
Sufficient Conditions for

Collision-Resistant Hashing

Yuval Ishai1?, Eyal Kushilevitz1??, and Rafail Ostrovsky2? ? ?

1 Computer Science Department, Technion, Haifa 32000, Israel.
{yuvali,eyalk}@cs.technion.ac.il

2 Computer Science Department, UCLA.
rafail@cs.ucla.edu

Abstract. We present several new constructions of collision-resistant

hash-functions (CRHFs) from general assumptions. We start with a sim-
ple construction of CRHF from any homomorphic encryption. Then, we
strengthen this result by presenting constructions of CRHF from two
other primitives that are implied by homomorphic-encryption: one-round
private information retrieval (PIR) protocols and homomorphic one-way

commitments.

Keywords. Collision-resistant hash functions, homomorphic encryp-
tion, private information-retrieval.

1 Introduction

Collision resistant hash-functions (CRHFs) are an important cryptographic prim-
itive. Their applications range from classic ones such as the “hash-and-sign”
paradigm for signatures, via efficient (zero-knowledge) arguments [14, 17, 2], to
more recent applications such as ones relying on the non-black-box techniques
of [1].

In light of the importance of the CRHF primitive, it is natural to study its
relations with other primitives and try to construct it from the most general
assumptions possible. It is known that CRHFs can be constructed from claw-
free pairs of permutations [5] (which in turn can be based on the intractability of
discrete logarithms or factoring) and under lattice-based assumptions [10]. On
the other hand, Simon [20] rules out a black-box construction of CRHF from
one-way permutations; thus, there is not much hope to base CRHF on very
general assumptions involving one-wayness alone.

In practice, when people are in need for CRHFs in various cryptographic
protocols, they often use constructions such as SHA1, MD5 and others. However,

? Partially supported by Israel Science Foundation grant 36/03.
?? Partially supported by BSF grant 2002-354 and by Israel Science Foundation grant
36/03.

? ? ? Partially supported by BSF grant 2002-354 and by a gift from Teradata, Intel equip-
ment grant, OKAWA research award and NSF Cybertrust grant.



recent weaknesses found in some of these constructions (such as MD5) [22] only
provide further evidence for the value of theoretically sound constructions.

Our results. In this paper, we present several new constructions of CRHFs
from general assumptions. We start by describing a simple construction of CRHF
from any homomorphic encryption (HE) scheme. A homomorphic encryption is
a semantically secure encryption in which the plaintexts are taken from a group,
and given encryptions of two group elements it is possible to efficiently compute
an encryption of their sum. For instance, the Goldwasser-Micali scheme [11] is
homomorphic over the group Z2. We note that this notion does not impose
any algebraic structure on the space of ciphertexts, but only on the space of
plaintexts.

We then weaken the above assumption in two incomparable ways. First, we
show how to construct CRHF from any (single-server, sublinear-communication)
one-round PIR protocol [15]. Since PIR is implied by homomorphic encryp-
tion [15, 21, 16], this is indeed a weaker assumption. This result strengthens the
result of [3], that constructs unconditionally hiding commitment (UHC) from
PIR, as it is known that CRHF imply UHC [6, 12].

Second, we obtain a construction of CRHFs from homomorphic one-way com-
mitments (HOWC). Such a commitment does not provide semantic security for
the committed value x but only “one-way” security, guaranteeing that x is hard
to find. For instance, a simple deterministic HOWC is defined by C(x) = gx,
where g is a generator of a group in which finding discrete logarithms is hard.

The relation between the different primitives discussed above is summarized
in Figure 1.

HE

HOWCPIR

CRHFUHC

Fig. 1. Solid arrows stand for implications shown in this paper. Dashed arrows stand
for implications that were shown in other papers (or that follow directly from the
definition).

One way to think of our results is the following. It is known how to build
CRHFs from all major (specific) assumptions used in public-key cryptography.



These (specific) assumptions also have an algebraic structure that usually im-
plies homomorphic properties. The results of this work suggest that this is not
a coincidence, establishing a rather general link between “homomorphic” prop-
erties and collision resistance. First results in this direction were given in [18];
see below.

Related Work. As mentioned, Damg̊ard [5] shows how to construct CRHFs
based on any claw-free pair of permutations (and based on specific assumptions
such as the hardness of factoring or discrete-log). Russell [19] shows that this
is essentially the best one can do, as the existence of CRHFs is equivalent to
the existence of a related primitive that he terms “claw-free pair of pseudo-
permutations”; this characterization is not satisfactory in the sense that this
primitive is not a well-studied one and its relations with other primitives are not
known. Hsiao and Reyzin [13] consider two variants of the definition of CRHF
(that differ in whether or not the security of the CRHF depends on the secrecy of
the random coins used by the key-generation algorithm) and show some relations
between the two variants. Simon [20] shows, by demonstrating an appropriate
separation oracle, that one-way permutations are unlikely to imply CRHFs (see
[7] for some stronger versions of this result). In contrast with [20], Ogata and
Kurosawa [18] show that a stronger version of one-way permutations, i.e. homo-
morphic one-way permutations, can be used to construct claw-free permutations
and hence also CRHFs. While this result gives an indication for the usefulness
of homomorphic properties for constructing CRHFs, their construction heavily
relies on the function being a permutation; our results, on the other hand, do
not impose such structural constraints on the underlying primitives. To illus-
trate the significance of the extra generality, consider the question of basing
CRHF on lattice-related intractability assumptions. Combining our results with
the lattice-based PIR scheme from [16], we can obtain CRHFs whose security is
based on a standard lattice-related assumption (providing an alternative to [10]).
In contrast, there are no known constructions of one-way permutations (let alone
homomorphic ones) from such assumptions.

Organization. In Section 2, we provide some necessary definitions (in partic-
ular that of CRHF). The first construction of CRHF, presented in Section 3,
is based on the existence of homomorphic encryption. In Sections 4 and 5, we
strengthen this result by describing constructions that are based on (computa-
tional) PIR and on homomorphic one-way commitment (respectively).

2 Preliminaries

We start with a formal definition of collision-resistant hash-functions (CRHFs).
In fact, the definition applies to a family of functions,1 and uses the terminology
of secret-coin CRHFs from [13].

1 Speaking of a single collision-resistant is meaningless if one allows the adversary to
be non-uniform.



Definition 1. Let `, `′ : IN → IN be such that `(n) > `′(n) and let I ⊆ {0, 1}∗.
A collection of functions {Hs}s∈I is called (secret-coin) collision-resistant hash
family (with index-set I) if the following holds:

1. There exists a probabilistic polynomial-time key-generation algorithm, Gen,
that on input 1k outputs an index s ∈ I (of a function Hs). The function
Hs maps strings of length `(k) to strings of length `′(k).

2. There exists a probabilistic polynomial-time evaluation algorithm that on in-
put s ∈ I, x ∈ {0, 1}`(k) computes Hs(x).

3. Collisions are hard to find. Formally, a pair x, x′ is called a collision for
a function Hs if x 6= x′ but Hs(x) = Hs(x

′). The collision-resistance re-
quirement states that every probabilistic polynomial-time algorithm B, that
is given input s = Gen(1k), succeeds in finding a collision for the function
Hs with a negligible probability (where the probability is taken over the coin
tosses of both Gen and B).

Remark 1. Various variants of the above definition are possible. For example, one
can consider hash-functions that can be applied to strings of arbitrary length
(and not just to strings of the specified length `(k)); such functions can be
obtained from the more restricted functions, defined above, by using standard
techniques such as block-chaining or hash-trees (where the restricted function is
applied repeatedly); cf. [9, Sec. 6.2.3].

Example 1. Let p be a prime and q be a “large” divisor of p−1. Let h1, h2 ∈ Z∗
p be

two elements of order q. Let Hp,h1,h2
(x) = hxL

1 ·hxR

2 mod p, where x = (xL, xR) ∈
Zq×Zq, and consider the family of all these functions. Each such function maps
strings of length 2 log q to strings of length log p. An algorithm that can find a
collision for such a function (i.e., x, x′ such that Hp,h1,h2

(x) = Hp,h1,h2
(x′)) can

be used to compute the discrete-log DLOGh1
(h2) mod p.

3 CRHF from Homomorphic Encryption

In this section, we present the simplest of our constructions. This construction
is based on a stronger assumption than what we use in subsequent sections;
namely, the existence of homomorphic encryption schemes. In fact, we never
use the standard requirement from encryption schemes that decryption can also
be performed in polynomial-time (but just the fact that decryption is possible).
Therefore, we actually work with the weaker assumption that homomorphic com-
mitment exists. Informally speaking, a homomorphic commitment scheme is a
(semantically-secure, perfectly binding, non-interactive) commitment scheme C
(cf., [8, Sec. 4.1.1]) that has the additional property that from commitments
C(x), C(x′) it is possible to compute efficiently a commitment to x+ x′, where
+ is the operation of some group G.

Below, we formally define the notion of “homomorphic commitment scheme”.
We stress that this definition is not necessarily the most general definition that
is possible here; instead, it is aimed at the simplicity of the presentation. Later
in the paper, these results are strengthened in various ways.



Definition 2. A (semantically secure) homomorphic commitment scheme con-
sists of a (group-size) function L(k) : IN → IN and a triplet of algorithms
(Gen,Commit,Add) as follows.

1. Gen is a probabilistic polynomial-time key-generation algorithm; on input
1k it outputs a public-key pk.

2. The commitment algorithm Commit is a probabilistic polynomial-time algo-
rithm that takes input 1k, the public-key pk and a string x which is an
element of the group ZL(k) (where L(k) is a prime); it outputs a string
Commitpk(x) of some length p(k). On one hand, this string hides the
value x; i.e., given Commitpk(x), the value x is semantically secure. (Note
that the notation Commitpk(x) hides the fact that the algorithm Commit

is probabilistic. When we wish to emphasize this fact, we sometimes use
the notation Commitpk(x, ·). In other cases, we may wish to obtain a de-
terministic value by fixing some randomness r to the algorithm Commit;
in such a case we use the notation Commitpk(x, r).) On the other hand,
the commitment is perfectly binding; i.e., given pk, the commitment string
Commitpk(x) uniquely determines x.2

3. The composition algorithm Add is a probabilistic polynomial-time algorithm
that takes input 1k, the public-key pk and two commitments Commitpk(x),
Commitpk(x

′) and computes a commitment to x+x′; i.e., Commitpk(x+
x′, r), where + refers to addition operation in the group ZL(k) and r is any
possible randomness for the commitment algorithm, Commit. Finally, we
require that commitments can be re-randomized.3 That is, there is a prob-
abilistic polynomial-time algorithm ReRand that, given any commitment
Commitpk(x, r), outputs a re-randomized commitment distributed accord-
ing to Commitpk(x, ·) (of the same string x).

Example 2. A simple example is the quadratic-residuosity based probabilistic
encryption of [11]; in this case the group that is used is Z2. For an additional
example, consider the ElGamal commitment: Let p be a prime, and let g be
a generator of a subgroup G ⊆ Z∗

p of prime order q in which the discrete-log
problem is “hard”. Let pk = (p, q, g, ga), for some a. The commitment is defined
by Commitpk(x, b) = (gb, gx · gab). Note that by taking the product of two
commitments, i.e. Commitpk(x, b)¯Commitpk(x

′, b′), we get

(gb, gx ·gab)¯(gb
′

, gx
′

·gab
′

) = (gb+b′ , gx+x′

·ga(b+b′)) = Commitpk(x+x′, b+b′).

Also note that if we work directly with ElGamal encryption (i.e., with x instead
of gx) then this allows decryption, but the product gives a value that corresponds
to x · x′ rather than to x+ x′.

2 i.e., for all (x, r), (x′
, r

′) such that x 6= x
′, we have Commitpk(x, r) 6=

Commitpk(x
′
, r

′); this is the analogue of the (perfect) correctness property in the
terminology of encryption.

3 This requirement, which is standard for most applications of homomorphic encryp-
tion, is actually not used in this section but will be needed in Section 5.



Remark 2. Observe that the definition guarantees also that, for any integer
c ≥ 0, a commitment to cx (i.e., a value Commitpk(cx, r) for some r) can be
efficiently computed (using repeated doubling) from Commitpk(x) by applying
the algorithm Add O(log2 c) times.

Construction: Given an arbitrary homomorphic commitment scheme, i.e. a
triplet (Gen,Commit,Add), we construct a CRHF family as follows. The key-
generation algorithm of the hash-family Gen

′, on input 1k, works by first apply-
ing Gen(1k) to obtain a public-key pk and then choosing at random an n1×n2

matrix M (where n1, n2 are specified below) whose elements are in ZL(k). The
index for the hash-function that Gen

′ outputs is s = (pk,Commitpk(M)),
where Commitpk(M) consists of commitments to each of the n1 · n2 elements
of the matrix M . The function Hs, on input x = (x1, . . . , xn2

) (where each xi is
l(k)-bit string and l(k) = blog2 L(k)c), is defined as follows:

Hpk,Commitpk(M)(x)
def
= Commitpk(M · x, r),

where the commitment to M · x can be efficiently computed from s and x using
Add and Remark 2 above. (Here r is the randomness implicitly defined by
this computation.) It remains to prove that collisions are hard to find. Assume
towards a contradiction, that there exists an algorithm B that, given s, finds
(with high probability) a pair x, x′ that forms a collision for Hs; i.e., Hs(x) =
Hs(x

′) or alternatively Commitpk(M ·x, r) = Commitpk(M ·x′, r′). It follows,
by the perfect binding property, that M · x = M · x′ or that M(x − x′) = 0.
This contradicts the semantic security of Commit, as we found a vector y in
the kernel of the committed matrix M . According to the semantic security, this
should have been possible only with probability which is very close to the a-priori
probability; if we choose n1 = dk/l(k)e then this a-priori probability is at most
1/2k. 4 Finally, the parameter n2 is chosen such that the output of Hs (whose
length is n1 · p(k)) is shorter than its input (whose length is n2 · log2 L(k)).

We summarize the above discussion with the following theorem:

Theorem 1. If there exists a homomorphic commitment scheme then there ex-
ists a family of CRHFs.

To conclude this section, we would like to offer (in an informal manner)
a slightly more general view of the above construction. Assume that we are
given homomorphic commitment scheme, as above, and in addition a linear
MAC. We construct a family of CRHFs as follows. The index of each function
s consists of a public-key for the commitment, pk, and an “encryption” (by
applying Commitpk) of a MAC-key sk. The function Hs(x) is defined by

Hs(x)
def
= Commitpk(mac(x), r).

4 Note that if the group-size is sufficiently large then n1 might be as small as 1.



As before, computing the commitment to mac(x) can be done (without knowing
the secret-keys) based on the linearity of the MAC and the homomorphic prop-
erties of the commitment. Now, assume that an adversary can efficiently come up
with a collision x, x′ such thatCommitpk(mac(x), r) = Commitpk(mac(x′), r′)
(for some r, r′). Again, by the perfect binding, it follows that mac(x) = mac(x′)
which contradicts the security of the MAC. Hence, if the MAC is secure then
the only other possibility is that the adversary, by examining s, could obtain
information about the MAC secret-key; this, in turn, contradicts the security of
Commit (which is used to “encrypt” this key).

4 CRHF from PIR

In this section, we show a construction of CRHFs based on (computationally)
private information retrieval (PIR) schemes. (In fact, our construction can also
use PIR schemes where the user’s reconstruction is unbounded.) Since PIR is
implied by homomorphic encryption [15, 21, 16] (and unbounded PIR by homo-
morphic commitment), this result is stronger than the result presented in Sec-
tion 3. The nature of the construction presented in this section is combinatorial,
as opposed to the algebraic nature of the constructions presented in Section 3
and Section 5.

Definition 3. A (computational, 1-round) PIR scheme is a protocol for two
parties: a user, U , and a server, S. The server holds a database x ∈ {0, 1}n and
the user holds an input i ∈ [n]. The goal of a PIR scheme is for the user to
learn the value of the bit xi while keeping the value of i hidden from the server.
The protocol uses only one round of interaction: U sends to the server a query,
q = query(1n, i, ρ), where ρ is the user’s random input, and it gets in return
an answer a = ans(x, q). The user then applies a reconstruction algorithm rec

to compute xi = rec(a, i, ρ). The 3 algorithms (query(·),ans(·),rec(·)) that
define the PIR scheme are polynomial-time algorithms that should satisfy the
following two requirements:

1. (Correctness) The user always retrieve xi correctly (where the probability is
over the choice of the user’s random input ρ).

2. (Privacy) For every two indices i, j ∈ [n] the corresponding distributions of
queries, query(1n, i, ·) and query(1n, j, ·), are indistinguishable. (Alterna-
tively, it will be useful to talk about semantic security of the query rather
than about indistinguishability; namely, no adversary can gain a significant
advantage in guessing a predicate of i given q = query(1n, i, ·).)

The main complexity measure for PIR schemes is their communication com-
plexity. Specifically, we denote by α(n) the (worst-case) query length (over all
x ∈ {0, 1}n and all possible choices of ρ) and by β(n) the (worst-case) answer
length.

Our construction will use, in addition to the PIR scheme, the standard (non-
cryptographic) primitive of error correcting code. Specifically, we will use any



error correcting code ecc(·) that expands x ∈ {0, 1}k to y ∈ {0, 1}n, where
n = c · k (for a constant c) and that can correct up-to λ ·n errors (for a constant
λ).5

Construction: Given a PIR scheme (query,ans,rec) and an error correct-
ing code ecc, we construct a CRHF family as follows. The key-generation al-
gorithm of the hash-family, Gen, on input 1k, works by choosing t = ω(log k)
queries q1, . . . , qt (this is done by choosing t random strings ρ1, . . . , ρt and t
random indices i1, . . . , it ∈R [n], where as above n = c · k, and computing
qj = query(1n, ij , ρj)). The hash-index is s = (q1, . . . , qt). The function Hs, on
input x ∈ {0, 1}k, is defined as

Hs(x) = (ans(y, q1), . . . ,ans(y, qt)) ,

where y = ecc(x). Clearly, Hs is computable in polynomial time. It maps
strings of length k to strings of length t ·β(n) (a possible choice of parameters is
t =polylog(k) and β(n) = nε = (ck)ε; in such a case Hs indeed shrinks its input).
Next, we argue that the resulting family is indeed collision-resistant. Suppose
that an adversary can find a collision for Hs; i.e., it can find different strings x, x

′

such thatHs(x) = Hs(x
′) or, equivalently, such that (ans(y, q1), . . . ,ans(y, qt)) =

(ans(y′, q1), . . . ,ans(y′, qt)), where y = ecc(x) and y′ = ecc(x′). This implies
(by the correctness of the PIR) that yij = y′ij , for 1 ≤ j ≤ t. However, since y, y′

are distinct codewords of the error-correcting code then the distance between
y, y′ is at least 2λn; since each ij is random, the probability that for a certain ij
we have yij = y′ij is constant (specifically, 2λ) and the probability that yij = y′ij
for all j is (by the choice of t) negligible. By the semantic security of query,
finding such y, y′ given q should be possible only with a negligible probability.
This gives the desired contradiction.

Thus, we have:

Theorem 2. If there exists a 1-round (single-server) PIR scheme with commu-
nication complexity O(nc) for some c < 1 then there exists a family of CRHFs.

Remark 3. Fischlin [7] shows the impossibility of a black-box transformation
from one-way trapdoor permutations to (one-round, computational) PIR. Our
transformation from PIR to CRHF, together with the results of [20], yields a
completely different way to obtain the same result.

5 CRHF from Homomorphic One-Way Commitment

The construction of CRHF from homomorphic encryption (or even from ho-
momorphic commitment), presented in Section 3, seem to rely heavily on the
semantic-security of the underlying commitment. In this section, we show that

5 It suffices for us that the encoding algorithm ecc(·) will work in polynomial time.
It is not needed for us that the error correction will be efficient; we will only rely on
the “large” distance between codewords.



this is not really essential. Namely, we consider a primitive that we term homo-
morphic one-way commitment. In this case, the security of the committed value
Commit(x) does not guarantee that no information about x is leaked but only
that it is hard (for a randomly chosen x) to “invert” the commitment and find
x. Note however that it does not suffice to require that Commitpk(x, r) is a
one-way function, as we not only require that finding a pre-image (x, r) is hard
but that even finding x alone is hard.

Definition 4. A one-way homomorphic commitment is defined as homomor-
phic commitment (Definition 2), except for the security requirement:

– (One-Wayness) Every probabilistic polynomial-time algorithm I that is given
Commitpk(x, r) has a negligible probability of finding x, where the probabil-
ity is over a random choice of x ∈ ZL(k), the choice of r by Commit, and
the internal random choices of I. (Note that, by the binding property, for
every value Commitpk(x, r), there is a unique pre-image x.)

Remark 4. The one-wayness requirement in particular implies that the size of
the group from which x is taken, i.e. L(k), needs to be “large”. This is in con-
trast with the definition of “standard” homomorphic commitment where the
group might be as small as Z2. On the other hand, any (standard) homomorphic
commitment where L(k) = kω(1) is immediately also a one-way homomorphic
commitment. We can turn any standard homomorphic commitment (over an
arbitrarily small group) into a one-way homomorphic commitment by concate-
nating “sufficiently many” copies of the original scheme (where ω(log k) copies
are always enough). Such a concatenation yields a group which is a product
group, and in particular is not a cyclic group. It is possible to extend our results
to such groups as well.

Construction: Given an arbitrary one-way homomorphic commitment scheme
(Gen,Commit,Add), we construct a CRHF family as follows. The key-generation
algorithm of the hash-family Gen

′, on input 1k, works by first applying Gen(1k)
to obtain a public-key pk. Then, it chooses m random elements x1, . . . , xm ∈R

ZL(k) (where m, as before, is chosen so that the output length is shorter than the
input length) and m random strings r1, . . . , rm to be used by the commitment
algorithm. It finally computes m values yi = Commitpk(xi, ri). The index of
the hash function that Gen

′ outputs is s = (pk, y1, . . . , ym). The function Hs,
on input a = (a1, . . . , am) (where each ai is an l(k)-bit integer and, as before,
l(k) = blog2 L(k)c), is defined as follows:

Hpk,y1,...,ym
(a)

def
= Commitpk(

m∑

i=1

aixi, r),

where, as in the construction of Section 3, we observe that by using algorithm
Add (and Remark 2) this commitment can be efficiently computed (without
knowledge of x1, . . . , xm) from s and a (and r is the corresponding random-
ness). It remains to prove that collisions are hard to find. Assume towards a



contradiction, that there exists an algorithm B that, given s, finds (with high
probability) a pair a,a′ that forms a collision for Hs; i.e., Hs(a) = Hs(a

′).
This means that Commitpk(

∑m
i=1 aixi, r) = Commitpk(

∑m
i=1 a

′
ixi, r

′) which,
by the perfect binding of the commitment, implies that

∑m
i=1 aixi =

∑m
i=1 a

′
ixi.

Therefore, the vector d = a−a′ (which is easily computable from the collision)
is such that d · x = 0. We want to use the procedure that finds such vectors d

in order to construct an inverter I for the commitment (i.e., an algorithm that
finds x from Commit(x), for a uniformly random x) in contradiction to the
one-wayness. While each such d gives some information about x, applying the
procedure repeatedly should be done with some care to avoid getting vectors
d which are linearly dependent and are therefore useless. Next, we describe an
inverter that uses the above ideas in a more careful way.

The inverter: The algorithm I (the inverter) that we construct gets as in-
put a public-key pk and a vector z of m commitments (where pk, z and the
randomness are all chosen at random with the appropriate distributions) and it
finds, with non-negligible probability, the vector x of m committed values.6 The
inverter I repeats the following at most M times (where M = O(m · q(k)) and
q(k) is the polynomial such that B succeeds with probability at least 1/q(k)) or
until I collects m linearly independent equations about x. In the jth iteration, I
picks at random an m×m matrix Cj and a length m vector bj . The elements of
both Cj and bj are taken from ZL(k) (and recall that we assume here that L(k)
is a prime number). Denote xj = Cj · x + bj (of course the inverter does not
compute this value as x is not available to it; we use xj to simplify notation).
The inverter computes wj = Commitpk(xj) = Commitpk(Cj · x + bj) (that
can be computed from z using the algorithm Add) and finally it re-randomizes
this vector of commitments (using the algorithm ReRand); i.e., it computes
yj = ReRandpk(wj). The inverter provides sj = (pk,yj) to algorithm B
and in return it gets a collision aj ,a

′
j for the hash function Hsj

(note that
it is easy to check whether this pair is indeed a collision, simply by apply-
ing the function Hsj

; we can therefore assume that B itself either outputs a
collision or the value “fail”). If B returns “fail” the current iteration is termi-
nated and I proceeds to the next iteration; otherwise, I sets dj = aj − a′

j

(and, as above, the vector dj satisfies dj · xj = 0). The iteration ends by
computing the vector uj = dj · Cj and the scalar λj = dj · bj . Note that
uj · x + λj = dj · Cj · x + dj · bj = dj(Cj · x + bj) = dj · xj = 0. Hence, if all
goes well, the inverter ends the jth iteration with a new linear constraint about
x. Moreover, we will argue that after M iterations I is likely to have m linearly
independent constraints; this allows solving the system of equations and to find
x; i.e., to invert the commitment.

It remains to prove that I succeeds in inverting the commitment z with
non-negligible probability (assuming that B succeeds in finding collisions with
non-negligible probability). For this, we make several simple observations. First,
note that I invokes B several times, all with the same pk (which is part of

6 Note that this is slightly stronger than what we need, since we “invert” m commit-
ments at once; however we get this feature “for free”.



all the indices sj). We call a public-key pk good if B, when given a randomly
chosen index of a hash function that includes this public-key (i.e., s = (pk,y) for
a randomly chosen y) succeeds with non-negligible probability. Since B finds a
collision with non-negligible probability over a randomly chosen s, it follows that
a non-negligible fraction of the public-keys are good. Therefore, the probability
that pk that is given to the inverter is good is non-negligible. From now on,
we will assume that this is indeed the case. Fix any z (and hence also x).
Next, we note that, for every j, the vector xj (whose choice is determined by
the random choice of Cj , bj) is totally random and, moreover, these vectors
are all independent. Hence, when B is given sj (that includes pk and yj –
a rerandomized commitment to xj), by the assumption that pk is good, B
succeeds in finding a collision with non-negligible probability. Finally, we argue
that the vector uj obtained from this collision is random; if this is true then
indeed O(m) successful iterations suffice (with high probability) and therefore
total of M iterations are enough. This is so because xj (and hence also the
input for B; i.e., yj) is independent of Cj (because no matter what x, Cj are,
the choice of bj yields a uniformly random xj). Therefore dj (the output of B)
is also independent of the matrix Cj ; hence, computing uj = dj · Cj (where
dj 6= 0) yields a random vector.

To summarize, we state the following theorem:

Theorem 3. If there exists a homomorphic one-way commitment scheme then
there exists a family of CRHFs.

Acknowledgements. We thank the anonymous referees for helpful comments
and pointers.

References

1. B. Barak. How to Go Beyond the Black-Box Simulation Barrier. Proc. of 42nd

FOCS, pp. 106–115, 2001.
2. B. Barak, and O. Goldreich. Universal Arguments and their Applications. Proc.

of 17th Conference on Computational Complexity, pp. 194-203, 2002.
3. A. Beimel, Y. Ishai, E. Kushilevitz, and T. Malkin. One-Way Functions Are
Essential for Single-Server Private Information Retrieval. Proc. of 31st STOC,
pp. 89–98, 1999.

4. C. Cachin, S. Micali, and M. Stadler. Computationally private information
retrieval with polylogarithmic communication. Proc. of IACR EUROCRYPT,
LNCS 1592, pp. 402–414, 1999.

5. I. Damg̊ard: Collision Free Hash Functions and Public Key Signature Schemes.
In Proc. of EUROCRYPT, pages 203-216, 1987.

6. I. Damgard, T. P. Pedersen and B. Pfitzmann. On the existence of statistically
hiding bit commitment schemes and fail-stop signatures. In Proc. of IACR Crypto,
LNCS 773, pp. 250–265, 1993.

7. M. Fischlin. On the Impossibility of Constructing Non-interactive Statistically-
Secret Protocols from Any Trapdoor One-Way Function. Proc. of CT-RSA, pp.
79-95, 2002.



8. O. Goldreich. Foundations of Cryptography. Volume I: Basic Tools. Cambridge
University Press, 2001.

9. O. Goldreich. Foundations of Cryptography. Volume II: Basic Applications. Cam-
bridge University Press, 2004.

10. O. Goldreich, S. Goldwasser, and S. Halevi. Collision-Free Hashing from Lattice
Problems. ECCC TR-42, 1996.

11. S. Goldwasser, and S. Micali. Probabilistic Encryption. Journal of Computer and

systems sciences 28, 270-299, 1984.
12. S. Halevi, and S. Micali, Practical and Provably-Secure Commitment Schemes

from Collision-Free Hashing. In Proc. of IACR Crypto, LNCS 1109, pp. 201-215,
1996.

13. C.Y. Hsiao and L. Reyzin. Finding Collisions on a Public Road, or Do Secure
Hash Functions Need Secret Coins? In Proc. of IACR Crypto, 2004.

14. J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. Proc. of

24th STOC, pp. 723–732, 1992.
15. E. Kushilevitz and R. Ostrovsky. Replication is Not Needed: Single Database,

Computationally-Private Information Retrieval. In Proc. of 38th FOCS, pages
364–373, 1997.

16. E. Mann. Private access to distributed information. Master’s thesis, Technion –
Israel Institute of Technology, Haifa, 1998.

17. S. Micali. CS Proofs. SIAM J. Computing, Vol. 30(4), pp. 1253-1298, 2000. (Early
version appeared in FOCS 1994.)

18. W. Ogata, and K. Kurosawa. On Claw Free Families. IEICE Trans., Vol.E77-A(1),
pp. 72-80, 1994. (Early version appeared in AsiaCrypt’91.)

19. A. Russell. Necessary and Sufficient Conditions for Collision-Free Hashing. J.

Cryptology, Vol. 8(2), pages 87-100, 1995. (Early version in CRYPTO92).
20. D. Simon. Finding Collisions on a One-Way Street: Can Secure Hash Functions

Be Based on General Assumptions? In Proc. of EUROCRYPT, pages 334-345,
1998.

21. J. P. Stern. A new and efficient all-or-nothing disclosure of secrets protocol. In
Advances in Cryptology – ASIACRYPT ’98, volume 1514 of Lecture Notes in

Computer Science, pages 357–371. Springer, 1998.
22. X. Wang, D. Feng, X. Lai, and H. Yu. Collisions for Hash Functions MD4, MD5,

HAVAL-128 and RIPEMD. Cryptology ePrint Archive TR-199, 2004.


