
Non-Interactive Keyed-Verification Anonymous
Credentials

Geoffroy Couteau? and Michael Reichle??

Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract. Anonymous credential (AC) schemes are protocols which al-
low for authentication of authorized users without compromising their
privacy. Of particular interest are non-interactive anonymous credential
(NIAC) schemes, where the authentication process only requires the user
to send a single message that still conceals its identity. Unfortunately, all
known NIAC schemes in the standard model require pairing based cryp-
tography, which limits them to a restricted set of specific assumptions and
requires expensive pairing computations. The notion of keyed-verification
anonymous credential (KVAC) was introduced in (Chase et al., CCS’14)
as an alternative to standard anonymous credential schemes allowing for
more efficient instantiations; yet, making existing KVAC non-interactive
either requires pairing-based cryptography, or the Fiat-Shamir heuristic.
In this work, we construct the first non-interactive keyed-verification
anonymous credential (NIKVAC) system in the standard model, without
pairings. Our scheme is efficient, attribute-based, supports multi-show
unlinkability, and anonymity revocation. We achieve this by building
upon a combination of algebraic MAC with the recent designated-verifier
non-interactive zero-knowledge (DVNIZK) proof of knowledge of (Couteau
and Chaidos, Eurocrypt’18). Toward our goal of building NIKVAC, we
revisit the security analysis of a MAC scheme introduced in (Chase et al.,
CCS’14), strengthening its guarantees, and we introduce the notion of
oblivious non-interactive zero-knowledge proof system, where the prover
can generate non-interactive proofs for statements that he cannot check
by himself, having only a part of the corresponding witness, and where
the proof can be checked efficiently given the missing part of the witness.
We provide an efficient construction of an oblivious DVNIZK, building
upon the specific properties of the DVNIZK proof system of (Couteau
and Chaidos, Eurocrypt’18).

Keywords. Anonymous credentials, keyed-verification anonymous cre-
dentials, non-interactive anonymous credentials, designated-verifier non-
interactive zero-knowledge proofs.

? geoffroy.couteau@kit.edu
?? m.reichle95@outlook.com

2 Geoffroy Couteau and Michael Reichle

1 Introduction

1.1 Anonymous Credentials

Anonymous credentials, introduced in the seminal work of Chaum [14], allow
users to authenticate in an anonymous way to a variety of services. Each user can
receive credentials from authorities, and register pseudonyms with authorities and
verifiers. These pseudonyms are associated to the identity of the user, but should
be unlinkable to its exact identity. That is, another entity should not be able to
check whether two pseudonyms are associated with the same identity. Authorities
can issue credentials to users which can be shown to verifiers, and the presentation
of a credential should only leak the information that the user knows the identity
associated to the pseudonym, and owns a credential from the authority for this
identity. This guarantees the anonymity of users. In order for credentials to make
sense, they must be unforgeable: a user should not be able to present a credential
without having received one from the authority first. Due to their wide range of
real-world applications, anonymous credentials have received a constant attention
from the cryptographic community [1,2,4,6–9,13,17,21,23,24,26,29].

Non-Interactive Anonymous Credentials. Non-interactive anonymous cre-
dentials (NIAC) are anonymous credentials where the process of showing pos-
session of a valid credential to a verifier requires sending a single message from
the user to the verifier. Non-interactivity in anonymous credentials is considered
to be a highly desirable security property, and was the focus on an important
research effort [3,4,24]. However, a downside of existing NIAC scheme is that
all known constructions in the standard model require the use of pairing based
cryptography, which limits their efficiency (since pairing are a relatively expen-
sive cryptographic operation) and restricts the set of assumptions their security
can be based on. While some interactive anonymous credential schemes can
be made non-interactive in the random oracle model under the Fiat-Shamir
transform, this is known to provide only heuristic security arguments in the
standard model [10,20,22].

Keyed-Verification Anonymous Credential. Most commonly, anonymous
credential schemes allow for a single credential to be shown more than once
to multiple verifiers. The notion of keyed-verification anonymous credentials
(KVAC) was introduced in [13]; it restricts credential to only be valid with respect
to one verifier and requires the authority and verifier to share a secret key.
The key observation of [13] is that such restricted anonymous credentials can
be instantiated very efficiently, using algebraic message authentication codes.
Therefore, in numerous applications where the restriction to keyed-verification is
not an issue, they can be used to allow for more efficient instantiations. Think
for example of a bus company issuing monthly pass, where the pass must be
shown each time a user boards a bus; here, it is reasonable to assume that the
bus device can share a secret-key with the bus company (since both belong to
the same organisation).

Non-Interactive Keyed-Verification Anonymous Credentials 3

A downside of the KVAC scheme of [13], however, is that the process of showing
possession of a credential requires an interactive protocol between the user and
the verifier. This protocol can be made non-interactive, but this either requires
the Fiat-Shamir transform (leading to a protocol secure in the random oracle
model only), or the use of pairing-based cryptography, nullifying the efficiency
advantages of KVAC with respect to their publicly verifiable counterpart.

1.2 Our Contribution

In this work, we construct the first non-interactive keyed-verification anonymous
credential scheme (NIKVAC) in the standard model, without relying on pairing-
based cryptography. Our NIKVAC is very expressive: it natively supports multi-
show unlinkability (i.e., when showing possession of a credential multiple time to
a verifier, the latter cannot tell whether these correspond to the same user) or
pseudonyms (the verifier knows a pseudonym that he can link a credential to, but
that he cannot link to the actual identity of the user), without any additional
cost (i.e., we do not require to generate an additional commitment to the identity
and prove knowledge of its content to obtain pseudonyms, as in most alternative
approaches; rather, such commitments are natively and implicitly defined by our
scheme). Our NIKVAC is also attribute-based (it supports vectors of attributes as
opposed to identities, and can handle a variety of relations on the attributes), and
supports anonymity revocation (there exists a global trapdoor which a trusted
authority can use to revoke the anonymity of a misbehaving user, efficiently
extracting his identity from any accepting credential).

While our scheme is the first NIKVAC in the standard model without pairings,
we observe (this is in fact the starting point of our work) that there is a rela-
tively natural construction of a NIKVAC which is obtained by starting with the
(interactive) scheme of [13], and replacing the underlying zero-knowledge proof
system by the designated-verifier non-interactive zero-knowledge proof system
of [11]. While this observation is interesting in itself, the security analysis of the
resulting construction does not present major technical difficulties (although it is
not entirely straightforward). In this work, we refine this approach, adopting a
different strategy to better exploit the structural properties of the proof system
of [11]. Our optimized approach provides strong efficiency improvements (which
we detail in Section 1.6) over the previous alternative.

1.3 Our Approach

Our starting point is the interactive KVAC scheme of [13]. In this scheme, a
credential is an algebraic MAC signature on the identity of the user. Anonymous
presentation of a credential is done (informally) by masking the credential, and
providing some zero-knowledge proofs of knowledge of the identity together with
the masking informations satisfying the appropriate relation, which allows the
verifier (who knows the secret MAC key) to check that the masked credential
does indeed verify correctly with respect to the (hidden) identity of the user.

4 Geoffroy Couteau and Michael Reichle

To make this scheme non-interactive, the basic observation is that it suffices
to rely on a designated-verifier non-interactive zero-knowledge (DVNIZK) proof of
knowledge of the appropriate values. Unlike their publicly-verifiable counterpart,
there exists efficient constructions of DVNIZK proof systems which does not rely
on pairings. However, until recently, all known constructions of DVNIZK proof
systems [12,16,18] suffered from two important downside, each of them preventing
their use in a NIKVAC scheme:

– they can only deal with existential statements, while anonymous credentials
crucially rely on proving knowledge of the signed identity, and

– they only satisfy a bounded notion of security, where the soundness of the proof
is only guaranteed to hold if the prover is restricted to query a verification
oracle an a priori bounded number of times. In an anonymous credential
system, however, the users can interact freely with a verifier and receive
feedback on whether proofs of credential possession was accepted or not;
hence, for all of these scheme, a malicious user could forge a credential which
is accepted by the verifier even though it was not issued by the authority, by
interacting a sufficient (polynomial) number of times with the verifier.

This situation recently changed with the introduction in [11] of the first DVNIZK
proof system which allows to provide proofs of knowledge of a witness, for a wide
variety of algebraic statements, where soundness is unbounded (it holds even if
the prover is given arbitrary access to a verification oracle). Furthermore, the
framework of [11] allows for efficient DVNIZK proofs, directly proportional to the
size of the algebraic statement to be proven.

A natural approach toward building a NIKVAC scheme is therefore to rely on
the KVAC scheme of [13], and to replace the underlying zero-knowledge proofs by
appropriate DVNIZK, using the framework of [11]. However, while this approach
should lead to a secure NIKVAC, it misses the opportunity to exploit the specific
structure of the scheme of [11] to get improved efficiency guarantees. Therefore,
we choose instead to tackle the problem directly and construct an optimized
NIKVAC system, heavily building upon the specific structure of the DVNIZK
of [11].

1.4 Our Techniques

To describe our strategy, it is helpful to start from a natural but insecure approach.
As in [13], a credential will simply be a signature on the identity of the user using
an algebraic MAC. To show possession of a credential, the user can simply send
this credential (but not his identity) and prove with a DVNIZK that he knows an
identity such that the MAC verification algorithm returns 1 when given as input
this identity and the credential. A first observation is that this approach allows
for a straightforward optimization: in the most common setting, the verifier must
know a pseudonym associated to the user (which cannot be linked to his identity),
which will usually take the form of a commitment to the identity of the user. We
observe, however, that a DVNIZK proof of knowledge within the framework of [11]

Non-Interactive Keyed-Verification Anonymous Credentials 5

does already include an encryption of the witness, and the proof of knowledge
property does in particular guarantee that the witness whose knowledge is proven
is indeed the one encrypted in the proof. Therefore, it is not necessary to add
a commitment to the identity and prove that the committed value is the one
for which the user knows a credential; rather, the user can simply compute this
encryption ahead of time (this does not require knowing the credential) and send
it to the verifier, which will store it as being the user pseudonym. Then, each
time the user wants to authenticate, he only have to generate the “missing part”
of the proof with respect to this encryption. This strongly reduces the size of
the proof (since the proof does not need to include an explicit proof regarding
a commitment anymore), and allows to reuse a significant portion of the proof
across many authentications.

However, the natural approach of disclosing a credential σ and proving
knowledge of an identity that verifies correctly with respect to σ fails, for two
reasons:

– First, the above approach does not guarantee anonymity, because the verifier
(who knows the secret MAC key) could find out the identity of the user
simply by colluding with the authority, and evaluating the MAC verification
algorithms on all identities previously submitted to the authority, to find out
which one verifies correctly with respect to this credential.

– Second, and more importantly, the MAC verification requires knowledge of
the secret MAC key, which the user does not know; hence, he cannot possibly
issue a proof that his credential verifies correctly, since checking this statement
does already require knowing the secret MAC key.

We first explain how we address the second concern. Our idea is to build upon
the specific malleability property of the DVNIZK proof system of [11] to build
an oblivious DVNIZK proof system, which allows the prover to issue a proof for
a statement even if he does not know himself whether the statement does hold.
This does not contradict the security of the MAC scheme, since the proof system
is not publicly verifiable: hence, even after he builds the proof, the prover cannot
check by himself whether this proof verifies correctly. Intuitively, the prover will
construct a “partial non-interactive proof” which is malleable in the following
sense: given this proof and the secret MAC key, the verifier can reconstruct himself
the complete proof that the credential verifies correctly. If the prover does not
know the appropriate witness, the reconstructed proof will not verify correctly.
The partial proof should not leak any more information about the witness held
by the prover than what is leaked by the reconstructed proof; hence, by the
zero-knowledge property of the DVNIZK proof system, this proof will only reveal
whether the statement (which depends on both the prover witness and the secret
key known to the verifier) is true. We believe that the concept of non-interactive
oblivious proofs, which allows to prove that a statement is true while knowing
only a part of the witness to a verifier knowing the “missing part” of the witness,
might be of independent interest (we briefly elaborate on this in Section 1.5);
in particular, it formalizes the approach taken (in the interactive setting) in
previous works on keyed-verification anonymous credentials [13].

6 Geoffroy Couteau and Michael Reichle

To tackle the first concern, the prover will randomize his credential and
mask it with appropriate random values, and issue a partial proof that the
unmasked credential does verify with respect to the secret key. We formalize both
properties at once by introducing a new primitive, oblivious designated-verifier
non-interactive zero-knowledge proofs of knowledge, which can be used to prove
statements non-interactively even when the prover only knows a part of the
witness, and can be simulated by a simulator that does not know neither the
witness nor the word for which the proof is constructed, guaranteeing that the
verifier will not only be unable to recover the witness, but also that he cannot
possibly recover the credential, which would allow him to break anonymity by
colluding with the authority.

Next, we provide an optimized construction of an oblivious DVNIZK proof
system for the language of valid credentials, building upon the DVNIZK proof
system of [11]. Proving security of the resulting proof system, however, runs
into a subtle issue: when considering the more general setting of attribute-based
anonymous credentials, where the user will have a secret vector of attributes
instead of a secret identity, the unforgeability property of the underlying MAC
scheme does not suffice to prove the soundness of the oblivious proof system. We
provide two alternatives to overcome this issue:

– When the vector of attributes is of length one (i.e., when we restrict our
attention to non-attribute-based anonymous credentials, where the secret
of the user is only his identity), we show that the public parameters of the
MAC scheme suffice to reduce the security directly to the unforgeability of
the MAC scheme. This setting already captures many possible applications.

– In the general setting, where the vector of attributes can be longer than
1, we show that the security can be proven if the MAC scheme satisfies a
stronger notion of unforgeability, which we call extended unforgeability. Then,
we revisit the security analysis of one of the two MAC schemes constructed
in [13], which is secure in the generic group model, and prove that this scheme
does in fact already satisfy extended unforgeability. While the second MAC
scheme constructed in [13] (which is based on the decisional Diffie-Hellman
assumption) does plausibly satisfy extended unforgeability, we leave it as
an interesting open problem to prove it under a standard assumption, or
to construct a MAC scheme with extended unforgeability under the DDH
assumption. We note that considering algebraic MACs with stronger unforge-
ability guarantees is a relatively natural approach in the setting of anonymous
credentials (see e.g. [3,4]), but the specific strengthening we require in our
construction was not, to our knowledge, considered in previous works.

There is an additional requirement which we must take care of: the MAC
schemes of [13] are only proven secure in groups of prime order, while the
most natural instantiation of the DVNIZK proof system of [11] typically requires
composite-order groups. While the security of their DDH-based MAC easily
extends to the composite order setting by assuming in addition that it is infeasible
for any polytime adversary to find a generator of a strict subgroup (which is a

Non-Interactive Keyed-Verification Anonymous Credentials 7

standard and well-studied assumption), the proof of their generic-group-model-
based (GGM-based) MAC is unconditional, hence it assumes that the adversary
is unbounded, in which case there is an explicit attack on the composite-order
variant of the scheme where the unbounded adversary constructs an invalid MAC
signature in a strict subgroup of the group. We therefore revisit the security
proof of the GGM-based MAC, and show that it holds in the generic group model
assuming in addition that the adversary is polynomially bounded, and that the
computational subgroup assumption holds. Altogether, we show that this gives
rise to a highly optimized NIKVAC. In the next section, we discuss in more details
the efficiency of our scheme.

1.5 Applications of Oblivious DVNIZK

Given the intermediate abstraction of oblivious designated non-interactive zero-
knowledge proofs, the construction of NIKVAC follows very naturally. In fact,
we could have provided a direct construction of NIKVAC from this approach,
without formalizing the intermediate primitive. However, we believe that oblivious
DVNIZKs can be interesting in their own right. We elaborate below.

Secure computation protocols allow a group of parties to securely evaluate a
public function on their joint private input. We focus in this discussion on the case
of two parties for simplicity. A common approach to secure two-party computation
is to first design a scheme secure against passive adversaries, which do not deviate
from the specifications of the protocol, and then to use zero-knowledge proofs
to let all adversaries prove their honest behavior throughout the protocol. This
transformation makes the protocol secure against malicious adversaries, which
can deviate arbitrarily from the specifications of the protocol. To obtain round-
efficient compilation of passively secure computation protocols into maliciously
secure protocols, the most natural strategy is to rely on (designated-verifier)
non-interactive zero-knowledge proofs (an alternative is to use implicit zero-
knowledge proofs [5], but this adds two more rounds to the protocol) to prove
honest behavior of each user after each round.

Oblivious DVNIZK allow for an alternative compilation strategy, which starts
from a protocol with stronger security guarantees, but is in general more efficient.
Let us call (informally) half-maliciously secure a secure computation protocol
which is passively secure, and such that no malicious adversary can compromise
the privacy of the inputs (but can possibly compromise the correctness of the
computation). Let Π be a half-maliciously secure protocol, securely computing a
function f . Let (x1, x2) denote the inputs of the parties. To convert Π into a fully
secure protocol, we first modify Π to include commitments (c1, c2) to the inputs
(if Π does not already include them). Then, to guarantee full security, one of the
parties, which we call the prover, must send a single oblivious DVNIZK to the
other party (the receiver) at the very end of the protocol, which is a proof that
y = f(x1, x2), where y is the output of the protocol, and (x1, x2) is committed
in (c1, c2). Note that the prover does not have the full witness for this statement
(since it depends, in particular, on the private input of the verifier), but the
prover and the verifier jointly have the full witness, allowing the verifier to check

8 Geoffroy Couteau and Michael Reichle

the proof without further interaction. This is in contrast with DVNIZK-based
compilation, which requires proving honest behavior of all users at each round
(here, we only prove correctness of the computation in the last round). We leave
the formal proof of this observation to future work.

1.6 Efficiency

There is, to our knowledge, no existing previous construction of NIKVAC in the
standard model. However, as we pointed out previously, there is a relatively
natural construction which is obtained by starting from the scheme of [13], and
replacing the underlying zero-knowledge proofs by DVNIZKs instantiated with [11].
Let us call this construction the CMZ+CC construction. We use CMZ+CC
as a basis for comparison with our improved construction. We focus on the
communication cost of showing possession of a credential, since the computation
is directly proportional to the communication (hence, an improvement factor
with respect to communication translates to a comparable improvement factor
with respect to computation), and since the cost of issuing a credential depends
on the specific secure computation scheme used to implement it, which is not
the focus of our work (we require the same blind issuance of an algebraic MAC
as in previous works on KVAC).

For simplicity, we focus on the cost obtained when implementing the MAC
with the more efficient GGM-based MAC scheme of [13]; when using the other,
DDH-based MAC scheme, all costs must be roughly scaled up by 50% (up to
constants), and the improvement factor of our method compared to the naive
approach will be essentially identical. Let β denote the length of the vector
of attributes. In the minimal setting where the verifier knows a pseudonym,
implemented as a commitment to the user’s vector of attributes, instantiating
the zero-knowledge proofs in [13] using the DVNIZK proof system of [11] leads
to a proof size of 3β + 3 group elements, and 6β + 2 ciphertexts (in a typical
instantiation of the DVNIZK of [11], the group will be a composite order abelian
group, and the encryption scheme will be the Paillier encryption scheme).

In comparison, our proof of credential possession requires sending β+ 2 group
elements, and 2β + 2 ciphertexts. Furthermore, all the ciphertexts can be sent
once for all to the verifier (they form the pseudonym of the prover); each new
credential presentation then requires only generating and sending β + 2 group
elements (in comparison, the pseudonym in [13] is a tuple of β commitments,
hence sending the pseudonym ahead of time saves only β group elements). For
the important case of β = 1 attribute, and instantiating the DVNIZK with Paillier
and a 2048-bit modulus, this corresponds to a factor of improvement of more than
7 in the proof size compared to [13]. In addition, using an optimization which
we describe in the full version [15], the number of ciphertexts can be further
reduced, from 2β + 2 to 2β. We summarize the comparison between our scheme
and CMZ+CC in the table 1.

Eventually, we sketch a straightforward computational optimization (assuming
an instantiation with the Paillier scheme and a 2048-bit modulus for concreteness):
the exponents manipulated when constructing and verifying the proof are either

Non-Interactive Keyed-Verification Anonymous Credentials 9

Table 1. Comparison of our optimized NIKVAC to a direct construction from [13] with
the DVNIZK of [11].

NIKVAC 1 CMZ+CC This Work This Work (full version [15])
β attributes, group element length n, ciphertext size m

Pseudonym Size βn (2β + 2)m 2βm
Proof Size (2β + 3)n+ (6β + 2)m (β + 2)n (β + 2)n
Prover Computation2 (5β + 2)A+ (3β + 1)(B + C) (2β + 3)A (2β + 3)A
Assumption GGM+IND-CPA GGM+IND-CPA GGM+IND-CPA + short-exp dlog

(with Paillier) 1 attribute, group element length 2048, ciphertext size 4096

Pseudonym Size 256 Byte 2048 Byte 1024 Byte
Proof Size 5,38 kB 756 Byte 756 Byte
Prover Computation 7A+ 4(B + C) 5A 5A
Assumption GGM+Paillier GGM+Paillier GGM+Paillier + short-exp dlog

1 We consider a minimal setting where the prover shows possession of a valid credential with respect to an identity
committed in a pseudonym known to the verifier. We use the GGM-based scheme of [13] as the underlying algebraic
MAC (the efficiency gain of our approach is essentially the same if one uses the DDH-based MAC of [13]).

2 A denotes the cost of an exponentiation in the group G, B denotes the cost of an encryption, C denotes the cost of
an homomorphic scalar multiplication. We note that, under the short-exponent discrete logarithm assumptions, all
exponentiations in G (resp. all homomorphic scalar multiplications) can be performed with exponents (resp. scalars)
of length at most 256 bits.

attributes, random coins, or masks. If attributes are, say, up to 128-bit long, then
under the short-exponent discrete logarithm assumption (which states that it
is hard to find x from gx even if x is random but short, e.g. 128-bit long), all
exponents can be taken either 128-bit long (for the attributes and the random
coins) or 256-bit long (for the masks, since they must statistically mask the
attributes over the integers). This makes computing exponentiations and scalar
multiplications considerably more efficient than with full-size (i.e., 2048-bit)
values.

Comparison with Plain [13]. We briefly comment on the comparison with the
plain scheme of [13] (which is either interactive, or non-interactive in the random
oracle model). Our main efficiency bottleneck is the fact that we use the DVNIZK
of [11], which requires to use a large order group.1 Therefore, using natural
parameters, we manipulate group elements of size 2048 bits, and ciphertexts of
size 4096 bits. In constrast, [13] can work exclusively with group elements and
exponents over any DDH-hard group, e.g. of size 256 bits. However, the proof
size of [13] (not counting the size of the pseudonym) is β + 2 group elements and
3β + 2 256-bit exponents, for a total of 256 Byte. Our proof system achieves a
proof size 756 Byte, less than three times larger in spite of our use of an 8-time
larger group - and unlike [13], it is secure in the standard model (the ratio remains
essentially the same if we instantiate instead the underlying MAC scheme with
the DDH-based scheme of [13]).

1 In [11], the size of the group must be equal to the size of the plaintext space of a
DVNIZK-friendly encryption scheme, such as Paillier.

10 Geoffroy Couteau and Michael Reichle

1.7 Organization

In Section 2, we recall necessary preliminaries (further preliminaries are given
in the full version [15]). In Section 3, we recall the definition of MAC schemes,
introduce a general algebraic MAC scheme, and define the stronger notion of
extended unforgeability. In Section 4, we formally define non-interactive keyed-
verification anonymous credentials and their security properties. In Section 5,
we introduce the concept of oblivious DVNIZK and their security properties,
provide an explicit instantiation tailored to our application, and formally prove
its security. In Section 6, we show how to construct a non-interactive keyed-
verification anonymous credential from a MAC scheme and an oblivious DVNIZK
proof system. Eventually, in the full version [15], we prove that the first MAC
scheme of [13] satisfies extended unforgeability in the generic group model (with
composite order groups), and we describe further improvements to our NIKVAC
construction relying on the short-exponent discrete logarithm assumption.

2 Preliminaries

Throughout this paper, λ denotes the security parameter. A probabilistic poly-
nomial time algorithm (PPT, also denoted efficient algorithm) runs in time
polynomial in the (implicit) security parameter λ. A positive function f is negli-
gible if for any polynomial p there exists a bound B > 0 such that, for any integer
k ≥ B, f(k) ≤ 1/|p(k)|. An event depending on λ occurs with overwhelming
probability when its probability is at least 1−negl(λ) for a negligible function negl.
Given a finite set S, the notation x $← S means a uniformly random assignment
of an element of S to the variable x. We represent adversaries as interactive
probabilistic Turing machines; the notation A O indicates that the machine A is
given oracle access to O. Adversaries will sometime output an arbitrary state st
to capture stateful interactions.

Abelian Groups and Modules. We use additive notation for groups for
convenience, and write (G,) for an abelian group of order k. When it is clear
from the context, we denote 0 its neutral element (otherwise, we denote it 0G).
We denote by ord(G) the order of G. We denote by • the scalar-multiplication
algorithm (i.e. for any (x,G) ∈ Zk × G, x • G = G G . . . G, where the
sum contains x terms). Observe that we can naturally view G as a Zk-module
(G, , •), for the ring (Zk,+, ·). For simplicity, we write G for (−1) • G. We
use lower case to denote elements of Zk, upper case to denote elements of G,
and bold notations to denote vectors. We extend the notations (,) to vectors
and matrices in the natural way, and write x •G to denote the scalar product
x1 •G1 . . . xt •Gt (where x,G are vectors of the same length t). For a vector
v, we denote by vᵀ its transpose. By GGen(1λ), we denote a probabilistic efficient
algorithm that, given the security parameter λ, generates an abelian group G in
which the CSG and DLSE assumption defined below holds in respect to λ. Note
that this implies that the normal discrete log problem is hard in this group, as

Non-Interactive Keyed-Verification Anonymous Credentials 11

well. In the following, we write (G, k) $← GGen(1λ). Additionally, we denote by
GGen(1λ, k) a group generation algorithm that allows us to select the order k
beforehand.

RSA Groups. A strong prime is a prime p = 2p′ + 1 such that p′ is also
a prime. We call RSA modulus a product n = pq of two strong primes. We
denote by ϕ Euler’s totient function; it holds that ϕ(n) = (p − 1)(q − 1). We
denote by Jn the cyclic subgroup of Z∗n of elements with Jacobi symbol 1 (the
order of this group is ϕ(n)/2), and by QRn the cyclic subroup of squares of Z∗n
(which is also a subgroup of Jn and has order ϕ(n)/4). By Gen(1λ), we denote a
probabilistic efficient algorithm that, given the security parameter λ, generates
a strong RSA modulus n and secret parameters (p, q) where n = pq, such that
the best known algorithm for factoring n takes time 2λ. In the following, we
write (n, (p, q)) $← Gen(1λ) and call abelian groups with order n composite order
groups, if n is a RSA modulus.

Generic Group Model. The generic group model (GGM) was introduced in
[31] and is an idealized model of groups. It captures groups with no additional
structure apart from being a group. In such generic groups, the only possibility
of attacking a cryptographic primitive is utilizing generic algorithms which only
make use of group operations.

In proofs, the generic group model is captured by giving an adversary access
to the group through random encodings of the group elements as bitstrings and
a group operation oracle. Note that if a cryptographic primitive is proven secure
in the GGM, it only ensures that it can not be broken with generic algorithms.
In order to simulate the oracle in this work, we will require the following lemma,
based on [30].

Lemma 1 (Generalised Schwartz-Zippel). Let (n, (p, q)) $← Gen(1λ),G $←
GGen(1λ, n) and F ∈ Zn[x1, x2, .., xl] with F 6= 0∧deg(F) = d ≥ 0. Let p′ ∈ {p, q}
and P a subgroup of G of order p′. It holds that

Pr
[
x = (x1, x2, .., xl) $← Pl : F (x) = 0

]
≤ d

p′

2.1 Assumptions

Computational Subgroup Assumption (CSG). The computational sub-
group assumption states that no bounded adversary can output a generator for a
non-trivial subgroup. Or more formally, for all PPT adversaries A , it holds that

Pr

(n, (p, q)) $← Gen(1λ),
G $← GGen(1λ, n),
G← A (G, n),

: G 6= 0G ∧ (p •G = 0G ∨ q •G = 0G)

 ≤ µ(λ)

where µ(λ) = negl(λ).

12 Geoffroy Couteau and Michael Reichle

Decisional-Diffie-Hellman (DDH) Assumption. Let G be a group with
order n. For all PPT adversaries A it holds that∣∣∣∣Pr

[
a, b, c

$← Zn : A (G,A,B,C) = 1
A← a •G,B ← b •G,C ← ab •G

]
−

Pr
[
a, b, c

$← Zn : A (G,A,B,C) = 1
A← a •G,B ← b •G,C ← c •G

]∣∣∣∣ ≤ µ(λ)

2.2 Encryption Schemes

A public-key encryption scheme S is a triple of PPT algorithms (S.KeyGen, S.Enc,
S.Dec), such that S.KeyGen generates encryption and decryption keys (ek, dk),
S.Encek, given a plaintext, outputs a (randomized) ciphertext, and S.Decdk,
given a ciphertext, outputs a plaintext. An encryption scheme must be correct
(S.Encdk(S.Encek(m)) = m for every message m) and IND-CPA secure (no ad-
versary can distinguish between the encryptions of two messages of its choice).
Because of space constraints, we defer to the full version [15] the formal definition
of encryption schemes and their security properties.

In this work, we will focus on additively homomorphic encryption schemes,
which are homomorphic for both the message and the random coin. More formally,
we require that the message space M and the random source R are integer sets
(ZM ,ZR) for some integers (M,R), and that there exists an efficient operation ⊕
such that for any (ek, sk) $← KeyGen(1λ), any (m1,m2) ∈ Z2

M and (r1, r2) ∈ Z2
R,

denoting (Ci)i≤2 ← (S.Encek(mi; ri))i≤2, it holds that C1 ⊕ C2 = S.Encek(m1 +
m2 mod M ; r1 +r2 mod R). We say an encryption scheme is strongly additive if it
satisfies these requirements. Note that the existence of ⊕ implies (via a standard
square-and-multiply method) the existence of an algorithm that, on input a
ciphertext C = S.Encek(m; r) and an integer ρ ∈ Z, outputs a ciphertext C ′ =
S.Encek(ρm mod M ; ρr mod R). We denote by ρ� C the external multiplication
of a ciphertext C by an integer ρ, and by 	 the operation C ⊕ (−1) � C ′ for
two ciphertexts (C,C ′). We will sometimes slightly abuse these notations, and
write C ⊕m (resp. C 	m) for a plaintext m to denote C ⊕ S.Encek(m; 0) (resp.
C 	 S.Encek(m; 0)). We extend in a natural way the algorithm Enc over vectors:
for vectors m = (mi)i ∈ Z∗M and r = (ri)i ∈ Z∗R of the same size, S.Encek(m; r)
denotes the vector (S.Encek(mi, ri))i. We extend the algorithm Dec to vectors of
ciphertexts in a similar way.

The Paillier Encryption Scheme. The Paillier encryption scheme [27] is
a well-known additively homomorphic encryption scheme over Zn for an RSA
modulus n. We describe here a standard variant [19,25], where the random coin
is an exponent over Jn rather than a group element. Note that the exponent
space of Jn is Zϕ(n)/2, which is a group of unknown order; however, it suffices to
draw exponents at random from Zn/2 to get a distribution statistically close from
uniform over Zϕ(n)/2. The IND-CPA security of the Paillier encryption scheme
reduces to the DCR assumption, which states that it is computationally infeasible
to distinguish random n’th powers over Z∗n2 from random elements of Z∗n2 .

Non-Interactive Keyed-Verification Anonymous Credentials 13

– KeyGen(1λ): run (n, (p, q)) $← Gen(1λ), pick g
$← Jn, set h ← gn mod n2,

and compute δ ← n−1 mod ϕ(n) (n and ϕ(n) are relatively prime). Return
ek = (n, h) and dk = δ;

– Enc(ek,m; r): given m ∈ Zn, for a random r
$← Zn/2, compute and output

c← (1 + n)m · hr mod n2;
– Dec(dk, c): compute x ← cdk mod n and c0 ← [c · x−n mod n2]. Return
m← (c0 − 1)/n.

DVNIZK-Friendly Encryption Scheme. We say that a strongly additive
encryption scheme is DVNIZK-friendly, when it satisfies the following additional
properties:

– Coprimality Property: we require that the size M of the plaintext space and
the size R of the random source are coprime, i.e., gcd(M,R) = 1;

– Decodable: for any (ek, sk) $← KeyGen(1λ), the function fek : m 7→ Encek(m; 0)
must be efficiently invertible (i.e., there is a PPT algorithm, which is given
ek, computing f−1

ek on any value from the image of fek).

Note that the Paillier cryptosystem is DVNIZK-friendly: (gcd(n, ϕ(n)) =
1, and any message m can be efficiently recovered from Encek(m; 0) = (1 +
n)m mod n2).

2.3 Non-Interactive Zero-Knowledge Proof of Knowledge Systems

A (designated-verifier) non-interactive zero-knowledge (DVNIZK) proof system for
a language L is a quadruple (Π.Setup,Π.KeyGen,Π.Prove,Π.Verify), as follows:
Π.Setup generates the setup parameters; Π.KeyGen generate the (public) proving
key and the verification key (which is private in a designated-verifier scheme, and
public in a publicly-verifiable one); Π.Prove, given the proving key, a word x an
a witness w for x ∈ L , outputs a proof π; and Π.Verify, given the verification
key, x, and π, outputs either accept or reject.

A DVNIZK proof system must be complete (if x ∈ L , the verifier accept),
sound (if x /∈ L , no malicious prover can cause the verifier to accept; we usually
want a stronger security notion, unbounded extractability, which states that a
polytime extractor can extract a valid witness from any accepting proof, even
if the proof was adversarially generated with arbitrary access to a verification
oracle), and zero-knowledge (the proof can be simulated without knowledge of
the witness). Because of space constraints, we defer to the full version [15] the
formal definition of DVNIZKs and their security properties.

The DVNIZK of Chaidos and Couteau. This DVNIZK proof of knowledge
system was introduced in [11] and satisfies composable zero-knowledge, and
statistical adaptive unbounded knowledge-extractability. The proofs are generated
for statements defined by a linear map over G:
Let k be an integer, (G,) be an abelian group of order k, and (α, β, γ) be three

14 Geoffroy Couteau and Michael Reichle

integers. LetG ∈ Gα denote a vector of public parameters, and let C ∈ Gβ denote
a public word. This system considers statements StΓ(G,C) defined by a linear map
Γ : (Gα,Gβ) 7→ Gγ×β such that StΓ(G,C coresponds to the statement “I know
x ∈ Zγk such that x • Γ(G,C) = C”. Let S = (S.KeyGen, S.Enc, S.Dec) denote
a DVNIZK-friendly encryption scheme with plaintext space Zk. The algorithms
(ΠK.Setup,ΠK.KeyGen,ΠK.Prove,ΠK.Verify) form a DVNIZK of knowledge ΠK for
a statement StΓ(G,C) over a word C ∈ Gβ , with public parameters G ∈ Gα,
defined by a linear map Γ : (Gα,Gβ) 7→ Gγ×β :

– ΠK.Setup(1λ) : compute (ek, dk) $← S.KeyGen(1λ). Output crs ← ek. Note
that ek defines a plaintext space Zk and a random source ZR. As the IND-CPA
and strong additive properties of S require R to be unknown, we assume that
a bound B on R is publicly available. We denote `← 2λkB.

– ΠK.KeyGen(1λ): pick e← Z`, set pk← S.Encek(0; e) and vk← e.
– ΠK.Prove(pk,C,x): on a word C ∈ Zβk , with witness x for the statement

StΓ(G,C), pick x′ $← Zγk , r
$← Zγ2λB , compute

X ← S.Encek(x; r),
X′ ← S.Encek(x′; 0)	 (r � pk) = S.Encek(x′;−e · r),
C′ ← x′ • Γ(G,C),

and output π ← (X,X′,C′).
– ΠK.Verify(pk, vk,C,π): parse π as (X,X′,C′). Check that e �X ⊕X′ is

decodable, and decode it to a vector d ∈ Zγk . Check that

d • Γ(G,C) = e •C C′.

If all checks succeeded, accept. Otherwise, reject.

3 Message Authentication Codes

In this section, we recall the definition of message authentication codes (MAC),
and outline a general MAC scheme (which we call “abstract MAC”), which
unifies several existing MAC scheme with a natural algebraic structure. Then, we
introduce a stronger unforgeability notion for this abstract MAC scheme. In the
full version [15], we prove that one of the MAC schemes of [13] does satisfy this
security notion in the generic group model.

3.1 Definition

Definition 1 (Message Authentication Code). We recall the definition of
a message authentication code. A message authentication code (MAC) M is a
quadruple of PPT algorithms (M.Setup,M.KeyGen,M.Sign,M.Verify), such that

– M.Setup(1λ) generates the public parameters pp of the MAC. We assume
that pp specifies the tag space S and the message space M;

Non-Interactive Keyed-Verification Anonymous Credentials 15

– M.KeyGen(pp) generates and outputs a key sk and optionally public issuer
parameters ipp.

– M.Signsk(m) given the message m ∈M, outputs a tag σ;
– M.Verifysk(m,σ) given the message m ∈M and a tag σ ∈ S, outputs a bit b

whose value depends on the validity of the tag σ with respect to m.

We assume for simplicity that once generated, the public parameters pp are
implicitly passed as an argument to the algorithms (M.KeyGen,M.Sign,M.Verify).

Definition 2 (Correctness of a MAC). A Message Authentication Code M
is correct if for any pp $← M.Setup(1λ), any sk $← M.KeyGen(pp), any message
m ∈M and for σ $←M.Signsk(m), it holds that M.Verifysk(m,σ) = 1.

Definition 3 (UF-CMVA Security of a MAC). A MAC M is UF-CMVA secure
if for any PPT adversary A , it holds that

Pr

Q← ∅, pp $←M.Setup(1λ),
sk $←M.KeyGen(pp), : M.Verifyk(m,σ) = 1 ∧m /∈ Q
(m,σ) $← A Osk[Q](pp)

 ≤ 1
2 + µ(λ)

for some function µ(λ) = negl(λ). A has access to an oracle Osk[Q] which answers
to verification and signing queries:

– O.Sign(m) sets Q← Q ∪ {m} and outputs M.Signsk(m);
– O.Verify(m,σ) outputs M.Verifysk(m,σ).

In this paper we will need algebraic MACs which means that the signing and
verification algorithms require only group operations to be performed.

3.2 An Abstract MAC Scheme

Let G be an abelian group of order n. Given a vector x = (x0, · · · , xβ) for some
integer β, we denote by Hx : Zβn 7→ Zn the affine function which, on input
(m1, · · · ,mβ), outputs x0 +

∑β
i=1 xi ·mi. Consider now the following generic MAC

scheme, parametrized with integers (α, β):

– M.Setup(1λ) : pick a generator G of G and output pp← (G, n, G, α, β);
– M.KeyGen(pp) : pick α vectors (ki)i≤α ∈ (Zβ+1

n)α (which can be either
random or fixed) of length β+1, and α random group elements (Gi)i≤α $← Gα.
Set Hi,j ← k−1

i,j •G for i ∈ [1..α], j ∈ [1..β], G′i ← ki,0 •Gi for i ∈ [1..α], and
ipp← ((Hi,j)1≤j≤β)i≤α, (Gi, G′i)i≤α). Output sk = (ki)i≤α and ipp.

– M.Signsk(m) : given a message m = (m1, ..,mβ) ∈ Zβn , pick a random group
element U $← G and output

σ ← (U, (Hki(m) • U)i≤α).

– M.Verifysk(m, σ) : parse σ as (U, (Vi)i≤α) and check that for i = 1 to α,
Vi = Hki(m) • U .

16 Geoffroy Couteau and Michael Reichle

Example 1. The scheme MACGGM from [13] is obtained by setting α = 1, and
sampling the key k uniformly at random. This scheme is UF-CMVA-secure in
the generic group model. Similarly, we recover the scheme MACDDH from [13] by
setting α = 3, sampling k1, k2 at random, and setting k3 ← (k3,0, 0, · · · , 0) for
a uniformly random k3,0. This scheme is UF-CMVA-secure under the decisional
Diffie-Hellman assumption.

Note that for our construction of an anonymous credential scheme, we will
require the security of the underlying MAC scheme to hold in a group of composite
order. In the full version [15], we slightly modify MACGGM and prove that the
modified version is secure in non-prime order groups in the generic group model.

3.3 Extended Unforgeability

The UF-CMVA security property states that no PPT adversary should be able to
forge a MAC on a message, even given access to signing and verification oracles,
as long as this message was never queried to the signing oracle. One can consider
stronger notions of unforgeability, where the adversary is given access to an
additional oracle. In particular, it will be useful in our setting to consider the
following extended unforgeability property for the abstract MAC scheme defined
above:

Definition 4 (Extended Unforgeability). An abstract MACM is XUF-CMVA
secure if for any PPT adversary A , it holds that

Pr

Q← ∅, pp $←M.Setup(1λ),
sk $←M.KeyGen(pp), : M.Verifysk(m,σ) = 1 ∧m /∈ Q
(m,σ) $← A Osk[Q](pp)

 ≤ 1
2 + µ(λ)

for some function µ(λ) = negl(λ). A has access to an oracle Osk[Q] which answers
to verification and signing queries, as well as another specific type of query:

– O.Sign(m) sets Q← Q ∪ {m} and outputs M.Signsk(m);
– O.Verify(m,σ) outputs M.Verifysk(m,σ);
– O.Check((Ai,j)i≤α,j≤β , (Bi,j)i≤α,j≤β) checks

∑β
j=1 ki,j • Ai,j =

∑β
j=1 ki,j •

Bi,j for all i ≤ α, and outputs 1 iff all checks succeed (note: the O.Check
oracle could equivalently check whether

∑β
j=1 ki,j •Ai,j = 0).

In the full version [15], we will prove that the scheme MACGGM from [13], which
was proven UF-CMVA-secure over prime order groups in the generic group model
in [13], is in fact XUF-CMVA-secure in the generic group model over composite
order groups (the use of groups of composite order is required for compatibility
of the MAC scheme with the DVNIZK scheme of [11]), under the computational
subgroup assumption. Note that, while it is uncommon to prove security in the
GGM under an additional assumption, it is necessary here: there exists an explicit
attack against the security of the MAC if the adversary is able to compute a
generator of a strict subgroup of G. However, in the usual formulation of the

Non-Interactive Keyed-Verification Anonymous Credentials 17

GGM, the adversary is unbounded and receives as input the order of the group,
hence he can trivially factor this order and efficiently compute generators of strict
subgroups of G, showing that MACGGM is in fact not unconditionally secure in
the GGM over composite order groups.

4 Non-Interactive Keyed-Verification Anonymous
Credentials

In this section, we formally introduce non-interactive keyed-verification anony-
mous credentials and their security properties. Our definition mostly follows the
blueprint of [13].

Definition 5 (Non-Interactive Keyed-Verification Anonymous Creden-
tials). An non-interactive keyed-verification anonymous credentials (NIKVAC)
scheme Θ is a set of algorithms (Θ.Setup,Θ.CredKeyGen,Θ.BlindIssue,Θ.BlindObtain,
Θ.Show,Θ.ShowVerify) such that

– Θ.Setup(1λ), outputs the public parameters pp of the AC and a trapdoor td,
the public parameters fix the set of supported statements Φ, the universe
of attributes U and are passed to the following algorithms implicitly, the
trapdoor can be used to revoke anonymity;

– Θ.CredKeyGen(pp), generates a secret key sk and public issuer parameters
ipp for an issuing organization;

– Θ.BlindIssue(sk, S) ↔ Θ.BlindObtain(ipp, (m1, ...,ml)), interactively gener-
ates a credential cred for the attributes (m1, ..,ml) ∈ U , where S ⊂ {m1, ..,ml}
(here, S refers to the subset of attributes that the user wants to keep private;
it allows to flexibly choose which attributes should be revealed, and which
should not);

– Θ.Show(ipp, cred, (m1, ...,ml),Φ), outputs a proof of possession π of a cre-
dential cred for organization with issuer parameters ipp in respect to the
attributes (m1, ..,ml) ∈ U with associated statements Φ ∈ Φ;

– Θ.ShowVerify(sk, π,Φ), checks the proof π with sk with respect to the state-
ments Φ ∈ Φ;

which satisfies the correctness, anonymity, unforgeability, blind issuance and
key-parameter consistency properties defined below.

We define two extra algorithms to simplify the security definitions:

– Issue(sk, (m1, ..,ml)): generates a credential for the attributes (m1, ..,ml)
using sk;

– CredVerify(sk, (m1, ..,ml), cred): verifies the credential cred using sk.

Here we define correctness, which guarantees that Issue always outputs proper
credentials and that a proof of possession for a valid credential verifies correctly.

18 Geoffroy Couteau and Michael Reichle

Definition 6 (Correctness). A NIKVAC scheme Θ is correct if it holds that

Pr

(pp, td) $← Θ.Setup(1λ), (m1, ..,ml) $← U ,
(sk, ipp) $← Θ.CredKeyGen(1λ),
cred $← Issue(sk, (m1, ..,ml)),
b

$← CredVerify(sk, (m1, ..,ml), cred)

: b = 1

 = 1

and

Pr

(pp, td) $← Θ.Setup(1λ),
Φ ∈ Φ, (m1, ..,ml) $← U with Φ(m1, ..,ml) = 1,
(sk, ipp) $← Θ.CredKeyGen(1λ),
cred $← Issue(sk, (m1, ..,ml)),
π

$← Θ.Show(ipp, cred, (m1, ...,ml),Φ)
b

$← Θ.ShowVerify(sk, π,Φ),

: b = 1

= 1

Unforgeability ensures that users cannot successfully show credentials without
having received one from the authority.
Definition 7 (Unforgeability). A NIKVAC scheme Θ is unforgeable if for any
PPT adversary A it holds that

Pr

pp $← Setup(1λ), Q← ∅,
(sk, ipp) $← Θ.CredKeyGen(1λ),
(Φ, π) $← A Osk[Q](pp, ipp),
b

$← Θ.ShowVerify(sk, π,Φ),

: b = 1 ∧ ∀(m1, ..,ml) ∈ Q :
Φ(m1, ..,ml) = 0

 ≤ µ(λ)

for some function µ(λ) = negl(λ). A has access to an oracle Osk[Q] which answers
to issuing and verification queries:
– O.Issue(m1, ..,ml) setsQ← Q∪{m1, ..,ml} and outputs Issue(sk, ipp, (m1, ..,ml));
– O.Verify(Φ, π) outputs Θ.ShowVerify(sk, π,Φ).
Anonymity ensures that a user that shows a credential stays anonymous.

Note that, as observed in [13], this simulation-style notion of anonymity implies
in particular the standard notion of multi-show unlinkability, which states that
anonymity is preserved throughout multiple presentations of the credential (a
property which is not satisfied by e.g. U-Prove [28]).
Definition 8 (Anonymity). A NIKVAC scheme Θ is anonymous if for any
PPT adversary A , there exists a PPT simulator Sim such that it holds that∣∣∣∣∣∣∣∣Pr

(pp, td) $← Θ.Setup(1λ),
(sk, ipp) $← Θ.CredKeyGen(1λ),
(Φ, cred, (m1, ..,ml), st) $← A (pp, ipp, sk),
π

$← Θ.Show(ipp, cred, (m1, ...,ml),Φ)

:
CredVerify(sk, (m1, ..,ml), cred)
= 1 ∧ Φ(m1, ..,ml) = 1 ∧
A (st, π) = 1

−

Pr

(pp, td) $← Θ.Setup(1λ),
(sk, ipp) $← Θ.CredKeyGen(1λ),
(Φ, cred, (m1, ..,ml), st) $← A (pp, ipp, sk),
π

$← Sim(ipp, sk,Φ)

:
CredVerify(sk, (m1, ..,ml), cred)
= 1 ∧ Φ(m1, ..,ml) = 1 ∧
A (st, π) = 1

∣∣∣∣∣∣∣∣ ≤ µ(λ)

Non-Interactive Keyed-Verification Anonymous Credentials 19

for some function µ(λ) = negl(λ).

Blind Issuance. The protocol BlindIssue ↔ BlindObtain defines a secure two-
party protocol for the function f((S, pp, ipp), (sk, r), (m1, ..,ml)) for shared input
(S, pp, ipp), issuer input (sk, r) and user input (m1, ..,ml) which returns cred←
Issue(sk, (m1, ..,ml); r) to the user, if the input is correct. Since we will not cover
this property explicitly in this paper, refer to [13] for more details.

Definition 9 (Key-Parameter Consistency). A NIKVAC scheme Θ fulfills
the key-parameter consistency property if for any PPT adversary A , it holds
that

Pr
[

(pp, td) $← Θ.Setup(1λ), for i ∈ {0, 1},
(ipp, sk0, sk1) $← A (pp) : (ipp, ski) ∈ {x | x $← Θ.CredKeyGen(1λ)}

]
≤ µ(λ)

for some function µ(λ) = negl(λ).

4.1 Additional Properties

Anonymity Revocation. The following property would allow a trusted third
party to revoke anonymity if desired.

Definition 10 (Extractability). A NIKVAC scheme Θ is extractable if there
exists an efficient extractor Ext such that

Pr

(pp, td) $← Θ.Setup(1λ),
Φ ∈ Φ, (m1, ..,ml) $← U ,
(sk, ipp) $← Θ.CredKeyGen(1λ),
cred $← Issue(sk, (m1, ..,ml)),
π

$← Θ.Show(ipp, cred, (m1, ...,ml),Φ)

: (m1, ..,ml)← Ext(td, π)

 = 1

5 Oblivious Designated-Verifier Non-Interactive
Zero-Knowledge

In this section, we introduce oblivious (designated-verifier, non-interactive) zero-
knowledge proof system. Intuitively, an oblivious DVNIZK enhances the security
and the functionality of a DVNIZK with two properties:

– First, the oblivious DVNIZK on a word x can be used to show knowledge of
a witness w such that Rsk(x,w) = 1, where Rsk is a secret witness relation,
which depends on a secret information which is not known to the prover.
The knowledge of sk is not required to generate a proof – but it is, obviously,
necessary to verify the proof.

20 Geoffroy Couteau and Michael Reichle

– Second, we consider words x which can be divided in subwords (x0, x1), such
that x0 is a public subword, while x1 is a private subword. The privacy of x1
is ensured by requiring, for the zero-knowledge property, the existence of a
simulator which can simulate a proof without knowing the witness w and/or
x1. Note that this formalism is mainly chosen for notational convenience: the
word x1 could always be thought of as being part of the witness. However,
defining it as a part of the word allows us to set the secret relation Rsk to
be exactly the MAC verification, where the word is the signature and the
witness is the message, in our concrete instantiation.

5.1 Definition

Definition 11 (Oblivious DVNIZK). An oblivious designated-verifier non-interactive
zero-knowledge proof of knowledge Π for a family of secret witness relations
{Rcrs(·, ·, ·)}crs (which take as input triples (sk, x, w) where sk is a secret relation
key, x is a word, and w is a witness for the relation Rcrs(sk, ·, ·)) is a five-tuple
(Π.Setup,Π.RelSetup,Π.KeyGen,Π.Prove,Π.Verify) of efficient algorithms such
that

– Π.Setup(1λ), on input the security parameter in unary, outputs a pair (crs, td)
where crs is a common reference string and td is a trapdoor ;

– Π.RelSetup(crs), on input crs, outputs a pair (sk, ipp), where sk is a secret
relation key, and ipp are public issuer parameters;

– Π.KeyGen(crs), on input crs, outputs a pair (pk, vk) where pk is a public
proving key, and vk is a secret verification key;

– Π.Prove(crs, pk, ipp, (x0, x1), w), on input crs, the public key pk, the issuer
parameters ipp, a word (x0, x1), where x0 is a public subword and x1 is a
secret subword, and a witness w such that Rcrs(sk, (x0, x1), w) = 1, outputs
a proof π;

– Π.Verify(crs, pk, ipp, x0, vk, sk, π), on input crs, the public key pk, the issuer
parameters ipp, the public subword x0, the verification key vk, the secret
relation key sk, and a proof π, outputs a bit b ∈ {0, 1};

which satisfies the completeness, oblivious zero-knowledge, and oblivious knowledge-
extractability properties defined below.

Definition 12 (Completeness). An oblivious DVNIZK proof system Π = (
Π.Setup,Π.RelSetup,Π.KeyGen,Π.Prove,Π.Verify) for a family of secret witness
relations {Rcrs}crs satisfies completeness if for every (crs, td) in the image of
Π.Setup(1λ), every (sk, ipp) in the image of Π.RelSetup(crs), every (pk, vk, sk) in
the image of Π.KeyGen(crs), every ((x0, x1), w) such that Rcrs(sk, (x0, x1), w) = 1,
and every π in the image of Π.Prove(pk, ipp, (x0, x1), w), it holds that Π.Verify(pk,
ipp, x0, vk, sk, π) = 1.

Definition 13 (Oblivious Zero-Knowledge). An oblivious DVNIZK proof
system Π = (Π.Setup,Π.RelSetup,Π.KeyGen,Π.Prove,Π.Verify) for a family of

Non-Interactive Keyed-Verification Anonymous Credentials 21

witness relations {Rcrs}crs satisfies oblivious zero-knowledge if for any stateful
PPT Adv, there exists a probabilistic polynomial-time simulator Sim such that∣∣∣∣∣∣∣∣Pr

(crs, td) $← Π.Setup(1λ),
(pk, vk) $← Π.KeyGen(crs), : (Rcrs(sk, (x0, x1), w) = 1)
((x0, x1), w, ipp, sk)← A (crs, pk, vk), ∧(A (π) = 1)
π ← Π.Prove(crs, pk, ipp, (x0, x1), w),

−

Pr

(crs, td) $← Π.Setup(1λ),
(pk, vk, sk) $← Π.KeyGen(crs), : (Rcrs(sk, (x0, x1), w) = 1)
((x0, x1), w, sk, ipp)← A (crs, pk, vk), ∧(A (π) = 1)
π ← Sim(crs, pk, ipp, x0, vk, sk),

∣∣∣∣∣∣∣∣ ≤ µ(λ)

where µ(λ) = negl(λ).

Definition 14 ((O0,O1)-Knowledge-Extractability). An oblivious DVNIZK
proof system Π = (Π.Setup,Π.RelSetup,Π.KeyGen,Π.Prove,Π.Verify) for a family
of secret witness relations {Rcrs}crs satisfies (O0,O1)-knowledge-extractability if
the following two conditions hold:

– for every PPT adversary A , there is an efficient extractor Ext such that

Pr

(crs, td) $← Setup(1λ),
(sk, ipp) $← RelSetup(crs),
(pk, vk) $← Π.KeyGen(crs),
(π, x0)← A V,O0[sk](crs, pk, ipp),
(x1, w)← Ext(crs, pk, ipp, x0, td, π),

:
Rcrs(sk, (x0, x1), w) = 0 ∧
Π.Verify(crs, pk, ipp, x0, vk,
sk, π) = 1

 ≈ 0,

where V denotes Π.Verify(crs, pk, ipp, ·, vk, sk, ·);
– there exists an efficient simulator that simulates the answers of Π.Verify(crs,

pk, ipp, ·, vk, sk, ·), which is not given sk but is instead given oracle access to
O1[sk].

5.2 Instantiation

We now provide an instantiation of an oblivious DVNIZK suitable for our construc-
tion. At a high level, the secret witness relation we consider will be the one that
checks, for triples (sk, x, w), that the message w is the one signed in the credential
x (with respect to the secret key sk of the abstract MAC scheme defined in Sec-
tion 3.1). Our construction heavily builds upon the DVNIZK proof system of [11].
Let S = (S.KeyGen, S.Enc, S.Dec) denote a DVNIZK-friendly encryption scheme
with plaintext space Zn and M = (M.Setup,M.KeyGen,M.Sign,M.Verify) be a
MAC scheme, which we assume to have the abstract structure given in Section 3.1,
over a group G of order n with generator G. We will consider the following wit-
ness relation: Rcrs(sk, x, w), given as input a vector x = (U, (Vi)i≤α) ∈ Gα+1

of group elements, a witness w = (m1, · · · ,mβ), and given sk, checks that
M.Versk(m1, · · · ,mβ , x) = 1, where sk = (ki)i≤α is the MAC key. Since the pur-
pose of the public word x0 is mainly to allow more expressivity when considering

22 Geoffroy Couteau and Michael Reichle

a more complex relation, and we focus here on the most basic relation (the scheme
can be enhanced to work with more complex relations), we simply consider that
x = x1 is entirely a secret word. The scheme works as follows:

– Π.Setup(1λ) : compute (ek, dk) $← S.KeyGen(1λ) and pp $← M.Setup(1λ).
Output crs ← (ek, pp). Note that ek defines a plaintext space Zn and a
random source ZR. As the IND-CPA and strong additive properties of S
require R to be unknown, we assume that a bound B on R is publicly
available. We denote `← 2λnB.

– Π.RelSetup(crs) : same as M.KeyGen, namely: pick α vectors (ki)i≤α ∈ (Zβn)α
(which can be either random or fixed) of length β, and α random group
elements (Gi)i≤α $← Gα. Set Hi,j ← k−1

i,j • G for i ∈ [1..α], j ∈ [1..β],
G′i ← ki,0 • Gi for i ∈ [1..α], and ipp ← ((Hi,j)1≤j≤β)i≤α, (Gi, G′i)i≤α).
Output sk = (ki)i≤α and ipp.

– Π.KeyGen(crs) : pick e ← Z`, set pk ← S.Encek(0; e) and vk ← e. Output
(pk, vk).

– Π.Prove(crs, pk, ipp, x, w) : given x = (U, (Vi)i≤α) and a witness w = m, pick
(m′, t, t′) $← Zβn × (Zαn)2, (rm, rt) $← Zβ2λB × Zα2λB, z

$← Zn. Let (t′j)j≤β =
(t′1,j , · · · , t′α,j)j≤β denote uniformly random additive shares of t′ over Zαn .
Compute

(U ′, (V ′i)i≤α)← (z • U, ((z • Vi) (ti •G))i≤α)
Wi,j ← m′j • U ′ (t′i,j •Hi,j) for i ∈ [1..α], j ∈ [1..β]
(Xm,Xt)← (S.Encek(m; rm), S.Encek(t; rt)),
X′

m ← S.Encek(m′; 0)	 (rm � pk) = S.Encek(m′;−e · rm),
X′

t ← S.Encek(t′; 0)	 (rt � pk) = S.Encek(t′;−e · rt),

and output π ← (U ′, (V ′i)i≤α, (Wi,j)i≤α,j≤β ,Xm,Xt,X
′
m,X′

t).
– Π.Verify(crs, pk, ipp, vk, sk, π) : parse π as

(U ′, (V ′i)i≤α, (Wi,j)i≤α,j≤β ,Xm,Xt,X
′
m,X′

t).

Check that e�Xm⊕X′
m and e�Xt⊕X′

t are decodable, and decode them
to vectors dm,dt. Reconstruct

(W ′i)i≤α ←

 β∑
j=1

ki,j •Wi,j

i≤α

and check that

(e • (V ′i (ki,0 • U ′)) W ′i)i≤α = (dm • (ki,j • U ′)1≤j≤β)i≤α dt •G.

Output 1 if and only if all checks succeeded.

Theorem 2. The scheme Π is an oblivious designated-verifier zero-knowledge
proof of knowledge for the family of secret witness relations {Rcrs}crs, whose

Non-Interactive Keyed-Verification Anonymous Credentials 23

oblivious zero-knowledge property reduces to the semantic security of the DVNIZK-
friendly encryption scheme S, and which satisfies statistical (O0,O1)-knowledge
extractability for the oracle O0[sk] ≡ M.Signsk, and an oracle O1[sk] which is
either

– M.Verifysk(·, ·) if β = 1, or
– M.Verifysk(·, ·) together with M.Checksk(·, ·) otherwise.

5.3 Extensions and Optimizations

In itself, the above oblivious DVNIZK does not seem to provide a strong un-
forgeability guarantee. Indeed, recall that the unforgeability of keyed-verification
anonymous credential states (informally) that it should be infeasible to come up
with a pair (m, σ) such that M.Versk(m, σ) = 1 and Φ(m) = 1, if all previous
queries to the signing authority where on vectors m′ such that Φ(m′) = 0. The
exact choice of Φ depends on the particular application; typically, Φ(m) could
correspond to the statement that m is the value committed in some pseudonym
known to the verifier; that way, the condition “all previous queries to the signing
authority where on vectors m′ such that Φ(m′) = 0” boils down to the standard
guarantee of anonymous credentials: it should be infeasible to come up with an
accepting credential on a vector that was never signed before by the authority.
But Φ can also check a more complex statement on the vector of attributes (e.g.
it could check that the attribute “age” is above 18).

In the construction given above, we directly focus on enforcingM.Versk(m, σ) =
1; there is no additional Φ to, for example, bind m to a commitment. However,
we observe that this typical choice of Φ is for free in our construction above.
Indeed, a proof π does contain, by construction, a perfectly binding commitment
(in fact, an encryption with S) of the vector m, which is Xm. Furthermore, it
will immediately follow from the security analysis that the proof does not only
guarantee the knowledge of a witness w = m (recovered by the extractor): it fur-
ther guarantees that this witness is exactly the one encrypted in Xm. Therefore,
to bind the user to a pseudonym known to the verifier, it is unecessary to add a
commitment to m. Instead, the user can simply compute (Xm,Xt,X

′
m,X′

t) in
advance (observe that this does not require the knowledge of a credential) and
send it to the verifier, who will simply define it to be the pseudonym of the user.
Then, each time he wants to show possession of a credential (U, (Vi)i≤α), the user
only needs to compute the missing part of the proof, (U ′, (V ′i)i≤α, (Wi,j)i≤α,j≤β).
This significantly reduces the size of a proof of possession, and in scenario where
Φ is only intended to check that the vector matches with a pseudonym, the
basic construction suffices as is. Of course, it can be extended to more complex
statements Φ, as long as they fit in the framework of statements handled by [11].

5.4 Security Analysis

Completeness follows from a straightforward (although tedious) inspection. We
now establish oblivious zero-knowledge and (O0,O1)-knowledge extractability.

24 Geoffroy Couteau and Michael Reichle

Oblivious Zero-Knowledge. We exhibit a simulator Sim which simulates a
proof π given (crs, pk, ipp, x0, vk = e, sk = (ki)i≤α). Note that Sim is not given
the witness w nor x1. The simulator Sim proceeds as follows:

Pick (m̃,m′,dm, t, t′,dt) $← (Zβn)3 × (Zαn)3, (rm, rt) $← Zβ2λB × Zα2λB. Let
(t′j)j≤β = (t′1,j , · · · , t′α,j)j≤β denote uniformly random additive shares of t′ over
Zαn . Compute

(U ′, (V ′i)i≤α) $← Gα+1

(W ′i)i≤α ← (dm • (ki,j • U ′)1≤j≤β)i≤α dt •G e • (V ′i (ki,0 • U ′))i≤α
(Xm,Xt)← (S.Encek(m̃; rm), S.Encek(t; rt)),
(X′

m,X′
t)← (S.Encek(dm − e · m̃;−e · rm), S.Encek(dt − e · t;−e · rt)).

Then, for i ∈ [1..α], j ∈ [1..β], pick random Wi,j conditioned on

W ′i =
β∑
j=1

ki,j •Wi,j ,

and output π ← (U ′, (V ′i)i≤α, (Wi,j)i≤α,j≤β ,Xm,Xt,X
′
m,X′

t).
We now show how to use an adversary Adv which outputs ((x0, x1), w, ipp, sk)

and distinguishes π ← Π.Prove(crs, pk, ipp, (x0, x1), w) from π ← Sim(crs, pk, ipp,
, x0, vk, sk) conditioned on Rcrs(sk, (x0, x1), w) = 1 to break the semantic security
of S. The reduction obtainsm from Adv, samples a random m̃, and sends (m, m̃)
to a challenger for the IND-CPA game of S. It receives a ciphertextXm. It samples
(m′,dm, t, t′,dt) $← (Zβn)2 × (Zαn)3, rt

$← Zα2λB as before, and sets X′
m ←

S.Encek(dm; 0)	Xm � e. Finally, it computes (U ′, (V ′i)i≤α), (Wi,j)i≤α,j≤β , and
(Xt,X

′
t) as before. Observe that (U ′, (V ′i)i≤α) are distributed identically in the

real game and the simulated game; direct calculations show that when Xm

encrypts m, the proof π is distributed exactly as in the real game, while when
Xm encrypts m̃, the proof π is distributed exactly as in the simulated game.

(O0,O1)-Knowedge-Extractability. We now turn our attention to the (O0,
O1)-knowledge extractability property. The extractor Ext proceeds as follows:
given a proof π = (U ′, (V ′i)i≤α, (Wi,j)i≤α,j≤β ,Xm,Xt,X

′
m,X′

t), it computes
m ← S.Dectd(Xm), t ← S.Dectd(Xt), and outputs x ← (U ′, (V ′i ti • G)i≤α),
and w ← m. We now analyze the probability that Rcrs(sk, (x0, x1), w) = 0 ∧
Π.Verify(crs, pk, ipp, x0, vk, sk, π) = 1. To do so, we proceed in two steps:

Game 1. In this game, we modify the behavior of the oracle Π.Verify(crs, pk,
ipp, vk, ·, sk, ·) that Adv is given access to. Namely, the oracle is not given vk
anymore. Rather, we generate vk as before, and set eR ← vk mod R. Each time
Adv sends a query π to the oracle, we proceed as follows: we parse π as

π = (U ′, (V ′i)i≤α, (Wi,j)i≤α,j≤β ,Xm,Xt,X
′
m,X′

t),

and use td to decrypt (Xm,Xt,X
′
m,X′

t), obtaining vectors (m, t,m′, t′). Then,
we perform the following checks:

Non-Interactive Keyed-Verification Anonymous Credentials 25

1. we check that −eR � (Xm 	m) = X′
m 	m

′;
2. we check that −eR � (Xt 	 t) = X′

t 	 t
′;

3. we check V ′i ti • G = Hki(m) • U ′ for every i ≤ α (that is, we run
M.Versk(m, σ) on the MAC σ = (U ′, (V ′i ti •G)i≤α));

4. we reconstruct (W ′i)i≤α ←
(∑β

j=1 ki,j •Wi,j

)
i≤α

and check W ′i t′i • G =∑β
j=1(ki,j ·m′j) • U ′ for every i ≤ α.

Note that this follows exactly the proof strategy of [11, Section 3.3]. It follows
by the exact same argument that it is statistically infeasible to distinguish the
simulated oracle in Game 1 from the real oracle, and the distinguishing advantage
is at most Q(α+1)p, where p is the smallest prime factor of n and Q is the number
of queries of Adv to the oracle. Intuitively, the argument stems from the fact that
if Adv ever submits a proof that would be accepted by the oracle, but not by
the simulated oracle (or the converse), then this proof information-theoretically
determines vk. However, even given eR = vk mod R, it follows from the chinese
remainder theorem that the value vk mod n remains statistically hidden, since vk
was initially picked at random in Z` and ` satisfies ` > 2λnR. Observe that game
already suffices to establish that the probability of Rcrs(sk, (x0, x1), w) = 0 ∧
Π.Verify(pk, vk, sk, π) = 1 must be negligible, since in this game the simula-
tion of Π.Verify does in particular check that Rcrs(sk, (x0, x1), w) = 1. However,
the simulation of Π.Verify still uses sk; to establish the second property of the
(O0,O1)-knowledge-extractability, we proceed with a second game.

Game 2. In this game, we further modify the simulated oracle, so that it does
not use sk anymore. Instead, the simulation will itself rely on the MAC verification
oracle. More precisely, the key sk is only used in the checks 3 and 4 of Game 1.
The third check is straightforward given oracle access to M.Verifysk(·, ·): just call
M.Verifysk(m, σ) with σ = (U ′, (V ′i ti •G)i≤α) (this is perfectly identical to the
third check in the previous game).

The fourth check, however, is more problematic, since it’s not clear how to
reconstruct the (W ′i)i≤α without knowing sk. Rewriting a bit the fourth check,
we need to check is

β∑
j=1

ki,j •Wi,j t′i •G =
β∑
j=1

ki,j • (m′j • U ′)

for every i ≤ α. Letting (t′i,1, · · · , t′i,β) denote an arbitrary additive sharing of t′i
for every i ≤ α, this equation can be rewritten as

β∑
j=1

ki,j • (Wi,j t′i,j •Hi,j) =
β∑
j=1

ki,j • (m′j • U ′)

Now, we distinguish two cases:

– Case 1. If it holds that β = 1, corresponding to the case where the vector of
attributes has length 1 (or, equivalently, we consider a simplified scenario

26 Geoffroy Couteau and Michael Reichle

without attributes, and credentials computed directly on the identity of the
user), then the equation becomes

ki,1 • (m′1 • U ′ Wi,1) = t′i •G.

Observe that this check can be performed efficiently: since we are given
Hi,1 = k−1

i,1 •G, this is perfectly equivalent to checking

m′1 • U ′ Wi,1 = t′i •Hi,1

for every i ≤ α, which does not require the knowledge of sk.
– Case 2. In the general case, where β can be larger than 1, there is no

immediate shortcut. In this case, we have to rely on a MAC with a stronger
unforgeability property, the XUF-CMVA security property defined in Section 3,
and we simulate the verification using the following two oracles:
• M.Verify(m,σ) outputs M.Verifysk(m,σ);
• M.Check((Ai,j)i≤α,j≤β , (Bi,j)i≤α,j≤β) checks

∑β
j=1 ki,j•Ai,j =

∑β
j=1 ki,j•

Bi,j for all i ≤ α, and outputs 1 iff all checks succeed,
where the first oracle allows to check the third equation, and the second
oracle allows to check the last equation.

In both cases, it is immediate to see that the answers of the simulated oracle
are distributed exactly as in Game 1. Furthermore, the simulation only requires
access to an oracle O1[sk], which is M.Verify in case 1, and the pair of oracles
M.Verify,M.Check in case 2.

6 A Construction of NIKVAC from Algebraic MAC and
Oblivious DVNIZK

In this section, we will use the system introduced in section 5 to construct a
NIKVAC scheme Θ.

6.1 Construction

Let M be a MAC and Φ a set of statements for attributes m1, ..,ml. Let ΠΦ be
an oblivious DVNIZK system which runs on a common Setup algorithm with M
for the relation Rcrs, for crs $←M.Setup(1λ), defined as

Rcrs((x0, x1), (m1, ..,ml), k) = 1 iff M.Verifyk((m1, ..,ml), x1) = 1∧Φ(m1, ..,ml),

where x0 is a public word needed to prove the statements Φ and ΠΦ.RelSetup =
M.KeyGen. We assume ΠΦ satisfies (O0,O1)-knowledge-extractability, where
O0[k](·) = M.Signk(·) and O1[k] is either the MAC verification oracle, if M
is UF-CMVA secure (and the attribute vectors are of length 1), or the MAC
verification and additional check oracle, if M is XUF-CMVA secure. Since x0
depends on the choice of Φ, we omit it entirely in the following and simply set
x = x1. Note that ΠΦ.Setup,ΠΦ.CredKeyGen do not rely on the choice of Φ, so
we simply write Π.Setup,Π.CredKeyGen. We now construct a NIKVAC scheme
using {ΠΦ}Φ.

Non-Interactive Keyed-Verification Anonymous Credentials 27

– Θ.Setup(1λ), outputs (pp, td) $← Π.Setup(1λ), we assume that pp fixes the
supported statements Φ, the universe of attributes U is the message space of
M ;

– Θ.CredKeyGen(pp), runs (pk, vk) $← Π.KeyGen(pp), (k, ippM) $← Π.RelSetup(pp),
outputs secret key sk← (vk, k) and issuer parameters ipp← (pk, ippM), we
assume that CredKeyGen satisfies key-parameter consistency;

– Θ.BlindIssue(sk, S)↔ Θ.BlindObtain(ipp, (m1, ...,ml)), performs a secure two-
party computation that issues a tag of M to the user on valid input, we
assume that this protocol satisfies blind issuance property2;

– Θ.Show(ipp, cred, (m1, ...,ml),Φ), parses ipp as (pk, ippM) outputs π $←
ΠΦ.Prove(pk, ippM , cred, (m1, ...,ml));

– Θ.ShowVerify(sk, π,Φ), parses sk as (vk, k) and ipp as (pk, ippM), checks
ΠΦ.Verify(pk, ippM , vk, k, π).

6.2 Security Analysis

For Θ, the functions Issue and CredVerify are defined as follows:
– Issue(sk, (m1, ..,ml)): for sk = (vk, k) outputs M.Signk(m1, ..,ml);
– CredVerify(sk, (m1, ..,ml), cred): for sk = (vk, k) outputsM.Verifyk((m1, ..,ml),

cred).

Theorem 3 (Correctness). The NIKVAC scheme Θ satisfies correctness if M
is correct and ΠΦ is complete.

Proof. Let (pp, td)← Θ.Setup(1λ), (m1, ..,ml) $← U , (sk, ipp) $← Θ.CredKeyGen(pp)
and credIssue(sk, (m1, ..,ml)). It follows that CredVerify(sk, (m1, ..,ml), cred) = 1
from the correctness of the MAC scheme M .

Now, let (pp, td)← Θ.Setup(1λ), Φ $← Φ, (m1, ..,ml) $← U with Φ(m1, ..,ml) =
1, (sk = (vk, k), ipp) $← Θ.CredKeyGen(pp) and cred $← Issue(sk, (m1, ..,ml)). Let
π

$← Θ.Show(ipp, cred, (m1, ..,ml),Φ). Note that Rk(cred, (m1, ..,ml)) = 1 and
thus Θ.ShowVerify(sk, π,Φ) = 1 by the completeness of ΠΦ.

Theorem 4 (Unforgeability). The NIKVAC scheme Θ is unforgeable if M is
unforgeable and ΠΦ is (O0,O1)-knowledge-extractable for all Φ ∈ Φ.

Proof. Let A be a PPT adversary on the unforgeability of Θ. We build an
adversary B which either breaks the unforgeability of M (so either the UF-CMVA
or XUF-CMVA security) or the (O0,O1)-knowledge-extractability of ΠΦ for some
Φ ∈ Φ.

B receives (crs, pk, ippM)3 and access to a proof verification oracle VΦ and
an MAC issuing oracle O0 (defined in section 6.1) from the (O0,O1)-knowledge-
extractability4 game with ΠΦ for Φ ∈ Φ. B sends pp← crs, ipp← (pk, ippM) to
A and gives access to the following issuing and verification oracle O:
2 The protocol depends highly on the chosen MAC scheme. Thus, we omit details in
abstract instantiation.

3 The parameters (crs, pk, ippM) are fixed for all Φ ∈ Φ, since they do not depend on
the particular choice of Φ.

4 In this proof, this refers to the first property of definition 14.

28 Geoffroy Couteau and Michael Reichle

– O.Issue(m1, ..,ml) sets Q← Q ∪ {m1, ..,ml} and outputs O0(m1, ..,ml);
– O.Verify(Φ, π) outputs VΦ(π).

By the second property of definition 14, VΦ(·) can be simulated only using O1
without access to the secret key. Now, all answers to queries which require the
secret MAC key can be computed using solely access to the MAC oracles. Note
that B simulates the unforgeability game of Θ with overwhelming probability. At
some point, if A is successful, he will output π,Φ such that the pair (π,Φ) verifies
correclty and for all queried (m1, ..,ml) ∈ Q : Φ(m1, ..,ml) = 0. Subsequently, B
forwards π to the (O0,O1)-knowledge-extractability game for ΠΦ, which in turn
forwards the extracted values (x1, w) to the MAC unforgeability game.

We now analyze the success probability of B assuming A is successful. If B
won the (O0,O1)-knowledge-extractability game, we are finished. In the other
case, the MAC unforgeability game receives (x1 = σ,w = (m1, ..,ml)). Because
A is successful, π verifies correctly with regards to Θ and thus also verifies
correctly with regards to ΠΦ. Because B failed the first game, it necessarily
holds that R(σ, (m1, ..,ml)) = 1. Since ∀(m′1, ..,m′l) ∈ Q : Φ(m′1, ..,m′l) = 0 and
Φ(m1, ..,ml) = 1, it holds that (m1, ..,ml) /∈ Q and σ verifies correctly. Thus, B
breaks the unforgeability of M . ut

Theorem 5 (Anonymity). The NIKVAC scheme Θ is anonymous if ΠΦ satis-
fies oblivious zero-knowledge.

Proof. Let A be an adversary on the anonymity of Θ. We construct an adversary
B that breaks the oblivious zero-knowledge property of ΠΦ for some Φ ∈ Φ with
overwhelming probability if A is successful.

B receives crs, pk, vk from the zero-knowledge game with ΠΦ for some arbitrary
Φ ∈ Φ. Note that these values are independent of the particular choice of Φ. B
then runs (k, ippM) $←M.KeyGen(crs) and sends pp← crs, ipp← (pk, ippM), sk←
(vk, k) to A . In turn, B receives (Φ, cred, (m1, ..,ml)) from A . Next, B outputs
(cred, (m1, ..,ml), k, ippM) to the oblivious zero-knowledge game for the now fixed
Φ and receives π in return which he forwards to A . Note that B simulates the
anonymity game with overwhelming probability. Also, Rcrs(sk, cred, (m1, ..,ml)) =
1 ⇐⇒ CredVerify(sk, (m1, ..,ml), cred) = 1 ∧ Φ(m1, ..,ml). The simulation of π
in the zero-knowledge game only uses ipp, sk,Φ and will thus be a simulation for
the anonymity game. Otherwise, π is built honestly in both games and thus, if
A is successful, B is successful with overwhelming probability. ut

Missing Properties. The missing properties are blind issuance and key-parameter
consistency. In practice, key-parameter consistency can easily be fulfilled by adding
additional commitments to the components of the secret key and the two-party
computation for blind issuance depends highly on the structure of the MAC
scheme and can be implemented with any standard two party computation
protocol; we briefly outline a possible candidate for an optimized version of our
scheme in the full version [15].

Non-Interactive Keyed-Verification Anonymous Credentials 29

References

1. Acar, T., Nguyen, L.: Revocation for delegatable anonymous credentials. In: Cata-
lano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571,
pp. 423–440. Springer, Heidelberg (Mar 2011)

2. Barki, A., Brunet, S., Desmoulins, N., Traoré, J.: Improved algebraic MACs and
practical keyed-verification anonymous credentials. In: Avanzi, R., Heys, H.M. (eds.)
SAC 2016. LNCS, vol. 10532, pp. 360–380. Springer, Heidelberg (Aug 2016)

3. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (Aug 2009)

4. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and nonin-
teractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 356–374. Springer, Heidelberg (Mar 2008)

5. Benhamouda, F., Couteau, G., Pointcheval, D., Wee, H.: Implicit zero-knowledge
arguments and applications to the malicious setting. In: Gennaro, R., Robshaw,
M.J.B. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 107–129. Springer,
Heidelberg (Aug 2015)

6. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (Mar 2009)

7. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. Cryptology ePrint Archive, Report
2001/019 (2001), http://eprint.iacr.org/2001/019

8. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (Aug 2002)

9. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (Aug 2004)

10. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC. pp. 209–218. ACM Press (May 1998)

11. Chaidos, P., Couteau, G.: Efficient designated-verifier non-interactive zero-
knowledge proofs of knowledge. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part III. LNCS, vol. 10822, pp. 193–221. Springer, Heidelberg
(Apr / May 2018)

12. Chaidos, P., Groth, J.: Making sigma-protocols non-interactive without random
oracles. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 650–670. Springer,
Heidelberg (Mar / Apr 2015)

13. Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic MACs and keyed-verification
anonymous credentials. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 14. pp.
1205–1216. ACM Press (Nov 2014)

14. Chaum, D.: Showing credentials without identification: Signatures transferred
between unconditionally unlinkable pseudonyms. In: Pichler, F. (ed.) EURO-
CRYPT’85. LNCS, vol. 219, pp. 241–244. Springer, Heidelberg (Apr 1986)

15. Couteau, G., Reichle, M.: Non-interactive keyed-verification anonymous credentials.
To Appear (2018)

16. Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., shelat, a.,
Vaikuntanathan, V.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (Dec 2007)

http://eprint.iacr.org/2001/019

30 Geoffroy Couteau and Michael Reichle

17. Damgård, I.: Payment systems and credential mechanisms with provable security
against abuse by individuals. In: Goldwasser, S. (ed.) CRYPTO’88. LNCS, vol. 403,
pp. 328–335. Springer, Heidelberg (Aug 1990)

18. Damgård, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homo-
morphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 41–59. Springer, Heidelberg (Mar 2006)

19. Damgård, I., Jurik, M., Nielsen, J.B.: A generalization of paillier’s public-key system
with applications to electronic voting. International Journal of Information Security
9(6), 371–385 (2010)

20. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. In: 40th
FOCS. pp. 523–534. IEEE Computer Society Press (Oct 1999)

21. Garman, C., Green, M., Miers, I.: Decentralized anonymous credentials. In:
NDSS 2014. The Internet Society (Feb 2014)

22. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In:
44th FOCS. pp. 102–115. IEEE Computer Society Press (Oct 2003)

23. Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes
and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 491–511. Springer, Heidelberg
(Dec 2014)

24. Izabachène, M., Libert, B., Vergnaud, D.: Block-wise P-signatures and non-
interactive anonymous credentials with efficient attributes. In: Chen, L. (ed.) 13th
IMA International Conference on Cryptography and Coding. LNCS, vol. 7089, pp.
431–450. Springer, Heidelberg (Dec 2011)

25. Lipmaa, H.: Optimally sound sigma protocols under DCRA. Cryptology ePrint
Archive, Report 2017/703 (2017), http://eprint.iacr.org/2017/703

26. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys,
H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer,
Heidelberg (Aug 1999)

27. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes.
In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 223–238. Springer,
Heidelberg (May 1999)

28. Paquin, C., Zaverucha, G.: U-Prove cryptographic specification V1.1 (revision 2),
www.microsoft.com/uprove (2013)

29. Sadiah, S., Nakanishi, T., Funabiki, N.: Anonymous credential system with efficient
proofs for monotone formulas on attributes. In: Tanaka, K., Suga, Y. (eds.) IWSEC
15. LNCS, vol. 9241, pp. 262–278. Springer, Heidelberg (Aug 2015)

30. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM (JACM) 27(4), 701–717 (1980)

31. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques.
pp. 256–266. Springer (1997)

http://eprint.iacr.org/2017/703
www.microsoft.com/uprove

	Non-Interactive Keyed-Verification Anonymous Credentials
	Introduction
	Anonymous Credentials
	Our Contribution
	Our Approach
	Our Techniques
	Applications of Oblivious DVNIZK
	Efficiency
	Organization

	Preliminaries
	Assumptions
	Encryption Schemes
	Non-Interactive Zero-Knowledge Proof of Knowledge Systems

	Message Authentication Codes
	Definition
	An Abstract MAC Scheme
	Extended Unforgeability

	Non-Interactive Keyed-Verification Anonymous Credentials
	Additional Properties

	Oblivious Designated-Verifier Non-Interactive Zero-Knowledge
	Definition
	Instantiation
	Extensions and Optimizations
	Security Analysis

	A Construction of NIKVAC from Algebraic MAC and Oblivious DVNIZK
	Construction
	Security Analysis

