(αn−1).

The divisors of (αn − 1) in Z[α] correspond to special cyclotomic linear sub-
spaces of Rn. These subspaces admit a natural partitioning into complementary



pairs of orthogonal subspaces. Even more importantly, the subspaces are closed
under cyclic rotation of vector coordinates, and under certain other conditions,
these rotations are linearly independent. These facts imply a new connection
between the SIVP and SVP problems in cyclic lattices.

The security of our knapsack function comes from using all this structure to
impose an algebraic restriction on the function domain. Looking ahead to the
security reduction, this restriction ensures that collisions in the function are very
likely to yield “useful” and short lattice points in a desired subspace.

1.5 Comparison with Related Work

This work takes its inspiration from, and is most similar to, Micciancio’s work
on cyclic lattices [14]. However, while our knapsack function is very similar to
Micciancio’s, the reduction used to establish collision-resistance differs in many
significant ways. First of all, Micciancio’s function is proven to be one-way, while
ours is collision-resistant. On the other hand, Micciancio relies on a presumably
weaker worst-case assumption than we do. Our stronger assumption, combined
with our algebraic view of cyclic lattices, makes our security reduction tighter
and conceptually simpler.

Figure 1 gives a comparison of our work with other major results in worst-case
to average-case reductions, in chronological order. Important considerations in
these works include: provable security properties of the cryptographic function,
efficiency of that function, class of lattice on which the function is based, type of
worst-case problem that is assumed to be hard for that class of lattice, and its
hardness of approximation factor. Our work compares very favorably in many
of these considerations, at the cost of a qualitatively stronger assumption.

Security Efficiency Lattice Class Assumption Approx. Factor

Ajtai [1] CRHF O(n2) General SVP etc. poly(n)

Cai, Nerurkar [6] CRHF O(n2) General SVP etc. n4+ε

Micciancio [14] OWF Õ(n) Cyclic GDD n1+ε

Micciancio, Regev [17] CRHF O(n2) General SVP etc. Õ(n)

This work CRHF Õ(n) Cyclic SVP etc. Õ(n)

Fig. 1. Comparison of results in lattice-based cryptographic functions with worst-case
to average-case security reductions, to date. “Efficiency” means the key size and compu-
tation time, as a function of the lattice dimension n. “Security” denotes the function’s
main cryptographic property.

The actual worst-case assumption underlying our hash function is that SVP
is hard on cyclic lattices for all sufficiently large prime dimensions n. Therefore,
the discovery of an efficient algorithm for SVP on, say, all even dimensions would
have no immediate effect on the security of our hash function. Conveniently,
the concrete hardness of the cyclic lattice problems we study appears to be



greatest when the dimension is prime! More specifically: problems in composite
dimensions n seem to reduce to problems in the smaller prime (or prime-power)
dimensions dividing n.

In an independent and concurrent work, Lyubashevsky and Micciancio [13]
have obtained exceedingly similar results, but expressed in different mathemat-
ical language. In particular, by making many of the same algebraic insights,
they construct collision-resistant hash functions with nearly identical parame-
ters, based on a worst-case hardness assumption that can be shown to be equiva-
lent to ours. They also present a more general algebraic framework for construct-
ing hash functions, which can be related to problems in algebraic number theory.
Due to its generality, their framework may have the potential to admit better
constructions, though its current best application essentially matches ours.

2 Preliminaries

In this section we present basic definitions and results about statistical distance,
hash functions, cyclic lattices, cyclotomic polynomials and Gaussian probability
distributions. In many places we follow [17] almost verbatim.

For any real a ≥ 0, bac denotes the largest integer not greater than a and
bae denotes the closest integer to a (i.e., bae = ba+1/2c). For any reals a, b ≥ 0,
[a, b) denotes the set of all reals a ≤ r < b. The uniform probability distribution
over a set S is denoted U(S). We let I denote U([0, 1)). A function f(n) is said
to be negligible (denoted f(n) = n−ω(1)) if for every c > 0 there exists an n0

such that |f(n)| < 1/nc for all n > n0.
The set of real numbers is denoted by R, and the quotient ring of integers

modulo a positive integer p is denoted by Zp. For a value v ∈ Zp, |v| denotes
the absolute value of the unique integer r ∈ (−p/2, p/2] representing v’s residue
class. We use bold lower case letters (e.g., x) to denote vectors and bold upper
case letters (e.g., A) to denote matrices. Vectors are represented as columns
and we use (·)T to denote matrix transposition. We adopt the convention that
vector indices are zero-based, i.e. for x ∈ Rn we write x = (x0, . . . , xn−1)T . The
ith coordinate of x is denoted xi or (x)i, depending on context. The Euclidean
norm of a vector x (in either Rn or Zn

p ) is the quantity ‖x‖ = (
∑

i |xi|2)1/2. The
Euclidean norm of a matrix S = (s1, . . . , st) is ‖S‖ = maxi ‖si‖. Other norms
used in this paper (for vectors in either Rn or Zn

p ) are the `1 norm ‖x‖1 =
∑

i |xi|
and the `∞ norm ‖x‖∞ = maxi |xi|, which are similarly extended to matrices.
These norms are related through the following inequalities, valid for any n-
dimensional vector x ∈ Rn:

‖x‖ ≤ ‖x‖1 ≤
√

n‖x‖
‖x‖∞ ≤ ‖x‖ ≤

√
n‖x‖∞

We use standard definitions of statistical distance ∆(X, Y ) between two random
(discrete or continuous) variables X, Y . We also use the standard notions of one-
wayness, universal one-wayness, and collision-resistance for function ensembles.



2.1 Lattices

A lattice in Rn is the set of all integer combinations

Λ =

{
d∑

i=1

cibi | ci ∈ Z for 1 ≤ i ≤ d

}
of d linearly independent vectors b1, . . . ,bd ∈ Rn. We say that the lattice spans
the d-dimensional subspace of Rn generated by b1, . . . ,bd. The set of vectors
b1, . . . ,bd is called a basis for the lattice, which can be written in matrix form
as B = [b1| · · · |bd] with the basis vectors as columns. The lattice generated by
B is denoted L(B). For any basis B, we define the fundamental parallelepiped
P(B) = {B · x : ∀ i, 0 ≤ xi < 1}.

The minimum distance λ1(Λ) of a lattice Λ is the length of the shortest
nonzero lattice vector: λ1(Λ) = min0 6=x∈Λ ‖x‖. More generally, the ith successive
minimum λi(Λ) is the smallest radius r such that the closed ball B(r) = {x :
‖x‖ ≤ r} contains i linearly independent lattice vectors.

Let H be a subspace of Rn and let Λ be a lattice that spans H. Then we
define the dual lattice Λ∗ = {x ∈ H | ∀ v ∈ Λ, 〈x,v〉 ∈ Z}.

Cyclic lattices and convolution. For any x = (x0, . . . , xn−1)T ∈ Rn, define the
rotation of x, denoted as rot(x), to be the vector (xn−1, x0, . . . , xn−2)T ; similarly
roti(x) = rot(· · · rot(x) · · · ) is defined to be the rotation of x, taken i times. A
lattice Λ is cyclic if for all x ∈ Λ, rot(x) ∈ Λ. For any integer d ≥ 1, define the
rotation matrix Rotd(x) to be the matrix [x|rot(x)| · · · |rotd−1(x)]. (Rotn(x) is
known as the circulant matrix of x.)

For any ring R, the (cyclic) convolution product of x,y ∈ Rn is the vector
x⊗ y = Rotn(x) · y, with entries

(x⊗ y)k =
∑

i+j=k mod n

xi · yj .

Observe that in a cyclic lattice Λ, the convolution of any x ∈ Λ with any integer
vector y ∈ Zn is also in the lattice: x ⊗ y ∈ Λ. This is because all the columns
of Rotn(x) are in Λ, and any integer combination of points in Λ is also in Λ.

The convolution product is commutative, associative, and distributive over
vector addition; also, it satisfies the following inequalities, valid for any n-
dimensional vectors x,y ∈ Rn:

‖x⊗ y‖∞ ≤ ‖x‖ · ‖y‖
‖x⊗ y‖∞ ≤ ‖x‖1 · ‖y‖∞

2.2 Polynomial Rings and Linear Algebra

Convolution and polynomial multiplication are intimately related. Specifically,
for any ring R, we identify an element (x0, . . . , xn−1) = x ∈ Rn with the poly-
nomial x(α) ∈ R[α]/(αn − 1) defined as x(α) = x0 + x1α + . . . + xn−1α

n−1.



Then it is easy to show that for any x,y ∈ Rn, x ⊗ y is identified with
x(α) · y(α) ∈ R[α]/(αn − 1). In words, convolution of two vectors is equiva-
lent to taking the product of their polynomials modulo αn − 1. Throughout the
paper, we will switch between vector and polynomial notation as is convenient.

In the following lemma, we relate the algebra of R[α]/(αn − 1) to the linear
algebra of Rn.

Lemma 2.1. Let a,b ∈ Rn with a(α) ·b(α) = 0 mod (αn−1). Then 〈a,b〉 = 0.

Proof. Let F be the n× n matrix with (zero-indexed) entries given by

(F)j,k =
e2πijk/n

√
n

=
ωjk

√
n

,

where ω is the principal nth root of unity (F is known as a Fourier matrix ). It
is well-known that F is a unitary matrix, so 〈a,b〉 = 〈Fa,Fb〉. By definition,
(Fa)i = a(ωi)/

√
n and (Fb)i = b(ωi)/

√
n. Now because a(α)b(α) is divisible

by αn − 1, then a(ωi) · b(ωi) = 0 (in C) for every i. Therefore

〈a,b〉 = 〈Fa,Fb〉 =
1
n

n∑
i=1

a(ωi)b(ωi) = 0.

In the polynomial ring Z[α], (αn − 1) has a special structure: it uniquely
factors into the product of cyclotomic polynomials (see e.g. [8] for a detailed
treatment). For integer k ≥ 1, the kth cyclotomic polynomial Φk(α) is defined:

Φk(α) =
∏

1≤c≤k
(c,k)=1

(α− e2πic/k),

where (c, k) denotes the greatest common divisor of c and k. The cyclotomic
polynomial Φk(α) is irreducible in Z[α], has integer coefficients, and has degree
φ(k) (where φ denotes Euler’s totient function). The factorization of αn − 1 in
Z[α] is: αn − 1 =

∏
k |n
k≥1

Φk(α).
In the following lemmas, we establish connections between cyclotomic poly-

nomials and the linear algebra of integer cyclic lattices:

Lemma 2.2. Let c ∈ Zn, and suppose Φ(α) ∈ Z[α] divides (αn − 1) and is
coprime to c(α). Then c, rot(c), . . . , rotdeg(Φ)−1(c) are linearly independent.

Proof. Suppose that there exist t0, . . . , tdeg(Φ)−1 ∈ R such that
∑deg(Φ)−1

i=0 tiroti(c) =
0. Define t = (t0, t1, · · · , tdeg(Φ)−1, 0, · · · , 0)T , so c⊗t = 0 (where the convolution
is performed in Rn). Therefore in R[α], (αn − 1) divides c(α)t(α).

We recall two basic facts from field theory (see, e.g., [8, Proposition 9, Chap-
ter 13]): first, Φk(α) is the minimal polynomial3 of any primitive kth root of unity,
3 The minimal polynomial of an algebraic number ζ is the unique irreducible monic

(i.e., with leading coefficient 1) polynomial p(α) ∈ Q[α] of minimum degree such
that p(ζ) = 0.



and has exactly the primitive kth roots of unity as its roots. Second, the minimal
polynomial of any algebraic number ζ divides any polynomial p(α) ∈ Q[α] such
that p(ζ) = 0.

Now, because Φ(α) | (αn − 1), Φ(α) is a product of cyclotomic polynomials.
Because Φ(α) is coprime to c(α) and c(α) ∈ Z[α] ⊂ Q[α], none of the roots of
Φ(α) are roots of c(α). Therefore all the roots of Φ(α) must be roots of t(α).
Because deg(t(α)) < deg(Φ), we must have t = 0. ut

Suppose Φ(α) ∈ Z[α] divides αn − 1, i.e. Φ(α) is a product of cyclotomic
polynomials. We define the cyclotomic subspace

HΦ = {x ∈ Rn : Φ(α) divides x(α) in R[α]}.

Lemma 2.3. HΦ is closed under rot: that is, if c ∈ HΦ, then rot(c) ∈ HΦ.

Proof. Observe that the vector rot(c) is identified with the residue α · c(α) mod
(αn − 1). Let α · c(α) = Q(α) · (αn − 1) + R(α), for Q(α), R(α) ∈ R[α], where
deg(R(α)) < n. Then because Φ(α) |α · c(α) and Φ(α) |Q(α) · (αn − 1), it must
be that Φ(α) |R(α). Therefore Φ(α) divides rot(c)(α) in R[α], as desired. ut

Lemma 2.4. HΦ is a linear subspace of Rn of dimension n− deg(Φ).

Proof. It is evident that HΦ is closed under addition and scalar multiplication, so
it is a linear subspace. To establish the dimension, define Φ(α) = (αn−1)/Φ(α).
By Lemma 2.1, because Φ(α)·Φ(α) = 0 mod (αn−1), HΦ and HΦ are orthogonal
subspaces. Therefore dim(HΦ) + dim(HΦ) ≤ n.

By Lemma 2.2, the vectors Φ, rot(Φ), . . . , rotdeg(Φ)−1(Φ) are linearly inde-
pendent. By Lemma 2.3, they all lie in HΦ. Therefore dim(HΦ) ≥ deg(Φ) =
n− deg(Φ). Symmetrically, dim(HΦ) ≥ n− deg(Φ). All three inequalities can be
satisfied only with equality, hence dim(HΦ) = n− deg(Φ). ut

2.3 Gaussian Distributions

For any d-dimensional subspace H of Rn, any c ∈ H and any s > 0, define

ρH,s,c(x) =
{

exp(−π‖(x− c)/s‖2) if x ∈ H
0 if x 6∈ H

to be the Gaussian function (over H) centered at c, with radius s. By normalizing
ρs,c by its total measure

∫
x∈H

ρs,c(x)dx = sd, we get a continuous distribution
with density function

DH,s,c(x) =
ρH,s,c(x)

sd
.

The center c is taken to be zero when not explicitly specified.
Given an orthonormal basis (consisting of d vectors in Rn) for H, DH,s,c can

be written as the sum of d orthogonal 1-dimensional Gaussian distributions, each
along one of the basis vectors. Therefore sampling from DH,s,c can be efficiently
approximated. For simplicity we will assume that our algorithms can work with
infinite-precision real numbers and sample from Gaussians exactly.



The Fourier transform. For a d-dimensional subspace H of Rn, the Fourier
transform (over H) of a function h : H → C is a function ĥ : H → C, defined as
ĥ(w) =

∫
x∈H

h(x)e−2πi〈x,w〉 dx. It follows directly from the definition that if, for
all x ∈ H, h satisfies h(x) ≡ g(x+v) for some v ∈ H and some function g : H →
R, then ĥ(w) = e2πi〈v,w〉ĝ(w). The Fourier transform of a Gaussian function
(over H, centered at 0) is another Gaussian (also centered at 0); specifically,
ρ̂H,s = sd · ρH,1/s.

2.4 Gaussian Measures on Lattices

For any countable set S and any function f , define f(S) =
∑

x∈S f(x). For a
lattice Λ ⊂ H that spans H and for any x ∈ Λ, define

DΛ,s,c(x) =
DH,s,c(x)
DH,s,c(Λ)

to be the conditional probability of x sampled from DH,s,c, given x ∈ Λ.
One fact connecting lattices and the Fourier transform is the Poisson sum-

mation formula:

Lemma 2.5. Let H be a subspace of Rn. For any lattice Λ ⊂ H that spans
H and any “well-behaved”4 function f , f(Λ) = det(Λ∗)f̂(Λ∗), where f̂ is the
Fourier transform (over H) of f .

The smoothing parameter. Micciancio and Regev [17] defined a new lattice pa-
rameter related to Gaussian measures, called the smoothing parameter. The fol-
lowing is a generalization of their definition to lattices of possibly less than full
rank:

Definition 2.1 (Smoothing parameter). Let H be a subspace of Rn. For a
lattice Λ ⊂ H that spans H and positive real ε > 0, the smoothing parameter
ηε(Λ) is defined to be the smallest s such that ρH,1/s(Λ∗\{0}) ≤ ε.

The name “smoothing parameter” is justified by the following fact (stated
formally in Lemma 2.6): if random noise chosen from a Gaussian distribution of
radius ηε(Λ) is added to a lattice Λ that spans H, the resulting distribution is
almost uniform over H.

Lemma 2.6 ([17], Lemma 4.1, generalized to subspaces). For any sub-
space H of Rn, lattice L(B) that spans H, c ∈ H, and s ≥ ηε(L(B)), we have

∆(DH,s,c mod P(B), U(P(B))) ≤ ε/2.

Micciancio and Regev also establish relationships between ηε and other stan-
dard lattice parameters like λn. Here we generalize to lattices of possibly less
than full rank:
4 The precise condition is technical, but all functions we consider are well-behaved.



Lemma 2.7 ([17], Lemma 3.3, generalized to subspaces). For any super-
logarithmic function f(n) = ω(log n), there exists a negligible function ε(n) such
that: for any d-dimensional subspace H of Rn and lattice Λ that spans H, ηε(Λ) ≤√

f(n) · λd(Λ).

Finally, we will need to bound the norm of the convolution of two vectors,
where one of the vectors is chosen from a discrete Gaussian distribution.

Lemma 2.8 ([14], Lemma 3.2, generalized to subspaces). For any d-
dimensional subspace H of Rn, lattice Λ that spans H, positive reals ε ≤ 1/3,
s ≥ 2ηε(Λ) and vectors c,x ∈ H,

Ev∼DΛ,s,c

[
‖(v − c)⊗ x‖2

]
≤ s2 · d · ‖x‖2.

2.5 A New Lemma on Gaussian Distributions Over Lattices

In [17] it is shown that, for a full-rank lattice Λ and large enough s, DΛ,s,c

behaves very much like DRn,s,c, i.e. their moments are similar. In this work, we
will need a different fact about DΛ,s,c, specifically, a bound on its maximum
value over all points in Λ.

In order to prove such a bound, we need a lemma which is implicit in [17]:

Lemma 2.9 ([17]). Let H be a d-dimensional subspace of Rn, and Λ be a lattice
that spans H. For any s ≥ ηε(Λ) and any c ∈ H:

sd det(Λ∗) · (1− ε) ≤ ρH,s,c(Λ) ≤ sd det(Λ∗) · (1 + ε).

Now we are ready to bound the maximum value of DΛ,s,c(·):

Lemma 2.10. Let H be a d-dimensional subspace of Rn and let Λ be a lattice
that spans H. For any ε > 0, s ≥ 2 · ηε(Λ), y ∈ Λ, and c ∈ H,

DΛ,s,c(y) ≤ 2−d · 1 + ε

1− ε
.

Proof. First, observe

DΛ,s,c(y) =
ρH,s,c(y)
ρH,s,c(Λ)

≤ 1
sd det(Λ∗) · (1− ε)

,

because ρH,s,c(y) ≤ 1 and by Lemma 2.9. Now we also have

1 ≤ ρH,s/2(Λ) ≤ (s/2)d det(Λ∗) · (1 + ε),

again by Lemma 2.9 and because s/2 ≥ ηε(Λ). Combining the inequalities, we
get the result. ut



3 Worst-Case Problems on Cyclic Lattices

In this section we introduce a variety of worst-case computational problems on
cyclic lattices, and exhibit some (worst-case to worst-case) reductions among
them. We specify these problems in their search versions, rather than as de-
cisional problems. Due to the algebraic nature of cyclic lattices and our hash
function, we will find it useful to formulate problems that ask for short lattice
vectors within a specified cyclotomic subspace of Rn; as a group, we call these
cyclotomic problems. After defining these problems, we show that certain cyclo-
tomic problems are as hard as the more standard problems on cyclic lattices.

When formulating computational lattice problems it is customary to assume
that the input basis contains integer entries (and we do so implicitly in all the
problem definitions below). This restriction is without loss of generality, because
rational entries can always be multiplied by their least common denominator,
which just scales the lattice by some constant.

For generality, the problems below are parameterized by some arbitrary func-
tion ζ of the input lattice, and the quality of a solution is measured relative to
ζ. Typically, ζ will be some appropriate lattice parameter, e.g. λ1 or the lattice’s
smoothing parameter.

3.1 Definitions

Definition 3.1 (SubSIVP). The cyclotomic (generalized) short independent
vectors problem, SubSIVPζ

γ , given an n-dimensional full-rank cyclic lattice basis
B and an integer polynomial Φ(α) 6= 0 mod (αn − 1) that divides αn − 1, asks
for a set of dim(HΦ) linearly independent (sub)lattice vectors S ⊂ L(B) ∩ HΦ

such that ‖S‖ ≤ γ(n) · ζ(L(B) ∩HΦ).

Definition 3.2 (SubSVP). The cyclotomic (generalized) short vector prob-
lem, SubSVPζ

γ , given an n-dimensional full-rank cyclic lattice basis B and
an integer polynomial Φ(α) 6= 0 mod (αn − 1) that divides αn − 1, asks for a
(sub)lattice vector c ∈ L(B) ∩HΦ such that ‖c‖ ≤ γ(n) · ζ(L(B) ∩HΦ).

Definition 3.3 (SubIncSVP). The cyclotomic incremental (generalized) short
vector problem, SubIncSVPζ

γ , given an n-dimensional full-rank cyclic lattice ba-
sis B, an integer polynomial Φ(α) 6= 0 mod (αn−1) that divides to αn−1, and a
nonzero (sub)lattice vector c ∈ L(B)∩HΦ such that ‖c‖ > γ(n) · ζ(L(B)∩HΦ),
asks for a nonzero (sub)lattice vector ‖c′‖ ∈ L(B)∩HΦ such that ‖c′‖ ≤ ‖c‖/2.

Note that Definitions 3.2 and 3.3 are slightly more general than the standard
(incremental) shortest vector problems, because their approximation factors are
relative to an arbitrary function ζ of the sublattice, rather than λ1.

The standard well-studied lattice problems (on cyclic lattices) are simply
special cases of the above problems. For example, the shortest vector problem
SVPγ is simply SubSVPζ

γ with ζ = λ1 and Φ(α) = 1. The generalized indepen-
dent vectors problem GIVPζ

γ , as described by Micciancio, is simply SubSIVPζ
γ

with Φ(α) = 1. The shortest independent vectors problem SIVPγ is GIVPζ
γ with

ζ = λn.



3.2 Reductions Among Problems

In this section we give some standard (worst-case to worst-case) reductions
among the the cyclotomic problems defined above, and the more standard lattice
problems from the literature.

Micciancio coined the term lattice-preserving to describe a reduction from
problem A to problem B which invokes its B-oracle only on the lattice specified
in the instance of problem A. Following in this vein, we define a sublattice-
preserving reduction between two cyclotomic problems to have the property that
all calls to the B oracle are on the same cyclic lattice and cyclotomic subspace
as specified in the problem A instance.

Proposition 3.1. For any ζ, γ(n), there is a deterministic, polynomial-time
sublattice-preserving reduction from SubSVPζ

γ to SubIncSVPζ
γ .

Proof. Given an instance (B, Φ(α)) of SubSVPζ
γ , we will use the following ba-

sic strategy: starting from some (possibly very long) nonzero c ∈ L(B) ∩ HΦ,
iteratively reduce the length of c by invoking the oracle for SubIncSVPζ

γ on
(B, Φ(α), c) until the oracle fails, which indicates that ‖c‖ ≤ γ(n)·ζ(L(B)∩HΦ).

It now suffices to show how to find such an initial c and bound its norm (and
hence, the number of iterations). We claim that for some i, c(α) = bi(α)Φ(α) mod
(αn − 1) is nonzero. For suppose not: then by Lemma 2.1, Φ 6= 0 is orthogonal
to bi for every i, so the space spanned by B is not full-dimensional, which con-
tradicts the assumption that B is full-rank.

Now, because Φ(α) divides αn − 1, it is the product of cyclotomic factors of
αn − 1. All such factors are computable in time poly(n), and there are at most
n such factors, so any Φ(α) has coefficients of length poly(n). This implies that
‖c‖ ≤ 2poly(n), so the number of iterations in the reduction is poly(n). ut

The following lemma will help us reduce problems asking for many linearly
independent vectors to problems asking for a single vector :

Lemma 3.1. Let Φ(α) ∈ Z[α] equal (αn − 1)/Φk(α) for some k |n. Then for
any cyclic lattice Λ ⊆ Zn and any nonzero c ∈ Λ ∩HΦ, vectors

c, rot(c), . . . , rotdeg(Φk)−1(c)

are linearly independent. As a consequence,

λ1(Λ ∩HΦ) = · · · = λdim(HΦ)(Λ ∩HΦ).

Proof. Because c 6= 0, c(α) ∈ Z[α], and Φ(α) | c(α), c(α) is not divisible by
Φk(α). Then by Lemma 2.2, the rotations of c are linearly independent. Now let
c ∈ Λ∩HΦ be such that ‖c‖ = λ1(Λ∩HΦ). By Lemma 2.4, dim(HΦ) = deg(Φk).
Because ‖roti(c)‖ = ‖c‖ for any i, the result follows. ut

Corollary 3.1. For any ζ, γ(n), there exists a deterministic, polynomial-time
sublattice-preserving reduction from SubSIVPζ

γ instances (B, Φ(α)) where Φ(α) =
(αn−1)/Φk(α) for some k |n to SubSVPζ

γ , which makes exactly one oracle call.



When the dimension n of a cyclic lattice is prime, αn − 1 factors as Φn(α) ·
Φ1(α). In this case, there is a very tight connection between SIVP and SVP (in
an appropriate subspace):

Proposition 3.2. For any γ(n), there is a deterministic, polynomial-time lattice-
preserving reduction from SIVPmax(n,2γ) on a cyclic lattice of prime dimension
n to SubSVPλ1

γ . The reduction makes exactly one oracle call, on an instance
for which Φ(α) = Φ1(α) = α− 1.

Proof. The main idea behind the proof is as follows: first, we use the SubSVP
oracle to find a short vector in L(B)∩HΦ1 , then rotate it to yield n− 1 linearly
independent vectors. For the nth vector, we take the shortest vector in L(B) ∩
HΦn

, which can be found efficiently; furthermore, it is an n-approximation to
the shortest vector in L(B)\HΦ1 .

We now give the full proof. Given an integer lattice basis B of a cyclic lattice
of prime dimension n, invoke the SubSVP oracle on (B, Φ1(α)), yielding a lattice
vector c ∈ L(B) ∩HΦ1 such that ‖c‖ ≤ γ(n) · λ1(L(B) ∩HΦ1). Looking ahead,
the rotations of c will provide n− 1 linearly independent vectors of length ‖c‖,
however we will need one more vector (outside HΦ1) to solve SIVP.

Now let si =
∑n

j=1(bi)j = bi(1) for i = 1, . . . n. Because α− 1 cannot divide
every bi(α) (otherwise L(B) ⊂ HΦ1 , so L(B) would not be full-rank), some si

must be non-zero. Let g = gcd(s1, . . . , sn) 6= 0, and let g = (g, g, . . . , g). Output
the vectors S = (c, rot(c), . . . , rotn−2(c),g).

To prove correctness of the reduction, we first show that g ∈ L(B). Note
that for every i, si = bi⊗ (1, 1, . . . , 1) = (si, si, . . . , si) ∈ L(B). By the extended
Euclidean algorithm, g is an integer combination of the si vectors, hence g ∈
L(B).

Claim. The vectors in S are linearly independent.

Proof. Because n is prime, (αn − 1)/Φ1(α) = Φn(α) is irreducible in Z[α], so
by Lemma 3.1 the n − 1 rotations of c in S are linearly independent. Further,
g 6∈ HΦ1 while roti(c) ∈ HΦ1 for every i (Lemma 2.3), so S consists of n linearly
independent vectors from L(B). ut

We now analyze the approximation factor of the reduction. First, we bound
λn(L(B)):

Claim.

λn(L(B)) ≥ max
(

g√
n

,
λ1(L(B) ∩HΦ1)

2

)
.

Proof. Let T be some full-rank set of nonzero vectors in L(B) such that ‖T‖ =
λn(L(B)). Then T must contain some u ∈ L(B)\HΦ1 , because dim(HΦ1) = n−1.
Let u =

∑n
i=1 aibi for integers a1, . . . , an. Because Φ1(α) does not divide u(α),

u(1) =
∑n

j=1 uj 6= 0. Further, u(1) =
∑n

i=1 aibi(1), so g divides u(1). Therefore
‖u‖1 ≥ |u(1)| ≥ g, which implies λn(L(B)) = ‖T‖ ≥ ‖u‖ ≥ ‖u‖1/

√
n ≥ g/

√
n.



Furthermore, T must contain some v ∈ L(B)\HΦn , because dim(HΦn) = 1.
Now v′ = rot(v)−v is identified with the polynomial (α−1) ·v(α) mod (αn−1),
so 0 6= v′ ∈ L(B) ∩HΦ1 . Then by the triangle inequality we have

λ1(L(B) ∩HΦ1) ≤ ‖v′‖ ≤ 2‖v‖ ≤ 2‖T‖ = 2λn(L(B)).

Now, ‖S‖ = max(g
√

n, γ(n) · λ1(L(B) ∩HΦ1)). By taking both cases of ‖S‖
and invoking Claim 3.2 with each, we get

‖S‖
λn(L(B))

≤ max(n, 2γ(n)).

We also have, for arbitrary (not necessarily prime) n, a reduction from SVP
to SubSVP:

Proposition 3.3. For any γ(n), there is a deterministic, polynomial-time lattice-
preserving reduction from SVPmax(n,γ) to SubSVPλ1

γ . The reduction calls the
oracle exactly once, on an instance for which Φ(α) = Φ1(α) = α− 1.

Proof. The reduction and proof of correctness are very similar to the one from
the proof of Proposition 3.2: on input B, call the SubSVP oracle on (B, Φ1(α)),
yielding a vector c ∈ L(B) ∩ HΦ1 such that ‖c‖ ≤ γ(n) · λ1(L(B) ∩ HΦ1).
Additionally, construct the vector g as above, and output the shorter of c and
g.

Using reasoning as above, we can show that λ1(L(B)) ≥ min(g/
√

n, λ1(L(B)∩
HΦ1)). Then by considering both cases of λ1(L(B)), we can show that

min(‖g‖, ‖c‖)
λ1(L(B))

≤ max(n, γ(n)).

4 Generalized Compact Knapsacks

Definition 4.1 ([14], Definition 4.1). For any ring R, subset S ⊂ R and
integer m ≥ 1, the generalized knapsack function family H(R,S,m) = {fa :
Sm → R}a∈Rm is defined by

fa(x) =
m∑

i=1

xi · ai.

In our knapsack function for security parameter n, R is the ring R = (Zn
p ,+,⊗)

of n-dimensional vectors over Zp, where p = nO(1) but need not be prime, with
vector addition and convolution product ⊗.

This choice of ring admits very efficient implementations of the knapsack
function: using a Fast Fourier Transform algorithm (which works for any n),
convolution can be performed in O(n log n) operations in Zp, and addition of
two vectors takes time O(n log p) = O(n log n). Furthermore, by choosing a p
such that Zp has an element of multiplicative order n, we can compute the
Fourier transform mod p using modular (rather than floating-point) arithmetic.
The resulting time complexity of the function is O(m · n · poly(log n)), with key
size O(m · n log n).



4.1 How to Find Collisions

Here we show how to find collisions in the compact knapsack function when S =
[0, D]n for some D = pΘ(1), for which Micciancio proved that the function was
one-way (under suitable assumptions). Our attacks actually do more than just
find arbitrary collisions; in fact, they find second preimages for many elements
of the domain, thereby violating the definition of universal one-wayness as well.
In the following we write X ∈ Sm ⊂ Zn×m

p as an element of the domain, and
A ∈ Rm = Zn×m

p as a uniformly-chosen key.
First observe that fA is linear: fA(X)+fA(X′) = fA(X+X′). Therefore, for

any fixed X′ such that ‖X′‖∞ < D and a random key A, to find a collision with
X′ it suffices to find a nonzero X ∈ Sm such that fA(X) = 0 and ‖X‖∞ = 1. In
fact, our attack will be even stronger: we demonstrate a fixed X 6= 0, oblivious
to the key A, for which fA(X) = 0 with non-negligible probability (over the
choice of A).

We define X by its representation as an m-tuple of polynomials in the
ring Zp[α]/(αn − 1). In this polynomial representation, fA(X) corresponds to∑m

i=1 xi(α) · ai(α) mod (αn − 1). For any small positive integer divisor q of n
(including q = 1), we can define X = (x1, . . . ,xm) as follows: let

x1(α) =
αn − 1
αq − 1

= αn−q + αn−2q + · · ·+ 1,

and let xj(α) = 0 for all j 6= 1. Then X ∈ Sm, ‖X‖∞ = 1, and fA(X) corre-
sponds to a1(α) ·x1(α). Now suppose a1(α) is divisible by αq−1, which happens
with probability 1/pq over the uniform choice of A. Then fA(X) = 0 because
(αn − 1) divides a1(α) · · ·x1(α).

4.2 How to Achieve Collision-Resistance

The essential fact enabling the above attack is that (αn−1) is not irreducible in
Zp[α], so Zp[α]/(αn − 1) is not an integral domain. That is, for many non-zero
a(α), it is easy to find non-zero x(α) (having small coefficients) such that a(α) ·
x(α) = 0 mod (αn−1). In particular, when we examine a(α),x(α) mod (αn−1)
in their Chinese remainder representations, each of the components is zero for
either a(α) or x(α) (or both).

To circumvent our particular attack, we can enforce an algebraic constraint
on X. Informally, we require every xi(α) to be divisible over Z[α] by αn−1

Φk(α)

for some fixed k |n. Then in the Chinese remainder representation, all but one
component of xi(α) is zero, so the evaluation of fA(X) is essentially performed
mod Φk(α).

Note that while Φk(α) is irreducible over Z[α], it may still be reducible over
Zp[α]. Therefore constraining X in the above way may not necessarily place the
calculation of fA(X) in an integral domain. Furthermore, the constraint is crafted
specifically to prevent our attack, but not to prevent any other potential attacks
on the function that may remain undiscovered. Nevertheless (and perhaps quite



surprisingly), it proves to be exactly what is needed to attain collision-resistance,
as our security reduction will demonstrate.

Formally, we consider the generalized compact knapsack function where the
set S = SD,Φ ⊂ Zn

p for some bound D on the max-norm of X (recall that
‖x‖∞ ∈ [0, p/2] for any x ∈ Zn

p ), and Φ(α) = αn−1
Φk(α) for some k |n. For a value

v ∈ Zp, define vZ to be the unique integer in the range (−p/2, p/2] representing
v as a residue, and for a vector x ∈ Zn

p define the vector xZ ∈ Zn similarly. Now
we define SD,Φ as:

SD,Φ = {x ∈ Zn
p : ‖x‖∞ ≤ D and Φ(α) divides xZ(α) in Z[α]}. (1)

4.3 How to Get a (Useful) Hash Function

In order to verify that our knapsack is a hash function, we must compare the
size of the domain Sm

D,Φ to the size of the function’s range. In addition, practical
usage requires efficient one-to-one encodings of bit strings into elements of the
domain, and of range elements back to bit strings.

Both tasks are most easily done when n is prime and Φ(α) = α − 1. Given
a string w ∈ {0, 1}`, where ` = m · (n − 1) · blog Dc, encode w in the following
way: first, break w into m chunks representing vectors wi ∈ [0, D − 1]n−1 for
i = 1, . . . ,m. For each i, and for j = 0, . . . , n − 2, let (xi)j = ±(wi)j , where
the signs are iteratively chosen to satisfy the invariant that every partial sum∑j

k=0(xi)k ∈ [−D,D]. Finally, for every i let (xi)n−1 = −
∑n−2

j=0 (xi)j ∈ [−D,D],
so that xi(1) =

∑n−1
j=0 (xi)j = 0, hence α− 1 divides xi(α) and ‖xi‖∞ ≤ D.

To encode the output, first notice that α−1 divides y(α), where y = fA(X).
Therefore it is sufficient to write (y)j in binary for j = 0, . . . , n− 2. This can be
done using (n − 1) · dlog pe bits. Therefore, the function shrinks its input by a
factor of mblog Dc

dlog pe , which for appropriate choices of parameters is larger than 1.

5 The Main Reduction

Due to the reductions among worst-case problems on cyclic lattices explored in
Section 3.2, the security of our hash function can be established by reducing
the worst-case problem SubIncSVPηε

γ to finding collisions in H(Zn
p , SD,Φ,m).

Because collision-resistance is meaningful even for functions that do not shrink
their input, we exhibit a general reduction in Theorem 5.1, then consider special
cases of hash functions in the corollaries that follow.

Theorem 5.1. For any polynomially-bounded functions D(n), m(n), p(n) and
negligible function ε(n) such that p(n) ≥ 8n2.5 · m(n)D(n) and γ(n) ≥ 16n ·
m(n)D(n), there is a probabilistic polynomial-time reduction from SubIncSVPηε

γ

instances (B, Φ(α), c) where αn−1
Φ(α) = Φk(α) for some k |n to finding collisions in

H(Zn
p(n), SD(n),Φ,m(n)).



Roadmap to the proof. First we describe a reduction that, given a collision-
finding oracle F , attempts to solve SubIncSVP. The remainder of the proof is
a series of claims that establish the correctness of the reduction. Claim 5 shows
that the reduction feeds F a properly-distributed input. Claim 5 establishes that
the reduction’s output vector is in the proper sublattice. Claims 5 and 5 show
that, with good likelihood, the output is both nonzero and significantly shorter
than the input lattice vector (respectively).

Proof. Assume that F finds collisions in the specified hash family, for infinitely
many n and Φ(α), with probability at least 1/q(n) for some polynomial q(·).
For shorthand, we will abbreviate H = HΦ and let d = dim(H) throughout the
proof. We assume wlog that d ≥ 3, because efficient algorithms are known for
SVP when d = 1, 2 (we omit details).

Our reduction proceeds as follows: on input (B, c) where c ∈ L(B) ∩H,

1. For i = 1 to m,

– Generate uniform vi ∈ L(B)∩H∩P(Rotd(c)). (See [16] for algorithms.)
– Generate noise yi ∈ H according to DH,s for s = 2‖c‖/γ(n). Let y′i =

yi mod B.
– Choose bi (as described below) so that Rotn(c) · b = vi + y′i, and let

ai = bbi · pe.
Choosing bi is done by breaking it into two parts: b1

i = ((bi)0, . . . , (bi)d−1)T ,
and b2

i = ((bi)d, . . . , (bi)n−1)T . First, pick b2
i according to In−d =

U([0, 1))n−d. Then solve for b1
i as follows: let G ∈ Rd×n be such that

G · Rotd(c) = Id, the d × d identity matrix. (Such a G exists be-
cause Rotd(c) has column rank d, and it can be found via Gaussian
elimination.) Then b1

i = G · (vi + y′i − wi), where wi = Rotn(c) ·
(0, . . . , 0, (bi)d, . . . , (bi)n−1)T .

2. Give A = (a1 mod p, . . . ,am mod p) to the collision-finding oracle F . Get
a collision X 6= X′ such that ‖X‖∞, ‖X′‖∞ ≤ D, and Φ(α) divides every
xi(α),x′i(α). Let Z = X−X′, and note that ‖Z‖∞ ≤ 2D and Φ(α) divides
every zi(α).

3. Output the vector

c′ =
m∑

i=1

(vi + y′i − yi)⊗ zi − c⊗
∑m

i=1 ai ⊗ zi

p
(2)

=
m∑

i=1

(vi + y′i − yi −
c⊗ ai

p
)⊗ zi. (3)

The following claim follows from Lemma 2.6 and straightforward manipula-
tions of statistical distance:

Claim. The probability that F outputs a valid collision is non-negligible:

Pr[(X,X′) is a valid collision] ≥ 1/q(n)−m(n) · ε(n)/2.



Proof. It suffices to bound the statistical distance ∆(A, U(Znm
p )) by mε/2. Each

ai is independently generated, so by the triangle inequality, ∆(A, U(Znm
p )) ≤ m·

∆(ai mod p, U(Zn
p )). Now ai mod p = b(bi mod 1) ·pe, so ∆(ai mod p, U(Zn

p )) ≤
∆(bi mod 1, In).

Let b1
i = ((bi)0, . . . , (bi)d−1)T , and b2

i = ((bi)d, . . . , (bi)n−1)T . By construc-
tion, b2

i is uniform over [0, 1)n−d. Additionally, we have

b1
i = G · (vi + y′i −wi) = G · (vi + y′i)−G ·wi, (4)

where wi is a function of b2
i . Notice that y′i is distributed according to DH,s mod

P(B), so by Lemma 2.6,

∆(y′i, U(P(B))) ≤ ε/2.

Because vi is uniform over L(B) ∩H ∩ P(Rotd(c)), we get

∆(vi + y′i mod Rotd(c), U(P(Rotd(c)))) ≤ ε/2,

which by definition of G implies

∆(G · (vi + y′i) mod 1, Id) ≤ ε/2.

By Equation (4), we have that conditioned on any value v ∈ [0, 1)n−d,

∆({b1
i mod 1 | b2

i = v}, Id) ≤ ε/2.

Using standard manipulations of statistical distance, we conclude that ∆(bi mod
1, In) ≤ ε/2, as desired. ut

Claim. If F outputs a valid collision, c′ ∈ L(B) ∩H.

Proof. First observe that L(B)∩H is a sublattice of L(B). We now examine the
terms in Equation (2). By construction, vi + y′i − yi ∈ L(B) ∩H, and zi ∈ Zn,
so the first summation is in L(B) ∩ H. Next, fA(Z) =

∑
i ai ⊗ zi = 0 mod p

by the assumption that F outputs a valid collision, so
P

i ai⊗zi

p ∈ Zn. Since
c ∈ L(B) ∩H, the second term of Equation (2) is also in L(B) ∩H. ut

Claim. Conditioned on F outputting a collision, Pr[c′ 6= 0] ≥ 3/4.

Proof. The main idea: because c′ ∈ H, c′ = 0 iff Φk(α) divides c′(α). Because
Φk(α) is irreducible, we can show that c′(α) = 0 mod Φk(α) only when a sample
from DL(B)∩H,s,−y′1

hits a certain target lattice point exactly. By Lemma 2.10,
the probability of this event is small.

Throughout the proof we implicitly condition all probabilities on the event
that F outputs a collision. Because Φ(α) divides c′(α) and Φ(α) ·Φk(α) = (αn−
1), by Equation (3) we get

c′ = 0 ⇐⇒
m∑

i=1

(
vi(α) + y′i(α)− yi(α) +

c(α)ai(α)
p

)
· zi(α) = 0 mod Φk(α).



Since Z 6= 0, there exists i such that zi 6= 0; assume without loss of generality
that i = 1. Then let h(α) =

∑
i>1(vi(α) +y′i(α)−yi(α) + c(α)·ai(α)

p ) · zi(α) and
rearrange terms, yielding(

v1(α) + y′1(α)− y1(α) +
c(α) · a1(α)

p

)
· z1(α) = −h(α) mod Φk(α). (5)

Now because z1 6= 0 and Φ(α) divides z1(α), it must be that z1(α) 6= 0 mod
Φk(α). Since Z[α]/Φk(α) is an integral domain, there exists at most one element
w(α) ∈ Z[α]/Φk(α) such that w(α) ·z1(α) = −h(α) mod Φk(α). If no such w(α)
exists, then c′ 6= 0 always, and we’re done. If such a w(α) exists, then c′ = 0
only when the multiplicand of z1(α) in Equation (5) equals w(α). Then c′ = 0
only if:

(y′1 − y1)(α) = w(α)− c(α) · a1(α)
p

− v1(α) mod Φk(α).

Now, y1 is independent of v1 and the coins of F . Furthermore, conditioned
on y′1, y1 is independent of h, z1, and a1, because these variables depend only
on y′1 and other independent coins. Therefore by averaging over these variables,
it suffices to bound

M = max
h′(α)

Pr [(y′1 − y1)(α) = h′(α) mod Φk(α) | y′1] .

Because Φ(α) divides (y′1 − y1)(α),

M = max
h′(α)

Pr [(y′1 − y1)(α) = h′(α) mod (αn − 1) | y′1] .

Now given y′1, y1 − y′1 is distributed according to DL(B)∩HΦ,s,−y′1
because y1 −

y′1L(B) ∩HΦ. By Lemma 2.10 and because d ≥ 3,

M ≤ 2−d · 1 + ε

1− ε
≤ 1/4

for sufficiently large n. ut

Claim. Conditioned on F outputting a collision, Pr
[
‖c′‖ ≤ ‖c‖

2

]
≥ 1/2.

Proof. Throughout the proof we implicitly condition all probabilities on the
event that F outputs a collision. First, it is sufficient to establish the bound
E[‖c′‖] ≤ ‖c‖

4 , because by Markov’s inequality, this implies Pr
[
‖c′‖ > ‖c‖

2

]
≤

1/2. Now by Equation (2) and the triangle inequality,

‖c′‖ ≤
m∑

i=1

∥∥∥∥(vi + y′i −
c⊗ ai

p
)⊗ zi

∥∥∥∥ +
m∑

i=1

‖yi ⊗ zi‖. (6)

Now using the fact that Rotn(c) · bi = vi + y′i, we get

vi + y′i −
c⊗ ai

p
=

Rotn(c) · bi · p− Rotn(c) · ai

p
=

Rotn(c)(bi · p− ai)
p

.



Since ‖bi · p− ai‖∞ ≤ 1/2, we get∥∥∥∥vi + y′i −
c⊗ ai

p

∥∥∥∥
∞
≤ n‖c‖

2p
.

Now we use the fact that ‖zi‖1 ≤ 2n ·D, yielding∥∥∥∥(vi + y′i −
c⊗ ai

p
)⊗ zi

∥∥∥∥
∞
≤

∥∥∥∥vi + y′i −
c⊗ ai

p

∥∥∥∥
∞
· ‖zi‖1 ≤

n2‖c‖D
p

.

Finally, using the fact that ‖w‖ ≤
√

n‖w‖∞ for any n-dimensional vector w and
summing over i = 1, . . . ,m, we get that the first summation in Equation (6) is
at most mn2.5‖c‖D

p .
Next we analyze the second term of Equation (6). Conditioned on y′i, the

distribution of yi−y′i ∈ L(B)∩H is DL(B)∩H,s,−y′i
, and is independent of A,Z,

and the coins of F . Recall that s = 2‖c‖/γ(n) > 2ηε(L(B)∩H), by assumption
on the input to SubIncSVP. Also recall that yi is chosen according to DH,s,
and that zi ∈ H. So by Lemma 2.8,

E
[
‖yi ⊗ zi‖2 | y′i

]
= E(yi−y′i)←DL(B)∩H,s,−y′

i

[
‖((yi − y′i)− (−y′i))⊗ zi‖2

]
≤ s2‖zi‖2 · d
≤ s2n2D2.

Because Var[X] = E[X2] − E[X]2 ≥ 0 for any random variable X, it must be
that E [‖yi ⊗ zi‖ | y′i] ≤ n · s ·D. Adding up and averaging over all y′i, we get

m∑
i=1

E [‖yi ⊗ zi‖] ≤ m · n · s ·D =
2m · n · ‖c‖ ·D

γ(n)
.

Combining everything, we get:

E[‖c′‖] ≤ m · n2.5 · ‖c‖ ·D
p

+
2m · n · ‖c‖ ·D

γ(n)

= ‖c‖ ·
(

m · n2.5 ·D
p

+
2m · n ·D

γ(n)

)
.

Using the hypotheses p ≥ 8mn2.5D and γ(n) ≥ 16mnD, we get E[‖c′‖] ≤ ‖c‖/4,
as desired. ut

Then by the two claims and the union bound, we get that (conditioned on
F producing a collision) the probability that c′ is a solution to the SubIncSVP
instance is at least 1/4. By Claim 5, the reduction solves SubIncSVP in the
worst case with non-negligible probability, which can be amplified to high prob-
ability by standard repetition techniques. This completes the proof. ut



Putting it all together. Using the relationship between ηε and λn−1, restricting n
to be prime, and setting the knapsack parameters appropriately, we get collision-
resistant hash functions:

Corollary 5.1. For any m(n) = Θ(log n), there exist D(n) = Θ(1) and p(n) =
n2.5+Θ(1) such that: H(Zn

p(n), SD(n),Φ1(α),m(n)) is a hash function ensemble for
which finding collisions for infinitely many prime n is at least as hard as solving
SVPγ with high probability in the worst case for infinitely many prime n within
a factor γ(n) = n · poly(log n).

Proof. We can choose D(n) and p(n) such that m(n) log D(n)
log p(n) = Θ(1) is greater

than 1 (yielding a hash function) and satisfying the hypothesis of Theorem 5.1.
Because n is prime, (αn−1)/Φn(α) = Φ1(α), so by Theorem 5.1 and Lemma 3.1
we have an algorithm for SubSVP

ηε(n)

Θ(n log n) in HΦ1 . By Lemma 2.7, this is an al-

gorithm for SubSVP
λn−1

n·poly(log n) in HΦ1 . Again because n is prime, by Lemma 3.1
we have λn−1 = λ1 on L(B) ∩ HΦ1 , so (finally) by Proposition 3.3 we get an
algorithm for SVPn·poly(log n). ut

Corollary 5.2. For any constant δ > 0, there exist D(n) = nΘ(1), p(n) =
n2.5+Θ(1), and m(n) = Θ(1) such that: H(Zn

p(n), SD(n),Φ1(α),m(n)) is a hash
function ensemble for which finding collisions for infinitely many prime n is at
least as hard as solving SVPγ with high probability in the worst case for infinitely
many prime n within a factor γ(n) = n1+δ.

Proof. We can choose D(n) = Θ(nδ/2) and a large enough m(n) = Θ(1) so
that m(n) log D(n)

log p(n) > 1. The chain of reductions is the same as in the proof of
Corollary 5.1, yielding an SVP algorithm with approximation factor n ·m(n) ·
D(n) · poly(log n) ≤ n1+δ. ut
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