
Let a Non-Barking Watchdog Bite:
Cliptographic Signatures
with an Offline Watchdog

Sherman S. M. Chow1⋆, Alexander Russell2⋆⋆, Qiang Tang3⋆ ⋆ ⋆, Moti Yung4,
Yongjun Zhao5, and Hong-Sheng Zhou6†

1 Chinese University of Hong Kong, sherman@ie.cuhk.edu.hk
2 University of Connecticut, acr@cse.uconn.edu

3 New Jersey Institute of Technology, qiang@njit.edu
4 Google Inc. and Columbia University, moti@cs.columbia.edu

5 Chinese University of Hong Kong, yjzhao@ie.cuhk.edu.hk
6 Virginia Commonwealth University, hszhou@vcu.edu

Abstract. We study how to construct secure digital signature schemes
in the presence of kleptographic attacks. Our work utilizes an offline wat-
chdog to clip the power of subversions via only one-time black-box testing
of the implementation. Previous results essentially rely on an online wa-
tchdog which requires the collection of all communicating transcripts (or
active re-randomization of messages).
We first give a simple but generic construction, without random oracles,
in the partial-subversion model in which key generation and signing algo-
rithms can be subverted. Then, we give the first digital signature scheme
in the complete-subversion model in which all cryptographic algorithms
can be subverted. This construction is based on the full-domain hash.
Along the way, we enhance the recent result of Russell et al. (CRYPTO
2018) about correcting a subverted random oracle.

Keywords: Signatures, Subversion Resilience, Offline Watchdog

1 Introduction

Modern cryptography has been spectacularly successful. We have already seen a
flurry of cryptographic tools with versatile functionalities and rigorous security
analyses. Yet, the formal security guarantees come with an implicit caveat – they
only hold if the implementations faithfully realize the specifications the formal
security proof is analyzing. Our experiences tell us that implementation can be
tricky. Programming bugs may go undetected and subtle errors can make the
implementation faulty. Apart from unintended blunders which may spoil the se-
curity guarantee, implementations of cryptographic algorithms can be subverted
⋆ Supported by GRF (CUHK 14210217) of the Research Grants Council, Hong Kong

⋆⋆ Supported in part by NSF award 1801487
⋆ ⋆ ⋆ Supported in part by NSF award 1801492

† Supported in part by NSF award 1801470

with fully adversarial implementations which look correct even under fairly in-
tensive (black-box) testing. Such kind of subversion, or in general, kleptographic
attack [27,28], is not just a pathological concern, but has been understood as a
real threat since the Snowden revelations [22]. Concretely speaking, whenever a
“third-party” software library or hardware device is relied upon by a bigger cryp-
tographic system, it is hard to assert its security even if the said cryptographic
system is “provably secure” in the traditional sense.

At a high level, kleptography considers a “proud-but-curious” adversary
whose goal is to break the security of a certain cryptographic primitive by sup-
plying a malformed implementation of it without being detected. Under such
a setting, the adversary has many viable attack strategies. For example, the
malicious implementation of a signature verification algorithm may always re-
turn “1” when seeing a certain hard-coded string7. For another example, the
subverted randomized (e.g., encryption) algorithm may leak secret information
via a steganographic channel [4,23]. These general and powerful attack strate-
gies are undetectable under offline black-box testing. Given these attacks, it is
not surprising that all existing defense mechanisms rely on extra trust assump-
tions, such as trusted online reverse firewall [21,16,10], trusted key generation
algorithm [5,2], trusted initialization [17], etc.

Recently, Russell et al. [23] proposed a framework (called cliptography) for
systematically studying how to secure cryptographic primitives in the presence
of kleptographic attacks, i.e., how to clip the power of kleptographic attacks. The
framework is characterized by three parties: an adversary, who may provide po-
tentially subverted implementations of cryptographic algorithms; a “watchdog”,
who either certifies or rejects the implementations by subjecting them to (black-
box) interrogation according to the genuine specification of the algorithms; and
a challenger, who plays with the adversary in a conventional security game, but
now using the potentially subverted implementations. This framework is capable
of capturing a wide range of subversion capabilities and defense mechanisms.

– Online watchdog vs. offline watchdog. We can define two flavors of
watchdogs, depending on the information given to it. The strong (and less
attractive) model of online watchdog [23] is provided with access to the full
transcript of the challenger-adversary security game. It could be valuable for
establishing feasibility results, but in practice, it is not easy to instantiate
such a watchdog, as it has to piggyback on the implementations, collecting
all communication transcripts to detect abnormal inputs, and “barking” all
the time. The weaker (and perhaps more attractive) model is the offline
watchdog model [23,25]. The watchdog simply interrogates the supplied im-
plementations, comparing them with the specification of the primitives, and
declares them to be “fit” or “unfit.” In other words, the watchdog only needs
to “bark” once, and then it can go offline afterward.

– Partial subversion vs. complete subversion. The adversary may be
more interested in subverting certain cryptographic algorithms than the ot-
hers. For instance, if the attack goal is to learn the secret signing key, the

7 This can be viewed as applying the input-triggered attack [13] to signature schemes.

2

attacker will be less interested in subverting the verification algorithm than
the signing algorithm, since the verification result can only carry 1-bit of
information and it is likely to be kept locally. It is thus still worthy to consi-
der the partial-subversion model, in which some algorithms can be explicitly
excluded from subversion in the security game. Some subversion defense met-
hods are established in this model, e.g., honest key generation algorithm and
honest verification algorithm of a digital signature scheme [2]. The clipto-
graphy framework by Russell et al. [23] can easily capture partial subversion
by letting the challenger run the genuine algorithm in the security game.
Of course, it is of great importance to consider a more powerful advers-
ary who can launch a complete subversion which subverts all the relevant
cryptographic elements of a scheme [23] (excluding the computing base).

– Trusted computing base. Note that the complete-subversion model above
only refers to the functional components, i.e., the cryptographic algorithms,
which should be distinguished from the user computing base for basic opera-
tions such as ⊕, =, “reassembly”, etc. The trusted computing base for (some
of) these operations is provided by the architecture, which is normally not
under the control of the cryptography implementation/library provider.
Russell et al. [23,25] recently proposed the split-program strategy for immu-
nizing kleptographic attacks on randomized algorithms. The idea of this non-
black-box technique is to decompose the algorithm into a constant number
of smaller components. The adversary can still provide subverted implemen-
tations of all these components but the challenger will faithfully amalgamate
these components into a fully functional implementation, which will be used
in the security game. Note that all components are still subject to black-box
interrogation by the (online/offline) watchdog. Such non-black-box testing
and trusted amalgamation can be captured by simply providing specificati-
ons of all small components of the algorithm to the watchdog.

Current status of subversion-resistant signatures. To the best of our kno-
wledge, only three previous works considered subversion-resistant signature sche-
mes. The work by Ateniese et al. [2] not only relies on a priori “verifiability”
condition which essentially requires an online watchdog to instantiate, but also
assumes trusted key generation algorithm (or requires a trusted online “reverse
firewall”). The result of Russell et al. [23], despite in the complete-subversion
model, (explicitly) requires an online watchdog too. Fischlin and Mazaheri [17]
recently proposed a new defense mechanism called “self-guarding” which requires
users to have a trusted initialization phase to generate genuine message signa-
ture pairs for randomly chosen messages. We continue the pursuit of reducing
the trust assumption needed for subversion-resistant signature schemes.

1.1 Our Contributions

We investigate subversion-resistant EUF-CMA-secure (simply put, cliptographic)
digital signature schemes in the above framework with only an offline watchdog.

3

A simple generic construction in the partial-subversion model. We start
with a simple construction which works for any existing signature schemes. So,
one can just apply a simple “patch”, or install a “small” (due to its simpli-
city) add-on without changing the underlying system. Note that for this generic
construction, the verification algorithm is still trusted.

How difficult is our problem? First, note that the key generation can be hand-
led by the recent double-splitting technique [25]. The main difficulty appears in
the Sign algorithm. Recall that one potential catastrophe of a subverted signing
algorithm is the revelation of the secret key. It is relatively easier to discover
such a subversion if the secret key is blatantly output as the “signature”. A
more sophisticated kleptographic attacker will hide this secret. When the sig-
ning algorithm is randomized, it provides a convenient subliminal channel. A
natural preventative measure is to use clean randomness to re-randomize the
signatures (if they are publicly re-randomizable), with the existence of a crypto-
graphic reverse firewall [21]. Alternatively, a unique signature scheme, in which
there is only one valid signature for each message, simply does not feature any
subliminal channel. These explain in a high-level way the feasibility results of
Ateniese et al. [2]. Nevertheless, many signature schemes, especially those effi-
cient ones with security proven in the standard model, are randomized (e.g. [8]).
So our first question is: can we upgrade the signing algorithm of a probabilistic
signature scheme?

Our generic construction. A general defense against input-triggered attacks [13]
is to mandate that the subverted implementation only takes a random message.
Russell et al. [25] construct subversion-resistant encryption schemes in the offline-
watchdog model with this idea. The encryption algorithm invokes two instances
of encryption, one encrypting u⊕m and the other encrypting u. Adopting this
strategy naïvely in the context of signature signing does not work. The scheme
Signspec(sk,m) = (Sign′spec(sk, u), Sign′spec(sk, u⊕m), u) is trivially forgeable.

We fixed this forgeable scheme by two techniques: i) Domain-separation: We
append different special symbols to the inputs in the two invocations, so that
the output of the first invocation cannot be interpreted as the second one (and
vice versa); ii) One-time random tag: We also need to make sure that no one can
mix-and-match (the components of) signatures for different messages to create
new forgeries. To do so, we further include a random tag r that binds the two
signature components together, also making sure that they are one-use only. We
note that the domain-separation technique has been used in other contexts, such
as random oracle instantiation. Similar one-time random tag structure has also
appeared in the context of structure-preserving signature [1], but their work does
not randomize the message to be signed.

Moreover, to handle the subliminal channel attack due to biased randomness,
we decouple the randomness generation from the randomized algorithm [25]. The
randomness generation can be further handled via the double-splitting technique,
while the deterministic counterpart for signing can be safeguarded by only an
offline watchdog as we feed only uniform messages as input.

4

FDH-based construction in the complete-subversion model. Our main
contribution is a secure signature scheme in the complete-subversion model which
further handles the subverted verification algorithm.8 This is the first signature
scheme that achieves such security goals. The simple generic construction above
cannot handle subversion of verification algorithm. Indeed, it is not clear how
to generically apply the randomization strategy to the potentially adversarial
inputs to be fed to the verification (i.e., the message m and the signature σ),
such that the signature verification algorithm still works on these randomized
inputs, without jeopardizing the unforgeability of the signature scheme.

Our second construction hence does not take the generic randomization ap-
proach, but instead handles the classical full-domain hash (FDH) [7,11] para-
digm. In this paradigm, the signing algorithm first hashes the message and then
inverts the hashed value via a trapdoor one-way permutation. The adversary
is supposed to provide the implementation of each algorithm: KGimpl, Signimpl,
Verifyimpl and also the implementation of the hash himpl.

First, we note that the key generation can be handled the same way as our
generic transformation above applying the recent double-splitting technique [25].

Regarding the hash function, we utilize the recent work of Russell et al. [26],
which provides a simple construction that can correct a subverted random oracle,
such that the resulting function will be as good as an ideal random function.
The construction requires some public randomness that is generated after the
implementation of the hash is supplied. To apply their theorems [26], and ensure
that the “corrected” hash can be considered to be a random oracle, we need to
ensure i) the subversion disagrees on its specification only at a negligible fraction;
ii) there is randomness that can be generated and published after the malicious
implementations are supplied; iii) “interpret” their “replacement lemma” [26]
such that it is suitable for our application. Point iii) is more complex than it
looks, especially when all the other algorithms are subverted. See below.

It is challenging to deal with the signing algorithm. To avoid the signing im-
plementation to leak the secret triggered by some hidden input, we will apply the
“corrected” random oracle [26] to the message before passing it into the evalua-
tion function of the underlying one-way permutation. The adversary is required
to provide the implementation of the inversion function, and the implementation
of the hash, separately, to enforce the actual inputs to the implementation of
inversion function are sk, h̃R(m), which are generated by a known distribution.

However, we remark that simply viewing h̃R as a good random oracle g(·) (tri-
vially applying the replacement lemma [26]) is still problematic. As the subverted
Invimpl could simply use g(z) as the backdoor and output the secret key sk directly
when z appears in a signing query (i.e., Signimpl(sk, z) = Invimpl(sk, g(z)) = sk).

8 As elaborated above, the trusted computing base including operations like “⊕” and
“=” are still in place. They are actually necessary due to the known (simple) trigger
attacks [13] assuming only an offline watchdog. Our goal is to reduce the number of
trusted functional components, and keep the remaining as simple as possible, e.g.,
without any trusted large group operations.

5

The problem here is that the adversary can query random oracle when gene-
rating the implementations and plant the trigger accordingly. To defend against
such attack, we have to disable the adversary from making useful random oracle
queries during the implementation-generation phase. Observe that if we have
some randomness R generated after Signimpl is provided, and R is involved in
the “encoding” of the message before sending to Invimpl, then the above problem
could be mitigated. Luckily, the correction function from [26] already involves
randomness generated after the time that implementations are provided. What
we need to adapt here is to derive a “stronger replacement theorem” that the
correction function of [26] is actually “as good as” (in the sense of indifferen-
tiability) a keyed hash (where, the key could be public, but sampled after the
implementation is provided). See Section 4.3 for details.

Finally, it is also tricky to deal with the verification algorithm. Suppose the
implementation of the verification takes input public key pk and a message-
signature pair (m,σ), and outputs 0 or 1 to decide whether the signature is
valid. The input-triggered attack again can be applied here in a way that, for
some randomly chosen message m∗, Verifyimpl(·,m∗, ·) always outputs 1. Opening
up the verification functionality of the full-domain hash signature, it is actually
to check whether evaluating the signature equals to the (“corrected”) hash of
the message. We propose to do such canonical verification explicitly, that the
equality operation (and the “corrected” hash) will be done by the user. The
adversary will provide the implementation of the evaluation function. This simple
decomposition of the verification functionality changes the task of the adversarial
implementation from targeting one bit to predicting a random value, which is
the output of the “corrected” hash. We remark here that, as above, the use of the
public randomness is also critical to prevent the adversary from making useful
random oracle queries during the manufacturing phase of Verifyimpl.

There still exists a subtler attack, that the attacker might use the trigger
signature material σ∗ to directly carry the information of hR(m

∗). This has to
be resolved by strictly restricting the length of σ∗ and doing a length check.
As σ∗ first needs to carry certain trigger information which is independent of
the output of hR(m

∗), this thus burns the information needed for a precise
prediction of the value of hR(m

∗).

1.2 Related Works

Kleptography introduced by Young and Yung [27,28] primarily highlighted the
possibility of subverting key generation and left open the problem of defending
against such subversion. A recent line of work of Russell et al. [23,25,26] has ini-
tiated a systematic study of cliptography about defending against kleptographic
attacks by redesigning the specification and leveraging architectural tools. In
particular, they provided a subversion-resistant digital signature, assuming an
online watchdog [23].

Also recently, new attacks and defense mechanisms in the kleptographic set-
ting keep appearing. In particular, Bellare et al. [5] studied subverted randomized
encryption algorithms, building a steganographic channel that leaks secrets bit

6

by bit. Indeed, subliminal channel attacks turn out to be the major obstacle in
this area, and have been further explored by Ateniese et al. [2], Bellare et al. [3,4],
Degabriele et al. [13], Dodis et al. [15], and Liu et al. [19]. A common feature of
these works [5,3,4,13] is to adopt deterministic algorithms and to assume honest
key generation to defend against subliminal channel attacks.

Furthermore, these works do not rely merely on testing. In fact, most require
an a priori “decryptability” condition which demands that every message encryp-
ted using the implementation should be decrypted correctly using the specifica-
tion. A notable exception is the work of Degabriele et al. [13]. However, it relies
on an online watchdog that possesses access to the actual challenger-adversary
communication transcript (including the internal state of the challenger).

Another research line [21,16,10] considered defense mechanisms with a “re-
verse firewall” that faithfully “re-randomizes” incoming and outgoing commu-
nication. On one hand, this model is attractive as it may permit quite general
feasibility results. On the other hand, it relies on an independent component
which is a source of trusted randomness (which generalized the “trusted war-
den” [14] used to eliminate subliminal channels in authentication protocols) and
“re-randomizable” structure of the underlying algorithms.

Recently, Fischlin and Mazaheri [17] proposed a new defense mechanism cal-
led “self-guarding”, which assumes that a genuine version of the cryptographic
implementations is available before they get substituted. The self-guarding pri-
mitive then leverages information gathered using that genuine implementation
at the initial phase to re-randomize potentially malicious inputs like the reverse
firewall approach (assuming trusted basic operations like exclusive-or or group
operation). They constructed several self-guarding primitives including digital
signature schemes. Besides the trusted “setup”, their signature construction co-
mes at a price that verification/signing key size and signature size all inflate by
a factor of O(λ) where λ is the security parameter.

Finally, also motivated by the doubt on the implementation, cryptographers
(e.g., [29,18]) studied combiners of cryptographic primitives such that as long
there exists one component primitive is secure, even if it is not known which one
is that, the combined primitive remains secure.

Organization. In Section 2, we define the security for subversion-resistant digi-
tal signature. In Section 3, we give our first construction – a simple and generic
scheme in the partial-subversion model; in Section 4, we give our second con-
struction – an FDH-based signature scheme in the complete-subversion model.
Both constructions use only an offline watchdog. Finally, the crooked indifferen-
tiability model can be found at Appendix A.

2 Definition of Subversion-Resistant Signatures

First, we recall the definition of subversion-resistant signatures [23]. Its goal
is fairly simple: the security of the digital signature scheme – unforgeability –
should be preserved even one uses the malicious implementations supplied by

7

the adversary, as long as the adversarial implementation is not detected. The
detection is done by a trusted entity called watchdog who has the specification of
the algorithms and it will interrogate (via oracle accesses of) the implementation
to see whether it is consistent with the specification. The subversion-resistant
signature game is defined as the classical unforgeability game, except that the
challenger will use the implementations supplied by the adversary instead of the
specification of the algorithms. In particular, the challenger runs the key gene-
ration algorithm KGimpl to generate the challenged signing key and verification
key, uses the signing functionality Signimpl to answer signing queries and use
the implementation of verification functionality Verifyimpl to verify the final for-
gery that the adversary made. Definition 1 formalizes the high-level description
above. It can be viewed as a special case of the cliptographic game [23, Definition
2] under the context of digital signature schemes.
Definition 1. A specification Πspec = (KGspec,Signspec,Verifyspec) for a digital
signature scheme Π is subversion-resistant in the offline-watchdog model, if
there exists a probabilistic polynomial-time (ppt) watchdog W, s.t., for any ppt
adversary A playing the security game (Figure 1) with the challenger C, either
the advantage of the adversary A in the security game AdvA(1

λ) = Pr[bC = 1]
is negligible, or the detection probability DetW,A(1

λ) of the watchdog W with
respect to A is non-negligible. Here, DetW,A(1

λ) is defined by∣∣Pr[WKGimpl,Signimpl,Verifyimpl(1λ) = 1]− Pr[WKGspec,Signspec,Verifyspec(1λ) = 1]
∣∣ .

Test Phase
W A

prepare Πimpl :=

� Πimpl [KGimpl, Signimpl,Verifyimpl]

bW ←WΠimpl(1λ)

Execute Phase
C A

run (pk, sk)← KGimpl(1
λ)

pk -

� mi query for q times
run σi ← Signimpl(sk,mi)

σi -

� m∗, σ∗

bC := 1 if Verifyimpl(vk,m
∗, σ∗) = 1

∧ m∗ ̸∈ {m1, . . . ,mq}
bC := 0 otherwise

Fig. 1. Subversion-Resistant Signature Game in the Offline-Watchdog Model

As discussed earlier in Section 1, depending on the watchdog power, there
could be different variants of the above model. The most realistic watchdog only

8

performs one-time testing, which is called an offline watchdog. In practice, an
offline watchdog can be some industrial labs or security experts. We can also
consider a more stringent online watchdog that additionally checks all com-
munication transcripts between the challenger and the adversary. The online-
watchdog model has been explicitly considered under the context of digital sig-
natures [23]. Clearly, an online watchdog is much powerful and makes the design
of subversion-resistant scheme easier, but it is also more costly to realize an on-
line watchdog. An online watchdog has to piggyback on the implementation and
actively monitor all communications of an implementation.

Unfortunately, with only an offline watchdog, it is impossible to achieve un-
forgeability in the kleptographic setting [2], even if only the Sign algorithm is
subverted. To see, recall the input-triggered attack mentioned above: the sub-
verted signing algorithm Signimpl simply outputs the secret key when signing on
a hard-coded trigger message m which is selected uniformly by the adversary.
It is obvious that the adversary can make one single signing query to totally
break the unforgeability. Previous work [23] got around this by introducing an
online watchdog. Another work [2] introduced a “verifiability” assumption – any
signature generated by the malicious signing implementation should be verified
by the genuine Verify algorithm. This verifiability assumption can only be ensu-
red with an online watchdog. This impossibility holds when the implementation
is used as a black box, without doing any post-processing. We will show below
that if the user can do some basic operation, e.g., equality check and “⊕”, then
it is possible to construct a digital signature scheme secure against the powerful
kleptographic attack, with only an offline watchdog that performs non-black-box
testing (i.e., trusted amalgamation).

3 A Simple Generic Construction in the Standard Model

We propose a generic transformation on the signing algorithm which leads us to
a new randomized subversion-resistant signature scheme in the offline-watchdog
model from any deterministic signature scheme that is existentially unforgeable
against adaptive chosen-message attack (EUF-CMA, cf., Definition 8) (assuming
trusted verification and “⊕”). Our transformation (modulo the underlying algo-
rithms) holds in the standard model9, and can be easily generalized to handle
randomized signatures as well. As discussed in Section 2, previous subversion-
resistant signature schemes either rely on an online watchdog [23], or an online
reverse firewall [10], or a strong “verifiability” assumption [2].

Figure 2 below formally describes our construction. For the sake of simplicity,
we describe the transformation for deterministic signature schemes first, and then
show how to generalize the result to handle randomized schemes.

9 In the full version ([24]) of [25], the authors discussed how to achieve subversion-
resistant randomness generation in the standard model, at the cost of efficiency. See
Appendix B and [24] for details.

9

Key generation. We handle the key generation by adopting the recently proposed
double-splitting technique [25, Theorem 3.5], which we recall in Appendix B.
This guarantees that the implementation of a carefully designed specification of
key generation can be used as good as the specification, as long as the randomness
generation algorithm is executed independently. We refer to [25] for details. Our
result can be lifted to allow malicious key generation by directly applying the
existing technique [25].

Sign. We augment the specification of the signing algorithm dSignspec with a
random tag generator RGspec and a random message generator MGspec, i.e.,
Signspec = (RGspec, MGspec, dSignspec). RGspec and MGspec are merely for ge-
nerating uniformly random tags and messages of a certain length. Therefore,
they can also be handled10 by the double-splitting technique [25, Theorem 3.4],
similar to the key generation algorithm. To sign a message m, the user first runs
MGimpl (the implementation) to sample a random message u, and compute a
message m′ = u⊕m. The user also runs RGimpl to generate a random tag r from
some super-polynomial-size domain. The user will call dSignimpl twice to sign
two distinct messages m1 = (r||u||“1”) and m2 = (r||m′||“2”) = (r||u⊕m||“2”),
where “1” and “2” are two special symbols. The ultimate output of the signing
algorithm is σ = (r, u, σ1, σ2) where σ1, σ2 are the corresponding output of the
two invocations of dSignimpl.

Verify. Verification works straightforwardly: parse σ as (r, u, σ1, σ2), compute
m′ = u⊕m, compose m1 and m2 (using trusted “⊕”), and verify σ1 and σ2.

Given an EUF-CMA-secure deterministic signature SS ′
spec := (KGen′spec, dSign′spec,

Verify′spec), and assuming trusted “⊕”, our subversion-resistant signature scheme
SSspec := (KGenspec, Signspec,Verifyspec) is defined below:

– Key generation: (pk, sk) ← KGenspec(λ), where KGenspec(λ) is the stego-free
version of KGen′spec in the trusted-amalgamation model (see Theorem 5 [25,
Theorem 3.5] in Appendix B).

– Sign: σ ← Signimpl(pk, sk,m), where Signspec(pk, sk,m) is given by:
sample uniformly random string and message r ← RGspec(1

λ), u ←
MGspec(1

λ), where RGspec and MGspec are stego-free randomness generation
algorithms (see Theorem 4 [25, Theorem 3.4] in Appendix B);
compute σ1 ← dSign′spec(sk, (r||u||“1”)) and σ2 ← dSign′spec(sk, (r||u ⊕
m||“2”));
output σ = (r, u, σ1, σ2).

– Verification: b← Verifyspec(pk,m, σ), where Verifyspec is given by:
parse the input σ as (r, u, σ1, σ2);
run Verify′spec(pk, (r||u||“1”), σ1) and Verify′spec(pk, (r||u⊕m||“2”), σ2);
return 1 if and only if both verifications succeed.

Fig. 2. Subversion-Resistant Signature Scheme SSspec in the Offline-Watchdog Model
10 RGspec and MGspec will be split into three pieces exactly in Figure 14.

10

Before detailing the security analysis, we briefly explain how our design en-
sures security. First, KGspec is subversion resistant because we are directly ap-
plying the result in [25] (also see Theorem 5). Second, the Signspec algorithm
is subversion resistant because by design the input to dSign′spec comes from a
public (uniform) distribution. A simple watchdog can further guarantee that
dSignimpl is consistent with the specification when the output is sampled from
SK ×R×M× {“1”, “2”}, where SK denotes the space of signing keys, R de-
notes the super-polynomial-size tag space, and M denotes the message space.
Third, the special symbols (“1” and “2”) and the random tag r ensure EUF-CMA-
security as follows: (1) the two special symbols separate the input domain so that
the output of the first invocation of dSign′spec (with “1” appended) cannot be the
output of the second invocation (with “2” appended) for a forgery of Signspec,
and vice versa; (2) the random tag r drawn from a super-polynomial-size domain
makes sure that the signature σ = (σ1, σ2) for some message m is one-use only:
the adversary cannot mix-and-match different signatures to create new forgeries.

Theorem 1. For any EUF-CMA-secure deterministic digital signature scheme
SS ′spec, the specification SSspec described in Figure 2 is subversion resistant in
the trusted-amalgamation model, assuming a trusted “⊕” operation and trusted
the verification algorithm, and RGspec outputs uniformly random tag from some
super-polynomial-size domain.

Proof. The watchdog for SSspec is a combination of the watchdogs of the un-
derlying components, including watchdogs for key generation (KGspec), random
tag generation (RGspec), random message generation (MGspec). There is also a
watchdog that makes sure dSignimpl is consistent with the specification on inputs
sampled from SK×R×M×{“1”} and SK×R×M×{“2”} (cf. Theorem 7)
because these two distributions are both public.

To see, the inputs to dSign′spec consist of the signing key sk from KGenimpl
and the concatenation of the following: a uniformly random tag r from RGimpl,
a uniform message u or u ⊕ m (where u comes from MGimpl), and a special
symbol (“1” or “2”). With the trusted “⊕” operation, u ⊕m will look uniform
to dSign′impl, hence its distribution is also MGimpl.

The rest of the proof consists of two parts. The first part is a series of game
transitions showing that from the adversary’s point of view, the subversion game
(as defined in Figure 1) is indistinguishable from a standard EUF-CMA game (na-
mely SS impl is replaced by SSspec), conditioned on the event that the watchdogs
above do not detect any abnormal behavior of SS impl. The second part shows
that SSspec is indeed EUF-CMA-secure, so that the adversary’s advantage is
indeed negligible.

Now we sketch the game changes and explain the negligible differences arise
during a series of game transitions from SS impl to SSspec, conditioned on the
watchdog’s result (Verifyimpl is assumed trusted). Let the advantage of the ad-
versary A in game Gi be AdvGi

A .

Game-0. G0 is the original game as described in Figure 1 with a trusted amal-
gamation.

11

Game-1. G1 is identical to G0 except that the key generation implementation
KGimpl is replaced by its specification KGspec.

Lemma 1. |AdvG0

A −AdvG1

A | ≤ negl(λ).

Proof. This lemma follows straightforwardly from Theorem 5 [25, Theorem 3.5].
Namely, if KGen is split into RG0,RG1, Φ, dKG, and RG0,RG1 are executed inde-
pendently, the resulting implementation would be stego-free, i.e., indistinguis-
hable from the specifications even to the adversary. (The formal definition of
stego-freeness is recalled in Appendix B. Readers are referred to [25] for a more
detailed discussion.)

Game-2. G2 is the same as G1 except MGimpl is replaced by MGspec.

Game-3. G3 is the same as G2 except RGimpl is replaced by RGspec.

Lemma 2. |AdvG2

A −AdvG1

A | ≤ negl(λ) and |AdvG3

A −AdvG2

A | ≤ negl(λ).

Proof. These two inequalities follow directly from Theorem 4 [25, Theorem 3.4].
Taking the first inequality as an example, if there exists an adversary A such
that |AdvG2

A − AdvG1

A | is non-negligible, we can build another adversary B
breaking stego-freeness game for MGimpl. The reduction is straightforward: B
simulates the rest of the game for A, receives all malicious implementations
(MGimpl, dSignimpl, etc.), but forwards only MGimpl to its own watchdog and
challenger. Whenever A queries the signing oracle for some mi, B asks its own
challenger to obtain ui generated either by MGimpl or by MGspec, and uses ui

to compute appropriate responses for A using implementations provided by A.
Finally, B outputs whatever A outputs. It is easy to see that the simulation is
perfect, and the advantage of B is the same as the advantage of A. The second
inequality follows the same argument.

Game-4. G4 is the same as G3 except dSign′impl is replaced by dSign′spec. Note
that in G4, all the implementations have been replaced by their genuine speci-
fications.

Lemma 3. |AdvG4

A −AdvG3

A | ≤ negl(λ).

Proof. This again follows from Theorem 5 using a similar argument as in Lemma 1.
Note that the inputs to dSign′ are drawn from public distributions (either SK×
R×M× {“1”} or SK ×R×M× {“2”}).

Finally, we need to show that AdvG4

A is indeed negligible, which is equivalent
to showing that SSspec is indeed an EUF-CMA-secure signature scheme. To this
end, we design a simple reduction algorithm reducing the EUF-CMA-security
of Signspec to that of dSign′spec. Suppose there is an adversary A that breaks
EUF-CMA-security of Signspec, we design an adversary B that breaks dSign′spec.
For any signing query m, B randomly chooses (r, u), and submits signing queries
(r||u||“1”) and (r||u ⊕m||“2”) to the oracle OdSign′spec(·). B locally maintains a

12

list of records in the form (r, u,m, σ1, σ2) where σ1, σ2 are the responses from
OdSign′spec(·), and forwards σ = (r, u, σ1, σ2) to A. Eventually A outputs a forgery
(σ∗,m∗), where σ∗ = (r∗, u∗, σ∗

1 , σ
∗
2), with non-negligible probability.

To see how B can extract a valid forgery for dSign′spec from A’s forgery
(σ∗,m∗), notice that by (σ∗,m∗) being a valid forgery for Signspec, it means that
both (σ∗

1 , (r
∗||u∗||“1”)) and (σ∗

2 , (r
∗||u∗ ⊕m∗||“2”)) are valid message-signature

pairs for dSign′spec, and that A has never queried the signing oracle for m∗.
The latter indicates that B’s local list does not contain any entry in the form
(·, ·,m∗, ·, ·). We discuss several cases:

1. Tag r∗ does not appear in any entries of B’s record: Both (σ∗
1 , (r

∗||u∗||“1”))
and (σ∗

2 , (r
∗||u∗ ⊕m∗||“2”)) are valid forgeries for dSign′spec;

2. Tag r∗ exists in some records in the form (r∗, u, ·, ·, ·): By our assumption
that the tags are supposed to be drawn from a super-polynomial-size space,
with overwhelming probability all the tags in B’s record are unique. Without
loss of generality, assume that this unique record is (r∗, u,m, σ1, σ2). That
means (r∗||u||“1”) and (r∗||u⊕m||“2”) are the only queries sent toOdSign′spec(·)
which begin with tag r∗. If u∗ ̸= u, then (σ∗

1 , (r
∗||u∗||“1”)) must be a valid

forgery for dSign′spec;
3. r∗ and u∗ appear in a unique entry of the form (r∗, u∗,m, σ1, σ2): Using the

same argument above, (r∗||u∗||“1”) and (r∗||u∗⊕m||“2”) are the only queries
sent to OdSign′spec(·) which begin with tag r∗. It must hold that m∗ ̸= m.
Otherwise, A must have asked for a signature for m∗ from B. Given that
m∗ ̸= m, (σ∗

2 , (r
∗||u∗ ⊕m∗||“2”)) must be a valid forgery for dSign′spec.

By our assumption that dSign′spec is EUF-CMA-secure, AdvG4

A is negligible.
Putting all the lemmas above together, we complete our proof.

It is straightforward to generalize Theorem 1 to handle randomized signa-
tures. Basically, the randomized signing algorithm rSignspec(sk,m) needs to be
split into two components RG′

spec(1
λ) and dSignspec(r; (sk,m)). RG′

spec generates
uniform randomness needed by rSignspec, and dSignspec is a deterministic algo-
rithm, so that for all sk, m, it holds that rSignspec(sk,m) = dSignspec(RG

′
spec(1

λ);
(sk,m)). Both RG′

spec and dSignspec can be made subversion-resistant easily. The
security proof above only needs to be augmented with an additional hybrid game
that replaces RG′

impl with RG′
spec.

Corollary 1. For any EUF-CMA-secure (randomized) digital signature scheme
SS ′spec, the specification SSspec described above is subversion-resistant in the
trusted-amalgamation model, assuming a trusted “⊕” operation and trusted ve-
rification algorithm, and RGspec outputs uniformly random tag from some super-
polynomial-size domain.

4 FDH-based Signatures under Complete Subversion

Now we describe our second construction of signature scheme which only requires
an offline watchdog when all cryptographic algorithms (KG,Sign,Verify) and the

13

hash functions are subjected to subversion. Our scheme follows the full-domain
hash [7,11] paradigm, one of the most classical applications of random oracles.

4.1 High-Level Ideas

In an FDH-based signature scheme, the signing algorithm first hashes the mes-
sage and then inverts the hashed value using a trapdoor one-way permuta-
tion. Suppose the adversary can subvert the implementation of each algorithm:
KGimpl,Signimpl,Verifyimpl and also the implementation of the hash himpl. Several
natural questions arise. Let us examine the algorithms one by one.

As discussed in the introduction, we will handle those algorithms one by one.
Here we elaborate a bit more. The intuition for defending against the trigger
is that the Sign algorithm cannot be fed with a random message. Without the
trusted re-randomization, our idea is to hash the message. While hashing alone
does not resolve the problem as the trigger can be trivially propagated through
the hash. One simple observation is to hash the message together with some
random element that is not known to the attacker, e.g., public-key material.
Now, this naturally leads us to consider hash subversion.

Fortunately, Russell et al. [26] provided a simple construction that can cor-
rect a subverted random oracle, such that the resulting function will be as good
as an ideal random function. To apply their theorems [26], we need to ensure
i) the subversion disagrees with its specification only at a negligible fraction;
ii) there is randomness that can be generated and published after the malici-
ous implementations are supplied; iii) interpret the “replacement” lemma to be
suitable for our application. Requirement (i) is easy and repeatedly used in the
cliptography literature [23,25]. As the hash function is a deterministic function,
the offline watchdog can simply evaluate the implementation and compare with
the output of the specification. For (ii), observe that the implementation of key
generation KGimpl will produce a public key, which should be unpredictable to
the adversary (otherwise, the watchdog can keep sampling to find a collision
to differentiate KGimpl from KGspec). It follows that if KGimpl can be treated as
honestly generated (see above), we can extend the key generation to also output
some randomness R which will be part of the public key. Requirement (iii) is a
bit subtler. Simply replacing the corrected hash with a trusted random oracle is
not enough. See the next point of subverting Signimpl and Section 4.3 below.

The traditional implementation of the verification takes input public key pk
and a message-signature pair (m,σ), and outputs 0 or 1 to decide whether
the signature is valid. The input-triggered attack can be applied here easily.
Verifyimpl(·,m∗, ·) can just always outputs 1 for some randomly chosen mes-
sage m∗ (or a special signature element σ∗). In the full-domain hash, opening
up the verification functionality, it is actually to check whether evaluating the
signature is equal to the (“corrected”) hash of the message. We first propose
to do such a canonical verification explicitly, that the equality operation will
be done by the user. The adversary will provide the implementation of the
evaluation function of the one-way permutation. This simple decomposition of
the verification functionality changes the task of the adversarial implementation

14

from targeting one bit to predicting a random value, which is the output of the
“corrected” hash. We remark here that, same as above, the use of the public
randomness is also important for preventing the adversary from making useful
random oracle queries during the manufacturing phase of Verifyimpl.

There still exists a subtler attack, that the attacker might use the trigger
signature material σ∗ to directly carry the information of hR(m

∗). Such kind
of attack looks like the “big brother” A is communicating directly to the “little
brother” – the subverted implementation for action items. This has to be resolved
by strictly restricting the length of σ∗ and doing a length check. We note that in
the setting of FDH, since we use trapdoor one-way permutation, thus the length
is tight, and the simple length checking already works. See the proof of Lemma 7.

4.2 Our Subversion-Resistant FDH-based Signature Scheme in the
Offline-Watchdog Model

Given a trapdoor one-way permutation, with specification denoted by Fspec :=
(KGF

spec, EvalFspec,InvFspec), and a public hash function (or a family of hash functi-
ons for consistency) with specification

{
hi : {0, 1}∗ → {0, 1}n

}
i=0,...,ℓ

, where we
assume the message space is M = {0, 1}n; we construct a subversion-resistant
signature scheme SS with specification SSspec := (KGSS

spec,Sign
SS
spec,Verify

SS
spec).

Note that the family of {hi}ℓi=1 may be simply derived from one hash using
different indices, e.g., ∀x, hi(x) = h(i, x), where i = 1, . . . , ℓ = 3n+ 1.

– Key generation: (pk, sk)← KGSS
spec(λ), where KGSS

spec
11 is given by:

The algorithm generates (f, tdf) ← KGF
spec(λ), and R := r1, . . . , rℓ ←

{0, 1}nℓ.
The algorithm sets pk := (f,R) and sk := tdf ;

– Sign: σ ← SignSS
spec(pk, sk,m), where SignSS

spec := ({hi}ℓi=0, Invspec) is given
by:
Upon receiving message m, the algorithm first computes m̃ = hR(m) =

h0

(⊕ℓ
i=1 hi(m⊕ri)

)
, and then generate the signature as σ = InvFspec(sk, m̃).

Signspec := ({hi}ℓi=1, Invspec) means, explicitly, the adversary should follow
this decomposition, and provide implementations of {h̃i}ℓi=1 and Invimpl in-
dividually.

– Verification: b ← VerifySS
spec(pk,m, σ), where VerifySS

spec := ({hi}ℓi=1,Evalspec)
is given by:
Upon receiving message-signature pair (m,σ) and a public key pk, the al-
gorithm only proceeds if the length of σ∗ is correct (equals to the hash

output length n), it then computes m̃ = hR(m) = h0

(⊕ℓ
i=1 hi(m⊕ ri)

)
, if

EvalSS
spec(pk, σ) = m̃, set b := 1; otherwise, set b := 0. Here, pk = (f,R).

Likewise, VerifySS
spec := ({hi}ℓi=1,Evalspec) means that for Verify the adversary

should supply the implementation of Evalimpl (while {hi} can be reused).
11 We remark here that the KGSS

spec algorithm will be split into four pieces exactly as [25].

15

4.3 How to use the Replacement Theorem [26]

To prepare us for the security proof, we first strengthen the previous result
about correcting random oracle. Let us recall the replacement theorem [26] for
establishing that a corrected random oracle is as good as a truly random function
when used in larger systems.

General replacement with crooked indifferentiability. Security-preserving repla-
cement has been shown in the indifferentiability framework [20]: if C G is indiffe-
rentiable from F , then C G can replace F in any cryptosystem, and the resulting
cryptosystem in the G model is at least as secure as that in the F model. It has
been shown [26] that the replacement property can also hold in the crooked in-
differentiability framework (see Appendix A.2 and [26] for a detailed definition).

To model “as secure” (when correcting a subverted object) when used in lar-
ger systems (see illustration in Figure 3 excluding R), consider an ideal primitive
G, we can define the G-crooked-environment Ê as follows: Initially, the crooked
environment Ê manufactures and then publishes a subverted implementation
of G, denoted by G̃. Then Ê runs the attacker A, and the cryptosystem P is
developed. In the G model, cryptosystem P has oracle accesses to C whereas
attacker A has oracle accesses to G; note that, C has oracle accesses to G̃, not
directly to G. In the F model, both P and A have oracle accesses to F . Finally,
the crooked environment Ê returns a binary decision output. It was shown [26]
that if a construction C is G-crooked indifferentiable with another object F , C G

would be as secure as F when used in any larger system P.

C

R

G̃ G

P A

Ê

F

R

P SA

Ê

Fig. 3. Environment Ê interacts with Cryptosystem P and Attacker A: In the G model
(left), P has oracle accesses to C whereas A has oracle accesses to G; the algorithm C
has oracle accesses to the subverted G̃. In the F model, both P and SA have oracle
accesses to F .

16

An easier-to-use interpretation for correcting subverted random oracles.
Using the definition and the theorem as is, however, will cause some trouble
when applying the result of correcting a subverted random oracle, especially
when plugging it to a larger system. We first reflect the public randomness gene-
rated after implementation is provided more explicitly in the model. Moreover,
we also need to adjust the “ideal world” a little bit so that the targeted ideal
object (in particular, a random oracle here) is also utilizing such public rand-
omness, which yields a slightly stronger object of (ideal) keyed hash. These two
adjustments will be critical for the application to our FDH construction.

For simplicity, we focus only on random oracles here. Consider a random
oracle G, we augment the G-crooked-environment Ê as follows: Initially, the
crooked environment Ê deploys the attacker A to query G for some preproces-
sing. It follows immediately Ê deploys the crooked implementation G̃ and the
cryptosystem P (which itself could be malicious or containing subverted com-
ponents). Some randomness R is then drawn and published, which is utilized by
construction C . On the other hand, in the world using random oracle F , ori-
ginally after R is generated, F(·) becomes F(R, ·) (with the first half of inputs
fixed by a randomly selected R). The interactions among A,P, E and the rest of
the definition of “as secure” remain the same. See Figure 3.

Definition 2. Consider random oracles G and F (both with variable input
length). A cryptosystem P is said to be at least as secure in the augmented
G-crooked model with algorithm C as in the F model, if for any augmented G-
crooked-environment Ê and any attacker A in the augmented G-crooked model,
there exists an attacker SA in the F model, such that:

Pr[Ê(PC G̃
,AG) = 1]− Pr[Ê(PF ,SFA) = 1] ≤ ϵ.

where ϵ is a negligible function of the security parameter λ.

We can prove a similar theorem as the replacement theorem [26] for the aug-
mented definition (with essentially an identical proof technique, see the dashed
frames in Figure 4 and we refer to [26] for details).

Corollary 2. Let P be a cryptosystem with oracle accesses to a random ora-
cle F . Let C be an algorithm such that C G is G-crooked-indifferentiable from F .
Then cryptosystem P is at least as secure in the augmented G-crooked model
with algorithm C as in the F model.

4.4 Security Analysis

Theorem 2. If Fspec is a trapdoor permutation, the specification of {hi}i=0,...,ℓ

are random oracles, then the signature scheme SS with specification SSspec
constructed above is subversion resistant with an offline watchdog, assuming
the “⊕” and “=” operations are honestly carried out (and execute the pieces
independently as [25]).

17

C

R

G̃ G

P A

Ê

D̂

F

R

S
G̃

P A

Ê

D̂

SA

Fig. 4. Construction of Attacker SA from Attacker A and Simulator S

Proof. First, to simplify the presentation of the analysis in the cliptographic
setting, we ignore the checking phase of the offline watchdog in the game transi-
tions, while taking the simple guarantees such as deterministic function will be
correct on an overwhelming portion of inputs as the condition. The security can
then be seen simply by walking through the sequence of game hopping over ga-
mes Gi’s (closer to the usual case). Let the advantage of adversary A in game Gi

be AdvGi

A .

Game-0. G0 is exactly the same security game as defined in Definition 1 (the
execute phase with the challenger C using implementations provided by the
adversary A) instantiating with our construction described in Section 4.2. See
Figure 5.

Game-1. G1 is identical to G0 except that the key generation implementation
KGimpl is substituted with its specification KGspec. See Figure 6.

Lemma 4. |AdvG0

A −AdvG1

A | ≤ negl(λ).

Proof. The proof is identical to the one for Lemma 1.

Game-2. G2 is identical to G1 except that the message encoding function using
corrected hash h̃R(·) is replaced with a truly random g parameterized by R, i.e.,
g(R, ·). See Figure 7.

Lemma 5. |AdvG1

A −AdvG2

A | ≤ negl(λ).

Proof. This follows directly from Corollary 2 that the corrected function using
subverted random oracle h̃R(·) can be replaced with a truly random function g
indexed by the randomness R which is generated after.

18

Execute Phase
C A

run (f,R, tdf)← KGimpl(1
λ)

f,R -

� mi query for q times
h̃R(mi) = ui

run σi ← Invimpl(tdf , ui)
σi -

� m∗, σ∗

bC := 1 if Evalimpl(f, σ
∗) = h̃R(m

∗)
∧m∗ ̸∈ {m1, . . . ,mq}

bC := 0 otherwise

Fig. 5. Game-0: The original cliptographic signature game

We can simply view the augmented h-crooked environment in the corollary as
the actual adversary here in the game, and the larger cryptosystem P is simply
composed of the signature implementations.

Game-3. G3 is identical to G2 except that the implementation of the actual
signing function Invimpl is substituted with its specification Invspec. See Figure 8.

Lemma 6. |AdvG2

A −AdvG3

A | ≤ negl(λ).

Proof. Now we need to demonstrate that when a keyed hash is used (the key
is public but sampled after the implementation of the signing functionality is
provided), Invspec is actually stego-free in the sense that the adversary cannot
distinguish whether she is interacting with Invimpl or Invspec, even if she can
freely choose potentially triggered inputs.

Let us first look at a simpler challenge game. Consider a random oracle
h : {0, 1}∗ → {0, 1}n. Suppose an attacker A makes some q1 number of queries
to h, define a target set T ⊂ {0, 1}n with a polynomially large size q2, generate
uniform randomness R with length λ, and R public. The adversary will try
to find an input x such that h(R, x) falls into T . It is not hard to see that
Pr[h(R, x) ∈ T] = q1q2

2λ
which is negligible in λ if the adversary makes one

attempt (and remains negligible if A makes polynomially many attempts).
Now instantiating such statement under our setting: simply using the points

that Invimpl differ from Invspec to define such T (the offline watchdog ensures that
the “discrepancy set” T has to be exponentially small). Now when the adversary
makes a signing query m, it is to find such an input that makes the output of
g(R,m) to fall into the target set T . This probability would be negligible. It
follows that the output of Invimpl and Invspec when evaluating on g(R, x) will be
the same for an overwhelming probability for every x. Thus Invimpl satisfies the
stego-free notion even with an adversarially chosen input x.

19

Execute Phase
C A

run (f,R, tdf)← KGspec(1
λ)

f,R -

� mi query for q times
h̃R(mi) = ui

run σi ← Invimpl(tdf , ui)
σi -

� m∗, σ∗

bC := 1 if Evalimpl(f, σ
∗) = h̃R(m

∗)
∧m∗ ̸∈ {m1, . . . ,mq}

bC := 0 otherwise

Fig. 6. Game-1: Honest key generation

Execute Phase
C A

run (f,R, tdf)← KGspec(1
λ)

f,R -

� mi query for q times
g(R,mi) = ui

run σi ← Invimpl(tdf , ui)
σi -

� m∗, σ∗

bC := 1 if Evalimpl(f, σ
∗) = g(R,m∗)

∧m∗ ̸∈ {m1, . . . ,mq}
bC := 0 otherwise

Fig. 7. Game-2: Corrected keyed hash

Game-4. G4 is identical to G3 except that the implementation of the actual
verification function Evalimpl is substituted with its specification Evalspec. Now
all the implementations are actually honestly generated, thus G4 essentially falls
back to the classical unforgeability game for FDH signatures. See Figure 9.

Lemma 7. |AdvG3

A −AdvG4

A | ≤ negl(λ).

Proof. Now we need to demonstrate that when a keyed hash is used (the key
is public but sampled after the implementation of the signing functionality is
provided), and a trusted equality test is in place, Evalimpl performs essentially
the same as Evalspec when predicting an output of g(R,m∗).

Suppose Evalimpl(f, σ
∗) ̸= Evalspec(f, σ

∗), that means σ∗ falls into the set of
inputs that Evalimpl and Evalspec differ. To escape from the watchdog’s detection
of this inconsistency, those inputs must contain at least ω(λ) bits of entropy

20

Execute Phase
C A

run (f,R, tdf)← KGspec(1
λ)

f,R -

� mi query for q times
g(R,mi) = ui

run σi ← Invspec(tdf , ui)
σi -

� m∗, σ∗

bC := 1 if Evalimpl(f, σ
∗) = g(R,m∗)

∧m∗ ̸∈ {m1, . . . ,mq}
bC := 0 otherwise

Fig. 8. Game-3: Honest Sign

Execute Phase
C A

run (f,R, tdf)← KGspec(1
λ)

f,R -

� mi query for q times
g(R,mi) = ui

run σi ← Invspec(tdf , ui)
σi -

� m∗, σ∗

bC := 1 if Evalspec(f, σ
∗) = g(R,m∗)

∧m∗ ̸∈ {m1, . . . ,mq}
bC := 0 otherwise

Fig. 9. Game-4: Honest Verify

about some trigger that Evalimpl can explore to recognize those inputs to deviate
from the specification. Otherwise, the watchdog would be able to trivially find
such a trigger point. Moreover, that information is independent of g(R,m∗), as R
is chosen after Evalimpl was created. On the other hand, since |σ∗| = |g(R,m∗)|,
there are at most n − ω(λ) bits left in σ∗ that can contain information about
g(R,m∗). While g(R,m∗) is a uniform value in the range of Evalspec, it follows
that for any σ∗, Pr[Evalimpl(σ

∗) = g(R,m∗)] = negl(λ).

G4 is essentially the original FDH security game, thus putting together all
those lemmas, we can complete the proof.

21

References

1. M. Abe, M. Chase, B. David, M. Kohlweiss, R. Nishimaki, and M. Ohkubo.
Constant-size structure-preserving signatures: Generic constructions and simple
assumptions. Journal of Cryptology, 29(4):833–878, Oct. 2016.

2. G. Ateniese, B. Magri, and D. Venturi. Subversion-resilient signature schemes. In
I. Ray, N. Li, and C. Kruegel:, editors, ACM CCS 15, pages 364–375. ACM Press,
Oct. 2015.

3. M. Bellare and V. T. Hoang. Resisting randomness subversion: Fast determinis-
tic and hedged public-key encryption in the standard model. In E. Oswald and
M. Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
627–656. Springer, Heidelberg, Apr. 2015.

4. M. Bellare, J. Jaeger, and D. Kane. Mass-surveillance without the state: Strongly
undetectable algorithm-substitution attacks. In I. Ray, N. Li, and C. Kruegel:,
editors, ACM CCS 15, pages 1431–1440. ACM Press, Oct. 2015.

5. M. Bellare, K. G. Paterson, and P. Rogaway. Security of symmetric encryption
against mass surveillance. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014,
Part I, volume 8616 of LNCS, pages 1–19. Springer, Heidelberg, Aug. 2014.

6. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press,
Nov. 1993.

7. M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign
with RSA and Rabin. In U. M. Maurer, editor, EUROCRYPT’96, volume 1070 of
LNCS, pages 399–416. Springer, Heidelberg, May 1996.

8. D. Boneh and X. Boyen. Short signatures without random oracles and the SDH
assumption in bilinear groups. Journal of Cryptology, 21(2):149–177, Apr. 2008.

9. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, Oct.
2001.

10. R. Chen, Y. Mu, G. Yang, W. Susilo, F. Guo, and M. Zhang. Cryptographic
reverse firewall via malleable smooth projective hash functions. In J. H. Cheon
and T. Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages
844–876. Springer, Heidelberg, Dec. 2016.

11. J.-S. Coron. On the exact security of full domain hash. In M. Bellare, editor,
CRYPTO 2000, volume 1880 of LNCS, pages 229–235. Springer, Heidelberg, Aug.
2000.

12. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damgård revisited:
How to construct a hash function. In V. Shoup, editor, CRYPTO 2005, volume
3621 of LNCS, pages 430–448. Springer, Heidelberg, Aug. 2005.

13. J. P. Degabriele, P. Farshim, and B. Poettering. A more cautious approach to
security against mass surveillance. In G. Leander, editor, FSE 2015, volume 9054
of LNCS, pages 579–598. Springer, Heidelberg, Mar. 2015.

14. Y. Desmedt. Abuses in cryptography and how to fight them. In S. Goldwasser,
editor, CRYPTO’88, volume 403 of LNCS, pages 375–389. Springer, Heidelberg,
Aug. 1990.

15. Y. Dodis, C. Ganesh, A. Golovnev, A. Juels, and T. Ristenpart. A formal tre-
atment of backdoored pseudorandom generators. In E. Oswald and M. Fischlin,
editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 101–126. Sprin-
ger, Heidelberg, Apr. 2015.

22

16. Y. Dodis, I. Mironov, and N. Stephens-Davidowitz. Message transmission with
reverse firewalls—secure communication on corrupted machines. In M. Robshaw
and J. Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 341–372.
Springer, Heidelberg, Aug. 2016.

17. M. Fischlin and S. Mazaheri. Self-guarding cryptographic protocols against algo-
rithm substitution attacks. In 31st IEEE Computer Security Foundations Sympo-
sium, CSF 2018, Oxford, United Kingdom, July 9-12, 2018, pages 76–90, 2018.

18. F. Giacon, F. Heuer, and B. Poettering. KEM combiners. In M. Abdalla and
R. Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS, pages 190–218.
Springer, Heidelberg, Mar. 2018.

19. C. Liu, R. Chen, Y. Wang, and Y. Wang. Asymmetric subversion attacks on
signature schemes. In W. Susilo and G. Yang, editors, ACISP 18, volume 10946
of LNCS, pages 376–395. Springer, Heidelberg, July 2018.

20. U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodology. In
M. Naor, editor, TCC 2004, volume 2951 of LNCS, pages 21–39. Springer, Heidel-
berg, Feb. 2004.

21. I. Mironov and N. Stephens-Davidowitz. Cryptographic reverse firewalls. In E. Os-
wald and M. Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS,
pages 657–686. Springer, Heidelberg, Apr. 2015.

22. N. Perlroth, J. Larson, and S. Shane. NSA able to foil basic safeguards of privacy
on web. The New York Times, September 2013.

23. A. Russell, Q. Tang, M. Yung, and H.-S. Zhou. Cliptography: Clipping the power of
kleptographic attacks. In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016,
Part II, volume 10032 of LNCS, pages 34–64. Springer, Heidelberg, Dec. 2016.

24. A. Russell, Q. Tang, M. Yung, and H.-S. Zhou. Destroying steganography via
amalgamation: Kleptographically CPA secure public key encryption. Cryptology
ePrint Archive, Report 2016/530, 2016. http://eprint.iacr.org/2016/530.

25. A. Russell, Q. Tang, M. Yung, and H.-S. Zhou. Generic semantic security against
a kleptographic adversary. In B. M. Thuraisingham, D. Evans, T. Malkin, and
D. Xu, editors, ACM CCS 17, pages 907–922. ACM Press, Oct. / Nov. 2017.

26. A. Russell, Q. Tang, M. Yung, and H.-S. Zhou. Correcting subverted random
oracles. In H. Shacham and A. Boldyreva, editors, CRYPTO 2018, Part II, volume
10992 of LNCS, pages 241–271. Springer, Heidelberg, Aug. 2018.

27. A. Young and M. Yung. The dark side of “black-box” cryptography, or: Should we
trust capstone? In N. Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages
89–103. Springer, Heidelberg, Aug. 1996.

28. A. Young and M. Yung. Kleptography: Using cryptography against cryptography.
In W. Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 62–74. Sprin-
ger, Heidelberg, May 1997.

29. C. Zhang, D. Cash, X. Wang, X. Yu, and S. S. M. Chow. Combiners for chosen-
ciphertext security. In T. N. Dinh and M. T. Thai, editors, COCOON 2016, volume
9797 of LNCS, pages 257–268. Springer, Heidelberg, Aug. 2016.

A The Model: Crooked Indifferentiability

A.1 Preliminary: Indifferentiability

The notion of indifferentiability proposed in the elegant work of Maurer et al. [20]
has been found very useful for studying the security of hash function and many

23

http://eprint.iacr.org/2016/530

other primitives. This notion is an extension of the classical notion of indistin-
guishability, when one or more oracles are publicly available. The indifferentiabi-
lity notion is originally given in the framework of random systems [20] providing
interfaces to other systems. Coron et al. [12] demonstrate an equivalent indif-
ferentiability notion but in the framework of Interactive Turing Machines (as
in [9]). The indifferentiability formulation in this subsection is essentially taken
from Coron et al. [12]. In the next subsection, we will introduce our new notion,
crooked indifferentiability.

Defining indifferentiability. An ideal primitive is an algorithmic entity which
receives inputs from one of the parties and returns its output immediately to
the querying party. We now proceed to the definition of indifferentiability [20,12]:

Definition 3 (Indifferentiability [20,12]). A Turing machine C with oracle
accesses to an ideal primitive G is said to be (tD, tS , q, ϵ)-indifferentiable from an
ideal primitive F , if there is a simulator S, such that for any distinguisher D,
it holds that: ∣∣Pr[DC ,G = 1]− Pr[DF,S = 1]

∣∣ ≤ ϵ .

The simulator S has oracle accesses to F and runs in time at most tS . The
distinguisher D runs in time at most tD and makes at most q queries. Similarly,
C G is said to be (computationally) indifferentiable from F if ϵ is a negligible
function of the security parameter λ (for polynomially bounded tD and tS). See
Figure 10.

C G F S

D

Fig. 10. Indifferentiability: Distinguisher D either interacts with algorithm C and
ideal primitive G, or with ideal primitive F and simulator S. Algorithm C has oracle
access to G, while simulator S has oracle access to F .

As illustrated in Figure 10, the role of the simulator is to simulate the ideal
primitive G so that no distinguisher can tell whether it is interacting with C
and G, or with F and S; in other words, the output of S should look “consistent”
with what the distinguisher can obtain from F . Note that the simulator does
not see the distinguisher’s queries to F ; however, it can call F directly when
needed for the simulation.

24

Replacement. It is shown that [20] if C G is indifferentiable from F , then C G

can replace F in any cryptosystem, and the resulting cryptosystem is at least as
secure in the G model as in the F model.

We use the definition of [20] to specify what it means for a cryptosystem to be
at least as secure in the G model as in the F model. A cryptosystem is modeled
as an Interactive Turing Machine with an interface to an adversary A and to a
public oracle. The cryptosystem is run by an environment E which provides a
binary output and also runs the adversary. In the G model, cryptosystem P has
oracle access to C whereas attacker A has oracle access to G. In the F model,
both P and A have oracle access to F . The definition is illustrated in Figure 11.

C G

P A

E

F

P SA

E

Fig. 11. Environment E interacts with Cryptosystem P and Attacker A: In the G
model (left), P has oracle access to C whereas A has oracle access to G. In the F
model, both P and SA have oracle access to F .

Definition 4. A cryptosystem is said to be at least as secure in the G model with
algorithm C as in the F model, if for any environment E and any attacker A in
the G model, there exists an attacker SA in the F model, such that:

Pr[E(PC ,AG) = 1]− Pr[E(PF ,SFA) = 1] ≤ ϵ.

where ϵ is a negligible function of the security parameter λ. Similarly, a cryp-
tosystem is said to be computationally at least as secure, etc., if E, A, and SA
are polynomial-time in λ.

We have the following security-preserving (replacement) theorem, which says
that when an ideal primitive is replaced by an indifferentiable one, the security
of the “bigger” cryptosystem remains.
Theorem 3 ([20,12]). Let P be a cryptosystem with oracle accesses to an ideal
primitive F . Let C be an algorithm such that C G is indifferentiable from F .
Then cryptosystem P is at least as secure in the G model with algorithm C as
in the F model.

25

A.2 Crooked Indifferentiability

The ideal primitives that we focus on in this paper are random oracles. A random
oracle [6] is an ideal primitive which provides a random output for each new
query, and for the identical input queries the same answer will be given. Next, we
will formalize a new notion called crooked indifferentiability. Our formalization is
for random oracles. We remark that the formalization can be trivially extended
for all ideal primitives.

Crooked indifferentiability for random oracles. As mentioned in the Introduction,
we are considering to repair a subverted random oracle, such that the corrected
construction can be used as good as an unsubverted one. It is thus natural to
consider the indifferentiability notion. However, we need to adjust the notion
to reflect the subversion and to avoid trivial impossibility. There are two main
modifications to the original indifferentiability notion.

1. The deterministic construction will have oracle accesses to the random oracle
only via the subverted implementation H̃ but not via the ideal primitive H.
This creates lots of difficulty (and even impossibility) for us to develop a
suitable construction. For that reason, the construction is allowed to access
to trusted but public randomness r.

2. The simulator will also have oracle accesses to the subverted implementa-
tion H̃ and also the public randomness r.

The second one is necessary. It is clearly impossible to have an indifferentiability
definition with a simulator that has no accesses to H̃, as the distinguisher can
simply make query an input such that C will use a value that is modified by H̃
while S has no way to reproduce it. More importantly, we will show below that,
the security will still be preserved to replace an ideal random oracle with a con-
struction satisfying our definition (with an augmented simulator). We will prove
the security-preserving (i.e., replacement) theorem from [20] and [12] similarly
with our adapted notions.

Definition 5 (H-crooked indifferentiability). Consider a distinguisher D̂
and the following multi-phase real execution.

Initially, the distinguisher D̂ who has oracle accesses to ideal primitive H,
publishes a subverted implementation of H, and denotes it by H̃.

Secondly, a uniformly random string r is sampled and published.
Thirdly, a deterministic construction C is developed: the construction C has

random string r as input, and has oracle accesses to H̃ (which can be considered
as a crooked version of H).

Finally, the distinguisher D̂, after having random string r as input, and
oracle accesses to the pair (C ,H), returns a decision bit b. Often, we call D̂ the
H-crooked-distinguisher.

In addition, consider the corresponding multi-phase ideal execution with the
same H-crooked-distinguisher D̂, where ideal primitive F is provided.

The first two phases are the same (as those in the real execution).

26

In the third phase, a simulator S will be developed: the simulator has random
string r as input, and has oracle accesses to H̃, as well as the ideal primitive F .

In the last phase, the H-crooked-distinguisher D̂, after having random string r
as input, and having oracle accesses to an alternative pair (F ,S), returns a
decision bit b.

We say that construction C is (tD̂, tS , q, ϵ)-H-crooked-indifferentiable from
ideal primitive F , if there is a simulator S so that for any H-crooked-distinguisher
D̂, it satisfies that the real execution and the ideal execution are indistinguishable.
Specifically, the following difference should be upper bounded by ϵ(λ):∣∣∣∣ Pru,r,H

[
H̃ ← D̂ : D̂C H̃(r),H(λ, r) = 1

]
− Pr

u,r,F

[
H̃ ← D̂ : D̂F,SH̃,F (r)(λ, r) = 1

]∣∣∣∣ .
Here u is the coins of D̂, H : {0, 1}λ → {0, 1}λ and F : {0, 1}k → {0, 1}k denote
random functions. See Figure 12 for a detailed illustration of the last phase in
both the real and ideal executions.

C H̃ H F
S

H̃

D̂

Fig. 12. H-crooked Indifferentiability: distinguisher D̂, in the first phase, manufactures
and publishes a subverted implementation denoted by H̃, for ideal primitive H; then
in the second phase, a random string r is published; after that, in the third phase,
algorithm C , and simulator S are developed; the H-crooked-distinguisher D̂, in the
last phase, either interacting with algorithm C and ideal primitive H, or with ideal
primitive F and simulator S, returns a decision bit. Here, algorithm C has oracle
accesses to H̃, while simulator S has oracle accesses to F and H̃.

B Stego-Free Specifications for Randomness Generation
and Randomized Algorithms with Known Input
Distribution

We recall the definition of stego-free randomness generation and stego-free rand-
omized algorithms with public input distributions [25], and the general results
that yield stego-free specifications for them in the trusted-amalgamation model.

27

Definition 6 (Stego-free randomness generation [25, Definition 3.1]).
For a randomized algorithm G with specification Gspec, we say such specifi-
cation Gspec is stego-free in the offline-watchdog model, if there exists a ppt
watchdog W so that for any ppt adversary A playing the game in Figure 13 with
challenger C, at least one of the following conditions hold:

AdvA is negligible or DetW,A is non-negligible,

where AdvA(1
λ) = |Pr[bC = 1]− 1

2 | and DetW,A(1
λ) = |Pr[WGimpl(1λ) = 1]−

Pr[WGspec(1λ) = 1]|.

Test Phase
W(1λ) A(1λ, st)

� Gimpl

bW ←WGimpl(1λ)

Execute Phase
C(1λ) A(1λ, st)

β ← {impl, spec}
for i = 1 to q � 1q

yi = Gβ(1
λ)

{yi}i∈[q] -

� β′

bC := 1 if β = β′

bC := 0 otherwise

Fig. 13. Stego-Freeness Game for Randomness Generation

Theorem 4 ([25, Theorem 3.4]). Consider randomness generation RG with
specification (RG0

spec,RG1
spec, Φspec) as described below (see Figure 14):

– Given 1λ, RG0
spec and RG1

spec output uniformly random strings of length λ;
– Φspec is a hash function so that Φspec(w) has length ⌈|w|/2⌉;
– the specification for RG(1λ) is the trusted composition:

Φspec(RG
0
spec(1

λ),RG1
spec(1

λ)).

Then RGspec is stego-free if Φspec is modeled as a random oracle.

Note that the above theorem only asserts how to purify randomness gene-
ration algorithm G in the random oracle model by splitting G into a constant
number of components. It is possible to extend the result to the standard model if
we are willing to have polynomially many segments. Such result is demonstrated
in the full version [24] of [25]. We quote their result as follows:

28

Φspec

RG0
spec

RG1
spec

r1

r0

r

Fig. 14. Subversion-Resistant Specification for Randomness Generation

Proposition 1 ([24]). There exists a specification for the randomness gene-
ration that outputs n bits that is stego-free with the trusted amalgamation and
O(nϵ/ log n) segments for any constant ϵ. Similar results hold for randomized
algorithms with public input distribution.

The definition and theorems above cover elementary randomness generation
algorithms that only takes a security parameter as input. They can be generalized
to consider algorithms that take additional inputs from a large domain in which
the adversary specifies a randomized input generator IG, which implicitly defines
G(1λ, IG(1λ)). This class of randomized algorithm includes key generation and
bit encryption etc.

Formally, let G be a randomized algorithm using λ random bits for inputs
of length n. The stego-free game is revised as follows: the challenges {yi} are
generated by first sampling mi ← IG(1λ), and then obtaining yi ← Gβ(1

λ,mi)
by calling Gβ . The watchdog is provided oracle access to IG to test Gimpl.

Definition 7 (Stego-free randomized algorithm [25, Definition 3.2]).
For a randomized algorithm G, we say the specification Gspec is stego-free in the
offline-watchdog model, if there exists an offline ppt watchdog W, for any ppt
adversary A playing the following game in Figure 15 with challenger C, such
that either

AdvA is negligible, or, DetW,A is non-negligible,

where AdvA(1
λ) = |Pr[bC = 1]− 1

2 | and DetW,A(1
λ) = |Pr[WGimpl(1λ) = 1]−

Pr[WGspec(1λ) = 1]|.

Russell et al. [25] established a general transformation yielding a stego-
free specification for randomized algorithms with a public input distribution.
Consider a randomized algorithm G which uses λ random bits for inputs of
length n. Let (dG,RG) denote the natural specification of G that isolates rand-
omness generation: RG(1λ) produces λ uniformly random bits and dG(r,m)
is a deterministic algorithm so that for every m ← IG(1λ), G(m) is equal to
dG(RG(1λ,m)) for n = |m|. Consider the transformed specification for G of the
form (RG0,RG1, Φ, dG) where dG is as above. RG0(1

λ) and RG1(1
λ) output λ

uniform bits, and Φ is a hash function that carries strings of length 2λ to strings
of length λ. We have the following theorem:

29

Test Phase
W(1λ) A(1λ, st)

� Gimpl, IG

bW ←WGimpl,IG(1λ)

Execute Phase
C(1λ) A(1λ, st)

β ← {impl, spec}
for i = 1 to q � 1q

mi ← IG(1λ)
yi = Gβ(1

λ,mi)
{yi}i∈[q] -

� β′

bC := 1 if β = β′

bC := 0 otherwise

Fig. 15. Stego-Freeness Game for Randomized Algorithms with Input Distribution
{1λ} × IG

Theorem 5 ([25, Theorem 3.5]). For any randomized algorithm G, consi-
der the specification Gspec := (RGspec, dGspec), where RGspec and dGspec are as
above. Let (RG0

spec,RG
1
spec, Φspec) be the double-split specification of RGspec as in

Figure 14. Gspec is stego-free with a trusted amalgamation (according to Defini-
tion 7). Here Φspec is modeled as a random oracle.

C Signature Schemes
A signature scheme is a triple of algorithms SS = (KGen,Sign,Verify). The
KGen algorithm takes as input the security parameter λ and outputs a pair of
verification/signing key (vk, sk). The Sign algorithm takes as input sk, a message
m ∈M (and random coins r ∈ R if Sign is probabilistic), and outputs a signature
σ ∈ Σ. The Verify algorithm takes as input vk and a pair (m,σ) and outputs a
bit indicating whether the signature is valid for message m under vk.
Definition 8 (Existential unforgeability). Let SS = (KGen, Sign, Verify) be
a signature scheme. We say that SS is (t, q, ϵ)-existentially unforgeable under
adaptive chosen-message attack (EUF-CMA-secure) if for all ppt adversaries A
running in time t it holds:

Pr

[
Verify(vk, (m∗, σ∗)) = 1
∧ m∗ /∈ Q :

(vk, sk)← KGen(1λ);
(m∗, σ∗)← ASign(sk,·)(vk)

]
≤ ϵ

where Q = {m1, . . . ,mq} denotes the set of queries to the signing oracle. Whe-
never ϵ(λ) = negl and q = poly, we simply say that SS is EUF-CMA-secure.

30

	Let a Non-Barking Watchdog Bite: Cliptographic Signatureswith an Offline Watchdog

