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Abstract. Dodis and Yu (TCC 2013) studied how the security of cryp-
tographic primitives that are secure in the “ideal” model in which the dis-
tribution of a randomness is the uniform distribution, is degraded when
the ideal distribution of a randomness is switched to a “real-world” (pos-
sibly biased) distribution that has some lowerbound on its min-entropy
or collision-entropy. However, in many constructions, their security is
guaranteed only when a randomness is sampled from some non-uniform
distribution (such as Gaussian in lattice-based cryptography), in which
case we cannot directly apply the results by Dodis and Yu.
In this paper, we generalize the results by Dodis and Yu using the Rényi
divergence, and show how the security of a cryptographic primitive whose
security is guaranteed when the ideal distribution of a randomness is a
general (possibly non-uniform) distribution Q, is degraded when the dis-
tribution is switched to another (real-world) distribution R. More specif-
ically, we derive two general inequalities regarding the Rényi divergence
of R from Q and an adversary’s advantage against the security of a
cryptographic primitive. As applications of our results, we show (1) an
improved reduction for switching the distributions of distinguishing prob-
lems with public samplability, which is simpler and much tighter than
the reduction by Bai et al. (ASIACRYPT 2015), and (2) how the differ-
ential privacy of a mechanism is degraded when its randomness comes
from not an ideal distribution Q but a real-world distribution R. Finally,
we show methods for approximate-sampling from an arbitrary distribu-
tion Q with some guaranteed upperbound on the Rényi divergence (of
the distribution R of our sampling methods from Q).

Keywords: Rényi divergence, security evaluation, security reduction.

1 Introduction

1.1 Background and Motivation

Most cryptographic primitives such as encryption and signature schemes, are
defined using a probabilistic algorithm that internally generates and uses ran-



domness, and their security is typically defined and analyzed assuming that the
randomness used by the algorithm is sampled from some pre-determined “ideal”
distribution. Let us call it an ideal model. For example, in the case of encryp-
tion and signature schemes, their key generation algorithm is typically defined
as a probabilistic algorithm that takes a randomness chosen from the uniform
distribution as input, and we evaluate their security by estimating the prob-
ability of any possible adversary (with some resource constraint, e.g. running
time, memory size, the number of oracle queries) violating the security of the
considered schemes is sufficiently small. However, randomness available in the
real world may not necessarily come from the ideal distribution with which the
security of cryptographic primitives is analyzed. It is often the case that ran-
domness used for generating some secret parameter (such as a secret key) could
be biased and/or estimating its exact distribution could be difficult, for example,
a situation of using randomness generated based on some physical phenomena
(radiation, thermal noise, etc.) [5], a situation in which its partial information
is possibly leaked, or a situation of using randomness generated from biometric
information [8], to name a few. Even if a cryptographic primitive is guaranteed
to be secure in the ideal model via a formal security proof, the security of the
primitive is no longer guaranteed in the real world when such a “real-world”
randomness is used.

Regarding such “ideal” vs. “real-world” randomness problem, Dodis and
Yu [11] studied how the security of a cryptographic primitive in the ideal model
where the distribution of its randomness is the uniform distribution U , is de-
graded when the distribution is switched to another (“real-world”) possibly bi-
ased distribution R. In particular, they showed that for all cryptographic primi-
tives categorized as unpredictability applications (e.g. one-way functions, message
authentication codes, and signature schemes) and for some (but not all) crypto-
graphic primitives categorized as indistinguishability applications satisfying the
so-called “square-friendly” property [4, 9, 11] (e.g. pseudorandom functions and
IND-CPA secure encryption schemes), their security is not totally lost even if
the distribution of a randomness is switched to a real-world distribution R that
satisfies some entropy criteria. More specifically, Dodis and Yu showed two in-
equalities that show how an adversary’s advantage against the security of a cryp-
tographic primitive could increase when the min-entropy or collision-entropy of
the real-world distribution R is decreased, compared to the ideal model in which
its distribution is the uniform distribution U and has the maximum entropy.

However, an ideal distribution, which we denote by Q throughout this paper,
of a randomness used by cryptographic primitives is in general not necessarily
the uniform distribution. For example, there are constructions in lattice-based
cryptography in which a secret key is sampled from the (discrete) Gaussian
distribution (e.g. [16, 2]), and randomness (a noise vector) used in the encryption
procedure is chosen according to a biased distribution so that 0 appears more
often than other values (e.g. [15]). When implementing these constructions in
practice, again the real-world distributionR of a randomness may not necessarily
follow the ideal distribution Q. However, for these constructions, we cannot
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directly apply the results by Dodis and Yu [11], since their results are restricted
to the case in which the ideal distribution Q of a randomness is the uniform
distribution.

The main motivation of our work is to generalize and extend the results by
Dodis and Yu [11], so that we can apply the analogues of their results to a wider
class of distributions as the ideal distribution Q.

1.2 Our Results

As mentioned above, we generalize and extend the results by Dodis and Yu
[11] so that the analogues of their results can be applied to a wider class of
distributions as the ideal distribution Q of a randomness. The main tool we use
in this paper is the Rényi divergence [21, 23], which is a measure of divergence
between distributions, and has recently been found useful in security evaluations
of cryptographic primitives [3, 22, 6, 1, 19].

Our results are summarized as follows:

– In Section 3, we show two general lemmas that serve as the main tools
throughout the paper, which are inequalities on two expectations each taken
over arbitrary distribution Q and over R, respectively (where intuitively, Q
is an “ideal” distribution and R is a “real-world” distribution), and involve
the Rényi divergence of R from Q. These lemmas are generalizations of the
lemmas shown by Dodis and Yu [11], who showed similar inequalities involv-
ing the min-entropy and collision-entropy of the “real-world” distribution R,
and theirs can only handle the case where the “ideal” distribution Q is the
uniform distribution.

– Based on our general lemmas, in Section 4, we show general techniques for
evaluating security of a cryptographic primitive (or, we use the term “ap-
plication” following the style of [11] from here on) in case the distribution
of a parameter (such as a secret key and/or a randomness) is switched from
an ideal distribution Q to an arbitrary “real-world” distribution R, using
the Rényi divergence. As in [11], we show two types of results, one regard-
ing unpredictability applications and the other regarding “square-friendly”
indistinguishability applications. These results are generalizations of the cor-
responding results by Dodis and Yu [11], where their results only capture
the case in which the ideal distribution Q is the uniform distribution.

– In Section 5, we show two applications of the above general results: one
application from our general security evaluation technique for square-friendly
indistinguishability applications from Section 4, and the other application
from one of our lemmas in Section 3.
• Our first application is for switching the distribution of a problem in-
stance in distinguishing problems that satisfy the property called public
samplability, formalized by Bai et al. [3]. Using the Rényi divergence,
they showed a reduction from the hardness of a problem in this class
to the hardness of the same problem but in which the distribution of
a parameter behind a problem instance is switched from an original
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distribution Q to another distribution R. We show that distinguishing
problems with public samplability are square-friendly in the sense of [4,
9, 11], thereby we can apply our above result on the general security
evaluation technique of square-friendly applications under switching dis-
tributions to obtain a quantitatively improved reduction. Although our
results are not applicable to the case in which the order α of the Rényi
divergence is less than 2, our result gives a simpler and much tighter
reduction than that of [3] for all α ≥ 2. Concretely, if we compare the
ratio of the running time and the advantage of the reduction algorithm
(which is sometimes called the “work factor”, and a smaller value means
a tighter reduction) for the same order of the Rényi divergence, the work
factor of our reduction (solving the problem under distribution Q) is al-
ways at least O(ϵ−2) times smaller than that of the reduction shown in
[3], where ϵ denotes the advantage of an underlying adversary (solving
the problem under distribution R). For the details, see Section 5.1.

• As the second application, we show that how differential privacy [14,
12, 13] of a mechanism is degraded when the randomness used by the
mechanism comes from not an ideal distribution Q but a real-world dis-
tribution R, using the Rényi divergence of order ∞. It is typical that
non-uniform distributions that are uncommon in the constructions of
cryptographic primitives (e.g. the Laplace distribution, the matrix Bing-
ham distribution [7]), are used in the literature of differential privacy.
Thus, although simple, we believe that this result is useful. For the de-
tails, see Section 5.2.

– Finally, motivated by the difficulty of sampling randomness from non-uniform
distributions in computer implementations in practice, and in the light of the
usefulness and versatility of the Rényi divergence in cryptography, in Sec-
tion 6, we show two methods for approximate sampling from an arbitrary
distribution Q by using a uniformly chosen random string via the inversion
sampling (a.k.a. inverse transform sampling), with the guarantee that the
Rényi divergence of the distribution of our sampling method (which we de-
note by R) from the target ideal distribution Q, is upperbounded. We show
two results: one for the Rényi divergence of order 2 and the other for the
Rényi divergence of order ∞.

We remark that previously, Yao and Li [24] showed some generalization
of Dodis and Yu’s lemmas [11] using Rényi entropy (which incorporates min-
entropy and collision-entropy as special cases), and corresponding techniques
for evaluating security of unpredictability and square-friendly indistinguishabil-
ity applications, in a similar way we do in this paper. Interestingly, [24] uses
the Hölder inequality as a main tool, which we also use for showing one of our
technical lemmas in Section 3. Like [11], however, the results of [24] are only
applicable to the case in which the ideal distribution is the uniform distribution
(and the real-world distribution has some high Rényi entropy), and our results
in this paper are more general than their main theorems [24, Theorems 3.2 and
3.3] in the sense that the latter can be derived from ours. On the other hand,
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Yao and Li also studied the application of their results to a setting where the
real-world distribution only has some high computational version of Rényi en-
tropy, which is a setting we do not explore in this work. It would be interesting
to investigate whether results with computational variants of Rényi divergence
analogous to [24] can be established.

1.3 Paper Organization

The rest of the paper is organized as follows. In Section 2, we review basic no-
tation and the definitions used in the paper. In Section 3, we show two general
lemmas that are used throughout the subsequent sections. In Section 4, we show
two general techniques for evaluating the security of cryptographic primitives,
one for unpredictability applications and the other for “square-friendly” indis-
tinguishability applications. In Section 5, we show two applications of the results
from the previous sections, one for an improved reduction for a class of distin-
guishing problems called distinguishing problems with public samplability, and
the other for differential privacy. In Section 6, we propose two inversion sampling
methods for arbitrary discrete distributions, with some guaranteed upperbounds
on the Rényi divergence.

2 Preliminaries

In this section, we review the basic notation and the definitions for the Rényi
divergence and entropy, and some useful lemmas.

2.1 Basic Notation

N, Z≥0, R, and R≥0 denote the set of all natural numbers, all non-negative
integers, all real numbers, and all non-negative real numbers, respectively. For
n ∈ N, we define [n] := {1, . . . , n}. If S is a finite set, then “|S|” denotes its
size, and “x ←R S” denotes that x is chosen uniformly at random from S. If
X is a distribution (over some set), then “x ←R X” denotes that x is chosen
according to the distribution X , and “[X ]” denotes the support of X , i.e. [X ] :=
{x|Pr[X = x] > 0}. In this paper, we only treat discrete distributions.

If A is a probabilistic algorithm, then “A(x)” denotes the distribution of A’s
output when it takes x as input and uses an internal randomness chosen ac-
cording to some prescribed distribution, and if we need to specify a particular
randomness r used by A, we denote it by “A(x; r)” (in which case the computa-
tion of A is deterministic that takes x and r as input).

2.2 Hölder Inequality

Here, we recall the Hölder inequality.
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Lemma 1 (Hölder Inequality). Let n ∈ N, and let (a1, . . . , an) and (b1, . . . ,
bn) be sequences of real numbers. Let α, β ∈ (1,∞) be real numbers such that
1
α + 1

β = 1. Then, it holds that

∑
i∈[n]

|ai · bi| ≤
(∑
i∈[n]

|ai|α
) 1

α ·
(∑
i∈[n]

|bi|β
) 1

β

.

Note that the case of α = β = 2 implies the Cauchy-Schwarz inequality.

2.3 Rényi Divergence

Here, we recall the definition of Rényi divergence in the form typically used in
cryptography.3

Definition 1. Let Q and R be distributions such that [R] ⊆ [Q], and let α > 1
be a real number. The Rényi divergence of order α (or α-Rényi divergence, for
short) of the distribution R from the distribution Q, denoted by RDα(R∥Q), is
defined by

RDα(R∥Q) :=
( ∑

z∈[Q]

Pr[R = z]α

Pr[Q = z]α−1

) 1
α−1

,

and the ∞-Rényi divergence of R from Q is given by

RD∞(R∥Q) := max
z∈[Q]

Pr[R = z]

Pr[Q = z]
.

It is known that the Rényi divergence is non-decreasing in its order, and not
less than 1 when α > 1 (see [23]). Thus, for any distributions Q and R and
1 < α < α′, we have 1 ≤ RDα(R∥Q) ≤ RDα′(R∥Q).

It is also known that the Rényi divergence enjoys several (multiplicative)
analogues of the properties satisfied by the statistical distance (see [3, Lemma
2.9]). Here, we recall the so-called probability preservation property of the Rényi
divergence.

Lemma 2 (Probability Preservation). Let Q and R be distributions over
the same set X such that [R] ⊆ [Q] ⊆ X. Then, for all E ⊆ X and α ∈ (1,∞),
it holds that

Pr[R ∈ E] ≤ min
{ (

RDα(R∥Q) · Pr[Q ∈ E]
)α−1

α

, RD∞(R∥Q) · Pr[Q ∈ E]
}
.

2.4 Entropy

Here, we recall the definitions of entropy.

3 In a non-cryptographic context, it is typical to define the α-Rényi divergence as the
logarithm of the quantity RDα defined here [23].
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Definition 2. Let X (resp. Y) be a distribution defined over a set X (resp. Y ).

– The min-entropy of X , denoted by H∞(X ), is defined by

H∞(X ) := − log2

(
max
x∈X

Pr[X = x]
)
.

– The average collision-entropy of X given Y, denoted by H2(X|Y), is defined
by

H2(X|Y) := − log2

(
E

y←RY

[∑
x∈X

Pr[X = x|Y = y]2
])

.

3 General Lemmas for Switching Distributions

In this section, we show two lemmas that are used as the main tools for showing
our results in the subsequent sections. Our lemmas are generalizations of the
lemmas shown by Dodis and Yu [11]. Thus, for reference we first recall their
lemmas in Section 3.1. We then show our lemmas in Section 3.2.

3.1 Lemmas by Dodis and Yu

Dodis and Yu [11] showed the following lemmas. Actually, they only state the
lemmas for functions taking bitstrings as input, but the lemmas straightfor-
wardly generalize for functions with any domain. Thus, we state such versions.

Lemma 3 (Lemma 1 in [11]). Let X be a finite set, R be a distribution over
X, and U be the uniform distribution over X. Then, for any (deterministic)
non-negative function f : X → R≥0, we have

E[f(R)] ≤ |X| · 2−H∞(R) ·E[f(U)].

Lemma 4 (Adapted from Lemmas 5 and 7 in [11]4). Let X and Y be
finite sets, and (R,S) be a joint distribution over X × Y . Let U be the uniform
distribution over X. Then, for any (deterministic) real-valued function f : X ×
Y → R, we have ∣∣∣E[f(R,S)]

∣∣∣ ≤√
|X| · 2−H2(R|S) ·E[f(U ,S)2] and∣∣∣E[f(R,S)]−E[f(U ,S)]

∣∣∣ ≤√
(|X| · 2−H2(R|S) − 1) ·E[f(U ,S)2].

3.2 Our Lemmas

Our first lemma is as follows.

Lemma 5. Let Q and R be distributions over the same set X such that [R] ⊆
[Q] ⊆ X. Then, for any (deterministic) real-valued function f : X → R and any
α ∈ (1,∞), we have∣∣∣E[f(R)]

∣∣∣ ≤ min

{(
RDα(R∥Q) ·E

[
|f(Q)|

α
α−1

])α−1
α

, RD∞(R∥Q) ·E
[
|f(Q)|

]}
.

(1)
4 Lemma 7 in [11] is attributed to Barak et al. [4].
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Relation to Dodis and Yu’s Lemma. Before providing the proof, let us remark
that the above lemma is a generalization of Lemma 3 and the first inequality
in Lemma 4. To see this, note that for any distribution R over some set X and

the uniform distribution U over X, we have RD∞(R∥U) = maxx∈X
Pr[R=x]
Pr[U=x] =

|X| · 2−H∞(R), and thus Lemma 3 can be obtained by setting Q = U in our
lemma for non-negative functions. Also, let S be an arbitrary distribution over
some set Y that forms a joint distribution (R,S) over X × Y . Then, we have

RD2

(
(R,S)∥(U ,S)

)
=

∑
(x,y)∈X×Y

Pr[R = x ∧ S = y]2

Pr[U = x ∧ S = y]

=
∑

(x,y)∈X×Y

(Pr[R = x|S = y] · Pr[S = y])2

1
|X| · Pr[S = y]

= |X| ·
∑
y∈Y

Pr[S = y] ·
(∑
x∈X

Pr[R = x|S = y]2
)

= |X| · 2−H2(R|S),

and thus, the first inequality in Lemma 4 can be obtained by setting R in our
lemma to be (R,S) explained here, setting Q = (U ,S), and then invoking our
lemma for general real-valued functions and α = 2.

Proof of Lemma 5. For each z ∈ [Q], let rz := Pr[R = z] and qz := Pr[Q = z].
The bound regarding the ∞-Rényi divergence can be shown as follows:∣∣∣E[f(R)]

∣∣∣ ≤ ∑
z∈[Q]

rz · |f(z)|
(∗)
≤

∑
z∈[Q]

RD∞(R∥Q) · qz · |f(z)|

= RD∞(R∥Q) ·E
[
|f(Q)|

]
,

where the inequality (*) uses the probability preservation property (Lemma 2),
which implies rz ≤ RD∞(R∥Q) · qz.

The bound for a general α ∈ (1,∞) does not simply follow from the prob-
ability preservation property, but can be shown using the Hölder inequality
(Lemma 1). Specifically, we have∣∣∣E[f(R)]

∣∣∣ ≤ ∑
z∈[Q]

(
rz · q

−α−1
α

z

)
· q

α−1
α

z · |f(z)|

(∗)
≤

( ∑
z∈[Q]

(
rz · q

−α−1
α

z

)α) 1
α ·

( ∑
z∈[Q]

(
q

α−1
α

z · |f(z)|
) α

α−1
)α−1

α

=
( ∑
z∈[Q]

rαz · q−(α−1)z

) 1
α ·

( ∑
z∈[Q]

qz · |f(z)|
α

α−1

)α−1
α

=
(
RDα(R∥Q)α−1

) 1
α ·

(
E
[
|f(Q)|

α
α−1

])α−1
α

,
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where the inequality (*) is due to the Hölder inequality. Note that the rightmost
is equivalent to the first bound in Eq. (1). ⊓⊔ (Lemma 5)

Note that if the range of a function f is [0, 1], then f(z)a ≤ f(z) holds for
every a ≥ 1, and thus the inequalities in Lemma 5 can be slightly simplified. For
our purpose, it is useful to formally state it as a corollary, which can be seen as
a generalization of the probability preservation property (Lemma 2).

Corollary 1 (Special Case of Lemma 5). Let Q and R be the same as
in Lemma 5. Then, for any (deterministic) function f : X → [0, 1] and any
α ∈ (1,∞), we have

E[f(R)] ≤ min
{ (

RDα(R∥Q) ·E[f(Q)]
)α−1

α

, RD∞(R∥Q) ·E[f(Q)]
}
.

Our second lemma is as follows. Similarly to our first lemma, the lemma here
is a generalization of the second inequality in Lemma 4.

Lemma 6. Let Q and R be distributions over the same set X such that [R] ⊆
[Q] ⊆ X. Then, for any (deterministic) real-valued function f : X → R, we have∣∣∣E[f(R)]−E[f(Q)]

∣∣∣ ≤√
(RD2(R∥Q)− 1) ·E[f(Q)2]. (2)

Proof of Lemma 6. Let c ∈ R≥0. Using the same notation as in the proof of
Lemma 5, we have∣∣∣E[f(R)]− c ·E[f(Q)]

∣∣∣ = ∣∣∣ ∑
z∈[Q]

( rz√
qz
− c · √qz

)
· √qz · f(z)

∣∣∣
≤

√√√√ ∑
z∈[Q]

( rz√
qz
− c · √qz

)2

·
√ ∑

z∈[Q]

qz · f(z)2

=

√√√√ ∑
z∈[Q]

r2z
qz
− 2c ·

∑
z∈[Q]

rz + c2 ·
∑
z∈[Q]

qz ·
√

E[f(Q)2]

=
√
(RD2(R∥Q)− 2c+ c2) ·E[f(Q)2],

where the inequality is due to the Cauchy-Schwarz inequality (Lemma 1 with
α = β = 2), and the last equality uses

∑
z∈[Q] rz =

∑
z∈[Q] qz = 1. Then, Eq. (2)

is obtained by taking c = 1.5 ⊓⊔ (Lemma 6)

4 General Security Evaluation Techniques via Rényi
Divergence

In this section, we show general techniques for evaluating security in case the
distribution of a parameter (e.g. a secret key, randomness etc.) in a security

5 We can also obtain the proof of the case α = 2 of our first lemma by setting c ∈ {0, 2}
in this proof. Setting other values for c does not seem to give us any merit.

9



game is switched from an “ideal” distribution Q to an arbitrary “real-world”
distribution R, using the Rényi divergence.

Specifically, in Section 4.1, we first recall the definition of an abstract security
game in the style of [11] that abstractly captures most security games used in
cryptography, in particular unpredictability applications and indistinguishability
applications. There, we also recall the notion of “square-security” [4, 11]. It plays
an important role when showing results for “square-friendly” applications, which
is a class of applications including all unpredictability applications and many
indistinguishability applications.

Then, in Sections 4.2 and 4.3, we show general results on how the security of
applications in the “ideal” model in which a parameter is drawn from an ideal
distribution Q, is “degraded” in the “real-world” model in which a parameter is
drawn from an arbitrary distribution R. Our result for unpredictability applica-
tions is given in Section 4.2, and our result for square-friendly indistinguishability
applications is given in Section 4.3.

4.1 Definitions

Abstract Security Game. We define a general type of cryptographic applications
in the same manner as [11]. The security of a cryptographic application Π is
defined via an interactive security game between a probabilistic adversary A
and a probabilistic challenger C(r), where C is fixed by the definition of Π,
and r ∈ X is a “parameter” 6 in the security game that is drawn from some
distribution, which we wish to switch to another distribution using the Rényi
divergence. The game can have an arbitrary structure, and after the interaction
with the adversary A, the challenger C(r) outputs a bit. If C(r) outputs 1 (resp.
0), A is said to win (resp. lose) the game. As usual, we consider two types of
cryptographic applications: unpredictability applications and indistinguishability
applications. The former type captures applications in which it is hard for an
adversary to compute some value (e.g. a preimage of a one-way function, forging a
signature on a fresh message), and the latter type captures applications in which
it is hard for an adversary to guess the challenge bit chosen by the challenger
(e.g. security of a pseudorandom function, IND-CPA security of an encryption
scheme).

Given a particular parameter r ∈ X, let WinA(r) be the probability that A
wins in the security game played with the challenger C(r), where the probability
is over the choice of the randomness consumed by A and C(r). Then, we define
the advantage AdvA(r) of A on r (against particular C fixed by an application
Π) as follows:

AdvA(r) :=

{
WinA(r) (for unpredictability applications)

2 · WinA(r)− 1 (for indistinguishability applications)
.

6 In [11], r was called a “secret key”. Since r can be any value sampled in the security
game, we call it just a “parameter”.
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The actual advantage of an adversary in a security game is defined by taking
(the absolute value of) the expectation over the choice of the parameter r in
the game. In this paper, as in [11], we will treat ordinary security and “square-
security”, the latter of which takes the expectation of the squared value of the
advantage and plays an important role for the results on indistinguishability
applications that are “square-friendly”. The (square-)security of Π in case the
parameter r is chosen according to a distribution X , is called (square-)security
in the X -model.

Definition 3 (Security and Square-Security (Adapted from [11])). Let
X be a distribution over the parameter space X. We say that an application Π
is

– (T, ϵ)-secure in the X -model, if for all adversaries A with resource7 T , it
holds that |E[AdvA(X )]| ≤ ϵ.
|E[AdvA(X )]| is called the advantage of A in the X -model.

– (T, σ)-square-secure in the X -model, if for all adversaries A with resource
T , it holds that E[AdvA(X )2] ≤ σ.
E[AdvA(X )2] is called the square-advantage of A in the X -model.

4.2 General Result for Unpredictability Applications

Our result for unpredictability applications is stated as follows.

Theorem 1. Let Π be an unpredictability application. Let Q and R be distri-
butions over the parameter space X satisfying [R] ⊆ [Q] ⊆ X. Then, for any
adversary A against the security of Π, it holds that8

E[AdvA(R)] ≤ FQ→R

(
E[AdvA(Q)]

)
,

where the function FQ→R(·) is defined by

FQ→R(ϵ) := min


minα∈(1,∞)

(
RDα(R∥Q) · ϵ

)α−1
α

,

RD∞(R∥Q) · ϵ,
ϵ+

√
(RD2(R∥Q)− 1) · ϵ

 .

In particular, if Π is (T, ϵ)-secure in the Q-model, then Π is also (T, FQ→R(ϵ))-
secure in the R-model.

This theorem shows how the security of an unpredictability application under
a real-world distribution R is guaranteed in terms of its security under an ideal
distribution Q, via the Rényi divergence. In particular, this theorem gives us

7 Resource of an adversary abstractly models all of an adversary’s efficiency measures,
e.g. the running time, the circuit size, the number of oracle queries, etc.

8 Note that for unpredictability applications, the absolute value of an adversary A’s
advantage can be removed.
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an implication to the standard asymptotic-style security: If an unpredictability
application is secure in the Q-model in the asymptotic sense (i.e. any efficient
adversary’s advantage in the Q-model is bounded by a negligible function of
a security parameter), it remains secure in the R-model as long as the Rényi
divergence of some order α ∈ (1,∞] is bounded by a polynomial of the security
parameter.

Proof of Theorem 1. Let A be any adversary against the security of Π. Since
Π is an unpredictability application, the range of AdvA(·) is [0, 1]. Thus, A’s
advantage in the R-model (resp. Q-model) is E[AdvA(R)] (resp. E[AdvA(Q)]).
Then, E[AdvA(R)] ≤ minα∈(1,∞)(RDα(R∥Q)·E[AdvA(Q)])

α−1
α and E[AdvA(R)] ≤

RD∞(R∥Q) ·E[AdvA(Q)], are obtained by applying Corollary 1 to the advantage
function AdvA(·).

To complete the proof, it remains to show E[AdvA(R)] ≤ E[AdvA(Q)] +√
(RD2(R∥Q)− 1) ·E[AdvA(Q)]. By the triangle inequality, we have

E[AdvA(R)] ≤ E[AdvA(Q)] +
∣∣∣E[AdvA(R)]−E[AdvA(Q)]

∣∣∣.
Regarding the second term in the right hand side, due to Lemma 6, we have∣∣∣E[AdvA(R)]−E[AdvA(Q)]

∣∣∣ ≤√
(RD2(R∥Q)− 1) ·E[AdvA(Q)2]

≤
√
(RD2(R∥Q)− 1) ·E[AdvA(Q)],

where we use AdvA(·)2 ≤ AdvA(·), which is in turn because its range is [0, 1].
Combining the two inequalities yields the desired inequality. ⊓⊔ (Theorem 1)

4.3 General Result for Square-Friendly Indistinguishability
Applications

Here, we show our general result for “square-friendly” indistinguishability appli-
cations, which is done via the notion of square-security.

We first show how the security of any application (including both unpre-
dictability and indistinguishability applications) under a real-world distribution
R is guaranteed from its square-security (and ordinary security) under an ideal
distribution Q, via the 2-Rényi divergence RD2(R∥Q).

Lemma 7. Let Π be an (unpredictability/indistinguishability) application. Let
Q and R be distributions over the parameter space X satisfying [R] ⊆ [Q] ⊆ X.
Then, for any adversary A against the security of Π, it holds that∣∣∣E[AdvA(R)]

∣∣∣ ≤ GQ→R

( ∣∣∣E[AdvA(Q)]
∣∣∣, E[AdvA(Q)2]

)
,

where the function GQ→R(·, ·) is defined by

GQ→R(ϵ, σ) := min
{ √

RD2(R∥Q) · σ, ϵ+
√

(RD2(R∥Q)− 1) · σ
}
. (3)
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In particular, if Π is (simultaneously) (T, ϵ)-secure and (T, σ)-square-secure in
the Q-model, then Π is also (T,GQ→R(ϵ, σ))-secure in the R-model.9

Proof of Lemma 7. Let A be any adversary against the security of Π. Then,
applying the first bound in Eq. (1) in Lemma 5 with α = 2 to the advantage func-
tion AdvA(·), we immediately obtain |E[AdvA(R)]| ≤

√
RD2(R∥Q) ·E[AdvA(Q)2].

To complete the proof, it remains to show |E[AdvA(R)]| ≤ |E[AdvA(Q)]| +√
(RD2(R∥Q)− 1) ·E[AdvA(Q)2]. By the triangle inequality, we have∣∣∣E[AdvA(R)]

∣∣∣ ≤ ∣∣∣E[AdvA(Q)]
∣∣∣+ ∣∣∣E[AdvA(R)]−E[AdvA(Q)]

∣∣∣.
Regarding the second term in the right hand side, due to Lemma 6, we have∣∣∣E[AdvA(R)]−E[AdvA(Q)]

∣∣∣ ≤√
(RD2(R∥Q)− 1) ·E[AdvA(Q)2].

Combining the two inequalities yields the desired inequality. ⊓⊔ (Lemma 7)

Next, we would like to establish the implication of the security of an indis-
tinguishability application to its square-security, but unfortunately it is known
that for some indistinguishability applications, their square-security is not nec-
essarily implied by the ordinary security. Fortunately, however, the works of
Barak et al. [4] and Dodis and Yu [11] showed that for some indistinguishabil-
ity applications in which the so-called “double-run trick” is applicable, ordinary
(non-square) security does imply its corresponding square-security. Dodis and
Yu formalized a sufficient condition for such indistinguishability applications as
what they call simulatability. It is this property that makes indistinguishability
applications square-friendly. We recall the definition here.

Definition 4 (Simulatability [11]). Consider an indistinguishability applica-
tion Π in the security game of which possibly there is a “failure predicate”10 F
(that is efficiently checkable by both an adversary A and the challenger C(r)) such
that C(r) regards A as winning the game if A succeeds in guessing the challenge
bit and does not violate F , while if A violates F , the challenger flips a random
coin on behalf of A and uses it to decide if A wins the game or not11. We say
that Π is (T ′, T, γ)-simulatable, if for any parameter r and any adversary A
whose resource is T and that never violates the failure predicate F , there exists
an adversary B (against the security of Π) with resource T ′ (for some T ′ ≥ T )
such that:
9 Note that the first bound does not involve the (non-square) advantage |E[AdvA(Q)]|,
and hence is true regardless of the (non-square) security of Π in the Q-model.

10 A failure predicate models the restrictions in a security game that typically pre-
vent an adversary from winning the game trivially, e.g., submitting the challenge
ciphertext as a decryption query in the IND-CCA security game of an encryption
scheme.

11 This is to offset an adversary’s advantage in case it violates the failure predicate F .
How an adversary’s advantage is affected in case it violates the failure predicate F is
not explicit in the definition of [11], and thus we adopt (seemingly) the most natural
choice which is also convenient for our purpose.
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1. The execution between B and “real” C(r) defines two independent executions
between a copy Ai of A and a “simulated” challenger Ci(r), for i = 1, 2. In
particular, except reusing the same r, A1, C1(r), A2, and C2(r) use fresh and
independent randomness, including independent challenge bits b1 and b2.

2. The challenge bit b used by the “real” C(r) is equal to the challenge bit b2
used by the “simulated” C2.

3. Before making its guess b′ of the challenge bit b, B learns the values b1, b
′
1,

and b′2, where each b′i denotes Ai’s guess for bi.

4. The probability of B violating the failure predicate F is at most γ.

Though it might look somewhat complicated, as noted in [11], simulatability
is satisfied by many natural indistinguishability applications, such as IND-CPA
and IND-CCA security of encryption schemes, (weak) pseudorandom functions.
Looking ahead, in Section 5.1, we will see another example of indistinguishability
applications with simulatability, which is called “distinguishing problems with
public samplability” formalized by Bai et al. [3].

We now show that for indistinguishability applications that satisfy simulata-
bility as defined above, their square-security is indeed implied by the ordinary
security. This is a generalized version of [11, Lemma 4].

Lemma 8. Let X be a distribution over the parameter space X. If an indis-
tinguishability application Π is (T ′, T, γ)-simulatable (with T ′ ≥ T ), then for
any adversary A with resource T against the security of Π, there exists another
adversary B with resource T ′ against the security of Π, such that

E[AdvA(X )2] ≤
∣∣∣E[AdvB(X )]

∣∣∣+ γ.

In particular, if Π is (T ′, ϵ)-secure in the X -model and (T ′, T, γ)-simulatable,
then Π is also (T, ϵ+ γ)-square-secure in the X -model.

Proof of Lemma 8. This theorem can be shown via the “double-run trick” [4,
11]. Let Π be an indistinguishability application that is (T, T ′, γ)-simulatable.
Let A be any adversary with resource T against the security of Π, and let B be
the adversary (corresponding to A and the challenger C(r), where r is chosen
according to X ) with resource T ′ against the security of Π, which is guaranteed
to exist by the (T ′, T, γ)-simulatability of Π. We augment B as an adversary
against the security of Π so that when B successfully finishes the two executions
of A (without violating the failure predicate), if b′1 = b1 then B sets b′ := b′2,
otherwise sets b′ := 1−b′2, and outputs b′ as its guess for the challenge bit, which
we denote by b2. Let F be the event that B violates the failure predicate. Then,
due to the (T ′, T, γ)-simulatability, both of B’s simulations of the challenger
C(r) for A are perfect as long as F does not happen, and whether F happens is
independent of the choice of r and whether b′1 = b1 or b′2 = b2 occurs. Hence, B’s
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advantage on a fixed parameter r can be calculated as follows:

AdvB(r) = 2 · WinB(r)− 1 = 2 · Pr[b′ = b2]− 1

= 2 ·
(
Pr[b′1 = b1 ∧ b′2 = b2 ∧ F] + Pr[b′1 ̸= b1 ∧ b′2 ̸= b2 ∧ F] +

1

2
Pr[F]

)
− 1

= (1− Pr[F]) ·
(
2 · Pr[b′1 = b1 ∧ b′2 = b2] + 2 · Pr[b′1 ̸= b1 ∧ b′2 ≠ b2]− 1

)
.

Here, Pr[b′1 = b1 ∧ b′2 = b2] (resp. Pr[b
′
1 ̸= b1 ∧ b′2 ̸= b2]) corresponds to the

probability (which does not include the choice of r) that A wins (resp. loses) the
game played with C(r) twice, and thus is equal to WinA(r)

2 (resp. (1−WinA(r))2).
Hence, we have

AdvB(r) = (1− Pr[F]) ·
(
2 · WinA(r)2 + 2 · (1− WinA(r))

2 − 1
)

= (1− Pr[F]) ·
(
2 · WinA(r)− 1

)2

= (1− Pr[F]) · AdvA(r)2.

From this equality, Pr[F] ≤ γ, and the fact that the square-advantage is at most
1, we obtain∣∣∣E[AdvB(X )]

∣∣∣ = (1− Pr[F]) ·E[AdvA(X )2] ≥ E[AdvA(X )2]− γ,

which is equivalent to the inequality stated in the theorem. ⊓⊔ (Lemma 8)

Combining Lemma 8 with Lemma 7, we obtain our general result for square-
friendly indistinguishability applications. Specifically, the following theorem shows
how the security of an indistinguishability application satisfying simulatability
under a real-world distribution R is guaranteed in terms of its security under an
ideal distribution Q, via the 2-Rényi divergence RD2(R∥Q).

Theorem 2. Let Q and R be distributions over the parameter space X sat-
isfying [R] ⊆ [Q] ⊆ X. If an indistinguishability application Π is (T ′, T, γ)-
simulatable (with T ′ ≥ T ), then for any adversary A with resource T against the
security of Π, there exists an adversary B with resource T ′ against the security
of Π, such that∣∣∣E[AdvA(R)]

∣∣∣ ≤ GQ→R

( ∣∣∣E[AdvA(Q)]
∣∣∣, ∣∣∣E[AdvB(Q)]

∣∣∣+ γ
)
,

where the function GQ→R(·, ·) is defined as in Eq. (3) of Lemma 7. In particular,
if Π is (T ′, ϵ)-secure in the Q-model and (T ′, T, γ)-simulatable, then Π is also
(T,GQ→R(ϵ, ϵ+ γ))-secure in the R-model.

It would be an interesting question whether our general result for indistin-
guishability applications can be extended to those without simulatability.
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5 Applications

In this section, we show some applications of our results from Sections 3 and 4.

Specifically, in Section 5.1, we show an improved reduction for a class of
distinguishing problems, called distinguishing problems with public samplability
formalized by Bai et al. [3], using our results for indistinguishability applications
with simulatability given in Section 4. Next, in Section 5.2, we show how one
of the general lemmas shown in Section 3 is useful for assessing the differential
privacy [14, 12, 13] of a privacy mechanism in which randomness (a.k.a. “noise”)
comes from a “real-world” distribution in terms of its differential privacy with
an ideal randomness distribution.

5.1 Tighter Reduction for Distinguishing Problems with Public
Samplability

In [3], Bai et al. formalized a class of distinguishing problems called distinguishing
problems with public samplability. Informally, a distinguishing problem is said
to have public samplability if given a problem instance x which is generated
according to one of distributions D0(r) or D1(r) where r denotes a parameter
chosen from some distribution common to both D0 and D1, we can efficiently
sample a “fresh” sample from both D0(r) and D1(r), regardless of whether the
original x comes from D0(r) or D1(r). One example of such a problem is the
learning with errors (LWE) problem, which is a problem to decide, given a
matrix/vector pair (A,b), whether the vector b is of the form b = A ·s+e where
s is a secret vector and e is a small “noise” vector, or b is chosen uniformly
at random. It has public samplability because given a problem instance x =
(A,b), one can sample fresh LWE problem instances having the same A. (In
this example, r is the matrix A.)

Bai et al. showed a reduction that reduces the hardness of a distinguishing
problem with public samplability to the hardness of the same problem in which
the distribution of a parameter r is changed to another distribution, using the
Rényi divergence.

Our result in this subsection is a tighter reduction than the one by Bai et
al.. To formally show our result and give a comparison, we first recall the formal
definition of distinguishing problems with public samplability, and then recall
the result by Bai et al..

Definition 5 (Distinguishing Problem with Public Samplability [3]). A
distinguishing problem is a type of indistinguishability application and consists
of a tuple D = (X,D0,D1) where X is the parameter space, and D0 and D1

are (possibly probabilistic) functions with domain X. In the security game of D,
the challenger C(r) (which receives a parameter r ∈ X as input) first picks the
challenge bit b ∈ {0, 1} uniformly at random, samples x ←R Db(r), and gives x
to an adversary A. When A returns its guess b′ for b, C(r) decides that A wins
(resp. loses) the game if b′ = b (resp. b′ ̸= b) and outputs 1 (resp. 0).
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We say that a distinguishing problem D = (X,D0,D1) is publicly samplable,
if there exists a probabilistic algorithm S (called the sampling algorithm) satisfy-
ing the following properties:

– S takes a bit b and a sample x (output by D0 or D1) as input, and outputs
some value x′.12

– For any (r, b) ∈ X × {0, 1} and any values x output by Db(r),
• The output of S(0, x) is distributed identically to a fresh sample chosen
according to the distribution D0(r).

• The output of S(1, x) is distributed identically to a fresh sample chosen
according to the distribution D1(r).

Theorem 3 (Theorem 4.2 of [3]). Let D = (X,D0,D1) be a distinguishing
problem with public samplability, and let S be the corresponding sampling algo-
rithm whose running time is TS. Let Q and R be distributions over the parameter
space X such that [R] ⊆ [Q] ⊆ X. Then, for any adversary A against the security
of D with running time TA and advantage |E[AdvA(R)]| = ϵA in the R-model,
and for any α ∈ (1,∞], there exists another adversary B against the security of
D with running time TB and advantage |E[AdvB(Q)]| = ϵB in the Q-model, such
that:

TB ≤
64

ϵ2A
log2

8 · RDα(R∥Q)

ϵ
2+ 1

α−1

A

 · (TA + TS), and

ϵB ≥
1

23+
1

α−1 · RDα(R∥Q)
· ϵ2+

1
α−1

A .

Now, we show our result.

Theorem 4. Let D = (X,D0,D1), R, and Q be the same as in Theorem 3.
Then, for any adversary A against the security of D with running time TA and
advantage |E[AdvA(R)]| = ϵA in the R-model, there exists another adversary B
against the security of D with running time TB and advantage |E[AdvB(Q)]| = ϵB
in the Q-model, such that:

TB = 2TA + TS + τ,

ϵB ≥
1

RD2(R∥Q)
· ϵ2A

(
≥ 1

RDα(R∥Q)
· ϵ2A for any α ∈ [2,∞]

)
, (4)

where τ represents some (small) constant independent of TA and ϵA.

Note that the Rényi divergence is non-decreasing regarding the order α (see [23]),
and thus RDα(R∥Q) ≤ RDα′(R∥Q) holds for all α < α′. Thus, Eq. (4) implies
ϵB ≥ 1

RDα(R∥Q) · ϵ
2
A for every α ∈ [2,∞] as well. Hence, although our reduction is

not applicable for α ∈ (1, 2), otherwise ours strictly improves and is much simpler

12 We stress that S is not given as input the parameter r used to generate a sample x,
but may instead infer whatever it needs to know from x for generating x′.
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and tighter than the reduction of Bai et al. [3] for every α ∈ [2,∞], both in terms
of the running time and the distinguishing advantage of the reduction algorithm
B. More concretely, the ratio TB · ϵ−1B (sometimes called the work factor, and a
smaller value means a tighter reduction) of our reduction is ≈ 2 ·RD2(R∥Q) ·TA ·
ϵ−2A , while that of Bai et al. is as large as Õ(RDα(R∥Q) · TA · ϵ

−(4+ 1
α−1 )

A ).13 It is

Õ(RD2(R∥Q) · TA · ϵ−5A ) for α = 2 and Õ(RD∞(R∥Q) · TA · ϵ−4A ) for α =∞.

Proof of Theorem 4. We will show that a distinguishing problem with public
samplability satisfies (2T+TS+τ, T, 0)-simulatability in the sense of Definition 4,
and then invoke Theorem 2 to conclude the proof.

To see that any distinguishing problem with public samplability D = (X,D0,
D1) satisfies (2T + TS + τ, T, 0)-simulatability, consider an adversary A against
the security of D with running time T , and consider the corresponding adversary
B′ against the security of D for showing (2T +TS+ τ, T, 0)-simulatability, which
interacts with the challenger C(r) as follows:

B′ is initially given a sample x chosen according to Db(r), where b is the chal-
lenge bit chosen by C(r) in the security game of B′ (and r is sampled according
to Q, possibly unknown to B′). Then, B′ picks the challenge bit b1 ∈ {0, 1} in
the “first run” for A uniformly at random, and generates x1 ←R S(b1, x). B

′ then
executes A twice, first with input x1 and second with input x, where for each
execution B′ uses a fresh randomness for A. Let b′1 (resp. b′2) be the output of A
in the first (resp. second) run of A.

By design, the running time of this B′ is 2T + TS + τ for some small τ inde-
pendent of A. Furthermore, due to the property of S, B′ simulates the challenger
C(r) perfectly for A in both of the executions, so that the challenge bit for A
in the first (resp. second) execution is b1 (resp. b). Also, there is no notion of
failure predicate in a distinguishing problem. Consequently, B′ satisfies all the
properties of (2T + TS + τ, T, 0)-simulatability.

Then, by Theorem 2, for any adversary A against the security of D with
running time TA and advantage |E[AdvA(R)]| = ϵA in the R-model, there ex-
ists another adversary B against the security of D with running time TB =
2TA + TS + τ and advantage |E[AdvB(Q)]| = ϵB in the Q-model satisfying
ϵA ≤

√
RD2(R∥Q) · ϵB. This inequality is equivalent to Eq. (4). ⊓⊔ (Theorem 4)

5.2 Switching Distributions in Differential Privacy

Intuitively, a differentially private mechanism (for some statistical task) takes a
data set D as input, and uses its internal randomness r (typically called “noise”
in the context of differential privacy) to produce a “sanitized” version of a true

13 If we adopt the approach of Micciancio and Walter [18] that regards
(“running time”) · (“advantage”)−2 (which corresponds to the steps needed to solve
a distinguishing problem with a constant advantage) of the best adversary as the
“bit security” of a problem, the difference between our reduction and that of Bai et
al. will be even larger.
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answer computed from D so that it is hard to tell whether any individual’s data
was included in D. It is often the case that the distribution of a randomness r
used in a differentially private mechanism is not the uniform distribution, e.g.
the Laplace distribution [12].

Here, we would like to consider the problem of how differential privacy in the
setting where a randomness is drawn from an ideal distribution Q is degraded if
we use a randomness drawn from another distribution R. Using one of our lem-
mas in Section 3, we show a simple technique to assess differential privacy under
such switching of distributions of a randomness via the ∞-Rényi divergence.

We note that the connection between differential privacy and the ∞-Rényi
divergence is almost immediate from their definitions, and has already been
mentioned in existing works (say, [17]). However, we are not aware of any work
that formally states a statement in the form that we show below. We also note
that our result only covers the case where randomness distributions are discrete,
while many works on differential privacy use continuous distributions.

Below, we recall the definition of a differentially private mechanism and then
give our result. (We adopt the so-called approximate differential privacy [13].)

Let n ≥ 1 and let D be the data space. We say that two data sets D,D′ ∈ Dn

are neighboring if D and D′ have exactly one distinct entry. As in [10], we
parameterize differential privacy with not only the privacy budget (ϵ and δ) but
also the distribution of randomness used by a mechanism.

Definition 6. Let n ≥ 1 and D be as above. Let M : Dn → R be a probabilistic
algorithm whose randomness space is some finite set X. Let ϵ, δ ≥ 0 be real
numbers, and let X be a distribution over X. We say that M satisfies (X , ϵ, δ)-
differential privacy if for every neighboring data sets D,D′ ∈ Dn and for every
T ⊆ R, we have

Pr
r←RX

[M(D; r) ∈ T ] ≤ eϵ · Pr
r←RX

[M(D′; r) ∈ T ] + δ.

Theorem 5. Let n ≥ 1 and D be as above, and let M be a probabilistic algorithm
whose randomness space is some set X. Let R and Q be distributions such that
[R] = [Q] ⊆ X. Let ϵ, δ ≥ 0. Then, if M satisfies (Q, ϵ, δ)-differential privacy,
then M also satisfies (R, ϵ′, δ′)-differential privacy, where

ϵ′ = ϵ+ ln RD∞(R∥Q) + ln RD∞(Q∥R) and δ′ = RD∞(R∥Q) · δ.

Proof of Theorem 5. Fix arbitrarily neighboring data sets D,D′ ∈ Dn and T ⊆
R. For each r ∈ X, define fD(r) := Pr[M(D; r) ∈ T ] and fD′(r) := Pr[M(D′; r) ∈
T ]. Note that the range of these functions is [0, 1], and we have E[fD(R)] =
Prr←RR[M(D; r) ∈ T ], E[fD(Q)] = Prr←RQ[M(D; r) ∈ T ], and we have similar
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equations for fD′ . Now, for D,D′, T , we have

Pr
r←RR

Pr[M(D; r) ∈ T ] = E[fD(R)]

(∗)
≤ RD∞(R∥Q) ·E[fD(Q)]
(†)
≤ RD∞(R∥Q) ·

(
eϵ ·E[fD′(Q)] + δ

)
(‡)
≤ RD∞(R∥Q) · eϵ · RD∞(Q∥R) ·E[fD′(R)] + RD∞(R∥Q) · δ
= RD∞(R∥Q) · eϵ · RD∞(Q∥R) · Pr

r←RR
[M(D′; r) ∈ T ] + RD∞(R∥Q) · δ,

where the inequalities (*) and (‡) use Corollary 1 and the inequality (†) uses the
(Q, ϵ, δ)-differential privacy of M that implies E[fD(Q)] = Prr←RQ[M(D; r) ∈
T ] ≤ eϵ · Prr←RQ[M(D′; r) ∈ T ] + δ = eϵ · E[fD′(Q)] + δ. Since the choice of D,
D′, and T is arbitrary, we can conclude that M satisfies (R, ϵ′, δ′)-differential
privacy with the claimed ϵ′ and δ′. ⊓⊔ (Theorem 5)

6 Approximate Sampling with Guaranteed Rényi
Divergence Bound using Uniform Randomness

There are a number of (not necessarily cryptographic) applications in which we
wish to sample random elements from distributions that are not the uniform dis-
tribution, e.g. the discrete Gaussian distribution in lattice-based cryptography
(e.g. [20]), the Laplace distribution [14, 12] (and other complicated distributions
such as the matrix Bingham distribution [7]) in the literature of differential pri-
vacy, to name a few. However, it is not always easy (and sometimes impossible)
for computers to sample a randomness that exactly follows a target distribution.
Thus, a lot of efforts have been made for approximately sampling a random-
ness from the target distribution using a randomness drawn from the uniform
distribution (over bitstrings), so that the sampling method is implementable by
computers. One of the basic approaches used for such approximate sampling of
a randomness is the inversion sampling method (a.k.a. inverse transform sam-
pling), which is the focus in this section.

We propose two computer-friendly inversion sampling methods for an ar-
bitrary discrete distribution Q using a randomness drawn from the uniform
distribution over bitstrings.

– The first method, given in Section 6.1, has the guarantee that the actual
distribution R of a randomness sampled by our method has a guarantee
that the 2-Rényi divergenceR fromQ is upperbounded by some number that
depends on the size of the support of the distribution and the bit-length of the
randomness. More concretely, when using an n-bit string for each sampling
from a distribution Q the size of whose support is m, then the distribution
R of our first sampling method guarantees RD2(R∥Q) ≤ 1 +m/2n.
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– The second method, given in Section 6.2, has a similar property to the first
method, but it has a guaranteed ∞-Rényi divergence bound. Concretely,
under the same setting as above, our second sampling method guarantees
RD∞(R∥Q) ≤ (1 +

√
m/2n)2.

Throughout this section, for simplicity, we work with distributions over [m]
for some m ∈ N (but our proposals straightforwardly generalize to distribu-
tions with an arbitrary finite support). Note that in this case, a distribution D
can be identified with an m-dimensional vector (p1, . . . , pm) ∈ [0, 1]m such that∑

i∈[m] pi = 1, where pi := Pr[D = i] for each i ∈ [m].

Our Approach. Recall that the inversion sampling method is based on the inverse
of the cumulative distribution function (CDF) of a distribution D = (p1, . . . , pm).
More specifically, let c0 = 0 and ci := Pr[1 ≤ D ≤ i] =

∑
j∈[i] pi for all i ∈ [m],

then given a uniformly random value x in the interval [0, 1), the sampling method
outputs k such that ck−1 ≤ x < ck. Hence, the problem is reduced to showing
how to construct a table of the CDF of a distribution.

Given a target distribution Q = (q1, . . . , qm), our approach is to consider
an approximated version R = (r1, . . . , rm) of Q such that (1) each ri can be
described by an n-bit string, and (2) the α-Rényi divergence (α ∈ {2,∞}) of R
from Q has an upperbound dependent on m and n. Note that (1) means that
each ri is of the form Ri/2

n for some Ri ∈ Z≥0 with Ri ≤ N and it holds that∑
i∈[m] Ri = 2n, which in turn implies that any value of the CDF of R can

be expressed by an n-bit string, and thus R can be exactly sampled by using
a uniformly random n-bit string. Hence, to achieve the goal, it is sufficient to
show how to construct such R given Q.

The high-level structure for both of our proposed methods is common, and
quite simple and intuitive. For convenience, instead of working with a dis-
tribution, we work with its scaled-up version, i.e. a vector (Q1, . . . , Qm) =
(2n · q1, . . . , 2n · qm) ∈ ([0, 2n])m.

1. From the original vector (Q1, . . . , Qm), we construct its “tail-cut” version

(Q̃1, . . . , Q̃m). That is, if some value Qi is too small, Q̃i is set as 0, while
the suppressed values are distributed (added) to the non-zero positions in

(Q̃1, . . . , Q̃m) so that
∑

i∈[m] Q̃i = 2n holds.

2. We construct an integer vector (R1, . . . , Rm) ∈ (Z≥0)m from (Q̃1, . . . , Q̃m),

so that each Ri is “close” to Q̃i and
∑

i∈[m] Ri = 2n holds. The resulting

integer vector (R1, . . . , Rm) is a scaled-up version of our desired distribution
R = (r1, . . . , rm). Note that the distribution R obtained in this way satisfies
the property that each ri can be represented by an n-bit string.

Although simple in a high-level structure, the details are quite different between
our first and second proposed methods due to the difference between the 2-
Rényi divergence and the ∞-Rényi divergence. For each method, we have to
carefully choose the definition of (Q̃i)i∈[m] (in particular, the threshold for the

tail cutting), and how to approximate (Q̃i)i∈[m] by the integer vector (Ri)i∈[m],
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so that we have the desired upperbound of the α-Rényi divergence (α ∈ {2,∞}).
For the details, see the actual proofs.

Supporting Lemma. In the proofs of both of our sampling methods, we will use
the following supporting lemma, whose proof is given in Appendix A.

Lemma 9. Let k ∈ N, and let A = (a1, . . . , ak) ∈ (R≥0)k be a vector satisfying∑
i∈[k] ai ∈ N. Then, there exists a constructive procedure for constructing a

vector B = (b1, . . . , bk) ∈ (Z≥0)k satisfying the following two properties:

1.
∑

i∈[k] bi =
∑

i∈[k] ai.

2. For each i ∈ [k], let di := bi − ai. Then, |di| ≤ 1 holds for all i ∈ [k], and
|di − dj | ≤ 1 holds for all i, j ∈ [k].

6.1 Approximate Sampling with a 2-Rényi-Divergence Bound

The following theorem captures our first sampling method.

Theorem 6. Let n,m ∈ N. Let Q = (q1, . . . , qm) be a distribution whose support
is [m]. Then, there is a constructive procedure for constructing a distribution
R = (r1, . . . , rm) over [m] satisfying the following two properties:

– (Samplable Using Uniform Random Bits): Each ri can be described
by using at most n-bits. Namely, for all i ∈ [m], ri is of the form ri =

Ri

2n ,
where Ri ∈ Z≥0 and Ri ≤ 2n.

– (Upperbound of 2-Rényi Divergence): The 2-Rényi divergence of R
from Q is upperbounded as follows:

RD2(R∥Q) ≤ 1 +
m

2n
. (5)

Proof of Theorem 6. If m = 1, then q1 = 1, and thus by defining r1 := 1, the
theorem trivially holds. Hence, from here on we assume m ≥ 2, i.e. the support
of Q contains at least two elements. Then, first of all, note that for proving the
theorem, it is sufficient to consider the case that Q = (q1, . . . , qm) is “ordered”
in the following way:

0 < q1 ≤ · · · ≤ qm < 1. (6)

Specifically, for a general “non-ordered” distribution Q′ = (q′1, . . . , q
′
m) with

support [m], let π : [m] → [m] be a permutation such that Q = (q1, . . . , qm) =
(q′π−1(1), . . . , q

′
π−1(m)) satisfying Eq. (6). Then, we construct a distribution R =

(r1, . . . , rm) satisfying the two properties guaranteed by the theorem with respect
to the ordered distribution Q, and finally obtain the desired distribution R′ =
(r′1, . . . , r

′
m) by defining r′i = rπ(i) for every i ∈ [m]. Then, R′ obtained in this

way satisfies the two properties with respect to the original distribution Q′:
π preserves the first property of R, and we have RD2(R′∥Q′) =

∑
i∈[m]

r′2i
q′i

=∑
i∈[m]

r2π(i)

qπ(i)
=

∑
i∈[m]

r2i
qi

= RD2(R∥Q). Hence, we can focus on the case that Q
is ordered in the sense of Eq. (6).
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Let N := 2n, and let Qi := N · qi for all i ∈ [m]. Then,
∑

i∈[m] Qi = N holds

due to the fact that Q is a probability distribution, and Eq. (6) implies

0 < Q1 ≤ · · · ≤ Qm < N. (7)

Next, we note that showing how to construct a distribution R = (r1, . . . , rm)
satisfying the desired properties with respect to Q, is reduced to showing how
to construct an integer vector (R1, . . . , Rm) ∈ (Z≥0)m satisfying

∑
i∈[m] Ri = N

and

Z :=
∑
i∈[m]

(Ri −Qi)
2

Qi
≤ m. (8)

To see this, define the probability distribution R = (r1, . . . , rm) by ri = Ri/N
for every i ∈ [m] (which guarantees

∑
i∈[m] ri = 1). Then, we have

RD2(R∥Q) =
∑
i∈[m]

r2i
qi

=
∑
i∈[m]

(Ri/N)2

Qi/N
=

1

N

∑
i∈[m]

((Ri −Qi) +Qi)
2

Qi

=
1

N

( ∑
i∈[m]

(Ri −Qi)
2

Qi
+ 2 ·

∑
i∈[m]

Ri −
∑
i∈[m]

Qi

)
(∗)
=

1

N
(Z + 2N −N) = 1 +

Z

N
,

where the equality (*) is due to
∑

i∈[m] Ri =
∑

i∈[m] Qi = N . Since N = 2n, the

right hand side of the above equality is exactly that of Eq. (5) if Z ≤ m.
Hence, our task is to show how to construct a vector (R1, . . . , Rm) ∈ (Z≥0)m

satisfying
∑

i∈[m] Ri = N and Eq. (8). To this end, we introduce the following
values m∗ and S:

m∗ := max
{
ℓ ∈ {0} ∪ [m]

∣∣∣ Qℓ ≤
1

2
∧

∑
i∈[ℓ]

Qi ≤
m− ℓ− 1

2

}
,

S :=
∑

i∈[m∗]

Qi,

where for convenience we define Q0 := 0. Note that the definition of m∗ implies
m∗ ≤ m − 1. Indeed, m = m∗ cannot hold because this and the condition∑

i∈[m∗] Qi ≤ m−m∗−1
2 imply

∑
i∈[m] Qi < 0, which contradicts

∑
i∈[m] Qi = N .

Furthermore, due to the definitions of m∗ and S, the following inequalities hold,
which will be used later in the proof:

Lemma 10.

Qm∗+1 > min
{ 1

2
,

m−m∗

2(m∗ + 1)

}
and S ≤ min

{ m∗

2
,
m−m∗ − 1

2

}
.

Proof of Lemma 10. The definitions of m∗ and S directly imply (a) S =∑
i∈[m∗] Qi ≤ m−m∗−1

2 , (b) Qm∗ ≤ 1
2 , and (c) either Qm∗+1 > 1

2 or
∑

i∈[m∗+1] Qi
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> m−m∗

2 . Here, the condition (b) and Eq. (7) imply S ≤ m∗·Qm∗ ≤ m∗

2 . Combin-

ing this with the condition (a), we immediately obtain S ≤ min{m
∗

2 , m−m∗−1
2 }.

It remains to show Qm∗+1 > min{ 12 ,
m−m∗

2(m∗+1)}. Assume towards a contradic-

tion that Qm∗+1 ≤ 1
2 and Qm∗+1 ≤ m−m∗

2(m∗+1) simultaneously hold. Then, on the

one hand, Qm∗+1 ≤ 1
2 and the condition (c) imply

∑
i∈[m∗+1] Qi > m−m∗

2 .

On the other hand, Qm∗+1 ≤ m−m∗

2(m∗+1) and Eq. (7) imply
∑

i∈[m∗+1] Qi ≤
(m∗+1) ·Qm∗+1 ≤ m−m∗

2 , and thus we have reached a contradiction. Hence, we

can conclude that Qm∗+1 > min{ 12 ,
m−m∗

2(m∗+1)} holds as well. ⊓⊔ (Lemma 10)

Now, as an intermediate step for constructing the desired vector (R1, . . . , Rm),

we consider the following modified vector (Q̃1, . . . , Q̃m), which is the “tail-cut”
version of (Q1, . . . , Qm), such that for every i ∈ [m]:

Q̃i :=

{
0 if 1 ≤ i ≤ m∗

Qi +
S

m−m∗ if m∗ + 1 ≤ i ≤ m
.

(We note that the above definition covers the case of m∗ = 0, which implies

S = 0 and thus Q̃i = Qi for all i ∈ [m].) Note that 0 ≤ Q̃i ≤ N for all i ∈ [m],
and they preserve the sum N of the original vector (Q1, . . . , Qm):

∑
i∈[m]

Q̃i =

m∑
i=m∗+1

Q̃i =

m∑
i=m∗+1

(
Qi +

S

m−m∗

)
=

m∑
i=m∗+1

Qi + S

=

m∑
i=m∗+1

Qi +

m∗∑
i=1

Qi = N.

Our target vector (R1, . . . , Rm) is constructed by approximating the above

defined modified vector (Q̃1, . . . , Q̃m) by integers. Specifically, we define R1 =
· · · = Rm∗ = 0. The remaining values Ri for i ≥ m∗ + 1, are constructed by
using the supporting lemma (Lemma 9). Specifically, by setting k := m − m∗

and ai := Q̃m∗+i for every i ∈ [m − m∗], we have a vector A = (a1, . . . , ak)

satisfying
∑

i∈[k] ai =
∑m

i=m∗+1 Q̃i = N . Then, we apply Lemma 9 to this

vector A and obtain a vector B = (b1, . . . , bk) ∈ (Z≥0)k, from which we define
Rm∗+i := bi for every i ∈ [k] = [m−m∗]. Note that the first property guaranteed
by Lemma 9 implies

∑
i∈[k] bi =

∑m
i=m∗+1 Ri = N , and the second property of

the lemma guarantees that we have |di − dj | ≤ 1 for all i, j ∈ [m −m∗], where

di := bi − ai = Rm∗+i − Q̃m∗+i for each i ∈ [m−m∗].

So far, we have defined the vector (R1, . . . , Rm) ∈ (Z≥0)m that satisfies∑
i∈[m] Ri =

∑m
i=m∗+1 Ri = N . Hence, it remains to show that Eq. (8), i.e.,
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Z ≤ m, is satisfied. Calculating Z gives us the following inequality:

Z =

m∑
i=1

(Ri −Qi)
2

Qi
=

m∗∑
i=1

(0−Qi)
2

Qi
+

m∑
i=m∗+1

(Ri −Qi)
2

Qi

≤ S +
1

Qm∗+1
·

m∑
i=m∗+1

(Ri −Qi)
2 (9)

where the inequality uses S =
∑m∗

i=1 Qi and Qm∗+1 ≤ Qi for every i ≥ m∗ + 1.
In order to show that Eq. (9) is further upperbounded by m, we wish to up-

perbound the sum
∑m

i=m∗+1(Ri−Qi)
2. For doing this, we do some preparation.

Notice that for every i ∈ [m−m∗], we have

Rm∗+i −Qm∗+i = Rm∗+i − Q̃m∗+i + Q̃m∗+i −Qm∗+i = di +
S

m−m∗
.

Due to the second property satisfied by a vector obtained via Lemma 9, for all
i, j ∈ [m−m∗], we have∣∣∣ (Rm∗+i −Qm∗+i)− (Rm∗+j −Qm∗+j)

∣∣∣ = |di − dj | ≤ 1. (10)

Moreover, we have

m∑
i=m∗+1

(Ri −Qi) =

m∑
i=1

(Ri −Qi)−
m∗∑
i=1

(Ri −Qi)
(∗)
= N −N +

m∗∑
i=1

Qi
(†)
= S, (11)

where the equality (*) uses
∑m

i=1 Ri =
∑m

i=1 Qi = N and the property that
Ri = 0 for all i ∈ [m∗], and the equality (†) is due to the definition of S.

We now use the following supporting lemma to upperbound
∑m

i=m∗+1(Ri −
Qi)

2, whose proof is given in Appendix B.

Lemma 11. Let k ∈ N. Let A = (a1, . . . ak) ∈ Rk be any vector satisfying
|ai − aj | ≤ 1 for all i, j ∈ [k]. Let α :=

∑
i∈[k] ai. Then,

∑
i∈[k]

a2i ≤
α2

k
+

k

4
.

Let k := m−m∗ and a′i := (Rm∗+i −Qm∗+i) for every i ∈ [k]. By Eq. (11),
we have α :=

∑
i∈[k] a

′
i =

∑m
i=m∗+1(Ri − Qi) = S ≤ m−m∗−1

2 ≤ m−m∗

2 . Also,

Eq. (10) guarantees that |a′i − a′j | ≤ 1 holds for all i, j ∈ [k]. Then, by applying
Lemma 11 to the vector (a′1, . . . , a

′
k), we obtain

m∑
i=m∗+1

(Ri −Qi)
2 =

∑
i∈[k]

a′2i ≤
α2

k
+

k

4
=

S2

m−m∗
+

m−m∗

4
≤ m−m∗

2
.
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Using this inequality and Lemma 10 in Eq. (9), we have

Z ≤ S +
1

Qm∗+1
·

m∑
i=m∗+1

(Ri −Qi)
2

≤ min
{ m∗

2
,
m−m∗ − 1

2

}
+max

{
2,

2(m∗ + 1)

m−m∗

}
· m−m∗

2

= min
{ m∗

2
,
m−m∗ − 1

2

}
+max

{
m−m∗, m∗ + 1

}
=

{
m− m∗

2 if m∗ ≤ m−1
2

m+m∗+1
2 if m∗ > m−1

2

.

Recall that we have 0 ≤ m∗ ≤ m−1. Hence, regardless of the value m∗, we have
Z ≤ m, as required. This completes the proof of the theorem. ⊓⊔ (Theorem 6)

6.2 Approximate Sampling with a ∞-Rényi-Divergence Bound

The following theorem captures our second sampling method.

Theorem 7. Let n,m ∈ N. Let Q = (q1, . . . , qm) be a distribution whose support
is [m]. Then, there is a constructive procedure for constructing a distribution
R = (r1, . . . , rm) over [m] satisfying the following two properties:

– (Samplable Using Uniform Random Bits): Each ri can be described
by using at most n-bits. Namely, for all i ∈ [m], ri is of the form ri =

Ri

2n ,
where Ri ∈ Z≥0 and Ri ≤ 2n.

– (Upperbound of ∞-Rényi Divergence): The ∞-Rényi divergence of R
from Q is upperbounded as follows:

RD∞(R∥Q) ≤
(
1 +

√
m

2n

)2

. (12)

Proof of Theorem 7. If m = 1, then q1 = 1, and thus by defining r1 := 1,
the theorem trivially holds. Hence, from here on we assume m ≥ 2. Then, with
exactly the same reason as in the proof of Theorem 6, it is sufficient to consider
the case that Q = (q1, . . . , qm) satisfies the “ordered” condition 0 < q1 ≤ · · · ≤
qm < 1.

Let N = 2n, and let Qi = N · qi for all i ∈ [m]. Then,
∑

i∈[m] Qi = N holds
due to the fact that Q is a probability distribution, and the “ordered” condition
implies

0 < Q1 ≤ · · · ≤ Qm < N. (13)

Next, we note that due to the definition of the ∞-Rényi divergence, showing
how to construct a distributionR = (r1, . . . , rm) satisfying Eq. (12), is equivalent
to showing how to construct an integer vector (R1, . . . , Rm) ∈ (Z≥0)m satisfying∑

i∈[m] Ri = N and

max
i∈[m]

Ri

Qi
≤

(
1 +

√
m

N

)2

, (14)
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since it holds that RD∞(R∥Q) = maxi∈[m]
ri
qi

= maxi∈[m]
Ri/N
Qi/N

= maxi∈[m]
Ri

Qi
.

To this end, we introduce the following values S∗, m∗, and S:

S∗ :=

√
m√

N +
√
m
·N,

m∗ := max
{
ℓ ∈ {0} ∪ [m]

∣∣∣ ∑
i∈[ℓ]

Qi ≤ S∗ <
∑

i∈[ℓ+1]

Qi

}
,

S :=
∑

i∈[m∗]

Qi,

where for convenience we define Q0 := 0. Here, the definition of S∗ may look
somewhat sudden and bizarre. This is the value of x that minimizes the function
f(x) := N

N−x + m
x in the interval x ∈ (0, N), so that f(S∗) = (1 +

√
m
N )2 holds

(which can be checked by considering the zero of the first-order derivative of f).
Note that this is the desired upperbound of maxi∈[m]

Ri

Qi
to be shown.

Our proof from here on is heading to showing how to bound RD∞(R∥Q)
by using the above minimum. We note that the definition of m∗ implies that
m∗ is strictly smaller than m, because

∑
i∈[m∗] Qi ≤ S∗ < N =

∑
i∈[m] Qi.

Furthermore, the definitions of m∗ and S imply the following inequality, which
will be used later in the proof.

Lemma 12.

Qm∗+1 ≥
S∗

m
. (15)

Proof of Lemma 12. If m∗ = 0, then we have Q1 > S∗, and thus Qm∗+1 ≥ S∗

m
is trivially satisfied. Hence, from here on we consider the case m∗ ≥ 1.

By the definitions ofm∗ and S, we have S =
∑

i∈[m∗] Qi ≤ S∗ <
∑

i∈[m∗+1] Qi

= S+Qm∗+1. This implies Qm∗+1 > S∗−S. Furthermore, we also have Qm∗+1 ≥
S
m∗ because otherwise (i.e., Qm∗+1 < S

m∗ ) we have 0 < Q1 ≤ · · · ≤ Qm∗ < S
m∗ ,

which implies
∑

i∈[m∗] Qi = Q1 + · · · + Qm∗ < m∗ · S
m∗ = S, contradicting the

definitions of m∗ and S.

So far, we have seen Qm∗+1 > S∗ − S and Qm∗+1 ≥ S
m∗ , equivalently,

Qm∗+1 ≥ max
{
S∗ − S,

S

m∗

}
. (16)

We now show that Eq. (15) holds regardless of the values m∗ and S. This is
shown by considering the following two cases covering all possibilities:

Case S ≤ m−1
m · S∗: Note that

S ≤ m− 1

m
· S∗ ⇐⇒ S ≤

(
1− 1

m

)
· S∗ ⇐⇒ S∗ − S ≥ S∗

m
.

Hence, by Eq. (16), we have Qm∗+1 ≥ S∗ − S ≥ S∗

m .
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Case S > m−1
m · S∗: By dividing both sides of the condition of this case by

m∗ ≥ 1, we obtain
S

m∗
>

m− 1

m∗
· S
∗

m

(∗)
≥ S∗

m
,

where the inequality (*) uses m−1
m∗ ≥ 1, which holds because of the condition

m∗ < m. Hence, by Eq. (16), we have Qm∗+1 ≥ S
m∗ > S∗

m .

As seen above, Qm∗+1 ≥ S∗

m holds in any case. ⊓⊔ (Lemma 12)

Now, as an intermediate step for constructing the desired vector (R1, . . . , Rm),

we consider the following modified vector (Q̃1, . . . , Q̃m), which is the “tail-cut”
version of (Q1, . . . , Qm), such that for every i ∈ [m]:

Q̃i :=

{
0 if 1 ≤ i ≤ m∗

Qi · N
N−S if m∗ + 1 ≤ i ≤ m

.

(We note that the above definition covers the case of m∗ = 0, which implies

S = 0 and thus Q̃i = Qi for all i ∈ [m].) Note that 0 ≤ Q̃i ≤ N for all i ∈ [m],
and they preserve the sum N of the original vector (Q1, . . . , Qm):

∑
i∈[m]

Q̃i =

m∑
i=m∗+1

Q̃i =
N

N − S
·

m∑
i=m∗+1

Qi =
N

N − S
·
( ∑
i∈[m]

Qi −
∑

i∈[m∗]

Qi

)
=

N

N − S
· (N − S) = N.

Our target vector (R1, . . . , Rm) is constructed by approximating the above

defined modified vector (Q̃1, . . . , Q̃m) by integers, in the same manner as what
we do in the proof of Theorem 6. Specifically, we define R1 = · · · = Rm∗ = 0.
The remaining values Ri for i ≥ m∗+1, are constructed by using the supporting
lemma (Lemma 9). Specifically, by setting k := m − m∗ and ai := Q̃m∗+i for
every i ∈ [m − m∗], we have a vector A = (a1, . . . , ak) satisfying

∑
i∈[k] ai =∑m

i=m∗+1 Q̃i = N . Then, we apply Lemma 9 to this vector A and obtain a

vector B = (b1, . . . , bk) ∈ (Z≥0)k, from which we define Rm∗+i := bi for every
i ∈ [k] = [m−m∗]. Note that the first property guaranteed by Lemma 9 implies∑

i∈[k] bi =
∑m

i=m∗+1 Ri = N , and the second property of the lemma guarantees

that we have |di| ≤ 1 for all i ∈ [m−m∗], where di := bi − ai = Rm∗+i − Q̃m∗+i

for each i ∈ [m−m∗].
So far, we have defined the vector (R1, . . . , Rm) ∈ (Z≥0)m that satisfies∑

i∈[m] Ri =
∑m

i=m∗+1 Ri = N . Hence, it remains to show maxi∈[m]
Ri

Qi
≤ (1 +√

m
N )2. To this end, we use the following lemma as an intermediate step.

Lemma 13. For every i ∈ [m], we have

Ri

Qi
≤ N

N − S
+

1

Qm∗+1
. (17)
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Proof of Lemma 13. For i ∈ [m∗], we have Ri

Qi
= 0 due to Ri = 0, and thus

Eq. (17) is trivially satisfied.
For showing the remaining case, fix any i ∈ {m∗ + 1, . . . ,m}. Recall that

|Ri − Q̃i| ≤ 1 holds due to the second property of the vector obtained from

Lemma 9, and thus we have Ri ≤ Q̃i + 1. Dividing both sides of this inequality
by Qi > 0, we have

Ri

Qi
≤ Q̃i

Qi
+

1

Qi

(∗)
=

N

N − S
+

1

Qi

(†)
≤ N

N − S
+

1

Qm∗+1
,

where the equality (*) uses the definition of Q̃i for i ∈ {m∗+1, . . . ,m}, and the
inequality (†) uses Qm∗+1 ≤ Qi for all i ∈ {m∗ + 1, . . . ,m}, which is due to the
“ordered” condition (Eq. (13)). The above shows that Eq. (17) is satisfied for
i ∈ {m∗ + 1, . . . ,m} as well. ⊓⊔ (Lemma 13)

Now, combining Lemmas 12 and 13, we obtain

max
i∈[m]

Ri

Qi
≤ N

N − S
+

m

S∗

(∗)
≤ N

N − S∗
+

m

S∗
(†)
=

(
1 +

√
m

N

)2

,

where the inequality (*) is due to S ≤ S∗, and the equality (†) is just a direct cal-
culation. (As mentioned earlier, S∗ is the value minimizing the function f(x) =
N

N−x + m
x in the domain 0 < x < N such that we have f(S∗) = (1 +

√
m
N )2.)

This completes the proof of the theorem. ⊓⊔ (Theorem 7)
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A Proof of Lemma 9

Let k ∈ N and A = (a1, . . . , ak) ∈ (R≥0)k such that
∑

i∈[k] ai ∈ N. For each

i ∈ [k], let δi := ⌈ai⌉ − ai. Also, define

∆ :=
∑
i∈[k]

δi =
∑
i∈[k]

⌈ai⌉ −
∑
i∈[k]

ai.

Note that since
∑

i∈[k] ai ∈ N and δi ∈ [0, 1) for every i ∈ [k], the definition of

∆ implies ∆ ∈ Z≥0 and ∆ < k. Furthermore, let Sup and Slow be subsets of [k]
satisfying the following four conditions:

– (1) Sup ∪ Slow = [k]
– (2) Sup ∩ Slow = ∅
– (3) |Sup| = ∆
– (4) max{δi|i ∈ Slow} ≤ min{δi|i ∈ Sup}

Using them, define the vector B = (b1, . . . , bk) such that for every i ∈ [k],

bi :=

{
⌈ai⌉ if i ∈ Slow
⌈ai⌉ − 1 if i ∈ Sup

.

By definition, every bi is an integer. Since ai ∈ R≥0 for every i ∈ [k], we have
bi ∈ Z≥0 for every i ∈ Slow. Note also that by the definitions of ∆ and Sup,
we have |{i ∈ [k]|δi > 0}| ≥ ∆ = |Sup|, and thus ai > 0 holds for every
i ∈ Sup, which implies bi = ⌈ai⌉ − 1 ≥ 0 for every i ∈ Sup. Hence, we have
B = (b1, . . . , bk) ∈ (Z≥0)k.

In the following we confirm that the vector B defined above satisfies both of
the properties. Regarding the first property, we have∑

i∈[k]

bi =
∑

i∈Slow

⌈ai⌉+
∑
i∈Sup

(⌈ai⌉ − 1)

(∗)
=

∑
i∈[k]

⌈ai⌉ −∆ =
∑
i∈[k]

(ai + δi)−
∑
i∈[k]

δi =
∑
i∈[k]

ai,

where the equality (*) uses |Sup| = ∆. Hence, B satisfies the first property.
It remains to show that B satisfies the second property. For each i ∈ [k], let

di := bi − ai =

{
δi if i ∈ Slow
δi − 1 if i ∈ Sup

.

Recall that δi ∈ [0, 1) holds for every i ∈ [k]. Thus, we have |di| ≤ 1 for all
i ∈ [k]. Furthermore, for every (i, j) ∈ [k]2, we have

|di − dj | =


|δi − δj | if (i, j) ∈ (Slow)2 or (i, j) ∈ (Sup)2

|1− (δj − δi)| if (i, j) ∈ Slow × Sup
|δi − δj − 1| if (i, j) ∈ Sup × Slow

.
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From the above, it is immediate that |di − dj | ≤ 1 holds for the cases (i, j) ∈
(Slow)2 and (i, j) ∈ (Sup)2. Also, for the case (i, j) ∈ Slow × Sup, we have δi ≤ δj
due to the condition (4) of Slow and Sup, and thus we have |1 − (δj − δi)| ≤ 1.
Similarly, for the case (i, j) ∈ Sup × Slow, we have δi ≥ δj , and thus we have
|δi − δj − 1| ≤ 1. Hence, we have |di − dj | ≤ 1 for any pair (i, j) ∈ [k]2. This
shows that the vector B satisfies the second property as well. ⊓⊔ (Lemma 9)

B Proof of Lemma 11

Fix arbitrarily a number k ∈ N and a vector (a1, . . . , an) ∈ Rk satisfying |ai −
aj | ≤ 1 for all i, j ∈ [k], and let α :=

∑
i∈[k] ai. We will show that

∑
i∈[k] a

2
i ≤

α2

k + k
4 holds, which proves the lemma.

Let amin := min{ai}i∈[k], and δi := ai − amin for each i ∈ [k]. Note that due
to the given condition of the vector (a1, . . . , ak), δi ∈ [0, 1] holds for all i ∈ [k].
We also have

α =
∑
i∈[k]

ai =
∑
i∈[k]

(
amin + δi

)
= kamin +

∑
i∈[k]

δi

⇐⇒
∑
i∈[k]

δi = α− kamin. (18)

Furthermore, for each i ∈ [k], we have

a2i = (amin + δi)
2 = a2min + 2aminδi + δ2i

≤ a2min + (2amin + 1) · δi, (19)

where the inequality uses δ2i ≤ δi, which is due to δi ∈ [0, 1].
Now, consider the sum of squares

∑
i∈[k] a

2
i . We have

∑
i∈[k]

a2i
(∗)
≤

∑
i∈[k]

(
a2min + (2amin + 1) · δi

)
= ka2min + (2amin + 1) ·

∑
i∈[k]

δi

(†)
= ka2min + (2amin + 1) · (α− kamin)

= −k
(
amin −

(α
k
− 1

2

))2

+
α2

k
+

k

4

≤ α2

k
+

k

4
,

where the inequality (*) uses Eq. (19), and the equality (†) uses Eq. (18).
⊓⊔ (Lemma 11)
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