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Abstract. The notion of Registration-Based Encryption (RBE) was re-
cently introduced by Garg, Hajiabadi, Mahmoody, and Rahimi [TCC’18]
with the goal of removing the private-key generator (PKG) from IBE.
Specifically, RBE allows encrypting to identities using a (compact) mas-
ter public key, like how IBE is used, with the benefit that the PKG
is substituted with a weaker entity called “key curator” who has no
knowledge of any secret keys. Here individuals generate their secret keys
on their own and then publicly register their identities and their cor-
responding public keys to the key curator. Finally, individuals obtain
“rare” decryption-key updates from the key curator as the population
grows. In their work, they gave a construction of RBE schemes based on
the combination of indistinguishability obfuscation and somewhere sta-
tistically binding hash functions. However, they left open the problem of
constructing RBE schemes based on standard assumptions.
In this work, we resolve the above problem and construct RBE schemes
based on standard assumptions (e.g., CDH or LWE). Furthermore, we
show a new application of RBE in a novel context. In particular, we
show that anonymous variants of RBE (which we also construct un-
der standard assumptions) can be used for realizing abstracts forms of
anonymous messaging tasks in simple scenarios in which the parties com-
municate by writing messages on a shared board in a synchronized way.
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1 Introduction

Identity based encryption, first introduced by Shamir [31], and then realized
based on pairings by Boneh and Franklin [7], allows a set of remote parties to
communicate secretly by only knowing one single public key and the name of
the recipient identity. Despite being a milestone in foundations of cryptography
and a powerful tool for simplifying key-management, real-world uses of IBE
schemes come with a major caveat: IBE schemes require a private-key generator
(PKG) who holds the master key and uses it to generate decryption keys for
the identities. Therefore, the PKG has the ability to decrypt all cipherexts. This
issue, inherent to IBE by design, is known as the key escrow problem.

Many previous works tried to rectify the key escrow problem in IBE. These
efforts include making the trust de-centralized using multiple PKGs [7], mak-
ing the PKG accountable for distributing the decryption keys to unauthorized
users [23,24], making it hard for PKG to find out the receiver identity in a large
set of identities [12,14,33], or using Certificateless Public Key Cryptography [1]
as a hybrid of IBE and public-key directories. However, none of these efforts
resolve the key escrow problem completely. The issue of key escrow was also
discussed in [11] in depth and resolving this was left as a major open problem
with no good solutions.

Motivated by entirely removing PKGs from IBE schemes, recently Garg, Ha-
jiabadi, Mahmoody, and Rahimi [22] introduced the notion of registration-based
encryption (RBE for short). In an RBE scheme, the PKG entity is substituted
by a much weaker entity called the key curator (KC for short). The KC will not
posses any secret keys, and all it does is to manage the set of public keys of the
registered identities. More specifically, in an RBE scheme identities (or, rather
the users corresponding to the identities) generate their own public and secret
keys, and then they will register their public keys to the KC who maintains
and updates a public parameter ppn where n is the number of parties who have
joined the system so far. This public parameter ppn can be used (now and in
the future) to encrypt messages to any of the n identities who have registered so
far. The first key efficiency requirement of RBE schemes is that ppn is compact ;
i.e., poly(κ, log n) in size where κ is the security parameter. Moreover, RBE re-
quires that the process of “identity registration” is also efficient; i.e., runs in
time poly(κ, log n). In order to connect an updated public parameter ppn to the
previously registered identities, RBE allows the identities to obtain updates from
the KC, which (together with their own secret keys) can be used as decryption
keys. The second efficiency requirement of RBE is that such updates are only
needed at most O(log n) times over the lifetime of the system. In summary, RBE
schemes are required to perform both “identity registration” and “update gen-
eration” in time sublinear in n. In particular, these two operations are required
to run in time poly(κ, log n) where κ is the security parameter.

The work of [22] showed how to construct RBE schemes based on the combi-
nation of indistinguishability obfuscation (IO) [3,21] and somewhere statistically
binding hash functions (SSBH) [25]. Towards the goal of basing RBE schemes
on more standard assumptions, [22] also showed how to construct weakly effi-
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cient RBE schemes with poly(κ, n) identity registration time based on standard
assumptions such as CDH and LWE. The work of [22] left open the question of
constructing RBE schemes (with the required registration time poly(κ, log n))
from standard cryptographic assumptions. This gap leads us to the following
question, which is the main question studied in this work:

Can we base registration-based encryption on standard cryptographic as-
sumptions?

Our results. In this work, we resolve the above question affirmatively.
Namely, as the main result of this work, we construct RBE schemes with all the
required compactness and efficiency requirements based on standard assump-
tions such as LWE, CDH, or Factoring. In particular, in our RBE scheme (based
on CDH or LWE assumptions) the time it takes to register any new identity into
the system is only poly(κ, log n) where κ is the security parameter and n is the
number of identities registered into the system so far.

In addition to resolving the question above, in this work we show the use-
fulness of RBE by demonstrating a connection between an anonymous variant
of RBE (defined similarly to how anonymous IBE [6] is defined) to an abstract
anonymous messaging primitive that we call anonymous board communication
(ABC for short). At a high level, (anonymous) IBE fails to achieve ABC, exactly
because of the key escrow problem, which does not exist in RBE.

1.1 Technical Overview

In this subsection, we will first describe the high level ideas behind our RBE
scheme based on standard assumptions. We will then describe how to add the
extra property of anonymity to RBE, allowing it to be used for realizing ABC
as described above.

Figure 1 shows the high level structure and the roadmap of the primitives
that we use (and construct along the way) for achieving RBE from standard
assumptions. The features in parentheses (i.e., “blind” and “anonymous”) can
be added to or removed from the figure. When they are added, Figure 1 demon-
strates the way we obtain anonymous RBE.

The big picture. We construct our RBE scheme based on the primitive
hash garbling which was formally defined in [22] but was used implicitly in
some prior works [13,19,20,10], and a new primitive “time-stamp” RBE (T-
RBE for short) that we introduce in this work. T-RBE is a special case of RBE,
where we use the time-stamp tid of the registration time of each identity instead
of their (arbitrary string identity) id. T-RBE also requires the same efficiency
and compactness requirements of RBE. Since T-RBE is a special case of RBE,
achieving T-RBE from standard assumptions is potentially easier; we leverage
this in our approach.

In particular, as depicted in Figure 1, we first show how T-RBE can be
constructed from public-key encryption and hash garbling schemes. Then, having
T-RBE, hash garbling, and a red-black Merkle tree we show how to construct an
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(Blind) T-RBE (Anonymous) RBE

(Blind) PKE (Blind) Hash Garbling
Red-Black Merkle

Fig. 1: Roadmap

RBE scheme. This resolves the open question of [22] where they obtained weakly
efficient RBE schemes. Finally, we show that by substituting each of the used
primitives with a “blind” version of them as defined in [10] we can bootstrap our
new RBE construction to make it anonymous. Below, we describe each of these
steps, their corresponding challenges, and how we resolve them.

The weakly efficient RBE of [22]. Before describing our RBE construc-
tion, we describe the main challenge in achieving the required registration ef-
ficiency, which made the construction of [22] (based on standard assumptions)
weakly efficient. For that, we need to quickly recall the high level structure of
the (weakly-efficient) construction of [22]. At a high level, the registration al-
gorithm in the construction of [22] leads to an auxiliary information stored at
the KC that consists of some Merkle trees Tree1, . . . ,Treeη where each of these
trees in their leaves contains the ids of the already registered identities, along
with their public keys pk. The encryption algorithm of this scheme requires to
use the public key corresponding to the specific identity to encrypt the message.
To do so, it requires to do a binary search on the tree containing the id (so as to
access the corresponding public key), for which it is required that the leaves of
the trees are sorted according to their labels (i.e., identities) from left to right.
This binary search was captured by generation of a sequence of garbled circuits.
Now, going back to the registration algorithm, if the execution of the registration
algorithm ever leads to two trees with the same size, those two will be merged
into one tree, which again needs to have the identities sorted. (Merging the trees
is necessary to keep the public parameter compact, because the public parameter
is basically the concatenation of the roots of theses trees, and so the number of
trees shall remain bounded.) Hence, every time a tree merge operation is done
in their registration process, the entire tree needs to be restructured based on
the newly sorted list of the identities in the two trees. This very sorting made
the construction of [22] weakly efficient.

Step one: weakening the functionality for sake of efficiency. To over-
come the challenge of achieving the required efficiency for RBE, in this work we
first introduce a new primitive that we call T-RBE (short form of time-stamp
RBE) that weakens RBE for the sake of achieving efficient registration. (Look-
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ing ahead, we will later bootstrap T-RBE to RBE.) This new primitive has
the same functionality as RBE, except that in a T-RBE, the identities do not
register with their actual ids, but rather with the corresponding time-stamps
of their registration moments. This has the immediate obvious effect that the
time-stamp strings already arrive in sorted order, hence removing the need of
re-structuring the trees for sorting purposes. Note that since time-stamps are
taking the role of the identities, all the algorithms (including the encryption)
shall use the time-stamp as the identity’s label (instead of the id).

We now describe how T-RBE can indeed overcome the efficiency challenge left
open about RBE. Notice that the time-stamps used for registrations are already
sorted based on the arrival times. One useful consequence of this phenomenon is
that, if we apply the same approach of [22] for weakly-efficient RBE, the resulting
T-RBE will have leaves of the trees automatically sorted at all times. Hence, when
we want to merge two trees, we may simply hash their roots into a new root,
with a guarantee that all the leaves in one sub-tree will be larger than all those
in the other sub-tree. Hence, by restricting the problem to T-RBE, we would
not require to restructure the trees when we merge them. Hence, the T-RBE
registration overcomes the main reason for inefficiency in the RBE construction
of [22] and turns out to be efficient as required. The other algorithms of the
T-RBE scheme are also similar to the corresponding algorithms of the RBE in
[22], with some natural changes.

Step two: bootstrapping T-RBE to RBE (using Red-Black Merkle
Tree). Recall that T-RBE uses the time-stamps of the identities as if they were
the actual ids. So, to come up with a construction of RBE with the same efficiency
as T-RBE, we somehow need to find a way to connect the actual identities of
the parties to their corresponding registration time-stamps. In particular, the
encryption algorithm of the RBE scheme, which now takes as input an identity
id as opposed to a time-stamp, would need to first obtain the corresponding time-
stamp of the given id, and then run the T-RBE encryption algorithm using this
time-stamp. Further, we also need to ensure that the registration and update
algorithms of this RBE scheme are efficient. At a high level, we achieve this
efficiency by using a red-black Merkle tree in addition to the auxiliary input
maintained by our T-RBE scheme. Such a tree allows us to (indirectly) obtain the
time-stamp corresponding to an identity id in an efficient way (details of which
are described below), without having to store the tree in the public parameter
(which is prohibitive due to the tree size).

In order to enable this indirect access to the red-black Merkle tree, we will
make further use of the hash-garbling primitive. Here we give a high-level descrip-
tion of our RBE scheme which uses T-RBE (and hash garbling) as subroutines
together with the help of a red-black Merkle tree. In this scheme, the auxiliary
information aux, stored by the key curator consists of η full binary Merkle trees
Tree1, . . . ,Treeη, as was in the construction of [22]. In addition, aux contains a
red-black Merkle tree TimeTree, whose leaves contain pairs of identities/time-
stamps, sorted according to the identities. TimeTree is a key part in enabling the
efficiency of our registration part.
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– The description of TimeTree. It is a close variant of red-black Merkle tree,
where each leaf is of the form (id, tid) and every non-leaf node in this tree
contains the hash of its left child, the largest identity in its left sub-tree and
the hash of the right child (all hashes use a hash key generated at the setup
and described by a CRS). It differs from just red-black tree in the sense
that each internal node also contains the largest identity in its left sub-tree.
The choice of this specific data-structure is crucial for our construction.
Notice that the leaves are sorted in ascending order of the identities. In
addition, every node has another bit of information representing its color,
which would be helpful in keeping the tree balanced using the red-black
Merkle tree rotation algorithms.

– How to register (Updating aux). As we use the T-RBE as a subroutine,
aux consists of the auxiliary information of T-RBE, auxT , the TimeTree and
a list of already registered identities. auxT itself comprises of the Merkle
trees T = {Tree1, · · · ,Treeη}, with the time-stamps and their corresponding
public keys at the leaf nodes. So to update the aux when somebody regis-
ters, we insert their identity id as well as their time-stamp tid to TimeTree,
update auxT using the T-RBE subroutine and add id to the list of registered
identities. Recall that the T-RBE registration process involves creating a
new Merkle tree with leaf nodes tid and its corresponding public key pk and
the merging the trees in T which are of same depth (merging only requires
hashing the roots of the two trees to obtain a new tree).

– How to encrypt. The encryption algorithm takes as input the public pa-
rameter pp, a message m, and a receiver’s identity id, and outputs a cipher-
text, which is obtained by encrypting m using the T-RBE encryption under
the time-stamp corresponding to id. To do this, the encryption algorithm
requires to first look up id in TimeTree to obtain its time-stamp and then
use it to encrypt m under the T-RBE encryption. However, the encryption
algorithm only takes pp as public information, which is too small to con-
tain TimeTree, and so a “direct search” is impossible. To get around this
problem, the encryption algorithm “defers” this search process to the time
of decryption: Specifically, the encryption algorithm constructs a sequence
of (garbled) programs, which enable one to do a binary search on TimeTree
(during the decryption time) to obtain the time-stamp corresponding to id
and then to use it to encrypt the message using the T-RBE encryption. The
ciphertext then consists of the hash garbling of these programs.

– How to decrypt. The decryption algorithm takes as input two paths
u = pth1, pth2, a secret key sk and a ciphertext, which contains the gar-
bled programs, and outputs a message (or aborts). Here, pth1 is the path
from the root of TimeTree to the node that contains the id of the decryptor
and its time-stamp tid, and pth2 is the updated path (obtained using the
update algorithm of T-RBE) required for running the T-RBE decryption al-
gorithm. Using pth1, the decryptor runs the hash garbled programs to obtain
the ciphertext under the T-RBE scheme with time-stamp tid as the output
of the last program. Then, it runs the decryption algorithm of T-RBE with
inputs pth2, sk and the obtained ciphertext to get the message m.
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– How to update u (the auxiliary information required by decryp-
tor). With the registration as described above, we can guarantee the effi-
ciency. The updation algorithm requires to only read a path in the TimeTree,
which leads to id and its time-stamp tid and further use the updation algo-
rithm of the T-RBE scheme. This would also be efficient. But we also need to
guarantee that the number of times an id calls the updation algorithm is at
most log(n) (where n is the the number of identities registered so far). This
is not guaranteed if we only have a single variant of the TimeTree. This is
because, each time an id registers, its addition to the TimeTree modifies the
root hash, changing the root-to-leaf path for every other identity registered.
We resolve this issue by maintaining a variant of the same TimeTree, at the
times corresponding to which each Merkle tree in T was last updated (which
means we maintain at most log n variants of the TimeTree from different time
instances). This guarantees two things: firstly that an identity contained in
Treei of T will definitely be contained in the corresponding i-th variant of
TimeTree and secondly that this identity only requires to update its root-to-
leaf path in the TimeTree, when the tree Treei is modified (which happens
only when the tree is merged with another tree and the number of times this
merger can occur is at most log(n)). These two observations would guarantee
that the number of updates (of root to leaf path in TimeTree) required by
any user is at most log(n). Hence, this would give the desired efficiency in
number of updates. Note that this is also the reason why we need a combi-
nation of the Merkle trees T and the TimeTree and why we cannot use the
TimeTree alone to store the ids and their pks.

Adding anonymity. Adding the anonymity feature to our RBE scheme
involves techniques which are in essence same as those used in [10]. We build
an RBE scheme achieving the stronger notion of “blindness,” which in turn im-
plies the required anonymity property of an anonymous RBE scheme. While
the notion of anonymity guarantees that the identity id is hidden along with
the message being encrypted (similar to an anonymous IBE), the property of
“blindness” gives a stronger guarantee that the ciphertext generated on a uni-
formly random message looks uniform. The fact that this stronger guarantee is
achieved by our scheme and that it implies anonymity is shown in 5.3.

As shown in the Figure 1, we can get the blind T-RBE based on blind PKE
and blind hash garbling schemes. The construction of the blind T-RBE is exactly
the same as the regular T-RBE, except that instead of using a regular PKE
scheme and a hash garbling scheme, we will use blind variants of these primitives
and separate the corresponding ciphertexts and hash inputs into two parts. Then
using blind T-RBE and blind hash garbling, we can get the desired anonymous
RBE scheme (which is in fact a blind RBE).

1.2 Potential Applications of Anonymous RBE

Here we describe a possible application of anonymous RBE in scenarios where
other seemingly similar and powerful primitives (e.g., anonymous IBE [6,9] or
anonymous PKE [4]) seem incapable of.
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Anonymous board communication (ABC). In an ABC scheme, a dy-
namic set of (semi-honest) parties {id1, . . . , idn} anonymously communicate by
writing and reading on a single shared board B in a synchronized way. More
formally, whenever a party joins the system, they update some information on
the board B. Also, the communication between {id1, . . . , idn} is done in synchro-
nized cycles. In cycle t, each identity idi has a list of messages mi,1,mi,2, . . . to
be delivered to some parties idi,1, idi,2, . . . . Then at the beginning of the cycle t,
all of the parties write some arbitrary messages on the common board B. After
all the parties are done with writing, in the second half of the cycle t, all the
parties read (their selected parts or all of) the content of the board B. By the
end of cycle t, all the parties should be able to obtain the messages intended to
be sent to them. Namely, if the message m was sent to identity id (by another
identity id′), by the end of cycle t, m should be obtained by id. The security goal
is to keep all the senders and receivers anonymous from the perspective of any
adversary who can read all the information written on the common board B.
The efficiency goal here is have parties write their messages in “small” time. In
particular, we require the write time of each party to be poly(κ, log n) ·k where k
is the total length of the message to be sent out and κ is the security parameter.

ABC from anonymous IBE? One might try to get ABCs from anonymous
IBE as follows. The public key of the anonymous IBE scheme is written on the
board, and the parties use it to compose their messages for the desired receivers.
During the read part of each cycle, each party will read the whole board B and
try to decrypt messages that are sent to them. This approach provides receiver
anonymity and sender efficiency, but the main issue is that the master secret
key should be stored somewhere and there is only one place for storing it: on
the board B. So, anyone who has full access to the board can decrypt all the
messages. On the other hand, one might try to avoid IBE and use a public-key
directory storing public-keys of an (anonymous) PKE scheme at the board B.
Then the parties can try to use this information and write their messages to the
desired recipients on the same board. The problem with this approach is that
the writing parties need to read the whole set of public-keys from the board to
obtain the desired target public keys.

ABC from anonymous RBE. Interestingly, anonymous RBE directly en-
ables ABC and achieves what anonymous IBE and PKE seem incapable of. In
particular, a specific part of the common board B would be dedicated to store
the information required for maintaining the public parameters and the auxil-
iary information of the KC of the anonymous RBE scheme (and note that no
master secret key exists). This way, by reading the public parameter ppn (after n
people have joined), an (anonymous-receiver) message can be composed to any
recipient. In particular, if mi,1,mi,2, . . . are to be sent to parties idi,1, idi,2, . . . by
party idi, all idi does is to generate anonymous-receiver ciphertexts containing
the messages and encrypted to the right identities. The anonymity of the sender
stems from the fact that RBE can be used like an IBE and anyone (including
those in the system) can compose messages to any other identify in a secret way.
Finally, the fact that the key curator is transparent (and all it does is curating
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the keys) allows the parties to join the system freely one by one and update the
public parameter as required.

Relation to other works on secure messaging. We emphasize that our
ABC primitive is not by any means aiming to capture practical scenarios of
secure messaging that have been a source of intense work over recent years
[30,18,17,5,2,32,15,16]. For example a large body of work (e.g., see [18,17,16])
explore realistic messaging settings in which a set of distributed parties com-
municate over a network and aim to message each other in a way that senders,
receivers, (and some more specific relations) remain secret despite the messages
being sent over the network. Some of these works achieve privacy by using non-
colluding servers, while ABC only uses one “server”. On the other hand, our
ABC occurs in a centralized setting in which all the messages by the parties are
directly written to and read from the shared board. In a different direction, many
works (e.g., see [5,15,28,26,8] in the context of what is now known as “Ratcheted
Key Exchange” study ways to expand shared keys to secure refreshed keys to
be used in the future, and so they fundamentally differ from ABC simply be-
cause in ABC there are no keys shared between the parties. Thus, we note that
the main goal of introducing ABC is to demonstrate a basic abstract messaging
scenario with challenges that can be resolved immediately using (anonymous)
RBE, while other powerful tools do not seem to be capable of doing the same.
While the idea for our ABC scheme requires a more concrete formalization, we
introduce it as an attempt to lay down a concrete framework for an anonymous
messaging scheme in the “single server” model (see also the discussion in [29]).

2 Preliminary Definitions

In this section we describe the needed definitions. We separate the definitions
of variants of RBE into those borrowed from previous work and those that are
introduced in this work.

2.1 Previous Definitions about RBE

In this subsection we recall the definition of RBE, taken verbatim from [22].

Definition 1 (Syntax of RBE). A registration-based encryption (RBE for
short) scheme consists of PPT algorithms (Gen,Reg,Enc,Upd,Dec) working as
follows. The Reg and Upd algorithms are performed by the key curator, which
we call KC for short.
– Generating common random string. Some of the subroutines below will

need a common random string crs, which could be sampled publicly using
some public randomness beacon. crs of length poly(κ) is sampled at the be-
ginning, for the security parameter κ.

– Key generation. Gen(1κ)→ (pk, sk): The randomized algorithm Gen takes
as input the security parameter 1κ and outputs a pair of public/secret keys
(pk, sk). Note that these are only public and secret keys, not the encryption
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or decryption keys. The key generation algorithm is run by any honest party
locally who wants to register itself into the system.

– Registration. Reg[aux](crs, pp, id, pk) → pp′: The deterministic algorithm
Reg takes as input the common random sting crs, current public parameter
pp, a registering identity id and a public key pk (supposedly for the identity
id), and it outputs pp′ as the updated public parameters. The Reg algorithm
uses read and write oracle access to aux which will be updated into aux′ during
the process of registration. (The system is initialized with public parameters
pp and auxiliary information aux set to ⊥.)

– Encryption. Enc(crs, pp, id,m) → ct: The randomized algorithm Enc takes
as input the common random sting crs, a public parameter pp, a recipient
identity id and a plaintext message m and outputs a ciphertext ct.

– Update. Updaux(pp, id) → u: The deterministic algorithm Upd takes as
input the current information pp stored at the KC and an identity id, has
read only oracle access to aux and generates an update information u that
can help id to decrypt its messages.

– Decryption. Dec(sk, u, ct): The deterministic decryption algorithm Dec takes
as input a secret key sk, an update information u, and a ciphertext ct, and
it outputs a message m ∈ {0, 1}∗ or in {⊥, GetUpd}. The special symbol
⊥ indicates a syntax error, while GetUpd indicates that more recent update
information (than u) might be needed for decryption.

Definition 2 (Completeness, compactness, and efficiency of RBE). For
any interactive computationally unbounded adversary Adv that still has a limited
poly(κ) round complexity, consider the following game CompAdv(κ) between Adv
and a challenger Chal.

1. Initialization. Chal sets pp = ⊥, aux = ⊥, u = ⊥, ID = ∅, id∗ = ⊥, t = 0,
crs← Upoly(κ) and sends the sampled crs to Adv.

2. Till Adv continues (which is at most poly(κ) steps), proceed as follows. At
every iteration, Adv chooses exactly one of the actions below to be performed.
(a) Registering new (non-target) identity. Adv sends some id 6∈ ID and

pk to Chal. Chal registers (id, pk) by letting pp := Reg[aux](crs, pp, id, pk)
and ID := ID ∪ {id}.

(b) Registering the target identity. If id∗ was chosen by Adv already
(i.e., id∗ 6= ⊥), skip this step. Otherwise, Adv sends some id∗ 6∈ ID to
Chal. Chal then samples (pk∗, sk∗)← Gen(1κ), updates pp :=

Reg[aux](crs, pp, id∗, pk∗), ID := ID ∪ {id∗}, and sends pk∗ to Adv.
(c) Encrypting for the target identity. If id∗ = ⊥ then skip this step.

Otherwise, Chal sets t = t + 1, then Adv sends some mt ∈ {0, 1}∗ to
Chal who then sets m′t := mt and sends back a corresponding ciphertext
ctt ← Enc(crs, pp, id∗,mt) to Adv.

(d) Decryption by target identity. Adv sends a j ∈ [t] to Chal. Chal then
lets m′j = Dec(sk∗, u, ctj). If m′j = GetUpd, then Chal obtains the update
u = Updaux(pp, id∗) and then lets m′j = Dec(sk∗, u, ctj).

3. The adversary Adv wins the game if there is some j ∈ [t] for which m′j 6= mj.
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Let n = |ID| be the number of identities registered till a specific moment. We
require the following properties to hold for any Adv (as specified above) and for
all the moments (and so for all the values of ID and n = |ID| as well) during the
game CompAdv(κ).
– Completeness. Pr[Adv wins in CompAdv(κ)] = negl(κ).
– Compactness of public parameters and updates. |pp|, |u| are both ≤

poly(κ, log n).
– Efficiency of runtime of registration and update. The running time of

each invocation of Reg and Upd algorithms is at most poly(κ, log n). (This
implies the compactness property.)

– Efficiency of the number of updates. The total number of invocations
of Upd for identity id∗ in Step 2d of the game CompAdv(κ) is at most O(log n)
for every n during CompAdv(κ).

Definition 3 (WE-RBE). A weakly efficient RBE (or WE-RBE for short)
is defined similarly to Definition 2, where the specified poly(κ, log n) runtime
efficiency of the registration algorithm is not required anymore, but instead we
require the registration time to be poly(κ, n).

Definition 4 (Security of RBE). For any interactive PPT adversary Adv,
consider the following game SecAdv(κ) between Adv and a challenger Chal. (Steps
that are different from the completeness definition are denoted with purple stars
(??). Specifically, Steps 2c and 2d from Definition 2 are replaced by Step 3 below.
Additionally, Step 3 from Definition 2 is replaced by Step 4 below.)
1. Initialization. Chal sets pp = ⊥, aux = ⊥, ID = ∅, id∗ = ⊥, crs← Upoly(κ)

and sends the sampled crs to Adv.
2. Till Adv continues (which is at most poly(κ) steps), proceed as follows. At

every iteration, Adv chooses exactly one of the actions below to be performed.
(a) Registering new (non-target) identity. Adv sends some id 6∈ ID and

pk to Chal. Chal registers (id, pk) by letting pp := Reg[aux](crs, pp, id, pk)
and ID := ID ∪ {id}.

(b) Registering the target identity. If id∗ was chosen by Adv already
(i.e., id∗ 6= ⊥), skip this step. Otherwise, Adv sends some id∗ 6∈ ID to
Chal. Chal then samples (pk∗, sk∗)← Gen(1κ), updates pp :=

Reg[aux](crs, pp, id∗, pk∗), ID := ID ∪ {id∗}, and sends pk∗ to Adv.
3. (??) Encrypting for the target identity. If no id∗ was chosen by Adv

before (i.e., id∗ = ⊥) then Adv first sends some id∗ 6∈ ID to Chal. Next, Chal
generates ct ← Enc(crs, pp, id∗, b), where b ← {0, 1} is a random bit, lets
ID = ID ∪ {id∗}, and sends ct to Adv.

4. (??) The adversary Adv outputs a bit b′ and wins the game if b = b′.
We call an RBE scheme secure if Pr[Adv wins in SecAdv(κ)] < 1

2 + negl(κ) for
any PPT Adv.

2.2 New Definitions about (Anonymous) RBE

In this section we define an anonymity feature for the notion of RBE, and we will
show later how to build efficient anonymous RBE from standard assumptions.
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Definition 5 (Anonymous RBE). An anonymous RBE scheme has the same
syntax as that of an RBE scheme, with PPT algorithms (Gen,Reg,Enc,Upd,Dec).
It satisfies the properties of completeness, compactness and efficiency as a RBE
scheme and has the following stronger notion of security: For any interactive
PPT adversary Adv, consider the game EXPAnon

Adv (κ) between Adv and a challenger
Chal as follows.

1. Initialization. Chal sets pp = ⊥, aux = ⊥, ID = ∅, id0 = ⊥, id1 = ⊥,
crs← Upoly(κ) and sends the sampled crs to Adv.

2. Till Adv continues (which is at most poly(κ) steps), proceed as follows. At
every iteration, Adv can perform exactly one of the following actions.

(a) Registering new (non-target) identity. Adv sends some id 6∈ ID and

pk to Chal. Chal registers (id, pk) by getting pp = Reg[aux](crs, pp, (id, pk))
and lets ID = ID ∪ {id}.

(b) Registering new target identity pair. If id0 or id1 was chosen by Adv
already (i.e., id0 6= ⊥ or id1 6= ⊥), skip this step. Otherwise, Adv sends
challenges id0, id1 /∈ ID to Chal. Chal first samples (pk0, sk0)← Gen(1κ),

registers id0 by setting pp = Reg[aux](crs, pp, (id0, pk0)) and then samples

(pk1, sk1)← Gen(1κ), registers id1 by setting pp = Reg[aux](crs, pp, (id1, pk1)).
Next, Chal lets ID = ID ∪ {id0, id1} and sends pk0, pk1 to Adv.

3. Encrypting for the challenge identity. If id0, id1 was not chosen by Adv
already (i.e., id0 = ⊥, id1 = ⊥), then Adv first sends some id0, id1 /∈ ID
to Chal before continuing this step. Next, Chal samples a bit b ∈ {0, 1} and
generates the challenge ciphertext ct← Enc(crs, pp, idb, b). Further, Chal sets
ID = ID ∪ {id0, id1} and sends ct to Adv.

4. The adversary Adv outputs a bit b′ and wins the game if b′ = b.

We call an RBE scheme an Anonymous-RBE if Pr[Adv wins in EXPAnon
Adv (κ)] <

1
2 + negl(κ) for any PPT Adv.

As a step-stone toward building efficient (anonymous) RBE, we will first show
how to build a primitive which we call timestamp-RBE. We define this notion
formally below.

Definition 6 (T-RBE). A timestamp-RBE (or T-RBE for short) has syntax
exactly similar to Definition 1, except for one difference: we now consider the reg-
istration algorithm Reg, the encryption algorithm Enc and the update algorithm
Upd to take as input the timestamp tid of an identity id (binary representation
of the time at which an identity registers) as input instead of the identity id.
The completeness, compactness of public parameters, the efficiency of runtime
of registration and update and the efficiency of the number of updates is exactly
similar to Definition 2 and the security guarantee is similar to Definition 4,
replacing identity id with its timestamp tid in all the appropriate places. For a
T-RBE, we define the notion of anonymity exactly as in Definition 5, replacing
identity id with its timestamp tid in all the appropriate places.
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2.3 Blind Public Key Encryption

In this subsection we define blindness features for several cryptographic prim-
itives, which will be used in our main constructions. We first start with the
notion of blind PKE. The notion of blindness for PKE is well-studied with a few
prior definitions; see, e.g., [4,27]. Here we give a tailored version of this definition
suitable for our later constructions.

Definition 7 (Blind Public Key Encryption). A blind public key encryp-
tion scheme (with public parameters) has algorithms (Params,G,E,D) which
is IND-CPA secure and satisfies the following additional security property: the
function E(pp, pk,m; r) can be expressed as E1(pp; r)||E2(pp, pk,m; r) such that
the distribution of {(pp, pk, sk,Enc(pp, pk,m; r)) : pp ← Params(1λ), (pk, sk) ←
G(pp),m

$←−M, r
$←− {0, 1}∗} is computationally indistinguishable from

{(pp, pk, sk,E1(pp; r), subct2) : pp← Params(1λ), (pk, sk)← G(pp),m
$←−M, r

$←−
{0, 1}∗, subct2

$←− {0, 1}L}, where L = |E2(pp, pk,m; r)|.

We now define a blindness notion for garbled circuits. Our blindness requirement
is the same as that introduced and used by [10].

Definition 8 (Blind Garbled Circuits [10]). A garbling scheme consists of
PPT algorithms (Garble,Eval) and a simulator G.Sim where:

1. Garble(1λ, 1l, 1m,C; state) := Garble1(1λ, 1l, 1m; state)||Garble2(1λ, 1l, 1m,C; state).
Garble1 takes as input the security parameter λ, the input length l and out-
put length m for circuit C and a random value state ∈ {0, 1}λ and out-
puts the labels for input wire of the Garbled circuit {labj,b}j∈[l],b∈{0,1}, where

labj,b ∈ {0, 1}λ and Garble2 takes the circuit C in addition, and outputs the

garbled circuit C̃.
2. Eval(1λ, C̃, ˜lab) is a deterministic algorithm that takes as input the garbled

circuit C̃, along with a set of l labels ˜lab = {labj}j∈[l] and outputs a string
y ∈ {0, 1}m.

3. G.Sim(1λ, 1|C|, 1l, y) takes as input the security parameter λ, the description
length of circuit C, the input length l and a string y ∈ {0, 1}m and outputs
a simulated garbled circuit C̃ and labels ˜lab.

A blind garbling scheme must satisfy the following properties:

1. Correctness. For all circuits C, inputs x and all (C̃, {labj,b}j∈[l],b∈{0,1})←
Garble(C) and ˜lab = {labj,xj

}j∈[l], we have Eval(C̃, ˜lab) = C(x).

2. Simulation Security. For all circuits C : {0, 1}l → {0, 1}m and all inputs
x ∈ {0, 1}l, the following distributions are computationally indistinguishable:

{(C̃, ˜lab) : (C̃, {labj,b}j∈[l],b∈{0,1})← Garble(C), ˜lab = {labj,xj}j∈[l]}
c

≈ {(C̃, ˜lab) : (C̃, ˜lab)← G.Sim(1λ, 1|C|, 1l,C(x))}

3. Blindness. G.Sim(1λ, 1|C|, 1l, Um)
c

≈ U . The output of the simulator on a
completely uniform output is indistinguishable from a uniform bit string.
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We now review the notion of blind batch encryption from [10]. The notion
of batch encryption is in turn similar to some notions such as hash encryption
and laconic oblivious transfer [19,13].

Definition 9 (Blind Single Batch Encryption [10]). A blind single batch
encryption scheme consists of PPT algorithms (Setup,H,HEnc,HDec):

1. Setup(1λ, 1l) takes as input the security parameter λ, a length parameter l
and outputs a hash key hk.

2. H(hk, x) takes as input a hash key hk and x ∈ {0, 1}l and deterministically
outputs h ∈ {0, 1}λ.

3. HEnc(hk, h, i,M) takes as input the hash key hk, hash value h and a message
matrix M ∈ {0, 1}1×2 and outputs a ciphertext ct, which can be written as a
concatenation of two parts ct = (subct1, subct2).

4. HDec(hk, x, i, ct) takes as input the ciphertext ct and outputs an m ∈ {0, 1}.

A blind single batch encryption must satisfy the following properties:

1. Correctness. Let hk ← Setup(1λ, 1l). For all x, i,M , taking h = H(hk, x),
ct = HEnc(hk, h, i,M), it holds that HDec(hk, x, i, ct) = Mxi

, with probability
at least 1/2 + 1/poly(λ) over the randomness of HEnc.

2. Semantic Security. For any PPT adversary Adv the probability of winning
in the following game between Adv and a challenger Chal is 1/2 + negl(λ):
(a) Adv takes as input 1λ and sends 1l, x ∈ {0, 1}l, i ∈ [l] to Chal.
(b) Chal generates hk = Setup(1λ, 1l) and sends hk to Adv.

(c) Adv sends a pair M (0),M (1), such that M
(0)
xi = M

(1)
xi , to Chal.

(d) Chal computes h = H(hk, x), chooses b ∈R {0, 1} and sends
ct = HEnc(hk, h, i,M (b)) to Adv.

(e) Adv outputs a bit b′ and wins if b′ = b.
3. Blindness. The encryption HEnc(hk, h, i,M ; r) can be considered as a con-

catenation of HEnc1(hk; r)||HEnc2(hk, h, i,M ; r). Further, any PPT adver-
sary Adv the probability of winning in the following game with a Challenger
Chal is at most 1/2 + negl(λ):
(a) Adv takes as input 1λ and sends 1l, x, i to Chal.
(b) Chal generates hk = Setup(1λ, 1l) and computes h = H(hk, x). Further it

samples a random b ∈ {0, 1}, a random message matrix M ∈ {0, 1}1×2
and encrypts (subct1, subct2)← HEnc(hk, h, i,M). It generates ct as:
– If b = 0, the ct = (subct1, subct2).
– If b = 1, then pick a random subct′2 of same length as subct2 and set

ct = (subct1, subct
′
2).

Chal sends hk, ct to Adv.
(c) Adv outputs a bit b′ and wins if b′ = b.

3 Blind Hash Garbling

In this section we introduce and build a primitive which we call blind hash gar-
bling, which will later be used as an ingredient in the construction of anonymous
T-RBE schemes. We first define this notion below and will then show how to
build it using tools defined in the previous sections.
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3.1 Definition of Blind Hash Garbling

The notion of hash garbling was defined in [22]; here we review this notion and
define a blindness feature for it.

Definition 10 (Blind Hash Garbling). A blind hash garbling scheme has the
following polynomial time algorithms HGen,Hash,HObf,HInp:

– HGen(1κ, 1l)→ hk. It takes as input the security parameter κ and an output
length parameter 1l for l ≤ poly(κ), and outputs a hash key hk.

– Hash(hk, x) = y. It takes as input hk and x ∈ {0, 1}l and deterministically
outputs y ∈ {0, 1}κ.

– HObf(hk,C, state)→ C̃. It takes as input hk, a circuit C, and a secret state
state ∈ {0, 1}κ and outputs a circuit C̃.

– HInp(hk, y, state)→ ỹ. This takes as input hk, a value y ∈ {0, 1}κ, and secret
state state and outputs ỹ. Consider ỹ as concatenation of two parts ỹ1||ỹ2.

A blind hash garbling scheme must satisfy the following properties:

– Correctness. For all κ, l, hash key hk← HGen(1κ, 1l), circuit C, input x ∈
{0, 1}l, state ∈ {0, 1}κ,C̃← HObf(hk,C, state) and ỹ ← HInp(hk,Hash(hk, x), state),
then C̃(ỹ, x) = C(x).

– Security. There exists a PPT simulator Sim such that for all κ, l and PPT
(in κ) Adv we have that

(hk, x, ỹ1, C̃, ỹ2)
c

≈ (hk, x, ỹ1,Sim(hk, x, 1|C|,C(x))),

where hk← HGen(1κ, 1l), (C, x)← Adv(hk),state← {0, 1}κ, C̃← HObf(hk,C, state)
and (ỹ1, ỹ2)← HInp(hk,Hash(hk, x), state).

– Blindness. The function ỹ = HInp(hk, y, state; r) can be expressed as the
concatenation HInp1(hk; r)||HInp2(hk, y, state; r) = ỹ1||ỹ2 such that

(hk, x,HInp1(hk; r),Sim(hk, x, 1|C|, U|C(x)|))
c

≈ (hk, x,HInp1(hk; r), U|C̃|+|ỹ2|)

where 1l, x← Adv(1κ), hk← HGen(1κ, 1l). (It is clear that the distinguisher
should not know about the random output value that was used for simulation)

3.2 Construction of a Blind Hash Garbling Scheme

We require the following building blocks to construct blind hash garbling:

– Blind single batch encryption scheme (Setup,H,HEnc,HDec) as Definition 9.
– Blind garbled circuit scheme (Garble,Eval) as in Definition 8.

The blind hash garbling scheme is as follows:

1. HGen(1κ, 1l): Generate hk← Setup(1κ, 1l) and output hk.
2. Hash(hk, x):Generate H(hk, x) = y and output y.
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3. HObf(hk,C, state):Generate C̃← Garble2(1κ, 1l, 1m,C; state) and output C̃[hk]
(circuit C̃ hardwired with hk)

4. HInp(hk, y, state):

– Generate {labj,b}j∈[l],b∈{0,1} ← Garble1(1κ, 1l, 1m; state)
– Generate ỹ = {HEnc(hk, y, j, [labj,0 labj,1])}j∈[l] = {subct1,j , subct2,j}j∈[l].

Let ỹ1 = {subct1,j}j∈[l] and ỹ2 = {subct2,j}j∈[l]. Output ỹ = (ỹ1, ỹ2)

Theorem 11. The above construction (HGen,Hash,HObf,HInp) satisfies the
correctness, security and blindess properties as given in Definition 10.

Proof. We now prove the above theorem.

1. Correctness. Consider the circuit C̃[hk](ỹ, x):

– Recovers labj,xj
:= HDec(hk, x, j, ỹj) for each j ∈ [l], where ỹ = {ỹj}j∈[l].

– Outputs Eval(C̃, {labj,xj
}j∈[l]).

Then clearly by correctness of the blind garbling circuit and the correctness
of the blind single batch encryption scheme, C̃[hk](ỹ, x) = C(x)

2. Security. We define the simulator Sim as below: Sim(hk, x, 1|C|,C(x)) :

– Evaluate (C̃, {labj}j∈[l])← G.Sim(1κ, 1|C|, 1l,C(x)).

– For j ∈ [l], let Mj = [Mj,0 Mj,1], where Mj,xj = labj , Mj,1−xj ∈R {0, 1}κ
– Evaluate ỹ = {HEnc(hk,H(hk, x), j,Mj)}j∈[l]. As expressed in the proto-

col, ỹ = (ỹ1, ỹ2).

– Output (C̃, ỹ2)

Then, by simulation security of the blind garbled circuit scheme and the
semantic security of the blind single batch encryption scheme, it can be
shown through a sequence of hybrids that:

(hk, x, ỹ1, C̃, ỹ2)
c

≈ (hk, x, ỹ1,Sim(hk, x, 1|C|,C(x))),

where hk← HGen(1κ, 1l), (C, x)← Adv(hk),state← {0, 1}κ, C̃← HObf(hk,C, state)
and (ỹ1, ỹ2)← HInp(hk,Hash(hk, x), state).

3. Blindness. For the simulator Sim described above, consider the distribution
of Sim(hk, x, 1|C|, U|C(x)|) for a uniformly generated output.

– By the blindness of blind garbled circuit, G.Sim(1κ, 1|C|, 1l, U|C(x)|)
c

≈ U .

– Hence for each j ∈ [l], Mj
c

≈ U . Thus, by blindness of the blind single
batch encryption, ỹ = (ỹ1, ỹ2) (as described in the protocol), where ỹ1
can be expressed as HInp1(hk; r) and (hk, x, ỹ1, ỹ2)

c

≈ (hk, x, ỹ1, U).

Hence, it follows that (hk, x, ỹ1,Sim(hk, x, 1|C|, U|C(x)|))
c

≈ (hk, x, ỹ1, U)

4 Efficient Blind T-RBE

We first define and construct an efficient blind T-RBE and then use it to con-
struct an efficient Anonymous RBE scheme.
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4.1 Definition

Definition 12 (Blind T-RBE). A T-RBE scheme (TGen,TReg,TEnc,TUpd,TDec)
is said to be blind if, in addition to completeness, compactness, efficiency and
security properties, as in Definition 6, it also satisfies the following blindness
property: the function TEnc(crs, pp, tid,m; r) can be expressed as the concatena-
tion TEnc1(crs, pp; r)||TEnc2(crs, pp, tid,m; r) such that for any PPT adversary
Adv, the probability of winning in the following game with a challenger Chal is
at most 1/2 + negl(κ):

1. Initialization. Chal sets pp = ⊥, aux = ⊥, ID = ∅, t = 1, t∗ = ⊥, id∗ = ⊥,
crs← Upoly(κ) and sends the sampled crs to Adv.

2. Till Adv continues (which is at most poly(κ) steps), proceed as follows. At
every iteration, Adv can perform exactly one of the following actions.
(a) Registering new (non-target) identity. Adv sends some id 6∈ ID and

pk to Chal. Chal registers (id, pk) by getting pp = TReg[aux](crs, pp, (t, pk))
and sets ID = ID ∪ {id} and t = t+ 1.

(b) Registering new target identity pair. If id∗ was chosen by Adv al-
ready (i.e., id∗ 6= ⊥), skip this step. Otherwise, Adv sends challenge
identities id∗ /∈ ID to Chal. Chal first samples (pk∗, sk∗) ← TGen(1κ),

registers id∗ by setting pp = TReg[aux](crs, pp, (t, pk∗)). Next, Chal lets
ID = ID ∪ {id∗}, t = t∗ and t = t + 1, and sends t∗, pk∗, sk∗ to Adv.
(Note that unlike the security property, the secret key is given to Adv.)

3. Encrypting for the challenge identity. If id∗ was not chosen by Adv
already (i.e., id∗ 6= ⊥), then Adv first sends some id∗ /∈ ID to Chal before
continuing this step. Next, Chal samples a random message m ∈R M and
generates (subct1, subct2) ← TEnc(crs, pp, t∗,m; r). It generates a bit b ∈R
{0, 1} and:
– if b = 0, set ct = (subct1, subct2).
– if b = 1, generate a random subct′2 of same length as subct2 and set

ct = (subct1, subct
′
2).

Chal sends ct to Adv (Note that the Adv does not know the random message
m being encrypted).

4. The adversary Adv outputs a bit b′ and wins the game if b′ = b.

4.2 Construction of an Efficient Blind T-RBE scheme

We construct a blind T-RBE scheme (TGen,TReg,TUpd,TEnc,TDec), as in
Definition 12, using the following building blocks:

– Blind Hash Garbling scheme (HGen,Hash,HObf,HInp), where the function
HInp is expressible as concatenation of function outputs of HInp1 and HInp2

as in Definition 10.
– Blind Public-key Encryption scheme (G,E,D), where the function E is ex-

pressible as a concatenation of outputs of E1 and E2, as in Definition 7.

The subroutines of the T-RBE scheme are defined as follows:



18

– TGen(1κ) :
1. (pk, sk)← G(1κ)
2. Output (pk, sk).

– TReg[aux](pp, tid, pk) :
1. aux consists of a family of Merkle trees T = {Tree1, · · · ,Treeη} which

are constructed through the process of registration described below. It
also consists of a list of timestamps corresponding to each tree in T , TID,
arranged in ascending order of timestamps of the identities.

2. Parse pp = (hk, (rt1, d1), · · · , (rtη, dη)), where hk ← HGen(1κ, 12κ+logn)
and (rti, di) represent the root and depth of Treei in T .

3. Updating aux:
(a) Create Treeη+1 with leaves tid and pk and root rtη+1 = Hash(hk, tid||pk||0κ).
(b) If there are two trees TreeL and TreeR in T of same depth d then

proceed as follows:
• Let tL and tR denote the largest timestamps of TreeL and TreeR

respectively (can be obtained by reading the last leaf of each
tree). WLOG, suppose tL < tR.

• Merge the trees, with TreeL on the left and TreeR on the right 1,
with corresponding roots rtL and rtR, to obtain Tree with root
rt = Hash(hk, rtL||rtR||tL).

• Remove TreeL and TreeR from T and add Tree to it.
(c) TID := TID ∪ {tid}.

4. Set pp′ = (hk, (rt1, d1), · · · , (rtζ , dζ)), where (rti, di) represent the root
and depth of Treei in updated T .

5. Output pp′.
– TUpd[aux](pp, tid) :

1. Parse pp = (hk, (rt1, d1), · · · , (rtη, dη))
2. Let u = pth, the Merkle opening from the leaf node tid and its sibling pk

to the root rti (in Treei containing the timestamp tid).
3. Output u.

– TEnc(pp, tid,m) :
1. Parse pp = (hk, (rt1, d1), · · · , (rtη, dη)).
2. For each i = 1, · · · , η:

(a) For each j = 1, · · · , di:
• Sample statei,j ← {0, 1}κ

• Generate P̃i,j ← HObf(hk,Pi,j , statei,j)

(b) Obtain ỹi,1 ← HInp(hk, rti, statei,1), where ỹi,1 = ỹ
(0)
i,1 ||ỹ

(1)
i,1

(c) For each j = 2, · · · , di, obtain ỹ
(0)
i,j = HInp1(hk; ri,j)

3. Output ct = (pp, {P̃i,j}i,j , {ỹ(0)i,j }i,j , {ỹ
(1)
i,1 }i,E1(r)). Let subct1 = (pp, {ỹ(0)i,j }i,j ,E1(r))

and subct2 = ({P̃i,j}i,j , {ỹ(1)i,1 }i). Then ct = (subct1, subct2).
The program Pi,j is as defined below:
Hardwired: tid, hk, statei,j+1,m, ri,j+1 (where statei,di+1 = ⊥,ri,di+1 = r)
Input: a||b||t∗

1 This will guarantee that the leaf nodes are sorted in ascending order of the times-
tamps of the identities.
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1. If t∗ = 0κ and a = tid, output E2(b,m; ri,j+1)
2. If t∗ = 0κ and a 6= tid, output ⊥.
3. If tid > t∗, output HInp2(hk, b, statei,j+1; ri,j+1)

Else, output HInp2(hk, a, statei,j+1; ri,j+1)
– TDec(sk, u, ct) :

1. Parse ct as (pp, {P̃i,j}i,j , {ỹ(0)i,j }i,j , {ỹ
(1)
i,1 }i,E1(r)).

2. Parse u as pth = (z0 = rti∗ , z1, · · · , zdi∗ = tid||pk||0κ), the Merkle opening
from leaf tid to the root rti∗ of Treei∗ (containing tid).

3. For each j = 1, · · · , di∗ − 1 evaluate:

• ỹ(1)i∗,j+1 ← P̃i∗,j(ỹi∗,j , zj)

4. Let c2 = P̃i∗,di∗ (ỹi∗,di∗ , zdi∗ ). If c2 = ⊥, set c = ⊥, else set c = E1(r)||c2.
5. If c = ⊥, output GetUpd, else output D(sk, c).

Theorem 13. The T-RBE construction 4.2 satisfies the completeness, compact-
ness, efficiency, security and blindness (Definition 12) properties.

In the following subsections, we prove Theorem 13.

4.3 Proofs of Completeness, Compactness and Efficiency of the
T-RBE Construction

Completeness. By the correctness of the hash garbling scheme and the Public-
key Encryption scheme, completeness property follows.

Compactness of public parameters and update. Consider the public pa-
rameter pp = (hk, (rt1, d1), · · · , (rtη, dη)). We observe that:

– The number of Merkle trees, η, in T at any time is at most log(n). This is
because the trees are full binary trees and the size of the trees are always
different (as we keep merging in the registration process).

– The hash key hk, the root and the depth of each tree are all of size κ each.

Hence, the size of pp is O(κ. log n).
Consider the update u = pth, the Merkle opening from leaf node tid ad its
sibling pk to the root rti. The depth of the tree is di and hence, there are at
most 2.di + 1 nodes in the Merkle opening, where di ≤ κ. Hence, the size of u is
at most O((2.κ+ log n).κ) = O(poly(κ, log(n))).

Efficiency of runtime of registration and update. The registration process
involves evaluating a hash value to create a new tree with the new identity and
then merging the trees of same depth after this. We observe that:

– The number of merge operations is O(log n) as the number of trees is always
logarithmic.

– Computing each hash costs O(κ).

Hence, each invocation of the registration process takes time O(κ. log n). Con-
sider a single invocation of the update. This just involves reading aux to output
the Merkle opening required and this takes timeO((2.κ+log n)κ) = O(poly(κ, log n)).
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Efficiency of the number of updates. Each identity would require to invoke
Upd, whenever the Merkle opening for the id gets modified. This in turn happens
whenever two tress are merged. Since the number of merges is at most O(log n),
the total number of invocations of Upd by each identity is at most O(log n).

4.4 Proof of Security of the T-RBE construction

We prove the security assuming that there is only one tree at the time of en-
cryption. The proof for the case of multiple trees will be the same.

Proof. Suppose that at the time of encryption, the underlying tree has root rt
and depth d. For simplicity, for each j ∈ [d], we denote the circuits P1,j by Pj
and the state used for obfuscation, state1,j by statej , i.e., for each j ∈ [d]

Pj ≡ P1,j [tid, hk, statej+1,m, r1,j+1]

where all the variables are as in the encryption algorithm of the construction.
As in the construction, let the Merkle opening from the leaf node tid and its
sibling pk to the root rt be denoted by:

pth = ((tid, pk, 0
κ), (a1, b1, t1), · · · , (ad−1, bd−1, td−1), rt)

As in the decryption algorithm of the construction, we denote the hash-obfuscation

of the inputs of the circuits by ỹj ≡ ỹ1,j = (ỹ
(0)
1,j , ỹ

(1)
1,j ) for each j ∈ [d]. Then, in

the actual game, the output of the encryption algorithm is ct0 := (subct0,1, subct0,2),

where subct0,1 = (pp, ỹ
(0)
1 , · · · , ỹ(0)d ,E1(r)) and subct0,2 = (P̃1, · · · , P̃d, ỹ(1)1 ) (as

in the protocol we have two parts of the ciphertext).
We describe the following sequence of hybrids, where we first replace the garbled
versions of the programs Pj and the corresponding garbled inputs ỹj by their
simulated variants, which do not use statej , one by one.

– Hybrid0 (encryption in real game): The ciphertext here will be ct0 :=

(subct0,1, subct0,2), where subct0,1 = (pp, ỹ
(0)
1 , · · · , ỹ(0)d ,E1(r)) and

subct0,2 = (P̃1, · · · , P̃d, ỹ(1)1 ), are as described above.

– Hybrid1: We replace the first obfuscated program P̃1 with its simulated

form. P̃2, · · · , P̃d are sampled as in the construction. Let P̃1,sim and ỹ
(1)
1,sim be

sampled as:

(P̃1,sim, ỹ
(1)
1,sim)← Sim(hk, (ad−1, bd−1, td−1), 1|P1 |, ỹ

(1)
2 )

Then, the ciphertext in this hybrid is ct1 := (subct1,1, subct1,2), where

subct1,1 = (pp, ỹ
(0)
1 , · · · , ỹ(0)d ,E1(r)) and subct1,2 = (P̃1,sim, P̃2, · · · , P̃d, ỹ(1)1,sim).

– Hybridi, for each i ∈ [d − 1]: The ciphertext is cti := (subcti,1, subcti,2),

where subcti,1 = (pp, ỹ
(0)
1 , · · · , ỹ(0)d ,E1(r)) and

subcti,2 = (P̃1,sim, · · · , P̃i,sim, P̃i+1, · · · , P̃d, ỹ(1)1,sim) where for each j ∈ [i]:

(P̃j,sim, ỹ
(1)
j,sim)← Sim(hk, (ad−j , bd−j , td−j), 1

|Pj |, ỹ
(1)
j+1)
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– Hybridd: The ciphertext is ctd := (subctd,1, subctd,2), where subctd,1 =

(pp, ỹ
(0)
1 , · · · , ỹ(0)d ,E1(r)) and subctd,2 = (P̃1,sim, · · · , P̃d,sim, ỹ(1)1,sim) where for

each j ∈ [d− 1]

(P̃j,sim, ỹ
(1)
j,sim)← Sim(hk, (ad−j , bd−j , td−j), 1

|Pj |, ỹ
(1)
j+1)

and
(P̃d,sim, ỹ

(1)
d,sim)← Sim(hk, (tid, pk, 0

κ), 1|Pd |,E2(pk,m; r))

By the simulation security of the hash garbling scheme, we know that, for each
j ∈ [d− 1],

(hk, (ad−j , bd−j , td−j), ỹ
(0)
j , P̃j , ỹ

(1)
j )

c

≈ (hk, (ad−j , bd−j , td−j), ỹ
(0)
j , P̃j,sim, ỹ

(1)
j,sim)

and

(hk, (tid, pk, 0
κ), ỹ

(0)
d , P̃d, ỹ

(1)
d )

c

≈ (hk, (tid, pk, 0
κ), ỹ

(0)
d , P̃d,sim, ỹ

(1)
d,sim)

Hence, it follows that for each i = 0, · · · , d− 1, Hybridi
c

≈ Hybridi+1.

Now, let Hybrid0
i denote the hybrids described above with use of underlying

message m0 and Hybrid1
i for message m1. By semantic security of the underlying

public-key encryption scheme, we get:

Sim(hk, (tid, pk, 0
κ), 1|Pd |,E2(pk,m0; r))

c

≈ Sim(hk, (tid, pk, 0
κ), 1|Pd |,E2(pk,m1; r))

Hence, Hybrid0
d

c

≈ Hybrid1
d. Then, it follows that Hybrid0

0

c

≈ Hybrid1
0, which

represent the actual security game with use of messages m0 and m1 in respective
hybrids. Hence, the security of the T-RBE scheme is proved.

4.5 Proof of Blindness of the T-RBE Construction

We prove the blindness of the scheme assuming that there is only one tree at
the time of encryption. The proof for the case of multiple trees will be the same.

Proof. Suppose that at the time of encryption, the underlying tree has root rt
and depth d. For simplicity, for each j ∈ [d], we denote the circuits P1,j by Pj
and the state used for obfuscation, state1,j by statej , i.e., for each j ∈ [d]

Pj ≡ P1,j [tid, hk, statej+1,m, r1,j+1]

where all the variables are as in the encryption algorithm of the construction.
As in the construction, let the Merkle opening from the leaf node tid and its
sibling pk to the root rt be denoted by:

pth = ((tid, pk, 0
κ), (a1, b1, t1), · · · , (ad−1, bd−1, td−1), rt) .

As in the decryption algorithm of the construction, we denote the hash-obfuscation

of the inputs of the circuits by ỹj ≡ ỹ1,j = (ỹ
(0)
1,j , ỹ

(1)
1,j ) for each j ∈ [d]. Then,
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in the actual game, where now the message m is chosen at random, the out-
put of the encryption algorithm is ct0 := (subct0,1, subct0,2), where subct0,1 =

(pp, ỹ
(0)
1 , · · · , ỹ(0)d ,E1(r)) and subct0,2 = (P̃1, · · · , P̃d, ỹ(1)1 ) (as in the protocol we

have two parts of the ciphertext). Clearly subct0,1 is expressible as TEnc1(pp; r).
We describe the following sequence of hybrids, where we first follow the sequence
of hybrids in the security proof of Section 4.4 to replace all the garbled versions
of the programs Pj and the corresponding garbled inputs ỹj by their simulated
variants. Then we use the blindness property of the blind hash garbling scheme
and the blind public key encryption scheme to replace the simulated garbled
circuits with uniform.

– Hybrid0 (encryption in real blindness game): The ciphertext in this hy-

brid will be ct0 := (subct0,1, subct0,2), where subct0,1 = (pp, ỹ
(0)
1 , · · · , ỹ(0)d ,E1(r))

and subct0,2 = (P̃1, · · · , P̃d, ỹ(1)1 ), as described above.
– Hybrid1: The ciphertext is ct1 := (subct1,1, subct1,2), where subct1,1 =

(pp, ỹ
(0)
1 , · · · , ỹ(0)d ,E1(r)) and subct1,2 = (P̃1,sim, · · · , P̃d,sim, ỹ(1)1,sim) where for

each j ∈ [d− 1]

(P̃j,sim, ỹ
(1)
j,sim)← Sim(hk, (ad−j , bd−j , td−j), 1

|Pj |, ỹ
(1)
j+1)

and
(P̃d,sim, ỹ

(1)
d,sim)← Sim(hk, (tid, pk, 0

κ), 1|Pd |,E2(pk,m; r)) .

– Hybridi for each i = 2, · · · , d: The ciphertext is cti := (subcti,1, subcti,2),

where subcti,1 = (pp, ỹ
(0)
1 , · · · , ỹ(0)d ,E1(r)) and

subcti,2 = (P̃1,sim, · · · , P̃d−(i−1),sim, U|P̃d−(i−2)|, · · · , U|P̃d|, ỹ
(1)
1,sim).

– Hybridd+1: The ciphertext is ctd+1 := (subctd+1,1, subctd+1,2), where

subctd+1,1 = (pp, ỹ
(0)
1 , · · · , ỹ(0)d ,E1(r)) and

subctd+1,2 = (U|P̃1|+|ỹ(1)1 |
, U|P̃2|, · · · , U|P̃d|).

By the proof of security in Section 4.4, we know that Hybrid0

c

≈ Hybrid1.
Now, by blindness property of the blind public key encryption scheme, we know:

(pk, sk,E1(r),E2(pk,m; r))
c

≈ (pk, sk,E1(r), U) .

Hence, by the blindness property of the hash garbling scheme, it follows that:

(hk, (tid, pk, 0
κ), sk, ỹ

(0)
d , P̃d,sim, ỹ

(1)
d,sim)

c

≈ (hk, (tid, pk, 0
κ), sk, ỹ

(0)
d , U|Pd |+|ỹ(1)d |

) .

Hence, it follows that Hybrid1

c

≈ Hybrid2 even given the secret key sk.
By consecutive use of blindness property of the hash garbling scheme, it would
follow that for each i = 2, · · · , d, Hybridi

c

≈ Hybridi+1 which holds even given
the secret key sk.
Hence, we have that Hybrid0

c

≈ Hybridd+1, even given the secret key sk, which
exactly represents the blindness game. This completes the proof of blindness of
the T-RBE scheme.
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5 Anonymous Registration-based Encryption

We now construct an efficient anonymous RBE scheme as in Definition 5.

5.1 Construction of an Efficient Anonymous RBE scheme

We now construct a RBE scheme (Gen,Reg,Enc,Upd,Dec) using the following
building blocks:

– Blind Hash Garbling scheme (HGen,Hash,HObf,HInp), where the function
HInp is expressible as concatenation of function outputs of HInp1 and HInp2,
as in Definition 10.

– Blind T-RBE scheme (TGen,TReg,TEnc,TUpd,TDec), where the function
TEnc is expressible as the concatenation of function outputs of TEnc1 and
TEnc2, as in Definition 12.

The subroutines of our RBE scheme are defined as follows:

– Gen(1κ) :
1. (pk, sk)← TGen(1κ)
2. Output (pk, sk).

– Reg[aux](pp, id, pk) :
1. aux consists of a Red-black Merkle tree TimeTree which has the identities

(along with their timestamps) at the leaf nodes, sorted according to the
identities. TimeTree is constructed through the process of registration, as
described below. aux also consists of the database auxT required by the
T-RBE scheme and a list ID of identities registered so far, in ascending
order. Let the Merkle trees contained in auxT be T = {Tree1, · · · ,Treeη}.

2. Parse pp as (hk, ppT , (rt1, d1), · · · , (rtη, dη)), where hk← HGen(1κ, 13κ),
ppT corresponds to the public parameter of the T-RBE scheme and
(rt1, d1), · · · , (rtη, dη) are the roots and depth of the same TimeTree cor-
responding to the time when Tree1, · · · ,Treeη where last updated respec-
tively.2

3. Updating TimeTree:
(a) TimeTree is a Red-Black Merkle tree with each non-leaf node con-

taining a hash of its left child, hash of its right child and the largest
identity on the left subtree. The leaves of the tree contain the iden-
tities (with their timestamps, i.e., a binary representation of when
the identity registered). Further, each node has an additional bit of
information, indicating if it’s colored red or black. The color helps
in keeping the tree “approximately” balanced after each insertion 3.

2 Looking ahead, we need to store the root hashes of TimeTree at mulitple times in
order to ensure that the number of updates required by each person remains logn.

3 The main advantage of having a Red-Black Merkle tree is that after each insertion,
the depth of the tree does not increase beyond logn, where n is the number of
people registered in the system. The balancing is not perfect, but ensures that further
insertions, rearrangement after insertion to balance, searches, all take time O(logn).
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(b) Evaluate hid = Hash(hk, id||02κ−logn||tid).
(c) To insert the new id at the right location, we first parse the root of

TimeTree as rt = h1||id∗||h2. If id > id∗, read the right child, else
read the left child. Continue traversing the path down the tree to
figure out the correct insertion point of id.

(d) The parent node of id||tid contains hid along with the largest identity
on its left subtree and the hash of its other child. Re-order the tree,
recolor, to keep it balanced. This will take at most log n time (as it’s a
red-black tree). Every node that is not a leaf or a parent node of a leaf
node, is of the form hL||id∗||hR, where hL = Hash(hk, h1||idL||h2)
and hR = Hash(hk, h3||idR||h4) and id∗ is the largest identity on the
left subtree of this node.

4. Evaluate pp′T ← TReg[aux](ppT , tid, pk), where tid will be the binary rep-
resentation of the timestamp corresponding to id (can be obtained by
checking ID to see the current number of identities).

5. Suppose the registration process of T-RBE above results in a merge of
trees TreeL and TreeR and the corresponding root hashes of TimeTree at
the time of last update of these trees be rtL and rtR. Remove (rtL, dL)
and (rtR, dR) from pp and add (rt, d), which is the root hash and the
depth of TimeTree at time tid. Suppose the updated root hashes and
depth of TimeTree after all the merges in T be (rt1, d1), · · · , (rtζ , dζ).

6. Set pp′ = (hk, pp′T , (rt1, d1), · · · , (rtζ , dζ)).
7. Output pp′.

– Upd[aux](pp, id) :

1. Parse pp = (hk, ppT , (rt1, d1), · · · , (rtη, dη)).

2. Evaluate u1 ← TUpd[aux](ppT , tid).
3. Set pth to be the path from the leaf node id||tid||02κ−logn to the root

hash rti of TimeTree at the time of last modification of the Merkle tree,
Treei, containing id.4

4. Set u = (u1, pth).

5. Output u.

– Enc(pp, id,m) :

1. Parse pp as (hk, ppT , (rt1, d1), · · · , (rtη, dη)).

2. For each i = 1, · · · , η:

(a) For each j = 1, · · · , dη:

i. Sample statei,j ← {0, 1}κ.

ii. Generate Q̃i,j ← HObf(hk,Qi,j , statei,j)
(b) Parse rti as h1||id∗||h2.

(c) If id > id∗, obtain ỹi,1 ← HInp(hk, h2, state1), where ỹi,1 = ỹ
(0)
i,1 ||ỹ

(1)
i,1

Else obtain ỹi,1 ← HInp(hk, h1, state1), where ỹi,1 = ỹ
(0)
i,1 ||ỹ

(1)
i,1 .

(d) For each j = 2, · · · , di, obtain ỹ
(0)
i,j ← HInp1(hk; ri,j).

4 Note that we must store the versions of the same TimeTree at times corresponding
to last updation of each Treei in T . But there would only be logn such versions.
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3. Output ct = (pp, {Q̃i,j}i,j , {ỹ
(0)
i,j }i,j , {ỹ

(1)
i,1 }i,TEnc1(ppT ; r)).

Let subct1 = (pp, {ỹ(0)i,j }i,j ,TEnc1(ppT ; r)) and subct2 = ({Q̃i,j}i,j , {ỹ
(1)
i,1 }i).

Then ct = (subct1, subct2).
The program Qi,j is defined as:
Hardwired: hk, statei,j+1, id,m, ri,j+1, r, ppT (for statei,di+1 = ri,di+1 = ⊥)
Input: a||id∗||b
1. If id∗ = 02κ−logn and a = id, output TEnc2(ppT , b,m; r)
2. If id∗ = 02κ−logn and a 6= id, output ⊥
3. If id > id∗, output HInp2(hk, b, statei,j+1; ri,j+1)

Else, output HInp2(hk, a, statei,j+1; ri,j+1)
– Dec(sk, u, ct) :

1. Parse u as (u1, pth), where pth = (z0 = rti, z1, · · · , zd = id||02κ−logn||tid).
Here rti is the root hash of TimeTree at the time when Treei, the tree
containing id, was last updated.

2. Parse ct as (pp, {Q̃i,j}i,j , {ỹ
(0)
i,j }i,j , {ỹ

(1)
i,1 }i,TEnc1(ppT ; r)).

3. For j = 1, · · · , d− 1, evaluate:

• ỹ(1)i,j+1 ← Q̃i,j(ỹi,j , zj)

4. Let c2 = Q̃i,d(ỹi,d, zd). If c2 = ⊥, set c = ⊥, else set c = TEnc1(ppT ; r)||c2.5

5. If c = ⊥, output GetUpd, else output TDec(sk, u1, c).

Theorem 14. The RBE construction 5.1 satisfies the completeness, compact-
ness, efficiency (Definition 2) and the stronger security notion of an anonymous
RBE (Definition 5) properties.

In the following subsections, we prove Theorem 14.

5.2 Completeness, Compactness and Efficiency of the Construction

Completeness. By the correctness of the hash garbling scheme and the com-
pleteness of the T-RBE scheme, completeness property follows.

Compactness of public parameters and update. Consider the public pa-
rameter pp = (hk, ppT , (rt1, d1), · · · , (rtη, dη)). We observe that:

– The public parameter of T-RBE, ppT is of size O(poly(κ, log n)).
– The hash key hk and the depth di are each of size κ.
– The root of the time tree rti is of size 3.κ.
– η is at any time is atmost log(n), as the number of trees in T at any time is

at most log(n).

Hence, the size of pp is O(poly(κ, log n)).
Consider the update u = (u1, pth). By efficiency of T-RBE, size of u1 is

O(poly(κ, log n)). pth is the path of nodes from the leaf id||tid||02κ−logn to the
root rt and hence of size at most κ.(3κ) = O(κ). Hence, the size of u is
O(poly(κ, log n)).

5 Alternately, we could have performed these operations for each i, which would be
the number of trees in T . Here, we would have obtained a value 6= ⊥ only for one i
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Efficiency of runtime of registration and update. The registration pro-
cess involves running the registration of underlying T-RBE, which takes time
at most poly(κ, log n) and inserting the new identity into the Red-black Merkle
tree TimeTree, which takes time at most log n. Hence, each invocation of the
registration process takes time O(poly(κ, log n)).
Consider a single invocation of the update process. It involves a single invocation
of the update algorithm of T-RBE, which takes time at most poly(κ, log n) and
reading a single path from TimeTree in aux, which takes time O((3.κ).κ) and an
additional log(n) time to figure out the correct version of TimeTree to read the
path from. Hence a single invocation of the update takes time O(poly(κ, log n)).

Efficiency of the number of updates. Each identity would require to in-
voke Upd, whenever the Merkle tree in T containing id gets modified (by a
merge). Unless a merge operation occurs, the identities can use the opening in
the TimeTree corresponding to the time its Merkle tree (in T ) was last updated
(even though TimeTree gets updated at each registration). Since the number of
merges is at most O(log(n)), the number of invocations of Upd by each identity
is at most O(log n).

5.3 Proof of Anonymity and Security of the RBE construction

We now prove that the RBE scheme satisfies the stronger notion of security of
an anonymous RBE (Definition 5).

Proof. We prove the security assuming that there is only one Merkle tree in T
at the time of encryption for simplicity. The proof for the case of multiple trees
will be the same. Let TimeTree have root rt and let the challenge identity id be
at depth d in TimeTree, at the time of encryption. For each j ∈ [d], as in the
construction, we have:

Qj ≡ Q1,j [hk, state1,j+1, id,m, r1,j+1, r, ppT ]

where all the variables are as in the encryption algorithm of the construction.
As in the construction, let the path from the leaf node id||02κ−logn||tid to the
root rt be denoted by:

pth = ((id, 02κ−logn, tid), (a1, id1, b1), · · · , (ad−1, idd−1, bd−1), rt)

As in the decryption algorithm of the construction, we denote the hash-garbling

of the inputs of the circuits by ỹj = ỹ
(0)
1,j ||ỹ

(1)
1,j for each j ∈ [d]. Then, in the actual

game, the output of the encryption algorithm is ct0 := (subct0,1, subct0,2), where

subct0,1 = (pp, {ỹ(0)j }j ,TEnc1(ppT ; r)) and subct0,2 = ({Q̃j}j , ỹ
(1)
1 ).

We describe the following sequence of hybrids, for uniformly drawn message m,
where we first replace the garbled versions of the programs Qj and the corre-
sponding garbled inputs ỹj by their simulated variants, which do not use statej ,
one by one. Then, in the subsequent hybrids, we replace the simulated garbled
programs and inputs by uniform, one by one. This uses the blindness of the
T-RBE scheme and the blind hash garbling scheme.
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– Hybrid0 (encryption in real game): The ciphertext in this hybrid is

ct0 := (subct0,1, subct0,2), where subct0,1 = (pp, {ỹ(0)j }j ,TEnc1(ppT ; r)) and

subct0,2 = (Q̃1, · · · , Q̃d, ỹ
(1)
1 ), as described above.

– Hybrid1: We replace the first obfuscated program Q̃1 with its simulated

form. Q̃2, · · · , Q̃d are sampled as in the construction. Let Q̃1,sim and ỹ
(1)
1,sim

be sampled as:

(Q̃1,sim, ỹ
(1)
1,sim)← Sim(hk, (ad−1, idd−1, bd−1), 1|Q1 |, ỹ

(1)
2 )

Then, the ciphertext in this hybrid is

ct1 := (subct1,1, subct1,2), where subct1,1 = (pp, , {ỹ(0)j }j ,TEnc1(ppT ; r)) and

subct1,2 = (Q̃1,sim, · · · , Q̃d, ỹ
(1)
1,sim).

– Hybridi, for each i ∈ [d− 1]: The ciphertext is

cti := (subcti,1, subcti,2), where subcti,1 = (pp, {ỹ(0)j }j ,TEnc1(ppT ; r)) and

subcti,2 = (Q̃1,sim, · · · , Q̃i,sim, Q̃i+1, · · · , Q̃d, ỹ
(1)
1,sim) where for each j ∈ [i]:

(Q̃j,sim, ỹ
(1)
j,sim)← Sim(hk, (ad−j , idd−j , bd−j), 1

|Qj |, ỹ
(1)
j+1)

– Hybridd: The ciphertext is

ctd := (subctd,1, subctd,2), where subctd,1 = (pp, {ỹ(0)j }j ,TEnc1(ppT ; r)) and

subctd,2 = (Q̃1,sim, · · · , Q̃d,sim, ỹ
(1)
1,sim) where for each j ∈ [d− 1]

(Q̃j,sim, ỹ
(1)
j,sim)← Sim(hk, (ad−j , idd−j , bd−j), 1

|Qj |, ỹ
(1)
j+1)

and

(Q̃d,sim, ỹ
(1)
d,sim)← Sim(hk, (id, 02κ−logn, tid), 1

|Qd |,TEnc2(ppT , tid,m; r))

– Hybridi for each i = d+ 1, · · · , 2d− 1: The ciphertext is

cti := (subcti,1, subcti,2), where subcti,1 = (pp, {ỹ(0)j }j ,TEnc1(ppT ; r)) and

subcti,2 = (Q̃1,sim, · · · , Q̃2d−i,sim, U|Q̃2d−i+1|
, · · · , U|Q̃d|

, ỹ
(1)
1,sim)

– Hybrid2d: The ciphertext is

ct2d := (subct2d,1, subct2d,2), where subct2d,1 = (pp, {ỹ(0)j }j ,TEnc1(ppT ; r))
and subct2d,2 = (U|Q̃1|+|ỹ

(1)
1 |
, U|Q̃2|

, · · · , U|Q̃d|
)

By the simulation security of the hash garbling scheme, for each j ∈ [d− 1],

(hk, (ad−j , idd−j , bd−j), ỹ
(0)
j , Q̃j , ỹ

(1)
j )

c

≈ (hk, (ad−j , idd−j , bd−j), ỹ
(0)
j , Q̃j,sim, ỹ

(1)
j,sim)

(hk, (id, 02κ−logn, tid), ỹ
(0)
d , Q̃d, ỹ

(1)
d )

c

≈ (hk, (id, 02κ−logn, tid), ỹ
(0)
d , Q̃d,sim, ỹ

(1)
d,sim)

Hence, it follows that for each i = 0, · · · , d− 1, Hybridi
c

≈ Hybridi+1.

Now, as the sequence of hybrids were defined for uniformly drawn message m,
by the blindness of underlying T-RBE scheme, we know that:

(TEnc1(ppT ; r),TEnc2(ppT , tid,m; r))
c

≈ (TEnc1(ppT ; r), U)
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Hence, by the blindness property of the hash garbling scheme, it follows that:

(hk, (id, 02κ−logn, tid), ỹ
(0)
d , Q̃d,sim, ỹ

(1)
d,sim)

c

≈ (hk, (id, 02κ−logn, tid), ỹ
(0)
d , U|Q̃d|+|ỹ

(d)
1 |

)

Hence, Hybridd
c

≈ Hybridd+1.
Similarly, by consecutive application of the blindness property of the hash gar-
bling scheme, it hodlds that for each i = d+1, · · · , 2d−1, Hybridi

c

≈ Hybridi+1.
Hence, we have that, for uniformly drawn message m,

Hybrid0

c

≈ Hybrid2d (1)

We now prove that, in fact, indistinguishability in Equation 1 is stronger than
the desired amomymity of the RBE scheme:
For b = 0, 1, let ctmb,idb

0 = (subctmb,idb
0,1 , subctmb,idb

0,2 ) and ctmb,idb
2d = (subctmb,idb

2d,1 , subctmb,idb
2d,2 )

denote the ciphertexts in Hybrid0 and Hybrid2d respectively for the b-th mes-
sage, identity pair.

1. By security of T-RBE, it would follow that Hybrid0
d

c

≈ Hybrid1
d, where

Hybridβi denote the hybrids described above with use of message mβ . Hence,

it follows that Hybrid0
0

c

≈ Hybrid1
0.

2. Using the above indistinguishability, it follows that, for a random message
m, we have ctm0,id0

0

c

≈ ctm,id00

3. Since Hybrid0

c

≈ Hybrid2d for random message m, it then follows that

ctm,id00 = (subctm,id00,1 , subctm,id00,2 )
c

≈ (subctm,id00,1 , U) = ctm,id02d

4. Since subctm,id00,1 = TEnc1(ppT ; r), is independent of identity or the message

m, it then follows that ctm,id02d

c

≈ ctm,id12d .

Combining the steps 2, 3 and 4 above, it follows that ctm0,id0
0

c

≈ ctm1,id1
0 . This

exactly represents the stronger security game of the anonymous RBE. Hence,
the anonymity and security of the RBE scheme is proved.
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