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Abstract. NTRU lattices[13] are a class of polynomial rings which al-
low for compact and efficient representations of the lattice basis, thereby
offering very good performance characteristics for the asymmetric algo-
rithms that use them. Signature algorithms based on NTRU lattices have
fast signature generation and verification, and relatively small signatures,
public keys and private keys.
A few lattice-based cryptographic schemes entail, generally during the
key generation, solving the NTRU equation:

fG− gF = q mod xn + 1

Here f and g are fixed, the goal is to compute solutions F and G to
the equation, and all the polynomials are in Z[x]/(xn + 1). The existing
methods for solving this equation are quite cumbersome: their time and
space complexities are at least cubic and quadratic in the dimension
n, and for typical parameters they therefore require several megabytes
of RAM and take more than a second on a typical laptop, precluding
onboard key generation in embedded systems such as smart cards.
In this work, we present two new algorithms for solving the NTRU equa-
tion. Both algorithms make a repeated use of the field norm in tower of
fields; it allows them to be faster and more compact than existing algo-
rithms by factors Õ(n). For lattice-based schemes considered in practice,
this reduces both the computation time and RAM usage by factors at
least 100, making key pair generation within range of smart card abilities.

1 Introduction

NTRU lattices are a class of trapdoor lattices that were introduced by [13], as
the core object in which the NTRUEncrypt asymmetric encryption algorithm
is expressed. Given a monic polynomial φ ∈ Z[x] of degree n, the lattice is
generated by two “short” polynomials f and g modulo φ. The coefficients of f
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and g are very small integers (in NTRUEncrypt, they are limited to {−1, 0, 1}).
The polynomial f and g are secret, but their ratio:

h = g/f mod φ mod q (1)

for a given, small integer q, is public. The polynomial f is chosen so as to be
invertible modulo φ and q. q is not necessarily prime.

NTRU lattices offer good performance characteristics; they have been reused
in several other asymmetric schemes. Some of these schemes require the lattice
trapdoor to be “complete”, which means that beyond knowledge of f and g, the
private key owner must know two other short polynomials F and G that fulfill
the NTRU equation:

fG− gF = q (2)
A complete NTRU trapdoor is required for example in the signature scheme
NTRUSign [12], an identity-based encryption scheme [8], the signature scheme
Falcon [18], and the hierarchical identity-based encryption scheme LATTE[4].

Finding the shortest solution (for a given norm) is a hard problem; however,
computing a solution which is short enough for the purpose of running an algo-
rithm based on complete NTRU lattices, is doable. Solving the NTRU equation
is then part of the key generation process.

While the NTRU equation looks simple, solving it in an efficient manner
is nontrivial. Existing algorithms for finding a solution [12,21] have time and
space complexities that are at least cubic and quadratic in the dimension n, re-
spectively. For typical parameter sizes, this translates in practice into requiring
several megabytes of RAM and taking around 2 seconds on a typical computer.3
This precludes implementation in many constrained, embedded systems. One
could argue that being able to implement the key generation on an embed-
ded device is not too important since one could simply generate it externally
and copy-paste the key in the device, but keeping the private key in a tamper-
resistant device for its complete lifecycle is often desirable for security (as there
is no external exposure at any time) and compliance (e.g. to the FIPS 140-2
norm [16]).

In this article, we show how we can leverage the field norm in polynomial rings
to achieve much improved performance for solving the NTRU equation. It allows
us to propose two new algorithms based on the field norm, which provide better
(time and space) complexities than existing algorithms by quasilinear factors in
n (precisely, at least O(n/ logn)). As a by-product, we developed an improved
algorithm for computing polynomial resultants, when one of the polynomials is a
cyclotomic (see section 3). Table 1 compares the asymptotic complexity achieved
by our new techniques with existing known methods.

We implemented both the classic resultant-based NTRU solver, and our new
algorithms, with similar optimization efforts and tools. This allowed direct mea-
sures of the performance improvement of our techniques, which corroborated the

3All the timings in this document are provided for a MacBook Pro laptop (Intel
Core i7-6567U @ 3.30 GHz), running Linux in 64-bit mode.



Method Time complexity Space complexity
Resultant [12] Õ(n(n2 +B)) O(n2B)
HNF [21] Õ(n3B) O(n2B)
TowerSolverR
(Algorithm 4)

O((nB)log2(3) logn) [K]
O(n(B + logn) logn)

Õ(nB) [SS]
TowerSolverI
(Algorithm 5)

O((nB)log2(3) log2 n) [K]
O(n(B + logn))

Õ(nB) [SS]

Table 1. Comparison of our new methods for solving the NTRU equation with ex-
isting ones. B denotes an upper bound on log ‖f‖, log ‖g‖. The tag [K] indicates that
Karatsuba’s algorithm was used for large integer multiplications, and [SS] indicates the
Schönhage-Strassen algorithm was used.

asymptotic analysis: for a typical degree (n = 1024), the new methods are faster
and smaller than the classic algorithms, both by a factor of 100 or more.

1.1 Techniques

Our algorithms rely on repeatedly applying the project-then-lift paradigm, a
well-known paradigm in algorithmic number theory and cryptanalysis which
consists of projecting a problem onto a subset in which it becomes easier, before
lifting the solution to the original set.

In our case, we rely on using the presence of towers of fields and towers of
rings. As an illustration, let us consider the following tower of fields:

K` / K`−1 / . . . / K1 / K0 = Q

where ∀i,Ki = Q[x]/(x2i + 1), and the associated tower of rings (which are the
rings of integers of the corresponding fields) with n = 2`:

Z[x]/(xn + 1) ! Z[x]/(xn/2 + 1) ! · · · ! Z[x]/(x2 + 1) ! Z

It is well known that the field norm can map any element f ∈ Z[x]/(xn+1) onto
a smaller ring of its tower. This fact is exploited in the “overstretched NTRU”
attack [1], where problems are mapped to a smaller ring, then solved, at which
point the solution is lifted back to the original ring.

However, what is not exploited in these works is the fact that the field norm
plays nicely with towers of fields: for a tower of field extensions L/K/J and f ∈ L,
we have NK/J ◦NL/K(f) = NL/J(f) (where N denotes the field norm). This fact
is at the heart of our algorithms.

We first repeatedly use the field norm to project over Z equations which are
originally over Z[x]/(xn + 1); this is the descent phase. It turns out that these
equations can be solved much faster over Z. We then use the properties of the
field norm to lift our solutions back in Z[x]/(xn+1); this is the lifting phase. This
simple principle allows us to gain a factor at least Õ(n) over classical algorithms.



We apply a few additional tricks such as memory-laziness, the use of residue
number systems, or the fact that in cyclotomic fields, the Galois conjugates of an
element in FFT or NTT representation are straightforward to compute. These
techniques make our implementation faster and more memory-efficient.

1.2 Applications

Our new algorithms impact at least four existing lattice-based schemes.

NTRUSign. The first scheme which entails solving this equation in the key
generation is NTRUSign [12]. In its current form, this scheme is however insecure,
but for reasons independent of the key generation.

Falcon. In the signature scheme Falcon [18], the costliest part of the key gener-
ation consists of solving an NTRU equation. Without our techniques, it would
require about 233 clock cycles on a recent laptop computer, and 3 MBytes of
RAM, for the highest security level, limiting its usability for many embedded
devices. As we gain a factor 100 in speed and memory, this significantly widens
the range of the devices on which Falcon can be entirely implemented.

DLP. The setup phase of the identity-based encryption scheme DLP [8] is iden-
tical to the key generation of Falcon. The same remark as above applies.

LATTE. Very recently, Campbell and Groves [4] introduced LATTE, a hierar-
chical identity-based encryption scheme which essentially combines [8] with the
Bonsai trees construction of [5]. At each extraction of a user secret key, LATTE
needs to solve a generalized NTRU equation. More precisely, given f1, . . . , fk ∈
Z[x]/(φ), it needs to compute F1, . . . , Fk ∈ Z[x]/(φ) such that∑

fiFi = q

and k may in practice be equal to 3 or 4 (see [4, slide 23]). Our techniques can
be extended in a straightforward way to solve this kind of equation. The impact
for LATTE is even more important than for the aforementioned works, as an
authority may need to perform many extractions (typically, one per user and
per key renewal period).

1.3 Related Works

The NTRU equation was first introduced and solved in [12].
Another method for solving the NTRU equation was suggested by Stehlé

and Steinfeld [21], using the Hermite Normal Form. The most space-efficient
algorithm for computing the HNF is due to Micciancio and Warinschi [15]; how-
ever, like the method based on resultants, it has quadratic space complexity and
quasi-cubic time complexities, and does not solve the RAM usage issue.



The use we make of the field norm is reminiscent of the “overstretched
NTRU” attack by [1], except that these works are cryptanalytic and use the
field norm once, whereas ours uses it repeatedly and improves cryptographic
constructions.

1.4 Roadmap

In section 2, we introduce our notations, and recall the classic resultant-based
algorithm; we also describe some known mathematical tools that we will use in
our new algorithm. In section 3, we present a novel method for computing specific
cases of resultants; our new algorithm builds on this method, and is described
in section 4, where we also show how it can be viewed as an optimisation of
the classic resultant-based algorithm. Implementation issues are discussed in
section 5.

2 Preliminaries

We denote by Z,Q,R,C the ring of integers and the fields of rational, real and
complex numbers. For a > 0, b > 1, we denote by logb a the logarithm of a in
the basis b, with the convention log a = log2 a. For an integer r > 0, we denote
by Zr the ring of integers modulo r.

2.1 Polynomial Rings and Fields

Let Z[x] be the ring of polynomials with integer coefficients (thereafter called
integral polynomials). Let φ be a non-zero monic integral polynomial of degree
n ≥ 1 (i.e. φ = xn +

∑n−1
i=0 φix

i). Euclidean division of any integral polynomial
by φ is well-defined and yields a unique remainder of degree less than n; we can
therefore define Z[x]/(φ), the ring of integral polynomials modulo φ.

Similarly, we define Q[x]/(φ), C[x]/(φ) and Zr[x]/(φ). When φ is irreducible
in Z[x], it is also irreducible in Q[x], and Q[x]/(φ) is a field. In this article, we will
work modulo polynomials φ which are irreducible in Q[x]; however, in general,
C[x]/(φ) and Zr[x]/(φ) are not fields.

2.2 Matrices and Vectors

While the point of using polynomial rings to represent lattices is to avoid com-
putations related to matrices and vectors, we will still use such algebraic objects
in some proofs.

We will denote matrices in bold uppercase (e.g. B) and vectors in bold low-
ercase (e.g. v). We use the row convention for vectors.

The p-norm of a vector v is denoted ‖v‖p, and, by convention, ‖v‖ = ‖v‖2.
We recall that for v ∈ Cn and 0 < r ≤ p ≤ ∞, and with the convention 1/∞ = 0:

‖v‖p ≤ ‖v‖r ≤ n( 1
r−

1
p )‖v‖p. (3)



For a polynomial f ∈ C[x]/(φ), where φ is a monic polynomial of degree n,
we denote by Cφ(f) the n× n matrix whose j-th row consists in the coefficients
of xj−1f mod φ:

Cφ(f) =


f mod φ
xf mod φ

. . .
xn−1f mod φ

 (4)

When φ is clear from context, we will simply note C(f). One can check that
when φ = xn + 1, the matrix Cφ(f) is a skew-circulant matrix.

The operator f ∈ C[x]/(φ) 7→ C(f) is a ring isomorphism onto its image. In
particular, for all f, g ∈ C[x]/(φ), we have:

C(f + g) = C(f) + C(g)
C(fg) = C(f)C(g) (5)

2.3 Fast Integer Multiplication

Our techniques, when applied to solving the NTRU equation, imply the use of
large integers. Asymptotic computational costs depend on the time complexity
of multiplying two such integers. We denote byM(b) that complexity, when the
size in bits of the two integers is bounded by b:

– if we use Karatsuba’s algorithm, thenM(b) = O(blog2(3)) ≈ O(b1.585);
– with the Schönhage-Strassen algorithm [19],M(b) = Θ(b · log b · log log b).

Karatsuba’s algorithm is more efficient for small values of b, but the Schönhage-
Strassen algorithm [19] is asymptotically better. When giving the time complex-
ities of our improved algorithms, we will consider both methods.

It shall be noted that asymptotic complexity is a reasonable estimate of
performance only for “large enough” parameters. In our implementations, we
found that for typical parameters (degree n up to 1024), the bottleneck was not
integer multiplication, but rather Babai’s reduction, which entails performing
floating-point operations.

2.4 Cyclotomic Polynomials

Most lattice-based cryptographic algorithms that use polynomial rings to repre-
sent structured lattices rely on cyclotomic polynomials (some notable exceptions
being e.g. [20,3]). Cyclotomic polynomials have some properties that make them
ideal for use of the field norm.

Definition 1. For an integer m ≥ 1, the m-th cyclotomic polynomial is:

Φm =
∏

0<k<m
gcd(k,m)=1

(
x− e2iπ(k/m)) (6)



Cyclotomic polynomials have the following well-known properties:

– They are in Z[x] and are irreducible in Q[x].
– The degree of Φm is ϕ(m), where ϕ denotes Euler’s function: ϕ(m) = |Z×m|.
– If n = 2`, then Φ2n = xn + 1.
– If p is a prime factor of m, then:

Φmp(x) = Φm(xp) (7)

Since cyclotomic polynomials are irreducible, Q[x]/(Φm) is a field for all
m ≥ 1; we will call them cyclotomic fields.

2.5 The Field Norm

The field norm is the central tool we use in our algorithms, and the key to their
efficiency. In this section, we recall its definition, as well as a few properties.

Definition 2 (Field Norm). Let K be a number field, and L be a Galois exten-
sion of K. We denote by Gal(L/K) the Galois group of the field extension L/K.
The field norm NL/K : L→ K is a map defined for any f ∈ L by the product of
the Galois conjugates of f :

NL/K(f) =
∏

g∈Gal(L/K)

g(f) (8)

Equivalently, NL/K(f) can be defined as the determinant of the K-linear map
ψf : a ∈ L 7→ fa.

It is clear from the definition that the field norm is a multiplicative mor-
phism. In addition, the field norm is compatible with composition: for a tower
of extensions L/K/J, it holds that NL/K ◦NK/J(f) = NL/J(f).

For conciseness, K and L may be omitted from the subscript when clear from
context. For example, when f ∈ L and K is the unique largest proper subfield of
L, then we denote N(f) = NL/K(f). In addition, if f ∈ L and L sits atop a field
tower that is clear from context, then we may abusively denote by Ni(f) the
i-times composition of N. For example, if we consider the following field tower:

Q[x]/(xn + 1) / Q[x]/(xn/2 + 1) / . . . / Q[x]/(x2 + 1) / Q (9)

with n = 2`, then Ni(f) sends f ∈ Q[x]/(xn + 1) to Q[x]/(xn/(2i) + 1).

The Case of Cyclotomic Extensions. For cyclotomic extensions, the field
norm can be expressed in a form which is convenient for us. Let m,n > 0 be
integers such that n|m, L = Q[x]/(Φm) and K = Q[y]/(Φn). The morphism
y 7→ xm/n defines a field extension L/K. The Galois conjugates ga(f) of f ∈ L
are then of the form

ga(f)(x) = f(xa) (10)



for the set of a ∈ Zm verifying a = 1 mod n. This provides a simple and efficient
way of computing the norm NL/K(f) =

∏
a ga(f), especially in FFT or NTT.

In the particular case where n = 2`, L = Q[x]/(Φ2n) and K = Q[y]/(Φn), the
field norm is particularly simple to express. Any f ∈ L can be “split” into its
coefficients of even and odd degrees:

f = fe(x2) + xfo(x2) (11)

with fo, fe ∈ K. Noting ψf : a ∈ L 7→ fa, we have

NL/K(f) = det K(ψf ) = det
[
fe fo
yfo fe

]
= f2

e − yf2
o (12)

2.6 Resultants

Resultants are powerful tools in number theory. Among other applications, they
allow to keep track of coefficient growth when computing the (pseudo-)GCD
of polynomials in Z[x], and they play a crucial role in a previous algorithm
by [12] which solves the NTRU equation. We will see (in section 3) that our
first application of the field norm is an efficient algorithm to compute resultants
between a cyclotomic polynomial φ of degree n, and another polynomial of degree
less than n.

Definition 3 (Resultant). Let f, g be two polynomials in C[x], of degrees n
and m, respectively. We denote their coefficients and roots as follows:

f(x) =
n∑
j=0

fjx
j = fn

n−1∏
j=0

(x− αj)

g(x) =
m∑
k=0

gkx
k = gm

m−1∏
k=0

(x− βk)
(13)

The resultant of f and g is defined by either of these two equivalent definitions:

1. Res(f, g) = fmn g
n
m

∏
j,k

(αj − βk) = fmn
∏
j

g(αj) = (−1)mngnm
∏
k

f(βk)

2. Res(f, g) = det(Syl(f, g)), where Syl(f, g) denotes the Sylvester matrix of f
and g:

Syl(f, g) =



fn 0 · · · 0 gm 0 · · · 0

fn−1 fn
. . .

...
... gm

. . .
...

... fn−1
. . . 0

...
. . . 0

...
...

. . . fn g1 gm

f0 fn−1 g0
. . .

...
...

0
. . .

... 0
. . . g1

...
...

. . . f0
...

...
. . . g0 g1

0 · · · 0 f0 0 · · · 0 g0


(14)



The second definition makes it clear that if f and g are integral polynomials,
then their resultant will also be an integer.

The resultant of f and g can be computed with the Euclidean Algorithm on
polynomials. The Extended Euclidean Algorithm (also called Extended GCD)
furthermore keeps track of intermediate quotients in order to yield Bézout coef-
ficients, i.e. polynomials u and v in C[x] such that uf + vg = Res(f, g). When
f and g are integral polynomials, the Bézout coefficients will also be integral
polynomials.

In addition to these definitions, the following proposition will be useful for
providing bounds over the resultant.
Proposition 1. If g is monic with distinct roots over C, then, for all f ∈
C[x]/(g), Res(g, f) = det(Cg(f)).
Proof. For a fixed g, all the matrices Cg(f) are co-diagonalizable:

Cg(f) = V−1 ×D×V

Where V is the Vandermonde matrix associated to the roots of g, and D is the
diagonal matrix which diagonal terms are the evaluations of f over the roots of
g. As a consequence, det Cg(f) = det D =

∏
g(γ)=0 f(γ) = Res(g, f). �

2.7 Fast Fourier Transform and Number Theoretic Transform
The Fast Fourier Transform, and its variant the Number Theoretic Transform,
are powerful tools that allow for efficient computations in polynomial rings. The
field norm, in particular, can be very simply and quickly evaluated when the
operands use the FFT or NTT representation. Most of the speed-ups obtained
by our techniques come from the interaction between the field norm and the
FFT/NTT.

Let φ ∈ Q[x] be a monic polynomial of degree n, with n distinct roots
(γj)0≤j<n over C. For f ∈ C[x]/(φ), its Fourier Transform f̂ is defined as:

f̂ =
(
f(γj)

)
0≤j<n (15)

The Fourier Transform is an isomorphism between C[x]/(φ) and Cn. Therefore,
for f, g ∈ C[x]/(φ), the Fourier transform of f + g and fg can be computed by
term-wise addition and multiplication, respectively, of f̂ and ĝ.

The Fast Fourier Transform (or FFT) is a well-known algorithm for comput-
ing the Fourier Transform of f in the special case of φ = xn+1 with n = 2` [7,10].
The FFT has time complexity O(n logn) operations in C; the inverse transform
can also be computed with similar efficiency. In particular, the FFT allows for
computing the product of two polynomials modulo φ with complexity O(n logn).
The FFT can be extended to other moduli, especially cyclotomic polynomials.

The Number Theoretic Transform (or NTT) is the analog of the Fourier
Transform over the finite field Zr for a given prime r. The NTT is well-defined
as long as φ splits over Zr; when φ = xn + 1, it suffices that r = 1 mod 2n.
As in the case of the FFT, the NTT can be computed in O(n logn) elementary
operations in Zr for some moduli, in particular cyclotomic polynomials.



2.8 Babai’s Reduction

Before we show how to solve the NTRU equation, we present one last tool
which plays an important role in this process: Babai’s reduction, or rather a
generalization of it. This reduction transforms a solution of the NTRU equation
into another solution with shorter polynomials. We first define the adjoint.

Definition 4 (Adjoint). Let φ ∈ Q[x] be monic with distinct roots (γj) over C.
For f ∈ C[x]/(φ), we define its adjoint f? as the unique polynomial in C[x]/(φ)
such that for each γj:

f?(γj) = f(γj) (16)

where · denotes the complex conjugation.

Existence and uniqueness are easily obtained by noticing that, in FFT rep-
resentation, computing the adjoint is equivalent to replacing each Fourier coef-
ficient with its conjugate.

If f ∈ R[x]/(φ), then f? ∈ R[x]/(φ). Indeed, if γ is a root of φ, then γ is also
a root of φ, and f(γ) = f(γ); therefore, f?(γ) = f?(γ) for all roots γ of φ. This
property is achieved only by real polynomials, i.e. polynomials whose complex
coefficients are all real numbers.

The adjoint allows us to define Reduce (algorithm 1), which is a straightfor-
ward generalization of Babai’s nearest plane algorithm [2] over Z[x]/(φ)-modules.
For inputs f, g, F,G ∈ Z[x]/(φ), the Reduce algorithm computes F ′ and G′ of
close to minimal size such that fG− gF = fG′ − gF ′:

Algorithm 1 Reduceφ(f, g, F,G)
Require: f, g, F,G ∈ Z[x]/(φ)
Ensure: F ′, G′ ∈ Z[x]/(φ) such that fG′ − gF ′ = fG− gF mod φ
1: do
2: k ←

⌊
F f?+Gg?

ff?+gg?

⌉
3: (F,G)← (F − kf,G− kg)
4: while k 6= 0
5: return F,G

Several iterations may be needed, especially if k is computed in low precision.
Indeed, in practice the coefficients of the polynomials F,G can be extremely
large before reduction, and it is therefore more efficient to compute k with a
low precision (e.g. using double values in the C programming language) over
approximations of the polynomial coefficients: this allows the use of the FFT
representation, where polynomial multiplications and adjoints are easily com-
puted. Each iteration then yields an approximate k value with small coefficients
(with scaling). Of course, using floating-point arithmetic means that one could
be stuck in an infinite loop, but this is easily thwarted by exiting the algorithm
as soon as the norm of (F,G) stops decreasing.



We note that computation of k involves a division of polynomials modulo
φ. In FFT representation, division is simply applied term by term. Since φ is
irreducible over Q[x], no division by 0 occurs here. In practice, though, use of
approximate values in low precision may (rarely) yield situations where we end
up dividing by 0. As will be explained in section 5.1, occasional failures can easily
be tolerated in the context of key pair generation for a cryptographic algorithm.

In this article, we will use Reduce in several places, each time with polynomi-
als f, g, F,G that fulfill the NTRU equation (equation 2). If fG− gF = q, then,
heuristically, the Reduce algorithm computes F ′ and G′ such that the coefficients
of F ′ and G′ have about the same maximal size as the coefficients of f and g.

2.9 Solving The NTRU Equation With Resultants

We now present the first known method for solving the NTRU equation (equa-
tion 2): given f and g in Z[x]/(φ), find F and G in Z[x]/(φ) such that fG−gF =
q, where q is a given relatively small integer. Our techniques are best demon-
strated by showing how they apply to, and speed up, this classic NTRU solving
algorithm.

This method works for any monic φ irreducible over Q[x]; it was introduced
in [12] and an implementation can be found in [8]. It relies on Bézout equations
over Z[x]:

– First, we compute Bézout coefficients s, s′, t, t′ ∈ Z[x], and integers Rf and
Rg, such that:

sf + s′φ = Rf
tg + t′φ = Rg

(17)

Since φ is irreducible over Q[x], it is guaranteed that we can enforce the
condition Rf , Rg ∈ Z. The s′ and t′ polynomials do not actually need to be
computed; only s and t are used thereafter.

– We compute the GCD δ of Rf and Rg, along with Bézout coefficients u, v ∈ Z
such that:

uRf + vRg = δ (18)
– If δ is a divisor of q, we can then combine Equations 17 and 18, yielding a

solution to Equation 2:(uq
δ
s
)
f +

(vq
δ
t
)
g = q mod φ (19)

Since Q is a field and φ is irreducible over Q[x], finding solutions s, t ∈
Q[x], Rf = Rg = 1 to Equation 17 is doable via the extended GCD. Because
Z is not a field but only an integral domain, we cannot straightforwardly apply
the extended GCD on Z[x]. However, by scaling the solutions in Q[x], one may
obtain solutions in Z[x] which verify Rf = Res(φ, f) and Rg = Res(φ, g) (see
e.g. [9, Corollary 6.21]).4

4Several techniques (on-the-fly rescaling, computation modulo small primes, etc.)
have been proposed to make the extended GCD more efficient (for an overview, see
e.g. [9, Chapter 6]), but they result in the same bounds over Rf , Rg.



In practice, one may get |Rf | and |Rg| to be smaller than |Res(f, φ)| and
|Res(g, φ)|, but usually not by much. In the general case, these bounds are tight
(e.g. for f = 1− kx, φ = 1 + x).

Using this method, combined with Babai’s reduction to obtain a short solu-
tion (F,G), yields the algorithm 2.

Algorithm 2 ResultantSolverφ,q(f, g)
Require: f, g ∈ Z[x]/(φ)
Ensure: Polynomials F,G such that Equation 2 is verified
1: Compute Rf ∈ Z and s ∈ Z[x] such that sf = Rf mod φ
2: Compute Rg ∈ Z and t ∈ Z[x] such that tg = Rg mod φ
3: Compute u, v ∈ Z such that uRf + vRg = GCD(Rf , Rg)
4: if δ = GCD(Rf , Rg) is not a divisor of q then
5: abort
6: (F,G)← (−(vq/δ)s, (uq/δ)t) . At this point, fG− gF = q already
7: Reduce(f, g, F,G)
8: return F,G

Correctness. One can show that if φ is irreducible over Q[x], then Algorithm 2
fails if and only the NTRU equation does not have a solution for the inputs
(f, g). This will also be true for our new algorithms. Of course, handling such
cases is important (and has been studied in [21]), but since our algorithms are
“optimal” in this regard (they fail if and only if there is no solution at all), we
consider this to be outside the scope of this document.

Lemma 1 (Complexity of ResultantSolver for φ = xn + 1 and q = 1). Let
φ = xn+1, q = 1, deg(f),deg(g) < n and the euclidean norms of f, g be bounded
by some value: log ‖f‖, log ‖g‖ ≤ B. Algorithm 2 (ResultantSolver) runs in space
O(n2B) and time O(n(n2 +B)(logn+ logB)2).

Proof. We perform a step-by-step analysis of algorithm 2.

S1. We have |Rf | ≤ |Res(f, φ)| = |det Cφ(f)| since φ is monic with distinct
roots. In addition:

|det Cφ(f)| ≤ ‖f‖n2 (upper bound)
|det Cφ(f)| ≈

√
2πn

[
‖f‖2
e

]n
(heuristic) (20)

For any square matrix B = {b1, . . . ,bn}, we have |det(B)| =
∏
i ‖b̃i‖ ≤∏

i ‖bi‖, where b̃i denotes the orthogonalization of bi with respect to the
previous rows. In our case:
• The upper bound uses the fact that each row of Cφ(f) has a norm ≤ ‖f‖2.
• For the heuristic approximation, we modelize each row of Cφ(f) as a

random vector of size ‖f‖2, so that the orthogonalization of the i-th
row has a norm

√
n+1−i
n ‖f‖2. Of course, in our case the vectors are



not independent, however this heuristic gives good approximations in
practice.

The proven upper bound yields log |Rf | = O(nB). We even have log |Rf | =
Θ(nB) with the heuristic.
To finish the study of this step, we bound log ‖p‖∞. Since C(p) = RfC(f)−1,
a straigthforward application of Cramer’s rule yields ‖p‖∞ ≤ ‖f‖n−1, so
log ‖p‖∞ = O(nB).

S2. The analysis is identical and yields log |Rg|, log ‖s‖∞ = O(nB).
S3. The extended GCD algorithm finds u, v such that |u| < |Rg| and |v| < |Rf |.

Since log |Rf | and log |Rg| both are in O(nB), the same asymptotic bound
applies to log |u| and log |v|.

S6. From the previous items, we have log ‖F‖∞, log ‖G‖∞ = O(nB).
S7. This step can be performed with a space overhead O(n) using algorithm 1

with precision O(1).

Overall, the logarithms of |u|, |v| and of each coefficient of p, s, F,G are in O(nB),
so the total space complexity is in O(n2B).

The time complexity is now easy to analyze. The costliest steps are S1 and
S2, and according to [9, Corollary 6.39] they can be performed in time O(n(n2 +
B)(logn+ logB)2), which concludes the proof. �

3 Improved Algorithm for Computing Resultants

Our first application of the field norm is an improved algorithm for computing
polynomial resultants, which we present in this section. This algorithm, by itself,
is not sufficient to significantly reduce the CPU and RAM costs of the classic
NTRU equation solving algorithm (ResultantSolver, described in section 2.9);
however, it is an important step toward the construction of our improved solver.
Moreover, this algorithm may prove useful to other applications that use resul-
tants but not necessarily NTRU lattices.

Let φ = Φpm be the pm-th cyclotomic polynomial for some integers p and
m, n = ϕ(m) its degree and K = Q[x]/(φ).

Let f ∈ K. It is well-known that the field norm NK/Q(f) is equal to the re-
sultant Res(φ, f), however we re-explain the intuition here for cyclotomic poly-
nomials. We recall that the resultant of f with φ can be computed as:

Res(φ, f) =
n−1∏
j=0

f(γj) (21)

where the γj values are the roots of φ over C.
As noted previously, K is a field extension of Q[x]/(Φm) by the morphism

y 7→ xp. We can thus group the n roots of φ into n/p sets {γjζk}, each set using
a base root γj multiplied by ζk, for k = 0 to p − 1, and ζ = e2iπ/p a primitive
p-th root of unity. It is easily shown that these n/p sets are a partition of the n



roots of φ. To ease notation, we number here the base roots from 1 to n/p. This
yields the following:

Res(φ, f) =
n/p∏
j=1

p−1∏
k=0

f(γjζk) =
n/p∏
j=1

N(f)(γj) (22)

Note that the γj (the base roots of our sets) are exactly the roots of Φm. Thus:

Res(Φpm, f) = Res(Φm,N(f)) (23)

In other words, we can divide the degree of φ by p, by replacing f with N(f).
We may note that, in FFT representation, computing the field norm is no

more than multiplying together the Fourier coefficients along the groups into
which the roots of φ are partitioned.

As we saw in section 2.6, the resultant Res(φ, f) can also be defined as the
determinant of the Sylvester matrix of φ and f . As such, it can be expressed
as a polynomial expression of the coefficients of f and φ. The result above then
expresses an equality of the expressions of Res(Φpm, f) and Res(Φm,N(f)) that
will hold over any other field where Φpm has n roots. In particular, if f is an
integral polynomial and r is a prime such that pm divides r − 1, then we can
perform all computations modulo r; notably, we can use the NTT. In NTT
representation, just like in FFT representation, the field norm of f is computed
by simply multiplying the NTT coefficients together along the partition groups
of the roots of φ.

An important special case is n = 2`. The cyclotomic polynomial is then
φ = xn + 1 = Φ2n, and p = 2. We can furthermore apply the process repeatedly:
we replace Res(xn+1, f) with Res(xn/2 +1,N(f)), then Res(xn/4 +1,N(N(f))),
and so on. We thus obtain a very simple, recursive algorithm for computing
resultants of f with xn + 1:

Algorithm 3 TowerResultantn(f)
Require: f ∈ Z[x]/(xn + 1) with n = 2`

Ensure: Rf = Res(xn + 1, f)
1: if n = 1 then
2: return f0

3: return TowerResultantn/2(N(f))

If f is an integral polynomial, then algorithm TowerResultant can be com-
puted modulo any prime r such that n divides r − 1; this yields the resultant
modulo r. Using sufficiently many such small primes allows rebuilding the re-
sultant value with the Chinese Remainder Theorem. Modulo each small prime
r, the NTT can be used, with cost O(n logn) operations in Zr, followed by
n− 1 multiplications in Zr. The total cost will then depend on how many small



primes we need, i.e. what is the maximum size of the resultant Res(xn + 1, f).
The following lemma gives us a bound on that size:

Lemma 2. Let the L1-norm of f be bounded: log ‖f‖1 ≤ C. Then:
log |Res(xn + 1, f)| ≤ nC.

Proof. We recall that p̂ denote the Fourier transform of p over the roots of φ
(here, φ = xn + 1). We have:

‖N̂(f)‖∞ = ‖(f(γ)f(−γ)){γ}‖∞ ≤ ‖(f(γ)){γ}‖∞‖(f(−γ)){γ}‖∞ = ‖f̂‖2
∞ (24)

where γ runs over all the roots of xn + 1. Therefore, for any 0 ≤ j ≤ logn, we
have ‖N̂ j(f)‖∞ ≤ ‖f̂‖2j

∞. Using classical properties of p-norms, it follows that:

‖N j(f)‖2 = 1√
n/2j

‖N̂ j(f)‖2 ≤ ‖N̂ j(f)‖∞ ≤ ‖f̂‖2j

∞ ≤ ‖f‖2j

1 (25)

When 2j = n, corresponding to the end of the recursion in algorithm TowerRe-
sultant, the result follows. �

Therefore, if the L1-norm of f is bounded by 2C , the resultant can be ex-
pressed over at most nC bits. The number of required small primes for the
computation, using the NTT, is then O(nC), yielding a total time cost of
O(n2C logn); space complexity is O(nC) (the size needed to represent the re-
sult).

This improved resultant computation can be applied to the classic NTRU
equation solver:

– Res(φ, f) is computed modulo many small primes r, as explained above.
– The Bézout coefficient s such that sf = Res(φ, f) is also computed modulo

each r; since Zr is a field, f can be inverted modulo φ, allowing for computing
s efficiently, in particular with the NTT.

– When enough small primes have been used, the complete resultant Res(φ, f)
can be rebuilt, as well as the Bézout coefficient s, by applying the CRT on
all individual monomials.

While this new algorithm reduces the time cost of ResultantSolver, it does
not help with the space complexity: indeed, the coefficients of s have all about
the same size as the resultant, and there are n of them. We will now show how
the field norm yields new recursive formulas for solving the NTRU equation,
that allow for a dramatic improvement in space complexity.

4 Improved Algorithms for Solving the NTRU Equation

This section presents new techniques and algorithms for solving the NTRU equa-
tion (Equation 2). These algorithms result from the recursive application of the
field norm to the classic NTRU solver itself, building on the improvements made
to resultants and described in the previous section.



We will first present the outline and the intuition of our techniques in sec-
tion 4.1. In section 4.2, we present a recursive algorithm based on our observa-
tions, and in section 4.3, we present a slightly slower but more memory-efficient
iterative algorithm. Finally, in section 4.4, we will provide analyses for the time
and memory requirements of both algorithms.

4.1 Outline

Let m, p > 0 be integers, L = Q[x]/(Φpm),K = Q[y]/(Φm) and N = NL/K.
Suppose that we have a given integer q and two polynomials f, g ∈ Z[x]/(Φpm),
and we want to find F,G ∈ Z[x]/(Φpm) such that:

fG− gF = q (26)

On the other hand, suppose that for N(f),N(g), which are in the smaller ring
Z[y]/(Φm), we already know F ′, G′ ∈ Z[y]/(Φm) such that:

N(f)G′ −N(g)F ′ = q (27)

We claim that we can use the solutions F ′, G′ to Equation 27 to deduce solutions
F,G for Equation 26. Indeed, we recall that N(f) =

∏
g∈Gal(L/K) g(f) = ff×,

where f× =
∏

g∈Gal(L/K)× g(f) denotes the product of all the Galois conjugates
of f except itself, and we have a similar equality for g. Equation 27 is then
equivalent to:

ff×G′(xp)− gg×F ′(xp) = q (28)

which is an equality in the larger ring Z[x]/(Φpm). From this last equation, it
follows that F = g×F ′(xp) and G = f×G′(xp) are valid solutions for the NTRU
equation.

From these observations, we can now give the outline of our algorithms for
solving the NTRU equation: 1) use the field norm to project it to a smaller
subring, 2) solve the equation in the smaller ring, 3) use Equation 28 to lift the
solutions back in the original ring. However, and contrary to the “overstretched
NTRU” attack [1], we do not perform the projection and lifting steps once, but
repeatedly. More precisely:

– we project f, g onto a smaller subring until we reach the ring of integers Z;
we call it the descent phase;

– once we obtain solutions in Z, we lift them repeatedly until we are back to
the original ring; we call this the lifting phase.

The multiple projections and liftings are key to the efficiency of our algo-
rithms: performing them once would only yield gains in a O(1) factor, but we
will show that their repetition allows to gain factors larger than Õ(n) in theory,
and in practice a factor 100 for a typical value n = 1024.

The flow of our two algorithms is summarized in the figure 1. The descent
phase is represented in the middle column, and the lifting phase is represented
in the right column.



Z[x]/(xn + 1) 3 f, g → F,G

( ↓ ↑
Z[x]/(xn/2 + 1) 3 N(f),N(g) → F [1], G[1]

( ↓ ↑
Z[x]/(xn/4 + 1) 3 N2(f),N2(g) → F [2], G[2]

( ↓ ↑
...

...
...

...

( ↓ ↑
Z 3 N`(f),N`(g) → F [`], G[`]

(29)

Fig. 1. Outline of algorithms 4 and 5 for solving equation 2.

4.2 A recursive algorithm

In the special case of φ = xn + 1 with n = 2`, we can apply these formulas
with p = 2, and then do so again on φ′ = xn/2 + 1, repeatedly. This yields the
TowerSolverR algorithm, expressed as follows:

Algorithm 4 TowerSolverRn,q(f, g)
Require: f, g ∈ Z[x]/(xn + 1) with n a power of two
Ensure: Polynomials F,G such that Equation 2 is verified
1: if n = 1 then
2: Compute u, v ∈ Z such that uf − vg = GCD(f, g)
3: if δ = GCD(f, g) is not a divisor of q then
4: abort
5: (F,G)← (vq/δ, uq/δ)
6: return (F,G)
7: else
8: f ′ ← N(f) . f ′, g′, F ′, G′ ∈ Z[x]/(xn/2 + 1)
9: g′ ← N(g)
10: (F ′, G′)← TowerSolverRn/2,q(f ′, g′)
11: F ← g×(x)F ′(x2) . F,G ∈ Z[x]/(xn + 1)
12: G← f×(x)G′(x2)
13: Reduce(f, g, F,G)
14: return (F,G)

The informal explanation of why algorithm TowerSolverR uses much less space
than the classic solver (ResultantSolver) is that, at each recursion step, the size
of individual coefficients roughly doubles, but the degree is halved, so there are
only half as many coefficients to store. The algorithm relies on Babai’s reduction
(Reduce) to bring back the coefficients of the newly computed (F,G) to about
the same size as the coefficients of (f, g) for this recursion level. A formal space
complexity analysis is given in lemma 3.



Correctness. If it outputs a solution (termination is addressed below), the cor-
rectness of Algorithm 4 is immediate. Indeed, correctness is clear at the deepest
recursion level, and if the algorithm is correct for (f, g) ∈ Z[x]/(xn/2 + 1), then
Equations 27 and 28 assure us that it will be correct for (f, g) ∈ Z[x]/(xn + 1).

Other Cyclotomic Polynomials. Algorithm TowerSolverR can be extended
to arbitrary cyclotomic polynomials. Each iteration corresponds to a case where
Q[x]/(Φm) is considered as an extension of Q[x]/(Φm′), where m′ divides m.
The degree is divided by m/m′, while average coefficient size grows by a factor
approximately m/m′. The exact order in which successive divisions are applied
on the degree is a matter of choice.

For instance, if we consider φ = Φ2304 = x768 − x384 + 1, then the algorithm
may first apply a division of the degree by 3, yielding sub-polynomials modulo
x256−x128 +1, then doing seven degree halving steps to bring the NTRU solving
problem down to modulus x2 − x+ 1.

On the other hand, an implementation could first perform the seven degree
halvings, down to modulus x6−x3 + 1, and only then perform the division by 3.
Both options have similar algorithmic complexity in time and space, but one may
be more efficient than the other, depending on specific implementation context.

Finally, we would like to mention the polynomials of the form xp − x − 1
for a prime p, as used in NTRU Prime [3]. The deliberate lack of nontrivial
subfield when working with these polynomials makes it seemingly hard to apply
our techniques there in a straightforward way, but a recent work [14] suggest
that it might be possible.

4.3 An Iterative Algorithm

Each recursion involves computing N(f) and N(g), then saving them while the al-
gorithm is invoked again on these two polynomials. However, all the Ni(f),Ni(g)
can be recomputed from f, g. Therefore, we may adopt a memory-lazy strat-
egy and avoid storing the intermediate Ni(f),Ni(g), instead recomputing them
when needed. This yields a slower but more space-efficient iterative algorithm,
described in algorithm TowerSolverI.

Compared to algorithm 4, algorithm 5 therefore performs a balanced trade-off
by a factor ` = logn between speed and memory.

4.4 Complexity analysis

We now formally study the complexities of TowerSolverR and TowerSolverI.

Lemma 3 (Space complexity analysis). Let q = 1 and the euclidean norms
of f, g be bounded: log ‖f‖, log ‖g‖ ≤ B. We also note ` = logn. Algorithms 4
(TowerSolverR) and 5 (TowerSolverI) run in space O(n`(B+`)) and O(n(B+`)),
respectively.



Algorithm 5 TowerSolverIn,q(f, g)
Require: f, g ∈ Z[x]/(xn + 1) with n a power of two
Ensure: Polynomials F,G such that Equation 2 is verified
1: (f ′, g′)← (f, g)
2: for i← 1, . . . , logn do
3: (f ′, g′)← (N(f ′),N(g′)) . At that point, f ′ and g′ have degree 0
4: Compute u, v ∈ Z such that uf ′ − vg′ = GCD(f, g)
5: if δ = GCD(f, g) is not a divisor of q then
6: abort
7: (F,G)← (vq/δ, uq/δ)
8: for i← logn, . . . , 1 do
9: (f ′, g′)← (f, g)
10: for j ← 1, . . . , i− 1 do
11: (f ′, g′)← (N(f ′),N(g′))
12: (F,G)← (g′×F, f ′×G)
13: Reduce(f ′, g′, F,G)
14: return (F,G)

Proof. We start with algorithm 4 (TowerSolverR). It is clear that we have the
following tower of recursive calls:

TowerSolverRn,q(f, g)→ TowerSolverRn/2,q(N(f),N(g))→ . . .

· · · → TowerSolverR1,q(N`(f),N`(g))

We now bound the space needed by internal variables.

1. From equations 3 and 25, each Ni(f),Ni(g) takes O(n(B + `)) bits.
2. We now bound the (euclidean) norm of (F,G). First, we consider its norm

after reduction. Noting V = Span((f, g)), the vector (F,G) can be uniquely
decomposed over V ⊕ V ⊥ as:

(F,G) = (F̃ , G̃) + (F̆ , Ğ)

where (F̃ , G̃) ∈ V ⊥, and (F̆ , Ğ) ∈ V .
We first bound the norm of (F̃ , G̃): a simple computation shows (F̃ , G̃) =(

f?

ff?+gg? ,
g?

ff?+gg?

)
. This remains true when we evaluate F̃ , G̃ over 0, so if

we note f =
∑

0≤j<n ajx
−j and F̃ =

∑
0≤j<nAjx

j , then for any 0 ≤ i < n:

A2
i = |(x−iF̃ )(0)|2 = a2

i

|(ff? + gg?)(0)|2 ≤
a2
i

(‖f‖2 + ‖g‖2)2 (30)

where Equation 30 uses the following facts:
– First equality: Ai = (x−iF )(0);
– Second equality: for any polynomial p, (x−ip)? = xip? and p?(0) = p(0);
– Inequality: for any polynomial p, pp?(0) = ‖p‖2.



Summing Equation 30 over all the i’s yields ‖F̃‖ ≤ ‖f‖
‖f‖+‖g‖ . Similarly, we

get ‖G̃‖ ≤ ‖g‖
‖f‖+‖g‖ , which yields ‖(F̃ , G̃)‖ ≤ 1. It now remains to bound

‖(F̆ , Ğ)‖: if (F,G) is reduced using Babai’s round-off algorithm, the tri-
angle inequality ensures that ‖(F̆ , Ğ)‖ ≤ n/2‖(f, g)‖; it if is reduced us-
ing the nearest plane algorithm, the pythagorean inequality ensures that
‖(F̆ , Ğ)‖2 ≤ n/4‖(f, g)‖2. In both cases, we have:

‖(F,G)‖2 = ‖(F̃ , G̃)‖2 + ‖(F̆ , Ğ)‖2 ≤ 1 + n2

4 ‖(f, g)‖2 (31)

and it follows that (F,G) can be stored in space O(n(B + `)). Of course, we
also have to handle (F,G) when it is computed from F ′, G′, f×, g× and
is therefore not yet reduced. We have ‖F‖ ≤

√
n
2 ‖F

′‖‖g‖ and ‖G‖ ≤√
n
2 ‖G

′‖‖f‖. From the inequalities 25 and 31, it follows that (F,G) can
be stored in space O(n(B + `)) even before reduction.

Algorithm 4 needs to store ` successive values of (Ni(f),Ni(g)), each taking
space O(n(B + `)), as well as one set of polynomials F ′, G′, F,G at once, each
taking space O(n(B + `)). The space complexity of algorithm 4 is therefore
O(n(`(B + `))).

For algorithm 5, the previous analysis remains valid, except that only a con-
stant number of values (Ni(f),Ni(g))’s need to be stored simultaneously, as they
can all be recomputed from (f, g) in space O(n(B + `)), according to lemma 2.
The space complexity of algorithm is therefore O(n(B + `)). �

We now study the time complexities of algorithms 4 and 5.

Lemma 4 (Time complexity analysis). With the conditions of lemma 3, the
time complexities of algorithms 4 (TowerSolverR) and 5 (TowerSolverI) are:

– Õ(nB) for algorithm 4 with Schönhage-Strassen;
– Õ(nB) for algorithm 5 with Schönhage-Strassen;
– O((nB)log2(3)`) for algorithm 4 with Karatsuba;
– O((nB)log2(3)`2) for algorithm 5 with Karatsuba;

We note that while the complexities given with Schönhage-Strassen are much
better than with Karatsuba, they are misleading as the Õ hides constant and
logarithmic factors which are not negligible in practice. The complexities given
with Karatsuba reflect much more accurately the running times that we observe
for typical values of n and B.

Proof. For i ∈ J0, `K, let Bi = log max(‖Ni(f)‖, ‖Ni(g)‖). Using equation 25
and the fact that ‖f‖1 ≤ ‖f‖2

2, we have Bj ≤ 2j+1B. The two costliest steps in
our algorithms are the descent (computing Ni(f),Ni(g) for increasing i) and the
lifting (computing F [i], G[i] for decreasing i).

– Descent. Computing Ni+1(f) from Ni(f) is essentially as costly as an NTT
and an inverse NTT, which both take time O( n2i log( n2i )M(Bi)).



Thus, it can be done in time Di = O( n2i · log n
2i ·(2iB)log2(3)) with Karatsuba,

or Õ(nB) with Schönhage-Strassen (see section 2.3). This step is repeated `
times (once for each depth) for algorithm 4, and O(`2) times (`− i times for
the depth i) for algorithm 5.

– Lifting. From equation 31, we know that Ni(f),Ni(g), F [i+1], G[i+1] have the
log of their euclidean norm bounded by Bi + log n

2i , so computing F,G at
the recursion depth i can be done in time Ri = O( n2i log( n2i )M(Bi+log n

2i )).
In both algorithms, this step is repeated once for each depth.

In algorithm 5, the descent is the costliest part as computing Ni+1(f) from
Ni(f) is done O(`2) times (` − i times for the depth i). Its time complexity is
therefore

∑
0≤i<`(`− i)Di, which ends the proof for algorithm 5.

In algorithm 4, the lifting is the costliest part as each individual step is slightly
more expensive than for the descent. Its time complexity is then

∑
0≤i<`Ri,

which ends the proof for algorithm 4. �

General Case For q. The analysis above covered the situation where the right-
hand side of the NTRU equation is q = 1. In the general case, we may target
another value of q, usually a small integer. This is done by multiplying values by
q at some point in the lifting phase. In the description of algorithms TowerSolverR
and TowerSolverI, that multiplication was done right after the GCD, but it could
be done later on. In any case, multiplying by q increases the size of polynomial
coefficients by log q bits, and Babai’s reduction will in practice absorb these bits.
In the worst case, the log q bits subsist to the last step, implying a space overhead
of at most O(n log q) bits. The same remark applies to ResultantSolver.

Failure probability. We note that Algorithms 4 and 5 can both possibly abort.
However, we note that they do so if and only if the NTRU equation has no
solution for the inputs (f, g). Indeed, if there exist F,G such that fG − gF =
q mod (xn + 1), then N`(f) N`(G) − N`(g) N`(F ) = q in Z. Thus, if the NTRU
equation can be solved, then Algorithms 4 and 5 will not fail and will solve it.

Output quality. An important notion is the quality of the solutions (F,G),
for example its Euclidean norm or its Gram-Schmidt norm (as defined in e.g.
[11,8]). For any of these metrics, our algorithms will output solutions of exactly
the same quality as existing algorithms.

Indeed, the set of solutions is of the form {(F0+rf,G0+rg)|r ∈ Z[x]/(xn+1)},
where (F0, G0) denotes an arbitrary solution pair. For any element in this set,
Algorithm 1 will output the same solution, so the Euclidean norm of the output
will be the same for Algorithms 2, 4 and 5. On the other hand, for a fixed input
(f, g), all the solutions to the NTRU equation have the same Gram-Schmidt
norm (see e.g. [8, Lemma 3]).



5 Implementation Issues and Performances

Our new solving algorithm (TowerSolverI) is implemented as part of the key
generation process of Falcon [18], a signature scheme submitted to the NIST call
for post-quantum cryptographic schemes[17]. Falcon uses modulus φ = xn + 1
(with n = 2`) or φ = xn − xn/2 + 1 (with n = 3 · 2`); these two sub-cases are
called “binary” and “ternary”, respectively. Our implementation supports the
binary case for all degrees from 2 to 1024, and the ternary case for all degrees
from 12 to 768; only the higher degrees (512, 768 and 1024) provide sufficient
security, but the lower values are convenient to test the correctness of the key
generation process.

In the context of Falcon, the target q value for the NTRU equation is fixed
to q = 12289 (binary case) or q = 18433 (ternary case). The coefficients of the
secret polynomials f and g are generated with a discrete Gaussian distribution
of standard deviation 1.17

√
q/(2n) in the binary case, thus a size of a few bits

at most; they are slightly larger in the ternary case, but in practice it can be
assumed that they always fit over 8 bits each for normal key sizes.

We implemented TowerSolverI, and measured the costs of the various steps
so as to estimate the computational overhead of TowerSolverI when compared
to TowerSolverR. We also implemented the classic solver ResultantSolver, as a
baseline to estimate the impact of our new techniques based on the field norm.
Test system is a MacBook Pro laptop (Intel Core i7-6567U clocked at 3.30 GHz),
running Linux in 64-bit mode. Implementations are in C and do not use platform
integer types larger than 64 bits. Obtained performance is the following, for
modulus φ = x1024 + 1:

Algorithm CPU (ms) RAM (kB)
Classic algorithm: ResultantSolver 2000 3300
New algorithm (iterative): TowerSolverI 20 30
New algorithm (recursive): TowerSolverR 17 40

The following subsections describe various optimizations and other local tech-
niques that together allow for these substantial performance gains. The source
code can also be browsed on the Falcon Web site:

https://falcon-sign.info/impl/falcon-keygen.c.html

5.1 Value Sizes

The analyses presented in section 4 allow computing absolute bounds on the size
of intermediate values and resultants. However, these bounds are substantially
larger than average cases.

An important point is that, in the context of key pair generation, it is accept-
able for the solving algorithm to occasionally fail. Indeed, there are unavoidable
failure conditions, when (for instance) the randomly generated f polynomial is
not invertible in Zq[x]/(φ). If such a case arises, then it suffices to generate new

https://falcon-sign.info/impl/falcon-keygen.c.html


random f and g. Similarly, we may arbitrarily reject (f, g) pairs for which the
NTRU equation can be solved, but some internal implementation threshold is ex-
ceeded: such rejections imply a reduction of the space of possible keys, but have
no significant impact on security as long as rejections are relatively infrequent.
Even rejecting half of potential private keys only gives one bit of information to
attackers.

Therefore, it is acceptable to measure the average maximum size of interme-
diate values, and use such sizes as the basis for memory allocation, with some
margin. For instance, the theoretical maximum bound on the coefficients of f
and g at maximum recursion depth (when they are constant polynomials, and
equal to their resultants with x + 1) is about 12000 bits (for n = 1024); how-
ever, in practice, their average size was measured to be about 6308 bits, with
a standard deviation of less than 25 bits. We can thus assume that they will
almost always fit in 6500 bits, and may simply reject the very rare cases when
that assumption does not hold.

This methodology allows the use of static memory allocation, that offers
strong guarantees on memory usage and also helps with making the key gener-
ation process memory access pattern uncorrelated with the secret values.

5.2 RNS, CRT and NTT

A Residue Number System is a representation of an integer z by storing z mod rj
for a number of moduli rj . Any integer in a range of length no more than the
product of the rj has a unique representation and can be unambiguously recom-
puted with the Chinese Remainder Theorem. Integers in RNS representation
can be added and multiplied by simply computing the result modulo each rj .

In our implementation, we use moduli rj which are prime numbers slightly
below, but close to, 231. We furthermore require that φ has n distinct roots
modulo each rj ; in the binary case, this is achieved by ensuring that rj = 1 mod
2n. We precomputed 521 such primes, ranging from 2135955457 to 2147473409.

Computations modulo any rj can be done with branchless code, which pro-
motes efficiency. In the C language, addition is implemented thus:

static inline uint32_t
modp_add(uint32_t a, uint32_t b, uint32_t p)
{

uint32_t d;

d = a + b - p;
d += p & -(d >> 31);
return d;

}

This function computes the sum of a and b modulo p; the operation a+b-p is
first computed modulo 232; if the result would have been negative, then the most
significant bit will be set; we then extend that bit into a full-word mask in order
to conditionally add the modulus again if necessary.



For multiplications, we use Montgomery multiplication:

static inline uint32_t
modp_montymul(uint32_t a, uint32_t b, uint32_t p, uint32_t p0i)
{

uint64_t z, w;
uint32_t d;

z = (uint64_t)a * (uint64_t)b;
w = ((z * p0i) & (uint64_t)0x7FFFFFFF) * p;
d = (uint32_t)((z + w) >> 31) - p;
d += p & -(d >> 31);
return d;

}

Montgomery multiplication of a by b modulo p computes ab/R mod p, where R
is a power of 2 greater than p (here, R = 231). The parameter p0i is a pre-
computed value equal to −p−1 mod 231. An integer a modulo p is said to be
in “Montgomery representation” if it is kept as the value aR mod p; converting
to and from Montgomery representation is done by computing a Montgomery
multiplication with, respectively, R2 mod p or 1. The Montgomery multiplica-
tion of two integers which are in Montgomery representation, is equal to the
Montgomery representation of the product of the two integers.

The Chinese Remainer Theorem (CRT), given z1 = z mod t1 and z2 = z mod
t2, where t1 and t2 are prime to each other, allows recomputing z modulo t1t2
with the following equation:

z = z1 + t1((t−1
1 mod t2)(z1 − z2) mod t2) (32)

In our case, we use the CRT to convert an integer back from RNS represen-
tation, applying it on the moduli rj one by one. At each step, we have the value
z modulo t1 and t2, where:

t1 =
∏
j<k

rj

t2 = rk
(33)

The inverse of t1 modulo t2 is precomputed and stored along with the prime
rk itself. The CRT formula above can thus be applied with:

– a reduction of a big integer modulo rk;
– a subtraction and a multiplication modulo rk;
– a multiplication of a small integer (modulo rk) with a large integer (t1);
– an addition of two large integers.

This process can be done in place, if big integers are represented in basis 231,
i.e. as sequences of 31-bit words; restricting words to 31 bits (instead of 32) also
makes computations easier in standard C, where carry flags are not available. The
aggregate products of rj could be precomputed, but they can also be recomputed
on the fly, for better space efficiency. If z fits over w words of 31 bits, and



is represented in RNS modulo w small primes rj , then the whole process of
converting z back to a big integer in basis 231 has cost O(w2) step, and is done
mostly in place (we need an extra buffer of w words to rebuild the product of
rj , but that value may be shared if we have several integers z to convert).

It shall be noted that applying the CRT with rj moduli one by one is not the
most efficient method with regards to time complexity. For instance, we could
assemble the rj with a balanced binary tree, and use Karatsuba or Schönhage-
Strassen for multiplications (each modular multiplication can be performed with
two integer multiplications with Montgomery’s method). However, such methods
are more complex to implement, and require some extra space. In our implemen-
tation, the CRT reconstruction contributes only a small part to the total runtime
cost, and can be performed mostly in-place.

In the course of the TowerSolverI algorithm, we often keep polynomials whose
coefficients are both in RNS and NTT representations:

– The RNS representation means that a polynomial f ∈ Z[x]/(φ) is replaced
with w polynomials fj ∈ Zrj

[x]/(φ).
– Each such polynomial fj is furthermore in NTT representation (the moduli
rj where chosen so that φ splits over Zrj

, thereby allowing that representa-
tion).

As the algorithm goes deeper through the recursion, the degree of polynomials
lowers, but the coefficients grow, thus requiring more moduli rj . A common
pattern is the following:

– Some polynomial inputs are provided modulo w small primes rj and in NTT
representation.

– The output is computed modulo these w small primes rj , again in NTT
representation. Moreover, the inverse NTT is applied on the inputs for each
rj .

– When all w small primes have been used, the CRT is applied to rebuild the
full input coefficients.

– The rebuilt coefficients are then used to pursue the computation modulo w′
more small primes rj , each time computing the NTT.

5.3 Binary GCD

At the deepest recursion level, the polynomials f and g are plain integers (poly-
nomials modulo x+ 1 are constant), and the NTRU equation becomes a classic
GCD computation with Bézout coefficients. Nominally, this algorithm uses re-
peated divisions, which are expensive and complex to implement. In order to
both simplify and speed up that step, we use a binary GCD variant. The algo-
rithm can be expressed as follows:

– Values a, b, u0, u1, v0 and v1 are initialized and maintained with the following
invariants:

a = fu0 − gv0
b = fu1 − gv1

(34)



Initial values are:
a = f
u0 = 1
v0 = 0
b = g
u1 = g
v1 = f − 1

(35)

– At each step, a or b is reduced: if a and/or b is even, then it is divided by 2;
otherwise, if both values are odd, then the smaller of the two is subtracted
from the larger, and the result, now even, is divided by 2. Corresponding
operations are applied on u0, v0, u1 and v1 to maintain the invariants. Note
that computations on u0 and u1 are done modulo g, while computations on
v0 and v1 are done modulo f .

– Algorithm stops when a = b, at which point the common value is the GCD
of f and g.

This algorithm works only if both f and g are odd; otherwise, we cannot
reliably compute divisions by 2 modulo f or g. Applying the principle explained
in section 5.1, we simply reject (f, g) pairs that would yield even resultants;
this represents a reduction of the key space by a factor of 3, i.e. a loss of about
1.58 bits, which is considered negligible, as far as security is concerned. This
rejection is easily done as a preliminary step, in which the resultants Res(φ, f)
and Res(φ, g) are computed modulo 2: analysis of the TowerResultant algorithm
in that specific case, when φ = xn + 1 and n = 2`, shows that it suffices to add
the coefficients of f modulo 2 (and similarly g).

The algorithm cost is quadratic in the size of the operands. The description
above is bit-by-bit; in practice, we see that the decisions in the algorithm depend
only on the few highest and lowest bits of each operand at each step. The imple-
mentation can thus be made considerably faster (experimentally, by a factor of
about 12) by using the high and low bits to compute the action of 31 successive
steps, and applying them on the values together with multiplications.

5.4 Babai’s Reduction

When reducing candidate (F,G) relatively to (f, g), we must compute a reduc-
tion factor k:

k =
⌊
Ff? +Gg?

ff? + gg?

⌉
(36)

The polynomial division can be implemented efficiently in FFT representation
with floating-point values. This implies, however, a loss of precision: thus, the
resulting k will be only approximate, and the reduction will need to be applied
repeatedly until F and G have reached an adequate size or cannot be reduced
any further.

In our implementation, we extract the high bits of f , g, F and G and compute
k with the FFT and a scaling factor, such that the resulting coefficients for k



are equal to small integers (that fit on 30 bits each) multiplied by 2s for some
integer s. We shall then subtract kf and kg from F and G, respectively.

The computation of kf and kg is the most expensive part of the reduction.
We have the choice between two methods:

1. Use a plain quadratic algorithm: if the degree is d, we thus need d2 mul-
tiplications of a big integer (a coefficient of f or g) by a small integer (a
coefficient of k).

2. Use the RNS representation and the NTT to compute the multiplication of
k by f .

In general terms, throughout the TowerSolverI algorithm, we use polynomials
of degree d with coefficients of size w words, such that dw remains roughly equal
to n (coefficients double in size when the degree is halved). Babai’s reduction will
require O(w) iterations (at that point, the size of F and G is about three times
the size of f and g). The plain quadratic algorithm involves d2 multiplications of
a big integer (size w words) by a small one, thus O(d2w) operations per step, and
a total of O((dw)2) = O(n2). The use of NTT, however, implies the following
elements:

– f and g must be converted to RNS and NTT. This is done once for the whole
reduction. Conversion to RNS is O(w2d); the NTT has cost O(wd log d).

– For each iteration, k must be converted to NTT modulo each of the small
primes (O(wd log d)), multiplied with f and g (O(wd)), and converted back
to big integers for the subtraction (O(w2d) for the CRT of d values of size
w words each).

Thus, the RNS+NTT method has cost O(w3d+w2d log d) = O(n(w2 +w log d)).
At low recursion depth, where w is small and d is large, this method is thus faster
than the plain quadratic algorithm; however, at high depth, w becomes large, the
CRT cost dominates, and the plain quadratic algorithm becomes faster. There-
fore, there is threshold at which implementation strategies should be switched.

In our implementation, we found that the threshold was at depth 4: when the
polynomial degree is n/16 or more, the NTT method is faster. This threshold
heavily depends on implementation details and the involved hardware, and thus
should be measured.

5.5 Asymptotic And Real Performance

Asymptotic analysis would call for using big integer arithmetics, and efficient
algorithms, e.g. Karatsuba or Schönhage-Strassen for integer multiplications.
But such analysis is a valid approximation of real implementation performance
only when inputs are “large enough”. Our experience, when implementing the
algorithms in the case of Falcon, is that practical degrees such as n = 1024 are
below that threshold. This is why our code uses for instance RNS and a simple
quadratic CRT process; our measures indicate that the dominant cost remains
Babai’s reduction.



With our use of quadratic algorithms for RNS and CRT, the expected asymp-
totic time complexity (for values of q and coefficients of f and g small enough to
be considered “elementary”) of TowerSolverI is O(n2 logn), while ResultantSolver
would use O(n3). For n = 1024, this implies a factor of n/ logn ≈ 100, which
matches measured time.

Similarly, TowerSolverR is theoretically faster than TowerSolverI, since it sto-
res intermediate values instead of recomputing them; but the execution time
overhead of TowerSolverI is, in practice, less than 15%. We prioritized space
efficiency and used TowerSolverI.

6 Conclusion and Open Problems

We presented the use of the field norm to optimize some computations on polyno-
mial rings, in particular resultants and solving the NTRU equation. A practical
consequence of the latter is that the post-quantum signature algorithm Falcon is
fully usable on small microcontrollers or even smartcards, since 32 kB of RAM
are enough to run our algorithm even for a long-term security NTRU lattice
(degree n = 1024): all operations related to signatures (signature production,
verification, and key pair generation) can fit on such constrained hardware.

We list below some open questions.

Non-cyclotomic polynomials. In our description, we covered the case of
cyclotomic polynomials as moduli. The method can be extended to other moduli;
in fact, for every modulus φ = φ′(xd) for some d > 1, application of the “field
norm” can divide the degree by d for purposes of computing resultants and
solving the NTRU equation. This holds even if φ is not irreducible over Q[x],
i.e. if Q[x]/(φ) is not, in fact, a field. The description of the general case remains
a problem to explore; however, the use of reducible moduli in NTRU lattices is
usually not recommended.

Floating-point arithmetic. Efficient implementation still relies, for Babai’s
reduction, on FFT and floating-point numbers. Fixed-point representation is
probably usable, but the required range and precision must still be investigated.
Whether the reduction may be performed efficiently without the FFT is an open
problem.

Large integers. While our gains, in terms of memory, are significant, we still
need to handle large integers. From an implementation complexity point of view,
it would be interesting to get rid of large integers, for example by performing all
operations in RNS, without negatively impacting the running time and memory
requirements of our algorithms.



Other applications to cryptographic constructions. We think it is worth-
while to investigate whether our techniques can improve the efficiency of other
cryptographic algorithms. In addition, just like we provided a constructive ap-
plication of the field norm (as opposed to [1]), a constructive application of the
trace (as opposed to [6]) would be, in our opinion, very interesting. Finally, [14]
showed that an algebraic perspective is not necessary in the case of [1]; this raises
the question of whether it is in our case.

Applications to cryptanalysis. A final line of research would be to use our
techniques to improve the attacks based on the field norm [1], or even on the
field trace [6].
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