
Towards Non-Interactive Zero-Knowledge for
NP from LWE

Ron D. Rothblum?, Adam Sealfon??, and Katerina Sotiraki? ? ?

Abstract. Non-interactive zero-knowledge (NIZK) is a fundamental prim-
itive that is widely used in the construction of cryptographic schemes and
protocols. Despite this, general purpose constructions of NIZK proof sys-
tems are only known under a rather limited set of assumptions that are
either number-theoretic (and can be broken by a quantum computer) or
are not sufficiently well understood, such as obfuscation. Thus, a basic
question that has drawn much attention is whether it is possible to con-
struct general-purpose NIZK proof systems based on the learning with
errors (LWE) assumption.

Our main result is a reduction from constructing NIZK proof sys-
tems for all of NP based on LWE, to constructing a NIZK proof system
for a particular computational problem on lattices, namely a decisional
variant of the Bounded Distance Decoding (BDD) problem. That is, we
show that assuming LWE, every language L ∈ NP has a NIZK proof
system if (and only if) the decisional BDD problem has a NIZK proof sys-
tem. This (almost) confirms a conjecture of Peikert and Vaikuntanathan
(CRYPTO, 2008).

To construct our NIZK proof system, we introduce a new notion
that we call prover-assisted oblivious ciphertext sampling (POCS), which
we believe to be of independent interest. This notion extends the idea
of oblivious ciphertext sampling, which allows one to sample ciphertexts
without knowing the underlying plaintext. Specifically, we augment the
oblivious ciphertext sampler with access to an (untrusted) prover to help
it accomplish this task. We show that the existence of encryption schemes
with a POCS procedure, as well as some additional natural requirements,
suffices for obtaining NIZK proofs for NP. We further show that such
encryption schemes can be instantiated based on LWE, assuming the
existence of a NIZK proof system for the decisional BDD problem.

? Technion. Email: rothblum@cs.technion.ac.il. This research was conducted in
part while the author was at MIT and Northeastern University. Research supported
in part by the Israeli Science Foundation (Grant No. 1262/18). Research also sup-
ported in part by NSF Grants CNS-1413920 and CNS-1350619, by the Defense Ad-
vanced Research Projects Agency (DARPA) and the U.S. Army Research Office
under contracts W911NF-15-C-0226 and W911NF-15-C-0236, the Simons Investiga-
tor award agreement dated 6-5-12 and the Cybersecurity and Privacy Institute at
Northeastern University.

?? MIT. Email: asealfon@mit.edu. Research supported in part by a DOE CSGF fel-
lowship, NSF MACS CNS-1413920, DARPA/NJIT Palisade 491512803, Sloan/NJIT
996698, MIT/IBM W1771646, NSF Center for Science of Information (CSoI) CCF-
0939370, and the Simons Investigator award agreement dated 6-5-12.

? ? ? MIT. Email: katesot@mit.edu. Research supported in part by NSF grants CNS-
1350619, CNS-1718161, CNS-1414119.

1 Introduction

The learning with errors (LWE) problem, introduced by Regev [Reg09], has had
a profound impact on cryptography. The goal in LWE is to find a solution to a set
of noisy linear equations modulo a large integer q, where the noise is typically
drawn from a discrete Gaussian distribution. The assumption that LWE cannot
be broken in polynomial time can be based on worst-case hardness of lattice
problems [Reg09,Pei09] and has drawn immense interest in recent years.

Immediately following its introduction, LWE was shown to imply the exis-
tence of many important cryptographic primitives such as public-key encryption
[Reg09], circular secure encryption [ACPS09], oblivious transfer [PVW08], cho-
sen ciphertext security [PW08,Pei09], etc. Even more remarkably, in recent years
LWE has been used to achieve schemes and protocols above and beyond what
was previously known from other assumptions. Notable examples include fully
homomorphic encryption [BV14], predicate encryption and certain types of func-
tional encryption (see, e.g., [AFV11,GKP+13,GVW15]), and even obfuscation
of certain expressive classes of computations [WZ17,GKW17].

Despite this amazing list of applications, one major primitive that has resisted
all LWE based attempts is general purpose Non-Interactive Zero-Knowledge
(NIZK) proof systems for NP.1 A NIZK proof system for a language L ∈ NP,
as introduced by Blum et al. [BFM88], is a protocol between a probabilistic
polynomial-time prover P and verifier V in the Common Random String (CRS)
model. The prover, given an instance x ∈ L, a witness w, and the random string
r, produces a proof string π which it sends to the verifier. Based only on x,
the random string r and the proof π, the verifier can decide whether x ∈ L.
Furthermore, the protocol is zero-knowledge: the proof π reveals nothing to the
verifier beyond the fact that x ∈ L.

Non-interactive zero-knowledge proofs have been used extensively in cryp-
tography, with applications ranging from chosen ciphertext security and non-
malleability [NY90,DDN03,Sah99], multi-party computation with a small num-
ber of rounds (see, e.g., [MW16]), low-round witness-indistinguishability [DN07]
to various types of signatures (e.g. [BMW03,BKM06]) and beyond.

Currently, general purpose NIZK proof systems (i.e., NIZK proof systems for
all of NP) are only known based on number theoretic assumptions (e.g., the
hardness of factoring integers [FLS99] or the decisional linear assumption or
symmetric external Diffie-Hellman assumption over bilinear groups [GOS12]) or
from indistinguishability obfuscation [SW14,BP15] (see Section 1.2 for further
discussion). We remark that the former class of assumptions can be broken by
a quantum computer [Sho99] whereas the assumption that indistinguishability
obfuscation exists is not yet well understood. Thus, the following basic question
remains open:

Can we construct NIZK proofs for all of NP based on LWE?

1 As a matter of fact, resolving this question carries a symbolic cash prize; see https:

//simons.berkeley.edu/crypto2015/open-problems.

2

https://simons.berkeley.edu/crypto2015/open-problems
https://simons.berkeley.edu/crypto2015/open-problems

1.1 Our Results

Our main result is a completeness theorem reducing the foregoing question to
that of constructing a NIZK proof system for one particular computational prob-
lem. Specifically, we will consider a decisional variant of the bounded distance
decoding (BDD) problem.

Recall that in the BDD problem, the input is a lattice basis and a target
vector which is very close to the lattice. The problem is to find the nearby
lattice point. This is very similar to the closest vector problem CVP except that
here the vector is guaranteed to be within the λ1 radius of the lattice, where
λ1 denotes the length of the shortest non-zero lattice vector (more specifically,
the problem is parameterized by α ≥ 1 and the guarantee is that the point
is at distance λ1/α from the lattice). BDD can also be viewed as a worst-case
variant of LWE and is known to be (up to polynomial factors) equivalent to the
shortest-vector problem (more precisely, GapSVP) [LM09].

In this work, we consider a decisional variant of BDD, which we denote by
dBDD. The dBDDα,γ problem, is a promise problem, parameterized by α ≥ 1
and γ ≥ 1, where the input is a basis B of a lattice L and a point t. The goal
is to distinguish between pairs (L, t) such that the point t has distance at most
λ1(L)
α from the lattice L from tuples in which t has distance at least γ · λ1(L)

α
from L.

Our main result can be stated as follows:

Theorem 1 (Informal; see Theorem 2).
Suppose that LWE holds and that dBDDα,γ has a NIZK proof system (where

α and γ depend on the LWE parameters). Then, every language in NP has a
NIZK proof system.

Since dBDD is a special case of the well studied GapCVP problem, a NIZK for
GapCVP would likewise suffice for obtaining NIZKs for all of NP based on LWE.

Relation to [PV08]. Theorem 1 (almost) confirms a conjecture of Peikert and
Vaikuntanathan [PV08]. More specifically, [PV08] conjectured that a NIZK proof-
system for a specific computational problem related to lattices would imply
a NIZK proof-system for every NP language. The problem that Peikert and
Vaikuntanathan consider is GapSVP whereas the problem that we consider is
the closely related dBDD problem. While BDD is known to be no harder than
GapSVP [LM09] (and the same can be shown for dBDD, see Proposition 1), these
results are shown by Cook reductions and so a NIZK for one problem does not
necessarily yield a NIZK for the other. In particular, we do not know how to
extend Theorem 1 to hold with respect to GapSVP.

Tradeoff Between the Modulus and Gap. The tradeoff between α and γ and the
LWE parameters is quantified precisely in the technical sections (see Theorem 2).
Roughly speaking, we need both α and γ to be small relative to 1/β, where β
is the magnitude of the LWE error divided by the LWE modulus q. This trade-
off allows us to obtain NIZK proof systems for NP from a variety of parameter

3

regimes. In particular, given a NIZK proof system for dBDDα,γ where α and γ are
polynomial in the security parameter, we can instantiate Theorem 1 even assum-
ing LWE with a polynomial-size modulus. On the other hand, it suffices to have
a NIZK for dBDDα,γ with respect to a super-polynomial or even subexponential
α or γ, assuming LWE with a super-polynomial or subexponential modulus.

Furthermore, we emphasize that it suffices for us that dBDDα,γ has a non-
interactive computational zero-knowledge proof-system under the LWE assump-
tion. However, it is entirely plausible that dBDDα,γ has an (unconditional) non-
interactive statistical zero-knowledge proof system (NISZK).

1.2 Related Works

Non-Interactive Zero-Knowledge. Non-interactive zero-knowledge proofs were
first introduced by Blum, Feldman and Micali [BFM88], who also constructed a
NIZK proof system for all of NP based on the Quadratic Residuocity assump-
tion. Later work by Feige, Lapidot and Shamir [FLS99] gave a construction under
(an idealized version of) trapdoor permutations. Together with additional con-
tributions of Bellare and Yung [BY96] and Goldreich [Gol11], this yields NIZK
proofs for NP based on factoring (using a variant of Rabin’s [Rab79] trapdoor
permutation collection).

Groth, Ostrovsky and Sahai [GOS12] construct a more efficient general pur-
pose NIZK proof-system based on hardness assumptions on groups equipped
with bilinear maps. Groth and Sahai [GS08] also construct a NIZK proof system
for specific problems related to such bilinear groups. Groth [Gro10] constructs
highly efficient NIZK proofs assuming certain “knowledge of exponent” assump-
tions (which in particular are not falsifiable, in the sense of [Nao03]). More
recently, constructions of NIZK arguments and proofs based on indistinguisha-
bility obfuscation were given by Sahai and Waters [SW14] and Bitansky and
Paneth [BP15].

Another method for constructing non-interactive zero-knowledge proofs is
via the Fiat-Shamir heuristic [FS86], for reducing interaction in (public-coin)
interactive proofs. Loosely speaking, the Fiat-Shamir heuristic uses a crypto-
graphic hash-function to compute the verifier’s messages, and the resulting pro-
tocol is known to be secure in the random-oracle model [BR93]. However, re-
placing the random oracle with a concrete hash function may lead to an inse-
cure protocol [CGH04,GK03], and so it is highly desirable to construct NIZK
protocols whose security does not depend on random oracles. In recent works,
Kalai et al. [KRR17] and Canetti et al. [CCRR18] construct hash functions for
which the Fiat-Shamir heuristic is sound when applied to interactive proofs (i.e.,
with statistical soundness). However, they use very strong assumptions such as
the existence of encryption schemes in which the success probability of a key-
dependent message (KDM) key recovery attack succeeds only with exponentially
small probability.

As mentioned above, Peikert and Vaikuntanathan [PV08] conjecture that a
NIZK proof-system for GapSVP would suffice to obtain NIZK for all of NP based
on LWE. [PV08] also suggest that one approach to proving this conjecture is

4

to translate the prior approach of Blum et al. [BDSMP91], which referred to
the quadratic residuosity problem, to lattices. Our approach differs from that
suggested by [PV08] and is more similar to the [FLS99] paradigm.

Recently, Kim and Wu [KW18] showed a construction of multi-theorem NIZK
argument for NP from standard lattice assumptions in the preprocessing model.
In the preprocessing multi-theorem model, a trusted setup algorithm produces
proving and verification keys, which are reusable for an unbounded number of
theorems.

Zero-Knowledge Proofs for Specific Lattice Problems. Highly relevant to our
assumption of a NIZK proof system for dBDDα,γ are several works on zero-
knowledge of lattice problems. Goldreich and Goldwasser [GG00] show that the
complement of GapSVPγ and GapCVPγ , with parameter γ = Θ(

√
n/ log n), has

an honest-verifier SZK protocol. Combined with results on the structure of SZK
(see [Vad99]), this implies that GapSVPγ and GapCVPγ themselves are in SZK.
Subsequently, Micciancio and Vadhan [MV03] show that GapSVPγ and GapCVPγ
are in SZK for the same approximation factor even with an efficient prover (given
the shortest or closest lattice point, resp., as an auxiliary input). Building on
the protocol of [MV03], Goldwasser and Kharchenko [GK05] use the connection
between Atjai-Dwork ciphertexts and GapCVP to construct a proof of plaintext
knowledge.

Peikert and Vaikuntanathan [PV08] construct non-interactive statistical zero-
knowledge (NISZK) protocols for a variety of lattice problems and in particular
leave the question of whether GapSVPγ has a NISZK proof system as an open
problem. Most recently, Alamati et al. [APSD17] construct NISZK and SZK pro-
tocols for approximating the smoothing parameter of a lattice.

Lastly, we mention that starting with the work of Stern et al. [Ste96], several
works [KTX08,Lyu08,LNSW13,LLM+16,dPL17] have constructed zero-knowledge
proofs for lattice problems in the context of identification schemes.

1.3 Technical Overview

Let L ∈ NP be an arbitrary NP language. Our goal is to construct a NIZK
proof system for L. The starting point for our construction is an (unconditional)
NIZK proof system for L in the hidden-bits model, a framework introduced by
Feige et al. [FLS99] and made explicit by Goldreich [Gol01]. In the hidden-bits
model, the prover P has access to a string of uniformly random bits r ∈ {0, 1}N .
Given the input x and a witness w, the prover can decide to reveal some subset
I ⊂ [N] of the bits to the verifier, and in addition sends a proof-string π. The
verifier, given only the input x, the revealed bits rI , and the proof π, decides
whether x ∈ L. Note that the unrevealed bits remain entirely hidden from the
verifier. A hidden-bits proof is zero-knowledge if there exists a simulator S that
generates a view that is indistinguishable from that of the verifier (including in
particular the revealed bits rI).

Feige et al. [FLS99] show that every NP language has a NIZK proof sys-
tem in the hidden bits model. Furthermore, they show how to implement the

5

hidden bits model, in a computational sense, using (doubly enhanced) trapdoor
permutations,2 thereby obtaining a NIZK proof system for NP under the same
assumption.

Following Goldreich’s presentation, we shall also aim to enforce the hidden-
bits model using cryptography. In contrast to [FLS99,Gol01], however, rather
than using trapdoor permutations, we shall use an encryption scheme that sat-
isfies some strong yet natural properties. The main technical challenge will be
in constructing an LWE-based encryption scheme that satisfies these properties.

We begin by describing the two most intuitive properties that we would like
from our public-key encryption scheme (G,E,D).

1. Oblivious Sampling of Ciphertexts: Firstly, we require the ability to
sample ciphertexts while remaining entirely oblivious to the underlying mes-
sages. More precisely, we assume that there exists an algorithm Sample that,
given a public key pk, samples a random ciphertext c← Sample(pk) such that
the plaintext value σ = Dsk(c) is hidden, even given the random coins used
to sample c.3 Encryption schemes that have oblivious ciphertext sampling
or OCS procedures are known in the literature (see, e.g., [GKM+00,GR13]).

2. NIZK proof for Plaintext Value: Secondly, we require a NIZK proof for
a specific task, namely proving that a given ciphertext c = Epk(σ) is an
encryption of the bit σ (with respect to the public-key pk). Note that this
is indeed an NP task, since the secret key sk is a witness to the fact that
c is an encryption of σ.4 In particular, we require that the honest prover
strategy can be implemented efficiently given access to this witness (i.e., the
secret key sk).

With these two ingredients in hand we can describe the high-level strat-
egy for implementing the hidden-bits model. The idea is that the common ran-
dom string will contain N sequences ρ1, . . . , ρN of random coins for the OCS
procedure. Our NIZK prover chooses a public-key/secret-key pair (pk, sk) and
generates the ciphertexts c1, . . . , cN , where ci = Sample(pk; ρi) (i.e., an oblivi-
ously sampled ciphertext with respect to the public key pk and randomness ρi).
The prover further computes the corresponding plaintext bits σ1, . . . , σN , where
σi = Decsk(ci) (which it can compute efficiently, since it knows the secret key
sk). The prover now runs the hidden-bits prover with respect to the random bit
sequence (σ1, . . . , σN) and obtains in return a subset I ⊆ [N] of coordinates and
a proof-string π. To reveal the coordinates (σi)i∈I , we use the second ingredi-
ent: our NIZK proof for proving the plaintext value of the ciphertexts (ci)i∈I .
Intuitively, the OCS guarantee allows the other bits (σi)i/∈I to remain hidden.

2 Doubly enhanced trapdoor permutations were actually introduced in [Gol11] (with
the motivation of implementing the hidden-bits model). See further discussion in
[GR13,CL17].

3 In particular, the naive algorithm that chooses at random b ∈ {0, 1} and outputs
Epk(b) is not oblivious since its random coins fully reveal b.

4 For simplicity, we focus for now on schemes with perfect correctness.

6

Certifying Public Keys. An issue that we run into when trying to implement the
blueprint above is that a cheating prover may choose to specify a public key pk
that is not honestly generated. Given such a key, it is not clear a priori that the
prover cannot control the distribution of the hidden bits, or even equivocate by
being able to claim that a single ciphertext ci is both an encryption of the bit 0
and an encryption of the bit 1. This leads to actual attacks that entirely break
the soundness of the NIZK proof system.

A closely related issue actually affects the [FLS99] NIZK construction (based
on doubly enhanced trapdoor permutations) and was pointed out by Bellare
and Yung [BY96].5 More specifically, in the [FLS99] protocol the prover needs
to specify the index of a permutation (which is analogous to the public key in our
setting). However, [BY96] observed that if the prover specifies a function that
is not a permutation, then it can violate soundness. They resolved this issue by
constructing a NIZK proof system for proving that the index indeed specifies a
permutation.6

We follow the [BY96] approach by requiring conditions (1) and (2) above,
as well as a NIZK proof for certifying public keys. Thus, our NIZK prover also
supplies a NIZK proof that the public key that it provides is valid.

Instantiating our Approach with LWE So far the approach outlined is
basically the [FLS99] implementation of the hidden bits model (where we replace
the trapdoor permutations with a suitable encryption scheme). However, when
trying to instantiate it using LWE, we encounter significant technical challenges.

For our encryption scheme, we will use Regev’s [Reg09] scheme which uses
n-dimensional vectors over the integer ring Zq. The public key in this scheme
consists of (1) a matrix A ← Zn×mq , where m = Θ(n · log(q)), and (2) a vector

bT = sT · A + eT , where s ← Znq is the secret key, and e is drawn from an
n-dimensional discrete Gaussian.

To instantiate the approach outlined above we require three procedures: (1)
an oblivious ciphertext sampler (OCS), (2) a NIZK proof system for plaintext
values, and (3) a NIZK proof system for certifying public keys. We discuss these
three requirements in increasing order of complexity.

NIZK proof for Validating Public Keys. Recall that a public key in this encryp-
tion scheme is of the form (A,b) ∈ Zn×mq × Zmq , where bT = sT · A + eT for
error vector e ∈ Zmq drawn from a discrete Gaussian and in particular having
bounded entries (with all but negligible probability). To validate the public key
we shall construct a NIZK proof system that proves that for the input public key
(A,b), there exists a vector s ∈ Znq such that sT ·A is very close to bT .7

5 Further related issues were recently uncovered by Canetti and Lichtenberg [CL17].
6 Actually, the [BY96] protocol only certifies that the index specifies a function that

is close to a permutation (i.e., they provide a non-interactive zero-knowledge proof
of proximity, a notion recently formalized by Berman et al. [BRV17]) which suffices
in this context.

7 Actually, it is important for us to also establish that s is unique. We enforce this by
having the matrix A be specified as part of the CRS (rather than by the prover).

7

Producing such a NIZK proof system is where we need (for the first time)
our additional assumption that dBDD has a NIZK proof-system. Indeed, proving
that there exists s ∈ Znq such that sT ·A is very close to bT is a dBDD instance:
we must show that the distance of the vector b from the lattice spanned by the
rows of A is a lot smaller than the length of the shortest non-zero vector of this
lattice. We note that since the matrix A is random (it will part of the CRS),
we know that (with very high probability) the length of the shortest non-zero
vector is large.

NIZK proof for Plaintext Value. The second procedure that we need is a NIZK
proof-system that certifies that a given ciphertext encrypts a bit σ. To see how we
obtain this, we first need to recall the encryption procedure in Regev’s [Reg09]
scheme. To encrypt a bit σ ∈ {0, 1}, one selects at random r ← {0, 1}m and
outputs the ciphertext (c, ω), where c = A · r and ω = bT · r + σ ·

⌊
q
2

⌋
.

Thus, given an alleged public key (A,b) ∈ Zn×mq ×Zmq and ciphertext (c, ω) ∈
Znq ×Zq, we basically want to ensure that there exists a vector s ∈ Znq such that

bT ≈ sT ·A and ω + σ ·
⌊
q
2

⌋
≈ sT · c, where σ ∈ {0, 1} is the alleged plaintext

value. Put differently, we want to ensure that the vector
[
b,
(
ω + σ ·

⌊
q
2

⌋)]
is

close to the lattice spanned by the rows of [A, c]. Thus, this problem can also
be reduced to an instance of dBDD.

Oblivious Sampling of Ciphertexts. The last ingredient that we need is a proce-
dure for obliviously sampling ciphertexts in Regev’s encryption scheme. This is
the main technical challenge in our construction.

A first idea for such an OCS procedure is simply to generate a random pair
(c, ω), where c ← Znq and ω ← Zq. Intuitively, this pair corresponds to a high
noise encryption of a random bit. The problem though is precisely the fact that
(c, ω) is a high noise ciphertext. That is, sT · c−ω will be close to neither 0 nor
bq/2c. In particular, the above NIZK proof for certifying plaintext values only
works for low noise ciphertexts.

This issue turns out to be a key one which we do not know how to handle di-
rectly. Instead, we shall bypass it by introducing and considering a generalization
of OCS in which the (untrusted) prover is allowed to assist the verifier to perform
the sampling. We refer to this procedure (or rather protocol) as a prover-assisted
oblivious ciphertext sampler (POCS). Thus, a POCS is a protocol between a sam-
pler S, which is given the secret key (and will be run by the prover in our NIZK
proof), and a checker C which is given the public key (and will be run by the
verifier). The common input to the protocol is a random string ρ. The sampler
basically generates a sampled ciphertext c and sends it to the checker, who runs
some consistency checks. If the sampler behaves honestly and ρ is sampled ran-
domly, then the sampled ciphertext c should correspond to an encryption of a
random bit σ and the checker’s validation process should pass. Furthermore, the
protocol should satisfy the following (loosely stated) requirements:

Indeed, it is not too difficult to show that a lattice spanned by a random matrix A
does not have short vectors and therefore b cannot be close to two different lattice
points.

8

– (Computational) Hiding: The value σ = Decsk(c) is computationally hid-
den from the checker. That is, it is computationally infeasible to predict the
value of σ from c and pk, even given the random coins ρ.

– (Statistical) Binding: For any value of ρ there exists a unique value σ such
that for every (possibly cheating) sampler strategy S∗, with high probability
either the checker rejects or the generated ciphertext c corresponds to an
encryption of σ.

With some care, such a POCS procedure can replace the OCS procedure
(which did not use a prover) in our original outline. The key step therefore is
constructing a POCS procedure for Regev’s encryption scheme, which we de-
scribe next.

A POCS Procedure for Regev’s Encryption Scheme. Fix a public key (A,b) and
let s be the corresponding secret key. The random input string for our POCS
procedure consists of a vector ρ ∈ Znq and a value τ ∈ Zq. The pair (ρ, τ) should

be thought of as a (high noise) Regev encryption. Denote by e = τ − sT · ρ the
noise in this ciphertext.

As discussed above, since (ρ, τ) corresponds to a high noise ciphertext, we
cannot have the sampler just output it as is. Rather we will have the sampler
output a value τ ′ = sT · ρ + e′ + σ′ ·

⌊
q
2

⌋
, where e′ is drawn from the same

noise distribution as fresh encryptions (i.e., low noise), and the value of the
encrypted bit σ′ will be specified next. Observe that (ρ, τ ′) corresponds to a
fresh encryption of σ′, and so we will need to make sure that σ′ is random and
that the hiding and binding properties hold.

To do so, we will define σ′ as follows: If |e′ − e| ≤ q/4, then set σ′ = 0, and
otherwise set σ′ = 1. Observe that in either case it must be that∣∣∣e′ + σ′ ·

⌊q
2

⌋
− e
∣∣∣ ≤ q/4 . (1)

We would like our checker to enforce that Eq. (1) holds. Initially this seems
problematic since our checker has access to none of e, e′, and σ′. However, the
checker does have access to τ and τ ′, and it holds that:

|τ ′ − τ | =
∣∣∣sT · ρ + e′ + σ′ ·

⌊q
2

⌋
− sT · ρ− e

∣∣∣ =
∣∣∣e′ + σ′ ·

⌊q
2

⌋
− e
∣∣∣

and so we simply have our checker verify that |τ ′ − τ | ≤ q/4.
It is not too hard to see that σ′ is an unbiased bit in this construction.

Moreover, it is unbiased even conditioned on ρ (since its value is entirely unde-
termined until τ is chosen). Thus, the checker only sees a fresh encryption of a
random bit σ′ which, by the hardness of LWE, hides the value of σ′.

To see that the scheme is binding, observe that for most choices of ρ and τ the
(cheating) sampler cannot equivocate to two values τ ′ and τ ′′ which correspond
to different plaintext bits, as long as both have small noise. Hence, the sampler
cannot equivocate to two different valid ciphertexts. This concludes the overview
of our construction.

9

1.4 Organization

In Section 2 we provide definitions and notation used throughout this work
(defining in particular NIZK and the hidden bits model, as well as giving suf-
ficient background on lattices). In Section 3 we formalize our abstraction of
“prover-assisted oblivious ciphertext sampling” (POCS) and show that encryp-
tion schemes admitting such a procedure (as well as some specific NIZK proof
systems) imply NIZKs for NP. Finally, in Section 4 we show how to instantiate
the foregoing framework using LWE.

2 Preliminaries

We follow the notation and definitions as in [Gol01].
For a distribution µ, we use x ← µ to denote that x is sampled from the

distribution µ, and for a set S we use x ← S to denote that x is sampled

uniformly at random from the set S. We use X
c
≈ Y , X

s
≈ Y and X ≡ Y to

denote that the distributions X and Y are computationally indistinguishable,
statistically close and identically distributed, respectively (where in the case of
computational indistinguishability we actually refer to ensembles of distributions
parameterized by a security parameter).

2.1 Public-key Encryption with Public Randomness

For simplicity we restrict our attention to bit-encryption schemes (where mes-
sages consist of single bits). We will define a variant of public-key encryption in
which all algorithms, including the adversary, have access to some public ran-
domness. We emphasize that this public randomness is an additional input to
the key generation algorithm and is revealed also to the adversary. In addition
to the public randomness, the key generation algorithm is allowed to toss addi-
tional private random coins that are not revealed. To avoid cluttering notation,
we will assume that the public key includes the public randomness.

Definition 1 (Public-Key Encryption with Public Randomness). A public-
key encryption scheme with public randomness is a triple of PPT algorithms
(Gen,Enc,Dec) such that:

1. The key-generation algorithm Gen(1κ, ρpk) on input public randomness ρpk
(and while tossing additional private random coins) outputs a pair of keys
(pk, sk), where pk includes ρpk.

2. The encryption algorithm Enc(pk, σ), where σ ∈ {0, 1}, outputs a ciphertext
c. We denote this output by c = Encpk(σ).

3. The deterministic decryption algorithm Dec(sk, c) outputs a message σ′. We
denote this output by σ′ = Decsk(c).

We require that for every σ ∈ {0, 1}, except with negligible probability over the
public randomness ρpk, the keys (pk, sk) ← Gen(1κ, ρpk) and the randomness of
the encryption scheme, we have that Decsk(Encpk(σ)) = σ.

10

Semantic security [GM84] is defined as follows:

Definition 2 (Semantic Security with Public Randomness). A public-key
encryption scheme with public randomness is semantically secure if the distribu-
tions (pk, Epk(0)) and (pk, Epk(1)) are computationally indistinguishable, where
ρpk ← {0, 1}poly(κ) and (pk, sk)← Gen(1κ, ρpk).

Note that, clearly, any public-key encryption scheme is also a public-key
scheme with public randomness, where ρpk is null. Nevertheless, this notion will
be useful in our constructions.

2.2 Non-Interactive Zero-Knowledge Proofs

Non-interactive Zero-knowledge Proofs are a fundamental cryptographic primi-
tive introduced by Blum et al. [BFM88].

Definition 3 (NIZK). A non-interactive (computational) zero-knowledge proof
system (NIZK) for a language L is a pair of probabilistic polynomial-time algo-
rithms (P, V) such that:

– Completeness: For every x ∈ L and witness w for x, we have

Pr
R

[
V (x,R, P (x,R,w)) = 1

]
> 1− negl(|x|)

where R← {0, 1}poly(|x|). If the foregoing condition holds with probability 1,
then we say that the NIZK has perfect completeness.

– Soundness: For every x /∈ L and every (possibly inefficient) cheating prover
P ∗, we have

Pr
R

[
V (x,R, P ∗(x,R)) = 1

]
< negl(|x|)

where R← {0, 1}poly(|x|).
– Zero-Knowledge: There exists a probabilistic polynomial-time simulator S

such that the ensembles {(x,R, P (x,R,w))}x∈L and {S(x)}x∈L are compu-
tationally indistinguishable, where R← {0, 1}poly(|x|).

The random input R received by both P and V is referred to as the common
random string or CRS.

We extend the definition of NIZK to promise problems in the natural way.
We can further define a NIZK proof system with adaptive soundness by allow-

ing the cheating prover to specify the input x as well as the purported witness
w.

Definition 4 (Adaptive Soundness for NIZK). A NIZK proof system (P, V)
is adaptively sound if it satisfies the following property. For any κ ∈ N and any
(possibly inefficient) cheating prover P ∗ producing output (x,w) ∈ {0, 1}κ, we
have

Pr
R,

(x,w)←P∗(1κ,R)

[V (x,R,w) = 1 and x /∈ L] < negl(κ) .

Remark 1 (Achieving Adaptive Soundness). By standard amplification techniques,
any ordinary NIZK proof may be transformed into one which is adaptively sound
(see, e.g. [Gol01, Chapter 4]).

11

The Hidden Bits Model The hidden-bits model was introduced by Goldre-
ich [Gol01, Section 4.10.2] as an appealing abstraction of the NIZK proof system
of Feige, Lapidot and Shamir [FLS99].

Definition 5 (Hidden Bits Proof-System). A hidden-bits proof system for a
language L is a pair of PPT algorithms (P, V) such that the following conditions
hold:

– (Completeness) For all x ∈ L and witnesses w for x,

Pr[V (x,RI , I, π) = 1] > 1− negl(|x|) ,

where R is a uniformly random string of bits (of length poly(|x|)), (I, π)←
P (x,R,w) for I a subset of the indices of R, and RI is the substring of R
corresponding to the indices in I.

– (Soundness) For all x /∈ L and any computationally unbounded cheating
prover P ∗, we have

Pr[V (x,RI , I, π) = 1] < negl(|x|)

where R again is a uniformly random string of bits and (I, π)← P ∗(x,R).
– (Zero-knowledge) There exists a probabilistic polynomial-time simulator S

such that the ensembles {(x,RI , I, π)}x∈L and {S(x)}x∈L are computation-
ally indistinguishable, where R is a uniformly random string of bits and
(I, π)← P (x,R).

Feige et al. [FLS99] and Goldreich [Gol01] showed that every NP language
has a hidden-bits proof system unconditionally (where the hidden-bits string is
of polynomial length and the prover strategy is implemented efficiently given the
NP witness).

Lemma 1 (See [Gol01, Section 4.10.2]). For any language L ∈ NP, there
exists a zero-knowledge hidden-bits proof system for L. Moreover, the proof-
system has perfect completeness.

2.3 Lattices and Learning With Errors

In this section we give some basic definitions and lemmata about lattices and
the Learning With Errors (LWE) assumption.

Standard Notation. We let the elements of the ring Zq be identified with the
representatives

{
−
⌊
q
2

⌋
, . . . ,

⌈
q
2

⌉
− 1
}

.
We denote by [x, y] the concatenation of vectors or matrices. For example,

if x ∈ Znq and y ∈ Zq, then [x, y] is a vector in Zn+1
q , whose first n components

correspond to the n components of x and whose last component is y. Similarly, if

X ∈ Zn×mq and y ∈ Znq , then [X,y] is a matrix in Zn×(m+1)
q , whose last column

is y.

12

For x ∈ Zq, we denote by |x| the value in
[
0,
⌊
q
2

⌋]
such that |x| = x if x < q/2

and |x| = q − x otherwise. Namely, |x| is the distance from 0 in Zq. Similarly,

for x ∈ Znq we denote by ‖x‖ the `2 norm, namely ‖x‖ =

√∑
|xi|2, where xi

are the coordinates of x and |·| is as defined above.
Lastly, we denote by b·eq : Zq → {0, 1} the function:

bxeq =

{
0 if x ∈ [−bq/4c , dq/4e]
1 otherwise

.

Lattices A lattice Λ is an additive subgroup of Zm. Every lattice is finitely
generated as all integer linear combinations of a set of linearly independent row
vectors8 B. We call this set a basis for the lattice and its cardinality the rank of
the lattice. We denote by Λ(A) the lattice that is generated by the rows of A
(which might or might not be a basis) and by B(A) a basis of the lattice Λ(A).
We denote by λ1(Λ) the length of the shortest nonzero lattice vector:

λ1(Λ) = min
x∈Λ\{0}

‖x‖ .

We note the following standard lemma about lattice bases.

Lemma 2. Let A ∈ Zn×m with m ≥ n, there is an efficient algorithm to com-
pute B(A). Namely, given a generating set of a lattice, we can efficiently compute
a basis for the same lattice.

A special family of lattices with numerous applications in cryptographic is
the family of q-ary lattices.

Definition 6. A lattice Λ is called a q-ary lattice if qZm ⊆ Λ. Equivalently, Λ
is q-ary if x ∈ Λ if and only if (x mod q) ∈ Λ.

We denote a q-ary lattice by Λq. More specifically, if A ∈ Zn×mq then we
denote by Λq(A) the lattice:

Λq(A) = {y ∈ Zm : ∃s ∈ Znq s.t. yT = sTA}+ qZm.

Decisional Bounded Distance Decoding Problem We define some well-
studied lattice problems as well as the decisional Bounded Distance Decoding
(dBDD) variant which we use extensively in this work. We also present a reduc-
tion from dBDD to the GapSVP problem, showing that dBDD is (up to polyno-
mial loss in the parameters) at most as hard as GapSVP.

Definition 7. For a given parameter γ > 1, the promise problem GapSVPγ =
(YES,NO) with input a basis B ∈ Zn×m and parameter r > 0 is defined as:

8 In the literature, typically B is defined as a set of column vectors. However, for our
applications it is more convenient to use row vectors.

13

– (B, r) ∈ YES if λ1(Λ(B)) < r, and
– (B, r) ∈ NO if λ1(Λ(B)) > γr.

Definition 8. For a given parameter α ≥ 1, the promise search problem BDDα
with input a basis B ∈ Zn×m, a target vector t ∈ Rm such that dist(Λ(B), t) <
λ1(B)
α outputs a lattice vector v ∈ Λ(B) such that ‖t− v‖ = dist(Λ(B), t).

We define a decisional version of the BDDα problem.

Definition 9. For two given parameters α ≥ 1 and γ > 1, the promise problem
dBDDα,γ = (YES,NO) with input a basis B ∈ Zn×m and a target vector t ∈ Rm
is defined as:

– (B, t) ∈ YES if dist(t, Λ(B)) ≤ λ1(Λ(B))
α ; and

– (B, t) ∈ NO if dist(t, Λ(B)) > γ · λ1(Λ(B))
α .

In order to establish the complexity of the dBDD problem, we show that it
is at most as hard as the well studied lattice problem GapSVP.

Proposition 1. The problem dBDDα,γ is Cook-reducible to GapSVPmin(
√
γ,α/2)

where γ and α are polynomially-bounded.

Proof. Let (B, t) be an input of dBDDα,γ . First, using binary search and a

GapSVP√γ oracle, we compute an r such that λ1(B)√
γ ≤ r ≤

√
γ · λ1(B).

From [LM09], BDDα is reducible to GapSVPα/2 with α polynomially-bounded.
Therefore, the GapSVPα/2 oracle returns an alleged closest vector v to t. If
v ∈ Λ(B) and ‖t− v‖ ≤ √γ · rα , we output 1. Else, we output 0.

Indeed, if dBDDα,γ(B, t) ∈ YES, then there is a vector v ∈ Λ(B) such that

‖t− v‖ ≤ λ1(B)
α ≤ √γ · rα and GapSVPα/2 returns this vector. On the other

hand, if dBDDα,γ(B, t) ∈ NO, then for every vector v ∈ Λ(B) it holds that

‖t− v‖ > γ · λ1(B)
α ≥ √γ · rα , so there is no vector v for which we output 1.

We remark that even though there is a reduction from dBDD to GapSVP,
a NIZK proof system for GapSVP does not automatically imply a NIZK proof
system for dBDD since it is a Cook reduction (rather than a Karp reduction).
In particular, we do not know if a NIZK for GapSVP implies a NIZK for dBDD.

Learning with Errors We proceed to define the main cryptographic assump-
tion we use: Learning With Errors (LWE). First, we define the (one-dimensional)
discrete Gaussian distribution:

Definition 10. For q ∈ N \ {0} and parameter β > 0, the discrete Gaussian
probability distribution χβ is simply the Gaussian distribution restricted to Zq:

χβ(x) ∝
{

exp(−π|x|2/(βq)2) if x ∈ [−bq/2c , dq/2e] ∩ Z
0 otherwise

14

With the definition of the Discrete Gaussian distribution in hand, we are
ready to define LWE:

Definition 11. The (Decisional) Learning With Error (LWE) assumption with pa-
rameters n, q, β, denoted by LWEn,q,β, states that:

(A,b)
c
≈ (A, r)

where A← Zn×mq with m = poly(n, log(q)), bT = sTA + eT , s← Znq , e← χmβ
and r← Zmq .

We utilize the fact that if A ← Zn×mq with m large enough, then there is a

unique s such that bT ≈ sTA. The proof of this fact follows from bounding the
shortest vector in the lattice and observing that if s1, s2 are such that sT1 A ≈
sT2 A, then (sT1 − sT2)A ≈ 0. The following lemma can be shown by a standard
argument with a union bound over all nonzero vectors s ∈ Znq .

Lemma 3. Let n, q ∈ N, and m ≥ 2n log(q). Then

Pr
A←Zn×m

q

[
λ1(Λq(A)) ≤ q/4

]
≤ q−n .

3 From Prover-Assisted Oblivious Sampling to NIZKs

In this section we introduce the abstraction of a prover-assisted procedure for
oblivious ciphertext sampling (POCS) for a public-key encryption scheme (as
outlined in the introduction), and show how to combine this notion with NIZK
proofs of the validity of public keys and plaintext values to obtain NIZK proofs
for any NP language.

3.1 Definitions: Valid Public Keys, Ciphertexts and POCS

The first definition we consider is the notion of a valid set PK of public keys.
Intuitively, we would like this set to correspond precisely to public keys in the
support of the key-generation algorithm. However, due to specifics of our instan-
tiation with LWE, we need to be more lenient and allow public keys that are
not quite in the support of the key-generation algorithm but are nevertheless
sufficiently well-formed (e.g., keys with a higher level noise).

Loosely speaking, a valid public key pk is associated with two sets C
(0)
pk

and C
(1)
pk , which correspond to “valid” ciphertexts with respect to that key of

messages 0 and 1, respectively. We first require that honestly sampled public
keys be valid. We further require that for all valid public keys (i.e., even those

not in the support of the key generation algorithm), the associated sets C
(0)
pk and

C
(1)
pk are disjoint (i.e. no ciphertext is a valid encryption both of 0 and of 1).9

9 Note that in the actual definition we only require the latter to hold with high proba-
bility over the choice of the public randomness for every valid public key. The notion
of encryption schemes with public randomness is discussed in Section 2.1.

15

Definition 12 (Valid Public Keys). Let (Gen,Enc,Dec) be a public-key en-
cryption scheme with public randomness. For a given security parameter κ,
let VPK = (VPKκ)κ∈N be an ensemble of sets, where for each κ ∈ N, each

pk ∈ VPKκ is associated with a pair of sets
(
C

(0)
pk , C

(1)
pk

)
and public randomness

ρpk. We say that VPK is valid if it satisfies the following properties.

1. For all (pk, sk) ∈ Gen(1κ, ·), we have pk ∈ VPKκ.

2. For every b ∈ {0, 1} we have that cb ∈ C(b)
pk with all but negligible probability

over the choice of public randomness ρpk, keys (pk, sk) ← Gen(1κ, ρpk), and
ciphertext cb ← Encpk(b).

3. With all but negligible probability over the public randomness ρpk, for all

pk ∈ VPKκ with public randomness ρpk, it holds that C
(0)
pk ∩ C

(1)
pk = ∅.

We next formalize the notion of a prover-assisted oblivious ciphertext sampler
(POCS). This is an extension of oblivious ciphertext samplers (OCS), which (to
the best of our knowledge) were introduced by Gertner et al. [GKM+00]. An OCS
procedure allows one to sample a ciphertext so that the underlying plaintext
remains hidden. In this work we introduce a relaxation of this notion in which
the sampling is assisted by an untrusted prover.

More specifically, a POCS protocol consists of two procedures, a sampler and
a checker, which both have access to a shared random string ρ. The sampler also
receives as input the secret-key of the scheme and generates a ciphertext c. The
checker receives c, as well as the random string ρ and the public-key (but not
the secret-key) and performs a test to ensure that c encodes an unbiased bit
depending on the randomness ρ. Jumping ahead, we remark that the role of the
sampler is played by the prover in our NIZK, whereas the role of the checker is
played by the verifier.

We require that the POCS procedure satisfy the following loosely stated
properties:

1. For honestly sampled ciphertexts c, the checker should accept with over-
whelming probability.

2. Given pk, ρ and an honestly sampled ciphertext c, the corresponding plain-
text bit Decsk(c) is computationally hidden.

3. For a given random string ρ, except with a small probability there should
not exist both an encryption c0 of 0 and an encryption c1 of 1 that pass the
checker’s test. Thus, for any given ciphertext (even a maliciously generated
one) that passes the test, the corresponding plaintext bit is almost always
fully determined.

4. The sampled plaintext bit should be (close to) unbiased. The latter should
hold even with respect to a malicious sampler. In our actual instantiation
of POCS (via LWE, see Section 4), the plaintext bit will have a small but
noticeable (i.e., inverse polynomial) bias. Thus, our definition of POCS leaves
the bias as a parameter, which we denote by ε.

5. The procedure satisfies the following “zero-knowledge like” simulation prop-
erty: given only the public-key pk and plaintext bit σ, it should be possible

16

to generate the distribution (ρ, c) of the sampling procedure, conditioned on
Decsk(c) = σ. This property is captured by the EncryptAndExplain proce-
dure below. In our actual formalization we only require that this property
holds in a computational sense (i.e., the simulated distribution should only
be computationally indistinguishable from the actual sampling procedure).
While a statistical requirement may seem like a more natural choice here,
we use a computational notion due to a technical consideration in the LWE
instantiation. See Section 4.3 for details.

We proceed to the formal definition of a POCS encryption scheme.

Definition 13 (Prover-assisted Oblivious Ciphertext Sampler (POCS)).
For a parameter ε = ε(κ) ∈ [0, 1], a (1 − ε(κ))-binding prover-assisted oblivious
ciphertext sampler (POCS), with respect to a valid set of public keys VPK =
{VPKκ}κ∈N for an encryption scheme (Gen,Enc,Dec) with public randomness,
is a triple of PPT algorithms Sample, Check, and EncryptAndExplain satisfying
the following properties:

– Complete:

Pr
ρpk,ρ←{0,1}poly(κ)

(pk,sk)←Gen(1κ,ρpk)

[
Check

(
pk, ρ,Sample(sk, ρ)

)
= 1
]
> 1− negl(κ).

– Unbiased: For any κ ∈ N, pk ∈ VPKκ and any b ∈ {0, 1}, we have that:

Pr
ρ←{0,1}poly(κ)

[
∃c ∈ C(b)

pk such that Check(pk, ρ, c) = 1
]
≥ 1/2− negl(κ).

– Statistically binding: With probability 1−negl(κ) over the public random-
ness ρpk, we have for all pk ∈ VPKκ with public randomness ρpk that

Pr
ρ←{0,1}poly(κ)

[
∃c0 ∈ C(0)

pk , c1 ∈ C
(1)
pk s.t.

Check(pk, ρ, c0) = 1 and

Check(pk, ρ, c1) = 1

]
< ε(κ).

We emphasize that ε(κ) is a parameter and is not necessarily negligible.
– Simulatable: For every N = poly(κ) it holds that:(

pk, (ρi)
N
i=1, (ci)

N
i=1, (σi)

N
i=1

)
c
≈
(
pk, (ρ′i)

N
i=1, (c

′
i)
N
i=1, (σ

′
i)
N
i=1

)
,

where ρpk ← {0, 1}poly(κ), (pk, sk) ← Gen(1κ, ρpk), and for every i ∈ [N],
it holds that ρi ← {0, 1}poly(κ), ci ← Sample(sk, ρi), and σi = Decsk(ci),
σ′i ← {0, 1} and (ρ′i, c

′
i)← EncryptAndExplain(pk, σ′).

– Computationally hiding: Let ρpk, ρ← {0, 1}poly(κ), (pk, sk)← Gen(1κ, ρpk),
and c ← Sample(sk, ρ). Then, for all probabilistic polynomial-time adver-
saries A,

Pr
[
A(pk, ρ, c) = Decsk(c)

]
≤ 1

2
+ negl(κ).

17

Remark 2 (Relaxing the Hiding Property). We remark that for our construc-
tion of NIZK a weaker hiding property suffices, in which the adversary is only
given the random string ρ (but not the ciphertext c). Although this definition is
strictly weaker, we find it less natural and choose to define the hiding property
as specified above.

We next prove two useful propositions showing that the computational hid-
ing property of the POCS implies a hiding property resembling semantic secu-
rity for the EncryptAndExplain sampling algorithm. Specifically, we show that
the encrypted bit remains hidden given both the ciphertext and the explaining
randomness produced by the EncryptAndExplain algorithm. The intuition is anal-
ogous to the usage of the double enhancement property of trapdoor permutations
in the construction of NIZKs (see, e.g., [GR13]).

Proposition 2. Suppose (Gen,Enc,Dec) has a (1−ε)-binding POCS with respect
to an ensemble of valid public keys VPK. Then, for all probabilistic polynomial-
time adversaries A,

Pr
[
A(pk, ρ, c) = σ

]
≤ 1

2
+ negl(κ),

where ρpk, ρ ← {0, 1}poly(κ), (pk, sk) ← Gen(1κ, ρpk), σ ∈ {0, 1}, and (ρ, c) ←
EncryptAndExplain(pk, σ).

Proof. This follows immediately from the simulatable and computationally hid-
ing properties of the POCS.

Proposition 3. Suppose (Gen,Enc,Dec) has a (1−ε)-binding POCS with respect
to an ensemble of public keys VPK. It holds that

(pk, ρ0, c0)
c
≈ (pk, ρ1, c1),

where the public randomness ρpk ← {0, 1}poly(κ), the keys (pk, sk)← Gen(1κ, ρpk),
(ρ0, c0)← EncryptAndExplain(pk, 0) and (ρ1, c1)← EncryptAndExplain(pk, 1).

Proof. This follows from Proposition 2 by a standard argument, similar to the
equivalence of semantic security and indistinguishability of encryptions (see, e.g.
[Gol04]).

We now define two promise problems for which we will later assume the
existence of suitable NIZKs. The first problem that we consider is that of distin-
guishing public keys which are in the support of the key-generation algorithm
(i.e., were honestly generated) from ones which are invalid (i.e., not in the set of
valid public keys).

Let (Gen,Enc,Dec) be a public-key encryption scheme and let us denote by
VPK an ensemble of valid public-keys. We define the promise problem GoodPK =
(GoodPKYes,GoodPKNo) where:

GoodPKYes =
{
pk : pk ∈

⋃
κ

Gen(1κ)
}

GoodPKNo =
{
pk : pk /∈

⋃
κ

VPKκ
}
.

18

We also define a related promise problem GoodCT, which corresponds to
triplets containing a public key, ciphertext and a single-bit message. Formally,
the problem is defined as GoodCT = (GoodCTYes,GoodCTNo), where:

GoodCTYes =
{

(pk, c, b) : pk ∈
⋃
κ

Gen(1κ) and c ∈ Encpk(b)
}

GoodCTNo =
{

(pk, c, b) : pk ∈
⋃
κ

VPKκ and c /∈ C(b)
pk

}
.

3.2 From POCS to NIZK

In this section we state and prove our transformation of encryption schemes that
support POCS and suitable NIZKs for GoodPK and GoodCT, to general purpose
NIZKs for NP. This is captured by the following lemma:

Lemma 4. Let (Gen,Enc,Dec) be a public-key encryption scheme with public
randomness, and VPK be a valid set of public keys (as in Definition 12). Suppose
the following conditions hold.

– (Gen,Enc,Dec) has a (1 − ε)-binding POCS with respect to VPK, for some
sufficiently small ε = 1/poly(κ).

– There is a NIZK for GoodPK.
– There is a NIZK for GoodCT.

Then, there exists a NIZK for every language L ∈ NP.

Proof. Let L ∈ NP. By Lemma 1, there exists a hidden-bits zero knowledge
proof system (Phb, Vhb) for L (with perfect completeness). We shall use this
proof-system to construct a NIZK for L, using the assumptions in the theorem’s
statement.

We first give a proof system satisfying a weak notion of soundness. Specifi-
cally, we shall weaken soundness by assuming that the cheating prover is con-
strained to choose a public-key pk before reading the CRS. To be more precise,
since the public randomness of the pk comes from the CRS, the prover must
choose the public key pk before reading any other part of the CRS. Also, the
verifier is only required to reject inputs x /∈ L only with inverse polynomial
probability (rather than with all but negligible probability). Using standard am-
plification techniques, we will subsequently transform this into a full-fledged
NIZK (achieving the standard notion of soundness).

We assume without loss of generality that the NIZK proof systems that we
have for GoodPK and GoodCT have adaptive soundness (see Remark 1). Our
base NIZK protocol, achieving only the aforementioned weak soundness notion,
is given in Protocol 1.

Protocol 1 Let L ∈ NP. Let (Ppk, Vpk) and (Pct, Vct) be adaptively sound NIZK
proof systems for the promise problems GoodPK and GoodCT, respectively, and
let (Phb, Vhb) be a hidden-bits proof system for L that uses N = N(n) hidden bits
for inputs of length n ∈ N. Consider the following non-interactive proof system.

19

– Input x ∈ {0, 1}n.
– Common random string ρ = (ρpk, rpk, ρ1, . . . , ρN , r1, . . . , rN).
– Prover’s witness w ∈ {0, 1}poly(n).
– Prover P , given x, w and ρ, performs the following:

1. Let (pk, sk)← Gen(1n, ρpk).
2. Let πpk ← Ppk(pk, rpk, sk).
3. For i ∈ [N], let ci ← Sample(sk, ρi) and let bi = Decsk(ci).

10

4. Let (I, πhb)← Phb(x, (b1, . . . , bm), w).
5. For i ∈ I, let πi ← Pct((pk, ci, bi), ri, sk).
6. Let cI = (ci)i∈I , bI = (bi)i∈I , πI = (πi)i∈I .
7. Output π = (pk, I, πpk, πhb, cI , bI , πI).

– Verifier V performs the following:
1. Verify NIZK proofs by running Vpk(pk, rpk, πpk) and Vct((pk, ci, bi), ri, πi)

for every i ∈ I. Reject if any of these tests rejects.
2. Check that Check(pk, ρi, ci) = 1 for every i ∈ I. Reject if any of these

checks fail.
3. Invoke Vhb(x, bI , I, πhb), and accept if and only if it accepts.

Observe that both the verifier and prover are PPT algorithms. Thus, to show
that Protocol 1 is a (weak) NIZK, we need to establish completeness, (weak)
soundness and zero-knowledge.

Completeness. From the completeness of the NIZKs (Ppk, Vpk) and (Pct, Vct), we
have that the verifiers Vpk and Vct (for each i ∈ [N]) accept with all but negligible
probability. By the completeness property of the POCS, we have that with all
but negligible probability, the verifier’s invocation of Check outputs 1 for each
i ∈ I.

By the perfect completeness of the hidden-bits proof system, verifier Vhb
accepts for x ∈ L.11 Consequently, with probability 1−negl(n), all of the verifier’s
tests pass for x ∈ L and a proof produced by the honest prover.

Zero-Knowledge. We first define the simulator S. Let Shb be the simulator for
the hidden bits proof-system (Phb, Vhb), let Spk be the simulator for the NIZK
(Ppk, Vpk), and let Sct be the simulator for the NIZK (Pct, Vct). On input x ∈
{0, 1}n, simulator S performs the following.

1. Sample public randomness ρpk, and let (pk, sk)← Gen(1n, ρpk).
2. Sample (πpk, rpk) ← Spk(pk) (recall that πpk is the simulated proof string

and rpk is the simulated CRS).
3. Sample (I, πhb, bI) ← Shb(x), where bI = (bi)i∈I . Set bi = 0 for every i ∈

[N] \ I.

10 Jumping ahead, we note that for our final NIZK protocol, achieving standard sound-
ness, we will need to repeat steps 3–6 for ` = poly(κ) times for the same pk to
amplify soundness.

11 Here we are utilizing the fact that the hidden-bits proof-system has perfect complete-
ness to save us the effort of arguing that the hidden bits are indeed (sufficiently)
unbiased.

20

4. For i ∈ [N], sample (ρi, ci)← EncryptAndExplain(pk, bi).
5. For i ∈ I, sample (πi, ri)← Sct(pk, ci, bi).
6. For i ∈ [N] \ I, let ri ← {0, 1}poly(n).
7. Let cI = (ci)i∈I , πI = (πi)i∈I
8. Output simulated proof π = (pk, I, πpk, πhb, cI , bI , πI) and simulated common

random string ρ = (ρpk, rpk, ρ1, . . . , ρN , r1, . . . , rN).

Due to lack of space, we defer the proof of indistinguishability of the real and
simulated distributions to the full version [RSS18].

Weak soundness. We first prove a weak notion of soundness with respect to
provers that are constrained to choose the public key pk before reading the CRS,
other than the public randomness for generating the public-key. Subsequently
we will apply an amplification argument to achieve full soundness.

Let us fix x /∈ L and a cheating prover P ∗, and let us sample a CRS ρ =
(ρpk, rpk, ρ1, . . . , ρN , r1, . . . , rN). Let π = (pk, I, πpk, πhb, cI , bI , πI) be the proof
produced by P ∗ on input ρ, where P ∗ is first given only ρpk and produces pk,
and subsequently is given the full CRS ρ and produces the rest of the proof π.
By the adaptive soundness of the NIZKs (Ppk, Vpk) and (Pct, Vct), unless pk ∈
VPK and ci ∈ C

(bi)
pk for each i ∈ I, the verifier V will reject with all-but-

negligible probability. Additionally, with all-but-negligible probability, the public
randomness ρpk in the CRS is such that the statistical binding property of the
POCS holds. In the sequel we condition on these events occurring.

For a given valid public key pk ∈ VPK and σ ∈ {0, 1}, define U
(σ)
pk to be the

set of randomnesses ρ (for the POCS procedure) that correspond to a ciphertext

c ∈ C(σ)
pk but no ciphertext in C

(1−σ)
pk . That is,

U
(σ)
pk =

{
ρ ∈ {0, 1}poly(κ) : ∃c ∈ C(σ)

pk s.t. Check(pk, ρ, c) = 1 and ∀c′ ∈ C(1−σ)
pk ,Check(pk, ρ, c′) = 0

}
.

The set U
(σ)
pk consists of randomness that can be uniquely interpreted as an

encryption of σ and not of 1 − σ. Consequently, we have that U
(0)
pk ∩ U

(1)
pk = ∅.

By the unbiased and stastically binding properties of the POCS, we have that

Pr
ρ

[
ρ ∈ U (σ)

pk

]
≥ 1/2− ε− negl(κ),

where ε = ε(κ) is the binding parameter of the POCS.

Note that U
(0)
pk ∩U

(1)
pk = ∅. Arbitrarily fix a set Upk consisting half of elements

of U
(0)
pk and half of elements of U

(1)
pk such that

Pr
ρ

[ρ ∈ Upk] ≥ 1− 2ε− negl(κ).

Recall that we first constrain the prover to choosing pk before reading any
part of the CRS other than the public randomness ρpk. Let Upk be the set defined
above. Then, with probability 1 − 2εN the strings ρ1, . . . , ρN are all in Upk.

21

Conditioning on this event, we have that the sequence b1, . . . , bN is unbiased and
uniquely determined by ρ1, . . . , ρN . Consequently, by the soundness of the hidden
bits proof system (Phb, Vhb) we have that with all but negligible probability, in
this event Vhb will reject since x /∈ L. Therefore, it follows that the verifier V will
reject with probability at least 1−2εN −negl(n), which is at least 1/3−negl(n)
for ε = 1/N2.

Amplification. We now transform Protocol 1 into a protocol with full soundness.

We modify Protocol 1 as follows. After choosing the public key pk, the prover
runs steps 3–6 of Protocol 1 ` = poly(n) times on different portions of the CRS,
generating ` independently sampled (I, πhb, CI , bI , πI). The verifier checks each
of these separately, rejecting if any test fails.

Completeness and zero-knowledge of the new protocol follow immediately
from the same argument as before. It remains to prove (full-fledged) soundness.
As before, we have that the verifier will reject with probability 1−negl(n) unless
pk ∈ VPK and the public randomness ρpk in the CRS satisfies the statistical
binding property of the POCS, so we can condition on these events. For a fixed
pk, we have from the soundness of Protocol 1 that on a single iteration of steps
3–6, the verifier will reject with probability at least 1/3−negl(n) on x /∈ L. Since
the public key pk has polynomial size, applying a union bound over public keys,
we can take ` = poly(n) sufficiently large that with probability 1− negl(n), the
verifier will reject for every public key.12 Consequently soundness holds in the
amplified protocol.

4 Instantiating with LWE

In this section we show that, assuming the hardness of LWE and the existence of
a NIZK proof system for dBDD, Regev’s [Reg09] LWE-based encryption scheme
satisfies the conditions of Lemma 4 and therefore yields NIZK proof-systems for
all of NP:

Theorem 2. Let κ be the security parameter. Let n = n(κ) ∈ N, q = q(κ) ∈ N,
β = β(κ), α = α(κ) ≥ 1 and γ = γ(κ) > 1, such that n = poly(κ) and

β = o

(
1

log(κ)max(α,γ)
√
n log(q)

)
. Assume that the following conditions hold:

– The LWEn,q,β assumption holds; and

– There exists a NIZK proof system for dBDDα,γ .

Then, there exists a NIZK proof system for every language L ∈ NP.

12 The argument here resembles the standard argument for obtaining adaptively sound
NIZKs from NIZKs that only have non-adaptive soundness.

22

Section Organization. In Section 4.1, we present Regev’s [Reg09] encryption
scheme. In Section 4.2, we present the NIZK proof systems for certifying public
keys and plaintext values for this encryption scheme (based on the NIZK proof
system for dBDD in the hypothesis of Theorem 2). In Section 4.3, we show that
Regev’s encryption has a POCS procedure. Finally, in Section 4.4, we use the
tools developed in the prior subsections to prove Theorem 2.

4.1 Regev’s Encryption Scheme

A public-key encryption scheme based on the LWE assumption was introduced
in [Reg09]. We present the scheme of [Reg09], phrased as an encryption scheme
with public randomness in the sense of Definition 1.

Construction 5 Let κ be the security parameter. Let n = n(κ) ∈ N, q = q(κ) ∈
N, m = 2n log(q), β = β(κ) ∈ [0, 1] such that n = poly(κ) and β = o(1/

√
m). We

define the encryption scheme (Gen,Enc,Dec) with public randomness as follows:

– Public Randomness: The public randomness is a matrix A← Zn×mq . We
assume without loss of generality that λ1(A) > q/4 13.

– Key Generation Gen(1κ,A): Sample s ← Znq \ {0}, and e ← χmβ , where

χβ is a discrete Gaussian with parameter β (see Definition 10). Let bT =
sT · A + eT . We assume without loss of generality that

∥∥sT ·A− bT
∥∥ =∥∥eT∥∥ ≤ `

√
mβq, where ` = ω(log(κ))14. Set the public key to be (A,b) and

the secret key to be s.
– Encryption Enc(A,b) (σ): On input a message σ ∈ {0, 1}, sample r ←
{0, 1}m and output (c, ω), where c = A · r and ω = bT · r + σ ·

⌊
q
2

⌋
. We

assume without loss of generality15 that∥∥∥∥sT · [A, c]−
[
b,
(
ω − σ ·

⌊q
2

⌋)]T∥∥∥∥ ≤ 2`
√
mβq,

where ` = ω(log(κ)).
– Decryption Decs

(
(c, ω)

)
: Output σ =

⌊
sT · c− ω

⌉
q
.

Regev [Reg09] proved that the above scheme is semantically secure (under
the LWE assumption).

Proposition 4 (c.f. [Reg09]). Let n = n(κ) ∈ N, q = q(κ) ∈ N and β =
β(κ) ∈ [0, 1] such that β = o(1/

√
m) and n = poly(κ). If the LWEn,q,β assump-

tion holds, then Construction 5 is semantically secure.

13 From Lemma 3 this happens with overwhelming probability.
14 Since the complementary event happens with negligible probability in κ, in case it

does happen we choose the public-keys to have zero noise.
15 Again, the complementary event happens with negligible probability, in which case

we can output a ciphertext with zero noise.

23

In order to use the results of Section 3, we need to show that Construction 5
admits a POCS procedure. As our first step, we define a valid set of public keys.
Later, we shall show NIZK proofs for the related promise problems GoodPK and
GoodCT as well as a POCS procedure for Construction 5.

Fix a security parameter κ. Let n = poly(κ), q = q(κ), and β = β(κ) be
parameters and set m = 2n log(q). In the sequel, we omit κ from the notation
to avoid cluttering. In addition, we set ` = ω(log(κ)), emax = `

√
mβq, 1 ≤ α <

q
8emax

and γ > 1. We assume that the following hold:

– β < 1
16`γ

√
m

;

– the LWEn,q,β assumption holds; and
– there exists a NIZK proof system for dBDDα,γ/4.

Now, we define a set (of alleged public keys) VPK for (Gen,Enc,Dec). Later
we will argue that it is in fact a valid set of public keys as per Definition 12. Let

VPK =
{

(A,b) ∈ Zn×mq × Zmq : ∃ s ∈ Znq s.t.
∥∥sT ·A− bT

∥∥ ≤ γemax

}
. (2)

We note that the noise level allowed in Eq. (2) is larger by a multiplicative
γ factor than the noise level that exists in honestly generated public keys.

For each pk = (A,b) ∈ VPK and σ ∈ {0, 1}, define C
(σ)
pk ⊆ Znq × Zq as:

C
(σ)
pk =

{
(c, ω) : ∃ s′ ∈ Znq s.t.

∥∥∥∥s′T · [A, c]−
[
b,
(
ω − σ ·

⌊q
2

⌋)]T∥∥∥∥ ≤ 2γemax

}
(3)

The noise level allowed in Eq. (3) is also larger by a multiplicative γ factor
than the noise level that exists in honestly generated ciphertexts.

Remark 3. As noted in the introduction, we would like for VPK to contain

only the honestly generated public keys and C
(σ)
pk to contain only the honestly

generated encryptions of σ with respect to pk. However, introducing a gap in
the definitions allows us to rely on NIZKs for suitable approximation problems.

We conclude this section by showing that VPK is indeed a valid set of public
keys.

Proposition 5. The set VPK is a valid set of public keys.

Due to lack of space, we defer the proof to the full version [RSS18].

4.2 NIZKs for Validating Keys and Ciphertexts

Now that we have defined a valid set of public keys VPK, we prove that Con-
struction 5 satisfies the conditions of Lemma 4. To do so we assume the existence
of a NIZK proof system for dBDD. Using this NIZK, we obtain NIZK proof sys-
tems for the promise problems GoodPK and GoodCT (with respect to VPK).

24

Lemma 6. Assume there exists a NIZK proof system for dBDDα,γ/4. Then,
there exists a NIZK proof system for the promise problem GoodPK (with respect
to VPK).

Lemma 7. Assume there exists a NIZK proof system for dBDDα,γ/4. Then,
there exists a NIZK proof system for the promise problem GoodCT (with respect
to VPK).

We defer the proofs of Lemmas 6 and 7 to Appendices ?? and ??.

4.3 A POCS Procedure for Regev’s Scheme

The last and most challenging condition that we need is to prove that Construc-
tion 5 has a POCS procedure.

Lemma 8. Construction 5 has a (1 − 4γ`
√
mβ)-binding POCS procedure with

respect to VPK.

The rest of Section 4.3 is devoted to the proof of Lemma 8.

Proof (Proof of Lemma 8).
For technical convenience and simplicity, we assume for now that q ≡ 2

(mod 4). The case that q 6≡ 2 (mod 4) adds some mild complications in order to
avoid introducing a small, but noticeable bias (i.e., roughly 1/q) in the obliviously
sampled bits. We describe how to extend our approach to general q in the full
version [RSS18].16

Let us first describe the algorithms Sample and Check. The Sample algorithm
takes as input a secret key sk = s and randomness (ρ, τ) ∈ Znq ×Zq, and outputs
a ciphertext.

The algorithm Sample transforms a high noise ciphertext (ρ, τ) into a valid
Regev’s ciphertext under the secret key s.

Sample
(
s, (ρ, τ)

)
:

1. Sample e← χ√mβ . Let ω0 = sT · ρ + e and ω1 = ω0 +
⌊
q
2

⌋
.

2. If |τ − ω0| < |τ − ω1|, set σ = 0. Otherwise, set σ = 1.
3. Output (ρ, ωσ), which is a valid ciphertext for the message σ.

The Check algorithm takes as input a public key pk = (A,b), randomness
(ρ, τ) ∈ Znq × Zq, and an alleged ciphertext (ρ′, ω′) ∈ Znq × Zq, and outputs a
single bit denoting acceptance or rejection.

Check
(
pk, (ρ, τ), (ρ′, ω′)

)
:

If ρ′ = ρ and |ω′ − τ | ≤ q
4 , accept. Otherwise, reject.

16 Alternatively, we could reduce the bias to be negligible using Von Neumann’s trick
[VN61] for transforming a biased source to an almost unbiased source.

25

Finally, we describe the EncryptAndExplain algorithm, which takes as input a
public key pk = (A,b) and a message σ ∈ {0, 1} and produces randomness and
a ciphertext that are close to the distribution induced by Sample.

EncryptAndExplain
(
(A,b), σ

)
:

1. Sample r ← {0, 1}m. Compute ρ′ = A · r and ω′ = bT · r + σ ·
⌊
q
2

⌋
. Note

that (ρ′, ω′) is a fresh encryption of σ.
2. Sample τ ′ ← Zq subject to |τ ′ − ω′| < q

4 .
3. Output

(
(ρ′, τ ′), (ρ′, ω′)

)
.

We now show that these algorithms satisfy each of the conditions of Definition
13.

Complete. Let (ρ, τ)← Znq×Zq and (ρ′, ω′)← Sample(s, (ρ, τ)). By construction
ρ′ = ρ and |τ − ω′| ≤ q

4 , and so Check always accepts.

Unbiased. We defer the proof that this scheme is unbiased to the full version
[RSS18].

Statistically Binding. Let pk = (A,b) ∈ VPK with public randomness A ←
Zn×mq . By construction λ1(A) > q/4, so there exists a unique s such that∥∥sT ·A− bT

∥∥ ≤ γemax. We assume that the above holds for A.
Therefore, it holds that:

C
(σ)
pk =

{
(c, ω) ∈ Znq × Zq :

∥∥∥∥sT · [A, c]−
[
b,
(
ω − σ ·

⌊q
2

⌋)]T∥∥∥∥ ≤ 2γemax

}
.

We remark that in this case, (c, ω) ∈ C
(0)
pk if and only if

(
c, ω +

⌊
q
2

⌋)
∈ C

(1)
pk .

Furthermore,

Pr
ρ,τ

[
∃ (c0, ω0) ∈ C(0)

pk ,∃ (c1, ω1) ∈ C(1)
pk s.t.

Check(pk, (ρ, τ), (c0, ω0)) = 1,
Check(pk, (ρ, τ), (c1, ω1)) = 1

]

= Pr
ρ,τ

∃ω0,∃ω1 ∈ Zq s.t.

∣∣sT · ρ− ω0

∣∣ ≤ γemax,∣∣sT · ρ− ω1 −
⌊
q
2

⌋∣∣ ≤ γemax,
|ω0 − τ | ≤ q/4,
|ω1 − τ | ≤ q/4

≤ Pr

ρ,τ

[(∣∣sT · ρ− τ ∣∣ ≤ γemax +
q

4

)
and

(∣∣∣sT · ρ− (τ +
⌊q

2

⌋)∣∣∣ ≤ γemax +
q

4

)]
≤ Pr

r

[(
|r| ≤ γemax +

q

4

)
and

(∣∣∣r +
⌊q

2

⌋∣∣∣ ≤ γemax +
q

4

)]
≤ Pr

r

[
r ∈

[q
4
− γemax,

q

4
+ γemax

]
∪
[
−q

4
− γemax,−

q

4
+ γemax

]]
≤ 4γ`

√
mβ.

26

The first equality follows from the definition of C
(0)
pk and C

(1)
pk and the de-

scription of Check. More specifically, the conditions
∣∣sT · ρ− ω0

∣∣ ≤ γemax and∣∣sT · ρ− ω1 −
⌊
q
2

⌋∣∣ ≤ γemax follow from the fact that (c0, ω0) ∈ C(0)
pk and (c1, ω1) ∈

C
(1)
pk , respectively. The conditions |ω0 − τ | ≤ q/4 and |ω1 − τ | ≤ q/4 follow from

Check(pk, (ρ, τ), (c0, ω0)) = 1 and Check(pk, (ρ, τ), (c1, ω1)) = 1 respectively.
The next inequality follows from the triangle inequality. Next, we replace sT ·ρ−τ
by a uniformly random element r of Zq. Then, we note that r has to belong to a
set of size at most 4γemax ≤ 4γ`

√
mβq, which happens with probability at most

4γ`
√
mβ. The last inequality then follows.

Simulatable. Let N = poly(κ). Sample A← Zn×mq and (pk, sk) =
(
(A,b), s

)
←

Gen(1κ,A) and consider the following two experiments:

– For i ∈ [N], let (ρi, τi) ← Znq × Zq, (ρi, ωi) ← Sample(s, (ρi, τi)), σi =

Decs((ρi, ωi)). Output
(
pk, (ρi, τi, ωi, σi)i∈[N]

)
.

– For i ∈ [N], let σ′i ∈R {0, 1}. Set
(
(ρ′i, τ

′
i), (ρ

′
i, ω
′
i)
)
← EncryptAndExplain(pk, σ′i).

Output
(
pk, (ρ′i, τ

′
i , ω
′
i, σ
′
i)i∈[N]

)
.

In the full version [RSS18] we show that the outputs of these two experiments
are computationally indistinguishable.

Computationally Hiding. Given public key pk = (A,b) and randomness (ρ, τ),
the procedure Sample simply computes a fresh encryption (ρ, ω) using the secret-
key variant of Regev’s scheme. Let σ = Decs((ρ, ω)). Then similarly to the above
proof (

pk,ρ, τ, ω, σ
)
≡
(
pk,ρ, τ ′, ω′, σ

)
where ω′ = sT · ρ + σ ·

⌊
q
2

⌋
+ e, with e← χ√mβ and τ ′ sampled uniformly such

that |τ ′ − ω′| < q/4.
Then, since τ ′ is a randomized function of ω′, the computational hiding

property of the POCS follows immediately from the semantic security of Regev’s
encryption scheme.

This concludes the proof of Lemma 8 for q ≡ 2 (mod 4). We describe how
to extend the proof to general q in the full version [RSS18]. The main difficulty
is to sample the boundary points with the correct probability.

4.4 Putting it All Together (Proof of Theorem 2)

We now complete the proof of Theorem 2. We have shown that all of the condi-
tions of Lemma 4 hold, as follows.

1. By Proposition 5, Construction 5 has a valid set of public keys VPK.
2. By Lemma 8, Construction 5 has a POCS with respect to VPK.
3. By Lemma 6, there is a NIZK for GoodPK.
4. By Lemma 7, there is a NIZK for GoodCT.

Theorem 2 then follows immediately by Lemma 4.

27

References

ACPS09. Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryp-
tographic primitives and circular-secure encryption based on hard learning
problems. In CRYPTO, 2009.

AFV11. Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan.
Functional encryption for inner product predicates from learning with er-
rors. In ASIACRYPT, 2011.

APSD17. Navid Alamati, Chris Peikert, and Noah Stephens-Davidowitz. New (and
old) proof systems for lattice problems. Cryptology ePrint Archive, Report
2017/1226, 2017.

BDSMP91. Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano.
Noninteractive zero-knowledge. SIAM Journal on Computing, 20(6):1084–
1118, 1991.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In STOC, 1988.

BKM06. Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures:
Stronger definitions, and constructions without random oracles. In TCC.
Springer, 2006.

BMW03. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of
group signatures: Formal definitions, simplified requirements, and a con-
struction based on general assumptions. In Eurocrypt, 2003.

BP15. Nir Bitansky and Omer Paneth. Zaps and non-interactive witness indis-
tinguishability from indistinguishability obfuscation. In TCC, 2015.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In CCS, 1993.

BRV17. Itay Berman, Ron D. Rothblum, and Vinod Vaikuntanathan. Zero-
knowledge proofs of proximity. IACR Cryptology ePrint Archive, 2017:114,
2017.

BV14. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomor-
phic encryption from (standard) LWE. SIAM J. Comput.,
43(2):831–871, 2014.

BY96. Mihir Bellare and Moti Yung. Certifying permutations: Noninterac-
tive zero-knowledge based on any trapdoor permutation. J. Cryptology,
9(3):149–166, 1996.

CCRR18. Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-
shamir and correlation intractability from strong kdm-secure encryption.
Cryptology ePrint Archive, Report 2018/131, 2018.

CGH04. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited. J. ACM, 51(4):557–594, 2004.

CL17. Ran Canetti and Amit Lichtenberg. Certifying trapdoor permutations,
revisited. IACR Cryptology ePrint Archive, 2017:631, 2017.

DDN03. Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptogra-
phy. SIAM Review, 45(4):727–784, 2003.

DN07. Cynthia Dwork and Moni Naor. Zaps and their applications. SIAM J.
Comput., 36(6):1513–1543, 2007.

dPL17. Rafaël del Pino and Vadim Lyubashevsky. Amortization with fewer equa-
tions for proving knowledge of small secrets. In CRYPTO, 2017.

FLS99. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero
knowledge proofs under general assumptions. SIAM J. Comput., 29(1):1–
28, 1999.

28

FS86. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO, 1986.

GG00. Oded Goldreich and Shafi Goldwasser. On the limits of nonapproximability
of lattice problems. J. Comput. Syst. Sci., 60(3):540–563, 2000.

GK03. Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the fiat-
shamir paradigm. In FOCS, 2003.

GK05. Shafi Goldwasser and Dmitriy Kharchenko. Proof of plaintext knowledge
for the ajtai-dwork cryptosystem. In TCC, 2005.

GKM+00. Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Ma-
hesh Viswanathan. The relationship between public key encryption and
oblivious transfer. In FOCS, 2000.

GKP+13. Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. Reusable garbled circuits and succinct functional
encryption. In STOC, 2013.

GKW17. Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation.
IACR Cryptology ePrint Archive, 2017:274, 2017.

GM84. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput.
Syst. Sci., 28(2):270–299, 1984.

Gol01. Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic
Techniques. Cambridge University Press, 2001.

Gol04. Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic
Applications. Cambridge University Press, 2004.

Gol11. Oded Goldreich. Basing non-interactive zero-knowledge on (enhanced)
trapdoor permutations: The state of the art. In Studies in Complexity and
Cryptography. 2011.

GOS12. Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for non-
interactive zero-knowledge. J. ACM, 59(3):11:1–11:35, 2012.

GR13. Oded Goldreich and Ron D. Rothblum. Enhancements of trapdoor per-
mutations. J. Cryptology, 26(3):484–512, 2013.

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge argu-
ments. In ASIACRYPT, 2010.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In EUROCRYPT, 2008.

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate
encryption for circuits from lwe. In CRYPTO. Springer, 2015.

KRR17. Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From
obfuscation to the security of fiat-shamir for proofs. In CRYPTO, 2017.

KTX08. Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently se-
cure identification schemes based on the worst-case hardness of lattice
problems. In ASIACRYPT, 2008.

KW18. Sam Kim and David J. Wu. Multi-theorem preprocessing nizks from lat-
tices. Advances in Cryptology - CRYPTO 2018 - 38th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2018, Proceedings, Part II, pages 733–765, 2018.

LLM+16. Benôıt Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huax-
iong Wang. Signature schemes with efficient protocols and dynamic group
signatures from lattice assumptions. In ASIACRYPT, 2016.

LM09. Vadim Lyubashevsky and Daniele Micciancio. On bounded distance de-
coding, unique shortest vectors, and the minimum distance problem. In
CRYPTO, 2009.

29

LNSW13. San Ling, Khoa Nguyen, Damien Stehlé, and Huaxiong Wang. Improved
zero-knowledge proofs of knowledge for the ISIS problem, and applications.
In PKC, 2013.

Lyu08. Vadim Lyubashevsky. Lattice-based identification schemes secure under
active attacks. In PKC, 2008.

MV03. Daniele Micciancio and Salil Vadhan. Statistical zero-knowledge proofs
with efficient provers: Lattice problems and more. CRYPTO, 2003.

MW16. Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation
via multi-key FHE. In EUROCRYPT, 2016.

Nao03. Moni Naor. On cryptographic assumptions and challenges. In CRYPTO,
2003.

NY90. Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In STOC, 1990.

Pei09. Chris Peikert. Public-key cryptosystems from the worst-case shortest vec-
tor problem: extended abstract. In STOC, 2009.

PV08. Chris Peikert and Vinod Vaikuntanathan. Noninteractive statistical zero-
knowledge proofs for lattice problems. In CRYPTO, 2008.

PVW08. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework
for efficient and composable oblivious transfer. In CRYPTO, 2008.

PW08. Chris Peikert and Brent Waters. Lossy trapdoor functions and their ap-
plications. In STOC, 2008.

Rab79. M. O. Rabin. Digitalized signatures and public-key functions as intractable
as factorization. Technical report, Cambridge, MA, USA, 1979.

Reg09. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. J. ACM, 56(6):34:1–34:40, 2009.

RSS18. Ron D. Rothblum, Adam Sealfon, and Katerina Sotiraki. Towards non-
interactive zero-knowledge for NP from LWE. IACR Cryptology ePrint
Archive, 2018:240, 2018.

Sah99. Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In FOCS, 1999.

Sho99. Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Review, 41(2):303–332,
1999.

Ste96. Jacques Stern. A new paradigm for public key identification. IEEE Trans.
Information Theory, 42(6):1757–1768, 1996.

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In STOC, 2014.

Vad99. Salil P. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1999.

VN61. J Von Neumann. Various techniques used in connection with random
digits, paper no. 13 in Monte Carlo method. NBS Applied Mathematics
Series, (12), 1961.

WZ17. Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare
programs under LWE. IACR Cryptology ePrint Archive, 2017:276, 2017.

30

	Towards Non-Interactive Zero-Knowledge for NP from LWE

