
Short Discrete Log Proofs for
FHE and Ring-LWE Ciphertexts

Rafael del Pino1?, Vadim Lyubashevsky2, and Gregor Seiler2,3

1 ENS Paris
2 IBM Research – Zurich, Switzerland

3 ETH Zurich, Switzerland

Abstract. In applications of fully-homomorphic encryption (FHE) that
involve computation on encryptions produced by several users, it is im-
portant that each user proves that her input is indeed well-formed. This
may simply mean that the inputs are valid FHE ciphertexts or, more
generally, that the plaintexts m additionally satisfy f(m) = 1 for some
public function f . The most efficient FHE schemes are based on the
hardness of the Ring-LWE problem and so a natural solution would be
to use lattice-based zero-knowledge proofs for proving properties about
the ciphertext. Such methods, however, require larger-than-necessary pa-
rameters and result in rather long proofs, especially when proving general
relationships.

In this paper, we show that one can get much shorter proofs (roughly
1.25KB) by first creating a Pedersen commitment from the vector cor-
responding to the randomness and plaintext of the FHE ciphertext. To
prove validity of the ciphertext, one can then prove that this commit-
ment is indeed to the message and randomness and these values are in
the correct range. Our protocol utilizes a connection between polyno-
mial operations in the lattice scheme and inner product proofs for Pe-
dersen commitments of Bünz et al. (S&P 2018). Furthermore, our proof
of equality between the ciphertext and the commitment is very amenable
to amortization – proving the equivalence of k ciphertext / commitment
pairs only requires an additive factor of O(log k) extra space than for one
such proof. For proving additional properties of the plaintext(s), one can
then directly use the logarithmic-space proofs of Bootle et al. (Eurocrypt
2016) and Bünz et al. (IEEE S&P 2018) for proving arbitrary relations
of discrete log commitment.

Our technique is not restricted to FHE ciphertexts and can be applied
to proving many other relations that arise in lattice-based cryptography.
For example, we can create very efficient verifiable encryption / decryp-
tion schemes with short proofs in which confidentiality is based on the
hardness of Ring-LWE while the soundness is based on the discrete loga-
rithm problem. While such proofs are not fully post-quantum, they are
adequate in scenarios where secrecy needs to be future-proofed, but one
only needs to be convinced of the validity of the proof in the pre-quantum

? Work done while at IBM Research – Zurich, Switzerland

era. We furthermore show that our zero-knowledge protocol can be easily
modified to have the property that breaking soundness implies solving
discrete log in a short amount of time. Since building quantum compu-
ters capable of solving discrete logarithm in seconds requires overcoming
many more fundamental challenges, such proofs may even remain valid
in the post-quantum era.

1 Introduction

Fully-homomorphic encryption (FHE) allows for evaluations of arbitrary functi-
ons over encrypted data. The traditional application of this primitive is out-
sourcing – a user encrypts his data and sends it to a server who performs the
(intensive) computation and returns back the encrypted result. In this scenario,
the user is the only one affected by the outcome of the computation, and so it
is not necessary for him to prove that his ciphertexts he submitted to the server
are properly formed.

There are other applications of FHE, however, that involve computations
on ciphertexts submitted by several users [LTV12,MW16,PS16]. For example,
multi-key FHE allows the server to compute over ciphertexts encrypted un-
der different keys and produce a result that can then be jointly decrypted by
the participating parties. One can also use FHE in a “distributed ledger” (e.g.
[ABB+18]) setting where users can submit ciphertexts encrypted under some
particular public key and a computation can be performed by anyone on behalf
of the holder of the secret key to produce an encrypted output. This is useful
in scenarios where certain entities (the holder of the secret key in our example)
wish to perform only a limited amount of computation.

For the above scenarios where more than one user is involved, it is important
that each party provides a zero-knowledge proof that his input is a valid FHE
ciphertext – otherwise the final output may, unknowingly to anyone else, be con-
structed from invalid data. It may furthermore be necessary to prove that the
encrypted message satisfies certain additional properties dictated by the proto-
col. For encryptions based on the discrete logarithm problem, such proofs can be
very efficiently constructed for certain relations using techniques in [CS03] and
for general circuits using the more recent logarithmic space proofs for discrete lo-
garithms [BCC+16,BBB+17]. FHE schemes, on the other hand, are constructed
from LWE (or LWE-like) encryption schemes (e.g. [BGV12]), which unfortuna-
tely do not enjoy such practical proofs. For example, the most efficient verifiable
encryption scheme for Ring-LWE [LN17] ciphertexts only handles linear relati-
ons B ~m = ~t and gives proofs of knowledge of an ~m′ satisfying B ~m′ = c · ~t,
where c is some polynomial with small coefficients. This is satisfactory in some
scenarios (see [LN17] for examples), but is not general enough for many other
applications. Obtaining proofs without the polynomial c even for simple relations
would make the proof sizes on the order of megabytes (cf. [LLNW18]).

2

In this work, we take a different approach for creating such proofs. An FHE
(or more generally, a Ring-LWE) ciphertext can be written as

A~s = ~t (1)

where A is the public key, ~t is the ciphertext, and ~s consists of the randomness
and the message. All operations are performed over some polynomial ring Rq =
Zq[X]/(f) for some integer q and a monic, irreducible polynomial f ∈ Z[X] of
degree d.

The main result of the current work is an efficient protocol for proving kno-
wledge of ~s with small coefficients in the above equation. Our strategy is to first
create a joint Pedersen commitment t = Com(~s) to all the coefficients in ~s, and
prove in zero-knowledge that these coefficients, when interpreted as a polynomial
vector ~s, satisfy (1). At the same time, the proof will also show that the coeffi-
cients of ~s are in the required range for valid Ring-LWE ciphertexts. Moreover,
if we have many Ring-LWE ciphertexts ~t1, . . . ,~tk, then the size of our proof is
only approximately an additive factor of O(log k) larger than the proof for one
equation in (1).

Once we have a Pedersen commitment of the coefficients of ~s, we can addi-
tionally use the aforementioned very efficient zero-knowledge proofs for discrete
logarithm commitments [BCC+16,BBB+17] to prove arbitrary properties of the
plain-text contained in ~s. This gives us a verifiable encryption scheme (and also
a verifiable decryption scheme) for Ring-LWE ciphertexts (see Section 1.5). As
an example of the proof size, a proof of ciphertext validity of a Ring-LWE en-
cryption scheme in (9) requires only 1.25KB.

1.1 Post-Quantum Security

One of the side advantages of FHE based on Ring-LWE is that the encryption
scheme remains secure against quantum attacks (assuming that the Ring-LWE
problem is post-quantum secure). Since Pedersen commitments are statistically-
hiding and all the proofs are statistical zero-knowledge, the secrecy of the cip-
hertext and the Pedersen commitment is still based on just Ring-LWE. The
soundness of the proofs, however, is based on the hardness of the discrete log
problem and is therefore not post-quantum.

Having the soundness of the proof not be post-quantum is still, for many
scenarios, acceptable even if we do foresee quantum computers appearing in the
future. For example, all proofs created until quantum computers capable of bre-
aking discrete log actually appear would still be valid. Furthermore, the protocol
can be easily altered to force the prover to create his Pedersen commitment and
the zero-knowledge proof with “fresh” randomly-chosen generators and complete
his proof in a specified amount of time.4 Breaking the soundness of this proof

4 If the proof is to be made non-interactive, the randomness for creating the genera-
tors could come from some public randomness beacons (e.g. the NIST randomness
beacon).

3

system would thus require solving the discrete log problem using a quantum
computer within a prescribed (e.g. several seconds) time interval.

While building a quantum computer capable of breaking cryptographic pro-
blems presents a very substantial scientific and engineering challenge, building
one that is capable of solving such problems in seconds is a potentially signifi-
cantly harder problem. For a 2048-bit number, under some reasonable assump-
tions on the error rate and the speed of each gate computation on a supercon-
ducting platform, this would take around 27 hours and a billion physical qubits
[FMMC12]. A trapped-ion based computer with very low error rate would need
110 days to perform the same operation [LWF+17]. One can sometimes decrease
the running time by utilizing more qubits, but there are several other roadblocks
that would keep the computation time from decreasing beyond certain barriers
(c.f. [Gid18] for a discussion). While it is too early to guess when (or if) it will
be possible to run Shor’s algorithm in under a minute, it certainly appears to
be a problem that will require overcoming many more fundamental challenges
even after a “basic” fault-tolerant universal quantum computer is built.

1.2 Other Applications

Our general result gives a way to prove knowledge that the secret ~s in the
linear equation (1) is the same as in the commitment Com(~s), where Com(·)
is a Pedersen commitment to the individual coefficients of ~s. Because (1) is
quite generic, it can be used to represent many relations throughout lattice
cryptography. For example, ciphertexts, commitments, public keys in encryption
/ signature schemes, etc. are all of this form. One can therefore apply our protocol
as a first step in a larger protocol that needs to prove something about the secret
~s. For example, verifiable encryption and decryption schemes (where the prover
or decryptor needs to prove that the plaintext m satisfies f(m) = 1 for some
public function f) has many applications (c.f. [CS03]) and such schemes that
retain the post-quantum secrecy of the ciphertext can thus be built using our
techniques. We sketch the construction in Section 1.5 and note that proving
validity of FHE ciphertexts is just a special case of verifiable encryption.

1.3 Previous Related Work

A connection between Ring-LWE and discrete log commitments has been previ-
ously explored by Benhamouda et al. [BCK+14]. The construction in the current
paper is completely different and enjoys significant advantages (both theoretical
and practical) over the aforementioned prior work. Firstly, the modulus q in (1)
has to be the same as the group size underlying the discrete log commitment
for the proof in [BCK+14] – and taking q ≈ 2256 would require making the
Ring-LWE / FHE scheme significantly less efficient than it needs to be (typical
sizes of q are ≈ 230). Secondly, the protocol in [BCK+14] requires a separate
Pedersen commitment for every coefficient of ~s rather than one commitment for
all the coefficients of ~s. Thirdly, the proof is a Σ-protocol with soundness error
1/d (where n is the degree of f) and so needs to be repeated around a dozen

4

times. While [BCK+14] did not provide concrete parameters, we would estimate
that our proofs would be shorter by 2 - 3 orders of magnitude. And additionally,
our current proof can be amortized for proving k equations as in (1) while only
incurring an O(log k) additive overhead.

Our work can also be seen as complementary to that of Fiore, Gennaro, and
Pastro [FGP14] where they give a succinct proof that the evaluation in the FHE
scheme was performed correctly for certain types of functions.

1.4 High Level Overview of the Protocol

Our general proof is for k copies of (1) – in other words a proof of a matrix
S ∈ Rm×kq with bounded coefficients such that

AS = T mod (f , q). (2)

We will explicitly write out which modular reductions occur as it will change
throughout the protocol.

In this overview, we will sketch the proof of a simpler version of (2), which
is just a Ring-LWE / Ring-SIS equation

m∑
i=1

aisi = t mod (f , q) (3)

where ai, t, si ∈ Rq and the coefficients of si have absolute value less than B.
Afterwards, we will explain how this can be extended to the full proof of (2).
Let G be a group of size p ≤ 2256 in which the discrete problem is hard.

The prover first rewrites (3) so that it is entirely over the ring Z[X] – i.e.
there are no reductions modulo q and f :

m∑
i=1

aisi = t− r1 · q − r2 · f . (4)

The polynomials r1 and r2 are not unique, but we would like them to simul-
taneously have small coefficients and be of small degree. We show that r1 can be
of degree 2(d−1) and have coefficients of absolute value at most d

2 (Bm+‖f‖∞),
while r2 can have degree d − 2 with coefficients having absolute value at most
1
2 (q − 1).

The prover creates a Pedersen commitment t = Com(s1, . . . , sm, r1, r2) ∈
G where each integer coefficient of si and ri is in the exponent of a different
generator gj .

5 The prover sends t to the verifier.

5 If we would like to achieve post-quantum security based on the assumption that
discrete log cannot be solved in a prescribed amount of time, then the gi should not
be known to the prover before the start of the proof. This can be arranged by either
having the verifier sending them (or more precisely, send a short seed that expands
into the prescribed number of generators) at the start of the protocol or using a
randomness beacon in non-interactive proofs.

5

The verifier chooses a random challenge element α ∈ Zp and sends it to the
prover. The prover now needs to give several proofs. In the real protocol, all these
will be combined into one proof, but for ease of exposition, we will explain them
separately here. The first proof is a range proof πs,r from [BBB+17] showing
that all the committed values in t are in the correct ranges. The second proof is
a proof that (4) evaluated at α holds true over the field Zp. By the Schwartz-
Zippel lemma, this implies that with probability > 1−2d/|G|, this equation also
holds true over the polynomial ring Zp[X]. Since we have already proven that
the coefficients of si and ri are relatively small and we assumed that q is also
small (compared to p), we know that if (4) holds true in Zp[X], then it also
holds over Z[X] because no reduction modulo p takes place. This will complete
the proof. We now just have to prove that (4) evaluated at α holds true mod p.

Define the matrices

U =
[
a1(α) · · · am(α) q f(α)

]
mod p, S =

− s1 −
· · ·

− sm −
− r1 −
− r2 −

 , V =

1
α
. . .
αd−1

 mod p,

(5)

where the rows of S consist of the integer coefficients of si and ri with the
constant coefficient being in the leftmost column row and the coefficients of

Xd−1 being in the rightmost (e.g. if si =
d−1∑
j=0

σjX
j , then the ith row of S is[

σ0 σ1 · · · σd−1
]
. With this notation, observe that the matrix product

SV =
[
s1(α) · · · sm(α) r1(α) r2(α)

]T
mod p,

and so

USV =

m∑
i=1

ai(α)si(α) + r1(α)q + r2(α)f(α) mod p.

Thus if we prove that

USV = t(α) mod p, (6)

then we will end up proving that (4) evaluated at α is true modulo p. Since
U, V and t(α) are public and we have a commitment to the coefficients of S,
we can apply an extension of the inner-products proofs from [BCC+16,BBB+17]
to prove our linear relation.6 To complete the protocol, the prover simply sends
π, πs,r to the verifier and he accepts if all the proofs are correct.

6 The “inner-product” proofs in [BCC+16,BBB+17] show that the vectors committed
to in a Pedersen commitment satisfy a linear relation. This can also be extended to
matrices.

6

Combining the Two Proofs. In the real protocol which we describe in Section
5, we combine the two proofs πs,r and π into one. The reason is that the range
proof πs,r in [BBB+17] works by writing each coefficient in binary, storing a
matrix of these coefficients, and then giving a proof that each coefficient of the
decomposition is 0 or 1 (the number of these coefficients then implies the range).
Due to the fact that the ranges of the si and ri are different, storing these in the
same matrix would require us to increase the size of the matrix to accommodate
the largest coefficients, which would be wasteful. Thus instead of proving the
matrix equation (6), we write these out as a series of appropriate equations
(each of varying lengths) where the coefficients of S are in binary and prove
those instead. This allows us to do a range proof and the proof of (6) in one
step.

We provide explicit details of the above algorithm in Section 5. We additio-
nally obtain a tighter security proof of the inner-product proof of [BCC+16,BBB+17]
by using a different extraction strategy, described in Section 3. In addition, our
zero-knowledge range proof is somewhat simpler than the one in [BBB+17] be-
cause our range proof is constructed on top of a zero-knowledge inner product
proof instead of the original Bulletproof inner product proof which is not zero-
knowledge. This allows for not blinding the vectors in the range proof simplifying
extraction and saving two rounds of the protocol. The additional complexity in
the inner product proof is basically just a Schnorr proof (see Section 4). These
small improvements may be of independent interest.

Some observations about the proof strategy. The reason that we converted
(3) into (4) and then used the Schwartz-Zippel lemma for proving (4) is for
reducing the time complexity of the proof. An alternate, simpler, procedure for
proving (3) would have been the following: first write (3) as

m∑
i=1

aisi = t + r1q mod f , (7)

and create the commitments ts and tr1 as before. Now, observe that polynomial
multiplication aisi can be written as a matrix / vector product As, where column
j (labeled from 0 to d − 1) of A consists of the coefficients of the d − 1 degree

polynomial aiX
j mod f and s is a vector of coefficients of si. Thus

m∑
i=1

aisi can

be written as a matrix / vector product itself. Then one could directly apply the
modified inner-product proof to prove (7) modulo p, which would again imply
that this equation holds true over Z (since the coefficients are all much smaller
than p), and so this implies (3).

The main problem with the above approach is that the matrices A are d× d
matrices, and so the proof of matrix/vector product would require O(d2) expo-
nentiations (or multiplications in elliptic curve groups) in G. For typical values
of d > 1000, this operation is quite expensive and could take several minutes
even on a reasonably powerful machine. Our proof, on the other hand, takes

7

advantage of the fact that the operations can be interpreted over the ring Zp[X]
for a very large p and one can then prove polynomial equality via the Schwartz-
Zippel lemma. Since polynomial evaluation is an inner-product of d-dimensional
vectors, constructing a matrix product proof only requires O(d) exponentiati-
ons per evaluation. Note that this is also the reason that our proofs would be
much less computationally efficient for proving relations over Z (i.e. LWE / SIS
relations).

Another issue to draw attention to is that the polynomial equations we want
to prove are modulo q, whereas the proofs are done modulo a larger p. As men-
tioned before, the reason for this is that in typical cryptographic applications of
the Ring-LWE / Ring-SIS problems (such as FHE), the modulus q is not very
large (smaller than 240). On the other hand, the discrete log commitments must
be performed over a much larger-size group. If, however, an application called
for the modulus q to be a large prime, then our proof could use q = p, and we
would never need to switch to working over Z[X] – we could always work over
Zq[X] and have no need for the polynomial r1.

Simultaneously proving k polynomial equations. The proof for proving
knowledge of S satisfying (2) is a straightforward extension of the above-described
algorithm with the strategy for the proof being the same. First, we will prove
that in the analogue of (4),

AS = T− qR1 − fR2, (8)

all the coefficients of S,R1,R2 are small and then prove that the above equation
holds, with high probability, over the ring Zp[X] for a very large p. This will imply
that (8) also holds over Z[X], and thus (2) is true. We now describe the protocol
in slightly more detail.

The first step of the protocol remains virtually identical with the prover
committing to S and R1,R2. After receiving the challenge α, the prover again
wishes to show that the coefficients of S,R1,R2 are in the appropriate ranges
and prove the equality of (8) where each polynomial is evaluated at α.

If we define In ∈ Zn×n to be the identity matrix, then one can rewrite what
we would like to prove as

[
A(α) qIn f(α)In

]
·

 S(α)
R1(α)
R2(α)

 = T(α) mod p.

If, for a polynomial m × k matrix S, we create the m × (kd) integer matrix
~S by writing each polynomial in S as a row consisting of its d coefficients (the
way way that si were expanded in the matrix S in (5)), then we can rewrite the
above equation as

8

[
A(α) qIn f(α)In

]
·

 ~S
~R1

~R2

 ·
Ik ⊗

1
α
. . .
αd−1

 = T(α) mod p.

Since all the matrices in the above equation except

 ~S
~R1

~R2

 are public, we can

again apply the modified inner-product proof from [BCC+16,BBB+17] to prove
the equality modulo p. And again, as before, our real protocol would combine
the range proof and modified inner-product proof into one proof.

1.5 Application to Verifiable Encryption and Decryption for
Ring-LWE Ciphertexts

Notice that the first step of our proof involved creating a Pedersen commitment
t to the coefficients of S. The rest of the proof then went on to show that the
commitment is really to an S satisfying (2). Since at the end of the protocol, we
end up with a Pedersen commitment to S, we can use another SNARK (e.g. one
from [BBB+17]) that proves arbitrary relations of its committed values. Thus
just proving knowledge of S naturally gives rise to verifiable encryption and
decryption schemes for Ring-LWE encryption, as we sketch below.

In a verifiable encryption scheme, the encryptor produces an encryption of
a message m and a ZKPoK that the ciphertext is a valid encryption to m and
that f(m) = 1 for a public function f . Consider the following “usual” encryption
scheme based on Ring-LWE [LPR13]:

The secret key are polynomials s, e with small, bounded coefficients and the
public key consists of a random polynomial a ∈ Rq and t = as + e ∈ Rq.

The encryption of a message m ∈ Rq, where all coefficients of m are in the
range [0, p), is created as in the below equation, where r, e1, e2 are polynomials
with bounded coefficients.

[
pa p 0 0
pt 0 p 1

]
·

r
e1

e2

m

 =

[
u
v

]
(9)

For a verifiable encryption scheme, we can use our proof system with A ∈
R2×4
q and S ∈ R4×1

q to create a Pedersen commitment(s) to S and prove that
all the coefficients of r, ei,m lie within their prescribed bounds and that (9) is
satisfied by the commitment(s) representing S. The preceding proves knowledge

of the plaintext m for the ciphertext

[
u
v

]
.

To decrypt a ciphertext

[
u
v

]
, the decryptor first computes

v − us = p(er + e2 − se1) + m. (10)

9

Since all the coefficients of the above equation are small, no reduction modulo
q takes place and this equation holds true over Z[X]. Computing v− us mod p
therefore recovers m.

To construct a verifiable decryption scheme, let g = er + e2 − se1 from
the above equation. Let β be a bound on g such that no reduction modulo
q takes place in (10) and so decryption still works (i.e. β should be less than
approximately q/p). Then the decryptor should be able to prove knowledge of
s, e,g,m in the following equation with coefficients of s, e having the appropriate
bounds and m having all coefficients in [0, p).

[
a 1 0 0
u 0 p 1

]
·

s
e
g
m

 =

[
t
v

]
. (11)

Proving the above shows that m is a valid decryption. To show that there
is only one possible decryption (i.e. only one possible solution to the above
equation), suppose there exist two solutions:

[
a 1 0 0
u 0 p 1

]
·

s
e
g
m

 =

[
t
v

]
and

[
a 1 0 0
u 0 p 1

]
·

s′

e′

g′

m′

 =

[
t
v

]
. (12)

If s 6= s′, then the first row of (12) implies a non-zero solution to

a(s− s′) + (e− e′) = 0.

Writing a as above can either be shown to be impossible either via an
information-theoretic argument or via the computational assumption that the
Ring-SIS problem [PR06,LM06] is hard.7

If s = s′, then the second row of (12) implies that p(g− g′) + (m−m′) = 0.
Since the coefficients are small enough that no reduction modulo q takes place,
the preceding implies that m−m′ is a multiple of p, which implies that m = m′

(since the coefficients of m−m′ are in the range (−p, p).)

1.6 Open Problems

We have shown how linear relations over polynomial rings can have very compact
proofs by converting the problem into a form that is compatible with the compact
SNARKs in [BCC+16,BBB+17]. While the proofs are small, creating such proofs
may require on the order of hundreds of thousands of exponentiations. It would
therefore be interesting to see whether one can transform the problem into a
form compatible with SNARKS that are less compact but may require fewer

7 In general, the polynomial a is created as H(seed), where H is a cryptographic hash
function and the seed is public. It is therefore a valid assumption that a is random
in Rq.

10

operations, such as for example those in [WTS+18]. Since the latter proofs are
particularly tailored to parallelizable functions, they may also result in rather
efficient proofs for LWE / SIS ciphertexts, and not require one to work over
polynomial rings. We leave this direction as an open problem.

2 Notation

We use bold letters f for polynomials, arrows for column vectors as in ~v, and
capital letters A for matrices. Vectors and matrices of polynomials are denoted
by bold letters ~v with arrows and bold capital letters M, respectively. We write
R = Z[X]/(f) for the ring of integer polynomials modulo a monic irreducible
polynomial f ∈ Z[X], Rq for the quotient ring R/qR for some prime q and
similarly Zp for Z/pZ.

Let ~v1 ∈ Znp and ~v2 ∈ Znp be two vectors over Zp. Then we write 〈~v1, ~v2〉 ∈ Zp,
~v1 ◦ ~v2 ∈ Znp and ~v1 ⊗ ~v2 ∈ Zn2

p for their inner product, componentwise product
and tensor product, respectively.

Norms. The absolute value |a| of an element a ∈ Zq is defined to be the absolute
value of the centralized representative in {−(q−1)/2, . . . , (q−1)/2}. The infinity
norm ‖s‖∞ of a polynomial s ∈ Rq is the maximum absolute value of all of its
coefficients. Likewise, the infinity norm ‖~s‖∞ of a vector of polynomials is the
maximum over the infinity norms of its coefficient polynomials.

Multi exponentiations. For a group G of order p, written multiplicatively,
and vectors ~g = (g1, . . . , gn)T ∈ Gn and ~a = (a1, . . . , an)T ∈ Znp we use the
notation

~g~a = ga11 . . . gann ∈ G.

Throughout the paper the group G will be understood to be cyclic of prime order
p with hard computational discrete-log problem. A Pedersen multi-commitment

over generators ~g ∈ Gn, u ∈ G to a vector ~v ∈ Znp with randomness ρ
$← Zp

is given by the multi-exponentiation t = ~g~vuρ. This is clearly perfectly hiding
and computationally binding under the assumption that it is hard to compute a
non-trivial discrete-log relation between the generators ~g, u. The latter problem
is easily seen to be equivalent to the discrete-log problem.

Serializing matrices to vectors. We will need to serialize matrices A ∈ Zn×mp

to vectors. For this reason we define functions

Serialize : Zn×mp → Znmp , A 7→ ~a

where ~a contains the coefficients of A in row major order. So if A = (aij), 0 ≤
i ≤ n−1, 0 ≤ j ≤ m−1, then ~a = (ai) with ami+j = aij . In many programming
languages, most notably C, this is how matrices are stored in memory so that

11

Serialize is a non-operation in these languages. We extend Serialize to polynomial
matrices over Z[X] by first expanding each polynomial to its row coefficient
vector and then proceeding as before.

Expanding integers to their binary representation. We will also need to
map integers to their binary representation, including negative integers. For this
we define the function

Binaryb : {−2b−1, . . . , 2b−1 − 1} → {0, 1}b, z 7→ ~z

that maps a signed b-bit integer to its binary representation using two’s comple-
ment. More precisely, ~z = (z0, . . . , zb−1)T is defined by

z = z0 + z12 + · · ·+ zb−22b−2 − zb−12b−1.

Again this representation for signed integers is used by all modern CPU’s and
Binary is a non-operation. We extend Binary to vectors where Binary is applied
to each coefficient individually.

3 Forking Lemma

For proving the security of proof systems based on the Bulletproof technique from
[BBB+17] one needs a special forking lemma which shows that it is possible to
obtain many accepting transcripts from a prover for challenges that are organized
in a large tree. The forking lemma used in the Bulletproof paper goes back
to [BCC+16, Lemma 1]. It is only stated in terms asymptotic in the security
parameter. Moreover, the tree finding algorithm for computing the tree that is
given and analyzed in the proof of the forking lemma does not try to avoid
collisions between the challenges. But it is necessary that there are no collision
so that the transcripts can be used for extraction. Therefore, in order to compute
the success probability of the tree finding algorithm, the collision probability has
to be taken into account in addition to the failure probability of the prover. For
a 256 bit curve, the collision probability gets quite large for moderately sized
trees and as a result of this the reasoning of the forking lemma only applies
to provers whose failure probability 1 − ε is small. Concretely, to obtain a tree
of accepting transcripts of height µ where every inner node has n children one
needs ε > nµ/285. For example in the case of the Bulletproof inner product
proof, where n = 4 and µ = log l with l the length of the vectors, ε > l2/285

and the forking lemma only proves the inner product proof to be sound with
soundness error 2−35 if l = 225, a length easily reached in our application. One
would need to repeat the proof four times in order to get below 2−128.

We give a different forking lemma with a different extraction algorithm toget-
her with a concrete analysis in this section. Our forking lemma achieves negligible
soundness error. It is still non-tight though, which is unavoidable as one needs
to obtain nµ = llogn transcripts. We stress that we do not think that this non-
tightness in the security proof allows for any actual attacks for 256 bit curves.
Let us start by recalling the definition of a tree of accepting transcripts.

12

Definition 3.1. Let P∗ be a deterministic prover for a (2µ+1)-move interactive
proof protocol where the honest verifier V sends µ challenges in steps 2, 4, . . . , 2µ.
An (n1, . . . , nµ)-tree of accepting transcripts associated with P∗ is a tree of
height µ of the following form. Every node in level i, 0 ≤ i ≤ µ−1, has precisely
ni+1 children, all nodes except the root are labeled by a challenge and each leaf
additionally contains the transcript obtained by interacting with P∗ and sending
the challenges in the path from the root to this leaf. Moreover, the challenges in
all nodes with the same parent are distinct and V accepts all transcripts in the
leaves.

Lemma 3.2. Let P∗ be a deterministic prover for a (2µ + 1)-move interactive
proof protocol where the honest verifier V sends µ = log(l) uniformly random
challenges from a set C of size p in steps 2, 4, . . . , 2µ. Then there exists an algo-
rithm tree-finder that, when given rewindable black-box access to P∗, compu-
tes an (n1, . . . , nµ)-tree of accepting transcripts with probability at least 1/4 in
expected time at most

O

(
llogn+logα log l

ε

)
(l→∞)

for every α >
(

1
1−n/p

)2
and with n = max1≤i≤µ−1 ni under the assumption

that P∗ convinces V with probability ε ≥ αµ

α−1
nµ
p = llogα

α−1
nµ
p . Running P∗ once is

assumed to take unit time.

Proof. We construct tree-finder = tree-finder(1) as a recursive algorithm
with tree-finder(i), i = 1, . . . , µ, interacting with P∗ from the 2i-th move
onward. A naive first approach would be as follows. For i < µ, tree-finder(i)
would run P∗ until and including move 2i + 1 sending a uniformly random
challenge ci ∈ C in step 2i. Then the algorithm would call tree-finder(i+ 1).
Afterwards it would rewind P∗ back to just after step 2(i − 1) + 1 and repeat
the process for a total of ni different challenges. So in the second iteration
tree-finder(i) would sample a uniform challenge from C\{ci}. The tree-finding
algorithm tree-finder(µ) in the last level would send a last challenge cµ and
check whether the interaction with P∗ led to a valid proof, i.e. V would accept
the proof. Then it would repeat for as many last challenges cµ as needed to
get nµ valid proofs for nµ different cµ. The problem with this approach is that
in any level for many challenges ci there might only be very few continuations
ci+1, . . . , cµ that lead to valid proofs (or none at all). Hence the tree-finding
algorithm might run into dead ends where tree-finder(µ) runs for a very long
time or does not terminate at all.

For fixed challenges c1, . . . , ci−1, let εi be the acceptance probability over
all uniform continuations ci, . . . , cµ. In particular ε1 = ε. Then for some ci let
εi+1 = εi+1(ci) be the acceptance probability under the additional condition that
the i-th challenge is ci. Now from a standard heavy rows / averaging argument we
know εi+1 ≥ εi/α, α > 1, for at least a fraction of 1 − 1/α of the ci. Therefore
our solution to the problem is as follows. After choosing ci, tree-finder(i)

13

estimates εi+1 by running P∗ until the end for many continuations ci+1, . . . , cµ
and counting the number of valid proofs. Then the tree finding algorithm only
continues with ci if the acceptance probability does not decrease too much by
fixing ci. The complete algorithm is as follows where 1 < λ <

√
α and Ti are

specified later.

1: function tree-finder(i)
2: Initialize tree as a tree containing only an empty root
3: C′ = ∅
4: while |C′| < ni do
5: if i = µ then
6: Run P∗ until the end using a fresh challenge

cµ
$← C \ C′ and let tr be the transcript of the

full interactive proof
7: if proof is valid then
8: Append new leaf (cµ, tr) to the root of tree
9: C′ = C′ ∪ {cµ}

10: end if
11: else
12: repeat
13: Run P∗ up to and including step 2i+ 1 using a

fresh challenge ci
$← C \ C′

14: count = 0
15: for j = 1, . . . , Ti do
16: Run P∗ until the end with fresh challenges

ci+1, . . . , cµ
$← C

17: if proof is valid then
18: count = count + 1
19: end if
20: Rewind P∗ back to just after step 2i+ 1
21: end for
22: if count < λTi

ε
αi then

23: Rewind P∗ back to just after step 2(i− 1) + 1
24: end if
25: until count >= λTi

ε
αi

26: tree ′ ←tree-finder(i+ 1)
27: Label root of tree ′ by ci and append tree ′ to the root

of tree
28: C′ = C′ ∪ {ci}
29: end if
30: end while
31: return tree
32: end function

We analyze the algorithm under the assumption εi ≥ ε/αi−1. The challenge
ci is chosen and the acceptance probability εi+1 = εi+1(ci) estimated during the

14

loop in lines 12−25. We define the following probabilities in one iteration of the
loop.

p0 = Pr
[
count < λTi

ε

αi

]
,

p1 = Pr
[
count ≥ λTi

ε

αi
and εi+1(ci) ≥

ε

αi

]
,

p2 = Pr
[
count ≥ λTi

ε

αi
and εi+1(ci) <

ε

αi

]
.

So p0, p1 and p2 are the probabilities of continuing the loop, choosing a “good”
challenge ci, and choosing a “bad” challenge, respectively. Note that p0 + p1 +
p2 = 1. By the heavy rows argument, with probability at least 1− 1/

√
α− n/p,

εi+1(ci) ≥ ε/(
√
α · αi−1). Therefore and by the Chernoff bound,

p1 = Pr
[
count ≥ λTi

ε

αi
and εi+1 ≥

ε

αi

]
≥ Pr

[
count ≥ λTi

ε

αi
and εi+1 ≥

ε√
α · αi−1

]
= Pr

[
εi+1 ≥

ε√
α · αi−1

]
Pr

[
count ≥ λTi

ε

αi

∣∣∣∣ εi+1 ≥
ε√

α · αi−1

]
≥
(

1− 1√
α
− n

p

)
Pr

[
count ≥ λTi

ε

αi

∣∣∣∣ εi+1 ≥
ε√

α · αi−1

]
≥
(

1− 1√
α
− n

p

)
Pr

[
count ≥ λ√

α
Tiεi+1

∣∣∣∣ εi+1 ≥
ε√

α · αi−1

]
≥
(

1− 1√
α
− n

p

)(
1− Pr

[
count ≤ λ√

α
Tiεi+1

∣∣∣∣ εi+1 ≥
ε√

α · αi−1

])
≥
(

1− 1√
α
− n

p

)(
1− exp

(
− (1− λ/

√
α)2

2
Tiεi+1

))
≥
(

1− 1√
α
− n

p

)(
1− exp

(
− (
√
α− λ)2

2
√
α

Ti
ε

αi

))
= p′1

On the other hand we find for p2,

p2 = Pr
[
εi+1 <

ε

αi

]
Pr
[
count ≥ λTi

ε

αi

∣∣∣ εi+1 <
ε

αi

]
≤ Pr

[
count ≥ (1 + δ)Tiεi+1

∣∣∣ εi+1 <
ε

αi

]
≤ exp

(
−1

3
min(δ, δ2)εi+1Ti

)
where we have set δ > 0 such that (1 + δ)εi+1 = λε/αi, i.e. δ = λε

αiεi+1
− 1. We

want to bound min(δ, δ2)εi+1 from below. Notice that

δ2εi+1 =
λ2ε2

α2iεi+1
− 2λε

αi
+ εi+1

15

is strictly decreasing on the interval εi+1 ∈ [0, ε/αi[. Hence,

δ2εi+1 >
λ2ε

αi
− 2λε

αi
+

ε

αi
=

ε

αi
(λ− 1)2.

Moreover, δεi+1 > (λ− 1) ε
αi and therefore

p2 < exp

(
− (λ− 1)2

3
Ti
ε

αi

)
= p′2.

We set λ such that the arguments of the exponential function in p′1 and p′2 are
equal; that is,

(
√
α− λ)2

2
√
α

=
(λ− 1)2

3
.

Then p′1 = (1− 1/
√
α− n/p)(1− p′2). With these probabilities we now calculate

the probability that the loop ends with a bad ci. It is given by

pbad =

∞∑
j=0

pk0p2 =
p2

1− p0
=

p2
p1 + p2

=
1

1 + p1/p2
<

1

1 + p′1/p
′
2

=
p′2

p′1 + p′2
.

The probability that the first-level tree-finder(1) chooses n1 good challen-
ges c1 is (1 − pbad)n1 . Under this condition our assumption ε2 ≥ ε/α is true
for the second-level tree finders and they all choose only good challenges with
probability (1 − pbad)n1n2 . Write N =

∑µ−1
i=1 (n1 . . . ni) ≤

∑µ−1
i=1 n

i = nµ−n
n−1 <

nµ = (2logn)µ = (2µ)logn = llogn for n = max1≤i≤µ−1 ni. We see that with
probability (1− pbad)N only good challenges are chosen in the whole execution
of the tree-finding algorithm and the assumption is true for all invocations of
tree-finder(i). Now, by the Bernoulli inequality,

(1− pbad)N ≥ 1−Npbad > 1− Np′2
p′2 + p′1

= 1− Np′2
p′2 + (1− 1/

√
α− n/p)(1− p′2)

> 1− Np′2
1− 1/

√
α− n/p

,

which is bigger than 1/2 if p′2 ≤ (1−1/
√
α−n/p)/(2N), which in turn is implied

by

Ti =
3

(λ− 1)2
αi

ε
ln

(
2N

1− 1/
√
α− n/p

)
= O

(
llogα+logn

ε

)
(l→∞).

16

The expected number of iterations of the loop in lines 12−25 under the condition
that a good ci is chosen is

∞∑
j=1

j
pj−10 p1

p1/(1− p0)
= (1− p0)

∞∑
j=1

jpj−10

=
1

1− p0
=

1

p1 + p2

<
1

p′1
=

1

(1− 1/
√
α− n/p)(1− p′2)

= O(1)

and each iteration takes time Ti + 1. So with probability at least 1/2 the condi-
tioned expected runtime of the whole tree finding algorithm is at most

t =

µ−1∑
i=1

ni
1

p′1
(Ti + 1) +

nµ−1nµ
ε/αµ−1 − nµ/p

<
1

p′1

µ−1∑
i=1

niTi +
1

p′1
llogn +

nµ
n

llogn+logα

ε

=
1

p′1

3

(λ− 1)2
1

αn− 1
ln

(
2N

1− 1/
√
α− n/p

)
llogn+logα

ε

+
nµ
n

llogn+logα

ε
+

1

p′1
llogn

= O

(
llogn+logα log l

ε

)
.

Here we have used ε ≥ αµnµ/((α− 1)p) which implies ε/αµ−1−nµ/p ≥ ε/αµ =
ε/llogα. When we are not so lucky and some bad challenges are chosen the
algorithm might run for a long time but we just limit the runtime to 2t. Then
the probability for obtaining a full n-tree of accepting transcripts is at least
1
2 (1 − 1

2) = 1
4 since the probability that an algorithm with expected runtime t

runs longer than 2t is at most 1/2. Notice that in expected time 8t we can obtain
an n-tree of accepting transcripts. ut

Example. The implied constant in the big-O statement for the runtime of the
extractor is readily computed from the formulas in the proof of Lemma 3.2. For
example in the case where p ≈ 2256, n = 4, l = 225 and α = 1.3, one finds that
λ ≈ 1.075 and the implied constant is about 1564.

4 Zero-Knowledge Inner Product Proof

In an inner product proof there is a commitment t = ~g~v1~h~v2uρ to two vectors
whose inner product x = 〈~v1, ~v2〉 is publicly known. The goal is to prove kno-
wledge of an opening to t that really fulfills this inner product relation. In this

17

section we give a variant of the Bulletproof inner product proof which differs
in that it is zero-knowledge. In the original protocol, after folding the vectors
down to just 1-dimensional elements, the prover reveals the opening to the com-
mitment. The main difference of the modified protocol from this section is that
instead of revealing the opening it uses a Schnorr-type proof to prove know-
ledge of an opening in zero-knowledge, in a way that also proves the necessary
product relation. With a zero-knowledge inner product proof at hand we can sig-
nificantly simplify our main protocol compared to the similar Bulletproof range
proof from [BBB+17]. For example, our proof is only three round compared to
the five rounds of the range proof. The advantage stems from the fact that the
secret vectors do not have to be blinded which is the reason for much of the
complication in the Bulletproof range proof. We write .Π〈·,·〉(·; ·) for our inner
product proof protocol, which is detailed in Figure 1.

The length l of the secret vectors ~v1, ~v2 is assumed to be a power of two. In
the main protocol from Section 5 we need an inner product proof for vectors of
arbitrary length but it is trivial to achieve this by just padding the vectors with
zeros. If t = ~g~v1~h~v2uρ is a commitment to two vectors of length l which is not
a power of two, we can just interpret this as a commitment to vectors of length
2dlog le over more generators ~g′, ~h′. Notice that the inner product of the padded
vectors stays the same.

Theorem 4.1. The protocol given in Figures 1 and 2 is complete, perfectly ho-
nest verifier zero-knowledge and generalized special sound under the discrete-log
assumption. So there is an extractor E that, when given rewindable black-box
access to a deterministic prover P∗, either outputs an opening ~v∗1 , ~v

∗
2 ∈ Zlp,

ρ∗ ∈ Zp of t, i.e. t = ~g~v
∗
1~h~v

∗
2uρ

∗
, such that x = 〈~v∗1 , ~v∗2〉, or a non-trivial discrete-

log relation between ~g,~h, u and two auxiliary generators e, f ∈ G. The extractor
E runs in expected time at most O(l2+logα log l/ε) for some α > 1, for example
α = 1.3, when P∗ has acceptance probability ε ≥ 10 α

α−1 l
logα/p. Running P∗

once is assumed to take unit time.

Proof. The subprotocol without the first move is a 2µ + 1 move protocol for
µ = log(l) + 1, which fulfills the prerequisites of the forking lemma given in
Lemma 3.2. After sending a uniformly random generator a = eb of the group
G for a uniform b ∈ Zp, the extractor E can thus use tree-finder to obtain
a (4, . . . , 4, 5)-tree of accepting transcripts of this subprotocol. More precisely,
with probability at least 1/2 over the choice of a, the verifier V will accept with
probability at least ε/2 ≥ αµ

α−1nµ/p. Therefore tree-finder will be successful
with probability at least 1/8. If it is not successful, E restarts.

Consider the 5 accepting transcripts from neighboring leaves with the same
parent node. Only the last challenges differ in the transcripts and we have the 5
verification equations

(t′′)ciw(w′)c
−1
i = gz1,ihz2,iac

−1
i z1,iz2,iuτi (13)

18

Prover P Verifier V

Inputs:

~g,~h ∈ Gl;u ∈ G ~g,~h, u, t, x

~v1, ~v2 ∈ Zlp; ρ ∈ Zp

t = ~g~v1~h~v2uρ

x = 〈~v1, ~v2〉

a� a
$← G

t′ = tax t′ = tax

The parties run (g, h, t′′; v1, v2, ρ
′) = folding(~g,~h, a, u, t′;~v1, ~v2, ρ) where the se-

crets v1, v2, ρ
′ ∈ Zp are such that t′′ = gv1hv2av1v2uρ

′
.

y1, y2, σ, σ
′ $← Zp

w = gy1hy2ay1v2+y2v1uσ

w′ = ay1y2uσ
′ w,w′ -

c� c
$← Z×p

z1 = y1 + cv1

z2 = y2 + cv2

τ = cρ′ + σ + c−1σ′ z1, z2, τ -

(t′′)cw(w′)c
−1 ?

= gz1hz2ac
−1z1z2uτ

Fig. 1. Zero-knowledge inner product Bulletproof .Π〈·,·〉(·; ·). It proves knowledge of

an opening to a Pedersen commitment t = ~g~v1~h~v2uρ such that the vectors ~v1 and ~v2
fulfill an inner product relation 〈~v1, ~v2〉 = x.

19

Prover P Verifier V

Inputs:

~g,~h ∈ Gl; a, u ∈ G ~g,~h, a, u, t

~v1, ~v2 ∈ Zlp; ρ ∈ Zp

t = ~g~v1~h~v2a〈~v1,~v2〉uρ

Outputs:

g, h ∈ G g, h, t′

v1, v2, ρ
′ ∈ Zp

t′ = gv1hv2av1v2uρ
′

If l > 1, define l′ = l
2

and write ~g =
(
~gt
~gb

)
, ~h =

(~ht
~hb

)
, ~vi =

(~vi,t
~vi,b

)
, where ~gj ,~hj , ~vi,j ∈

Gl
′

for i = 1, 2, j = t, b. Then,

σ−1, σ1
$← Zp

t−1 = ~g
~v1,b
t

~h
~v2,t
b a〈~v1,b,~v2,t〉uσ−1

t1 = ~g
~v1,t
b

~h
~v2,b
t a〈~v1,t,~v2,b〉uσ1 t−1, t1 -

c� c
$← Z×p

~v′1 = ~v1,t + c−1~v1,b

~v′2 = ~v2,t + c~v2,b

ρ′′ = c−1σ−1 + ρ+ cσ1

and both parties compute ~g′ = ~gt ◦ ~gcb , ~h′ = ~ht ◦ ~hc
−1

b and t′′ = tc
−1

−1 tt
c
1. They re-

cursively run (g, h, t′; v1, v2, ρ
′) = folding(~g′,~h′, a, u, t′′;~v′1, ~v

′
2, ρ
′′) where P knows

~v′1, ~v′2, ρ′′ such that t′′ = (~g′)~v
′
1(~h′)~v

′
2a〈~v

′
1,~v
′
2〉uρ

′′
.

Else g = ~g, h = ~h ∈ G, and P knows v1 = ~v1, v2 = ~v2, ρ
′ = ρ ∈ Zp, such that

t′ = t = gv1hv2av1v2uρ
′
.

Fig. 2. Bulletproof folding protocol folding(~g,~h, a, u, t;~v1, ~v2, ρ). This reduces a Pe-

dersen multi-commitment of the form t = ~g~v1~h~v2a〈~v1,~v2〉uρ to a new commitment
t′ = gv1hv2av1v2uρ

′
with the same (inner) product structure but in dimension 1. Furt-

hermore, given an opening for t′ having the correct inner product structure, one can
extract an opening for t that also has the inner product structure by using the extractor
from the forking lemma (Lemma 3.2).

20

for i = 1, . . . , 5 with distinct ci ∈ Zp. Let (λ1, λ2, λ3)T ∈ Z3
p be the solution of

the linear system 1 1 1
c1 c2 c3
c−11 c−12 c−13

λ1λ2
λ3

 =

0
1
0

 .

It exists because it is well-known that the determinant of this Vandermonde
matrix is equal to −(c1c2c3)−1(c1− c2)(c1− c3)(c2− c3) 6= 0. Now raise the first
3 equations in 13 for i = 1, 2, 3 to the powers of λi and multiply them. This gives

t′′ = gv
∗
1hv

∗
2ax

∗
uτ
∗

where for example v∗1 =
∑3
i=1 λiz1,i. In the same manner we can extract openings

for w and w′,

w = gy
∗
1hy

∗
2ax

∗
wuσ

∗
,

w′ = g(y
′
1)
∗
h(y
′
2)
∗
ax
∗
w′u(σ

′)∗ .

With these openings to t′′, w and w′ we can reconstruct the equations in (13)
and get

(t′′)ciw(w′)c
−1
i

= gciv
∗
1+y

∗
1+c

−1
i (y′1)

∗
hciv

∗
2+y

∗
2+c

−1
i (y′2)

∗
acix

∗+x∗w+c−1
i x∗

w′uciρ
∗+σ∗+c−1

i (σ′)∗

= gz1,ihz2,iac
−1
i z1,iz2,iuτi

By comparing exponents we either find a non-trivial discrete-log relation between
g, h, a, u, which gives a relation between ~g,~h, u, e since E knows expressions of
g, h, a, u as powers of ~g,~h, u, e. Or we have

cix
∗ + x∗w + c−1i x∗w′ = c−1i z1,iz2,i

= c−1i
(
civ
∗
1 + y∗1 + c−1i (y′1)∗

) (
civ
∗
2 + y∗2 + c−1i (y′2)∗

)
.

Multiplying this equation by c3i yields a polynomial of degree 4 which has five
roots ci. Hence it must be the zero polynomial and from the leading coefficient
we get x∗ = v∗1v

∗
2 and thus

t′′ = gv
∗
1hv

∗
2av

∗
1v
∗
2uτ

∗
.

The extractor performs this process for all parents in the second-to-last level
µ−1 = log(l) of the tree of accepting transcripts. Then, with the same techniques
and as is detailed in [BBB+17], the extractor can invert all the log(l) folding steps
and either compute a non-trivial discrete-log relation or an opening ~v1, ~v2, x

∗, ρ∗

of t′ = tax,
tax = ~g~v

∗
1~h~v

∗
2ax

∗
uρ
∗
,

such that x∗ = 〈~v1, ~v2〉. If x∗ = x then E has an opening of t as stated in the
theorem. If not, E starts over from scratch but samples a challenge generator
a′ = f b

′ ∈ Zp for the first move. By this E obtains an opening

t(a′)x = ~g~v
∗∗
1 ~h~v

∗∗
2 (a′)x

∗∗
uρ
∗∗
,

21

and can compute

~g~v
∗
1−~v

∗∗
1 ~h~v

∗
2−~v

∗∗
2 eb(x

∗−x)f b
′(x∗∗−x)uρ

∗−ρ∗∗ = 1,

which is a non-trivial discrete-log relation. Not taking into account the simple
arithmetic over Zp, the expected running time of E is at most 16 times the
expected running time of tree-finder.

We turn to the zero-knowledge property. The first message by the verifier
containing the generator a and all the messages in the folding protocol are in-
dependently uniformly random. This is because all the cross-terms t−1, t1 are
independently blinded with independently random factors uσ−1 and uσ1 . So the

simulator can just choose a
$← G and all messages in the folding protocol uni-

formly randomly. From these messages the honest verifier computes the genera-
tors g, h and the commitment t′′. Now it remains to simulate the Schnorr-type
protocol at the end for proving knowledge of an opening of t′′ that obeys the pro-
duct relation. This is made possible by how we set up the verification equation.

The simulator first samples c
$← Zp, and then z1, z2

$← Zp, which are indepen-
dent from the previously chosen messages because of y1 and y2, respectively.

Then he chooses w′
$← G which is independent because of the blinding factor

uσ
′
. Last the simulator samples τ

$← Zp which is still uniformly random because
of σ. Now w ∈ G is not independent anymore but instead fully determined by
the previous choices and the simulator can compute it correctly as

w = (t′′)−c(w′)−c
−1

gz1hz2ac
−1z1z2uτ ,

which clearly makes the verification equation true.

5 The Main Protocol

In this section we present in detail our protocol to prove knowledge of a matrix
S ∈ Rm×kq consisting of short polynomials of infinity norm less than B such that

AS = T over Rq (14)

where A ∈ Rn×mq and T ∈ Rn×kq are public.
First, when A, S, T are lifted to matrices over Z[X], the equation is true

modulo q and f . So there are matrices R1,R2 over Z[X] such that

AS + qR1 + fR2 = T over Z[X]. (15)

More precisely, notice that T − AS ∈ (Z[X])n×k consists of polynomials of
degree at most 2(d−1) and infinity norm less than mdBq/2 when we use central
representatives for coefficients in Zq. Moreover, T−AS is a multiple of f modulo
q. So we can exactly divide T−AS by f over Zq[X] to obtain R2 with polynomials
of degree at most d − 2 and coefficients in {−(q − 1)/2, . . . , (q − 1)/2}. Then,

22

dividing T−AS−fR2 by q yields R1 with polynomials of degree at most 2(d−1)
and infinity norm less than (mdB + d ‖f‖∞)/2. Next, for a prime p we have

AS + qR1 + fR2 = T over Zp[X], (16)

and then for an α ∈ Zp the equation

A(α)S(α) + qR1(α) + f(α)R2(α) = T(α) over Zp[X]. (17)

Conversely, by the Schwartz-Zippel lemma, if Equation (17) is true for a uni-
formly random α, then Equation (16) holds with probability at least 1− 2(d−
1)/p. In this case, if p ≥ 2(mdB + d ‖f‖∞)q, Equation (15) is true since no re-
duction modulo p takes place, and Equation (14) follows. So in order to prove
knowledge of a matrix S ∈ Sm×kB as in Equation (14), it suffices to prove kno-
wledge of matrices S, R1 and R2 of integer polynomials whose coefficients have
absolute value less than B, B1 = (mdB+ d ‖f‖∞)/2 and B2 = q/2, respectively,
such that Equation (17) is true for a uniformly random α.

We describe our strategy for conducting such a proof. If we expand all po-
lynomials in the secret matrices S, R1, R2 to their coefficient row vectors of
dimensions d, 2d− 1 and d− 1, respectively, and hence consider the matrices as
integer matrices S, R1, R2, then, with ~αd = (1, α, . . . , αd−1)T , we can equiva-
lently write

A(α)S(Ik ⊗ ~αd) + qR1(Ik ⊗ ~α2d−1) + f(α)R2(Ik ⊗ ~αd−1) = T(α). (18)

Now a natural strategy would be to produce a Pedersen multi-commitment over
a group of order p to the secret matrices S, R1, R2. Then one could prove that
the matrices fulfill Equation (18) by reducing them to integers using in the order
of log(mkd) bulletproof folding steps. In addition one would also need to give
a range proof that the coefficients of the matrices are sufficiently small. For
increased efficiency we combine these proofs in one single proof.

The usual method for range proofs consists of expressing the coefficients by
their binary representations so that the range follows from the number of bits
used per coefficient. The proof that this representation really only contains bits
in {0, 1} is most easily done via an inner product proof as in [BBB+17]. Therefore
we want to reduce Equation (18) to an inner product equation which then can
be integrated into the range proof. To this end we first multiply from both sides
by uniformly random vectors ~β ∈ Zkp and ~γ ∈ Znp , so that

~γTA(α)S(~β ⊗ ~αd) + q~γTR1(~β ⊗ ~α2d−1) + f(α)~γTR2(~β ⊗ ~αd−1) = ~γTT(α)~β.

This equation implies Equation (18) with probability at least 1− 2/p. Next we
serialize the secret matrices to column vectors ~s ∈ Zmkd, ~r1 ∈ Znk(2d−1) and
~r2 ∈ Znk(d−1) in row-major order. With these the last equation is equivalent to
the inner product equation〈

A(α)T~γ ⊗ ~β ⊗ ~αd, ~s
〉

+
〈
q~γ ⊗ ~β ⊗ ~α2d−1, ~r1

〉
+
〈
f(α)~γ ⊗ ~β ⊗ ~αd−1, ~r2

〉
= ~γTT(α)~β.

23

Finally, we expand each secret vector one more time and replace the coefficients
by their binary representation using two’s complement for negative numbers. We
get 〈

A(α)T~γ ⊗ ~β ⊗ ~αd ⊗~2b,Binaryb(~s)
〉

+
〈
q~γ ⊗ ~β ⊗ ~α2d−1 ⊗~2b1 ,Binaryb1(~r1)

〉
+
〈
f(α)~γ ⊗ ~β ⊗ ~αd−1 ⊗~2b2 ,Binaryb2(~r2)

〉
=~γTT(α)~β, (19)

where ~2b = (1, 2, . . . , 2b−2,−2b−1)T , b = dlog(B)e + 1, b1 = dlog(B1)e + 1 =
dlog(mdB + d ‖f‖∞)e and b2 = dlog(B2)e+ 1 = dlog(q)e. For the sake of clarity
in what follows we concatenate the public and secret vectors and define

~v = A(α)T~γ ⊗ ~β ⊗ ~αd ⊗~2b ‖ q~γ ⊗ ~β ⊗ ~α2d−1 ⊗~2b1 ‖ f(α)~γ ⊗ ~β ⊗ ~αd−1 ⊗~2b2 ,
~s1 = Binaryb(~s) ‖ Binaryb1(~r1) ‖ Binaryb2(~r2)

so that we can write 〈~v,~s1〉 = ~γTT(α)~β.
It remains to prove that the secret vector ~s1 only contains coefficients in

{0, 1}. As usual this is done by proving that there is a second vector ~s2, the
vector with all bits flipped, such that ~s1 ◦ ~s2 = ~0 and ~s1 + ~s2 = ~1. The first
property holds with probability at least 1− 1/p if 〈~ϕ,~s1 ◦ ~s2〉 = 〈~ϕ ◦ ~s2, ~s1〉 = 0
for a uniformly random vector ~ϕ. Similarly, the second property follows with
overwhelming probability from 〈~ϕ,~s1 + ~s2〉 = 〈~ϕ,~s1〉 + 〈~ϕ ◦ ~s2,~1〉 = 〈~ϕ,~1〉. We
incorporate both inner product equations into Equation (19) and arrive at〈

~v + ~ϕ ◦ ~s2 + ψ~ϕ,~s1 + ψ~1
〉

= ~γTT(α)~β + ψ
〈
~v,~1
〉

+ (ψ + ψ2)
〈
~ϕ,~1
〉

where ψ ∈ Zp is another uniformly random field element with the purpose of
separating the three inner product equations.

When given a Pedersen multi-commitment to the vectors ~s2 and ~s1 it is easy
to compute a commitment to ~v1 = ~v + ~ϕ ◦ ~s2 + ψ~ϕ and ~v2 = ~s1 + ψ~1. It might
be unclear at first how to multiply ~s2 componentwise with ~ϕ inside the multi-
commitment, which means each coefficient has to be multiplied by a different
value. There is a standard trick to do this. Suppose ~g ∈ Gl is the vector of gene-
rators underlying ~s2. Then we just reinterpret this part of the commitment as a
commitment over generators ~g′ = ~g~ϕ

−1

. Since ~g~s2 = (~g~ϕ
−1

)~ϕ◦~s2 = (~g′)~s2 , our ori-
ginal commitment containing ~s2 over ~g thus becomes a commitment containing
~ϕ ◦ ~s2 over ~g′. Now given the commitment to ~v1 and ~v2 we prove that the inner
product of these vectors of dimension l = mkdb+ nk(2d− 1)b1 + nk(d− 1)b2 is

equal to x = ~γTT(α)~β + ψ〈~v,~1〉+ (ψ + ψ2)〈~ϕ,~1〉. It follows with overwhelming
probability that ~s1 gives rise to a matrix S ∈ Rm×kq of short polynomials such
that AS = T over Rq. For the inner product proof we make use of Bulletproofs,
which have communication cost logarithmic in l. But in contrast to the range

24

proof in [BBB+17], we do not blind the vectors and instead use a variant of
the Bulletproof inner product proof that is zero knowledge. Here one first re-
duces the vectors to dimension 1 and then uses a zero-knowledge Schnorr-type
proof for the one-dimensional base case. See Figure 3 for the complete protocol
and Theorem 5.1 for its security. We state the zero-knowledge inner product
Bulletproof in Figure 1.

Theorem 5.1. If p ≥ 2(mdB + d ‖f‖∞)q, then the protocol in Figure 3 is com-
plete, perfectly honest verifier zero-knowledge and generalized special sound un-
der the discrete-log assumption in the sense that there is an extractor E with the
following properties. When given rewindable black-box access to a deterministic
prover P∗ that convinces the honest verifier with probability ε ≥ 100l/p, E either
outputs a solution S∗ ∈ Rm×kq to AS∗ = T, which consists of polynomials whose
coefficients fit in b = dlog(B)e+ 1 bits, or a non-trivial discrete-log relation bet-
ween generators of the group G. The extractor E runs in expected time at most
O(l2.4 log l/ε). Running P∗ once is assumed to take unit time.

Proof. Completeness is clear from the discussion at the beginning of Section 5
and the zero-knowledge property follows immediately from the fact that the inner
product proof is honest verifier zero-knowledge; see Theorem 4.1. Let us now
prove soundness. The extractor E runs P∗, sends uniformly random challenges
in the second move and then uses the extractor for the inner product proof
assuming acceptance probability ε/2 to get an opening for t, c.f. Theorem 4.1.
From an averaging argument we know that for at least half of the challenges in
the second move the inner product proof π is valid with probability at least ε/2.
Then, since ε/2 > 10αllogα/((α−1)p) for α ≥ 1.3, the conditions of Theorem 4.1
are met. So after an expected number of 2 trials we can assume that E either
has a non-trivial discrete-log relation or an opening ~v∗1 , ~v

∗
2 , ρ
∗ of t, i.e.

t = (~g′)~v
∗
1~h~v

∗
2uρ

∗
,

such that 〈~v∗1 , ~v∗2〉 = x. Since t = w(~g′)~v+ψ~ϕ~hψ, we get the opening ~ϕ ◦ ~s∗2 =
~v∗1 − ~v − ψ~ϕ, ~s∗1 = ~v∗2 − ψ~1, ρ∗ for w such that

〈~v,~s∗1〉+
〈
~v, ψ~1

〉
+ 〈~ϕ ◦ ~s∗2, ~s∗1〉+

〈
~ϕ ◦ ~s∗2, ψ~1

〉
+ 〈ψ~ϕ,~s∗1〉+

〈
ψ~ϕ, ψ~1

〉
= 〈~v,~s∗1〉+ 〈~ϕ,~s∗1 ◦ ~s∗2〉+ ψ 〈~ϕ,~s∗1 + ~s∗2〉+ ψ2

〈
~ϕ,~1
〉

+ ψ
〈
~v,~1
〉

= ~γTT(α)~β + ψ
〈
~v,~1
〉

+ (ψ + ψ2)
〈
~ϕ,~1
〉
.

The last equation is equivalent to

〈~v,~s∗1〉+ 〈~ϕ,~s∗1 ◦ ~s∗2〉+ ψ
〈
~ϕ,~s∗1 + ~s∗2 −~1

〉
= ~γTT(α)~β,

which can be interpreted as a multivariate polynomial P over Zp in n+k+ l+ 2

variables that evaluates to zero at (α, ~β,~γ, ~ϕ, ψ). If the polynomial is the zero
polynomial it follows that

~s∗1 ◦ ~s∗2 = 0 and ~s∗1 + ~s∗2 = ~1

25

Prover P Verifier V
Inputs:

A ∈ Rn×mq ,S ∈ Sm×kB A,T, b, b1, b2, l, ~g,~h, u

T = AS ∈ Rn×kq

b = dlog(B)e+ 1

b1 = dlog(mdB + d ‖f‖∞)e
b2 = dlog(q)e
l = mkdb+ nk(2d− 1)b1

+ nk(d− 1)b2

~g,~h ∈ Gl, u ∈ G

R2 = (T−AS)/f over Zq[X]

R1 = (T−AS− fR2)/q over Z[X]

~s = Serialize(S) ∈ Zmkd

~r1 = Serialize(R1) ∈ Znk(2d−1)

~r2 = Serialize(R2) ∈ Znk(d−1)

~s1 = Binaryb(~s) ‖ Binaryb1(~r1)

‖ Binaryb2(~r2)

~s2 = ~s1 +~1 ∈ Zl2 (XOR)

ρ
$← Zp

w = ~g~s2~h~s1uρ w -

α
$← Z×p , ~β

$← (Z×p)k, ~γ
$← (Z×p)n

α, ~β,~γ, ~ϕ, ψ� ~ϕ
$← (Z×p)l, ψ

$← Z×p

~g′ = ~g~ϕ
−1

~g′ = ~g~ϕ
−1

~v = A(α)T~γ ⊗ ~β ⊗ ~αd ⊗~2b ~v = A(α)T~γ ⊗ ~β ⊗ ~αd ⊗~2b
‖ q~γ ⊗ ~β ⊗ ~α2d−1 ⊗~2b1 ‖ q~γ ⊗ ~β ⊗ ~α2d−1 ⊗~2b1
‖ f(α)~γ ⊗ ~β ⊗ ~αd−1 ⊗~2b2 ∈ Zlp ‖ f(α)~γ ⊗ ~β ⊗ ~αd−1 ⊗~2b2

t = w(~g′)~v+ψ~ϕ~hψ t = w(~g′)~v+ψ~ϕ~hψ

~v1 = ~v + ~ϕ ◦ ~s2 + ψ~ϕ

~v2 = ~s1 + ψ~1

x = 〈~v1, ~v2〉 x = ~γTT(α)~β + ψ
〈
~v,~1
〉

+ (ψ + ψ2)〈~ϕ,~1〉 ∈ Zp

The parties run the zero-knowledge inner product proof .Π〈·,·〉(~g
′,~h, u, t, x;~v1, ~v2, ρ)

and the verifier V accepts if he accepts in .Π〈·,·〉(·; ·).

Fig. 3. Discrete-log based zero-knowledge proof of knowledge of a short solution to a
matrix equation over Rq.

26

so ~s∗1 is a binary vector with entries s∗1,i ∈ {0, 1}. Write S∗ ∈ (Z[X])m×k for
the polynomial matrix in which the coefficient of Xν , 0 ≤ ν ≤ d − 1, of the
polynomial in the (i, j)-th entry, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ k − 1, is given by

s∗1,bdki+bdj+bν + s∗1,bdki+bdj+bν+12 + · · ·+ s∗1,bdki+bdj+bν+(b−2)2
b−2

− s∗1,bdki+bdj+bν+(b−1)2
b−1.

Proceed similarly for R∗1,R
∗
2 ∈ (Z[X])n×k starting from coefficient s∗1,bdkm and

s∗1,bdkm+b1(2d−1)kn of ~s∗1, respectively. In other words, S∗,R∗1 and R∗2 are such
that

Binaryb(Serialize(S∗)) ‖ Binaryb1(Serialize(R∗1)) ‖ Binaryb2(Serialize(R∗2))

= ~s∗1.

By construction the polynomials in S∗, R∗1 and R∗2 have coefficients that fit

in b, b1 and b2 bits, respectively. Then, since 〈~v,~s∗1〉 = ~γTT(α)~β, it follows by
inspection

~γT
(
AS∗ + qR∗1 + fR∗2 −T

)
(α)~β = 0 in Zp.

The coefficient of Xν of the polynomial in the (i, j)-th entry of the matrix in the
middle corresponds to the coefficient of ανβjγi of our multivariate polynomial
P that we assume to be zero. So,

AS∗ + qR∗1 + fR∗2 = T over Zp[X]

but from our assumption on p this equation is even true over Z[X] and we finally
get AS∗ = T over Rq.

It remains to consider the case where P 6= 0. Note that in this case the
polynomial is of total degree at most 2d. Consequently, it can evaluate to zero at
no more than 2dpn+k+l+1 points in Zn+k+l+2

p (this is just a counting version of
the Schwartz-Zippel lemma). Now the extractor E reruns P∗ but sends a uniform

challenge (α, ~β,~γ, ~ϕ, ψ) ∈ Zn+k+l+2
p from the set of non-roots of P . Then E again

tries to extract from the inner product proof and continues in this fashion until he
is successful for a second time. At least for a fraction of 1

2 −
2d
p of the non-roots,

the inner product proof is accepted with probability at least ε/2. So after an
expected number of roughly 2 trials E will get a non-trivial discrete-log relation
or new multivariate polynomial P ′ that is zero outside of the small set of roots
of our original polynomial P so that P ′ must be different to P . But then, since
P and P ′ are in one-to-one correspondence to openings of the commitment t,
we must have two different openings and can compute a non-trivial discrete-log
relation. We see the total expected runtime of E is at most 4 times the expected
runtime of the extractor of the inner product proof. ut

5.1 Proof size

The communication size of our protocol from Figure 3 is very small. Instead of
all the individual challenges in the second move the verifier can just send a short

27

seed that is expanded to the challenges with the help of a XOF. Moreover, in
the non-interactive version of the protocol via the Fiat-Shamir transform the
challenges are expanded from public information and the first message. So such
a non-interactive proof only consists of the first message and the inner product
proof of size logarithmic in l. Simple counting shows that one full non-interactive
proof consists of 2dlog le + 3 group elements and 3 elements of Zp. If a 256 bit
elliptic curve is used for G, then this results in 64dlog le+ 192 bytes per proof.

5.2 Number of exponentiations

Computing multi-exponentiations over G is by far the most time-consuming
operation in our main protocol. We count the number of exponentiations to be
performed by the prover and verifier in order to estimate the time needed to
execute the protocol. The prover computes l exponentiations for ~g′, l + 1 expo-
nentiations for t and only 1 exponentiation for w (~s1 and ~s2 are binary) plus the
exponentiations in the inner product proof. The verifier computes 2l + 1 expo-
nentiations and those from the inner product proof. In the inner product proof
the prover has to compute 2·2dlog le−i+6 exponentiations in the i-th folding level,
i = 0, . . . , dlog le−1. This amounts to 4·2dlog le+6dlog le−4 < 8l+6 log l+2 expo-
nentiations for the full Bulletproof folding. In addition there are 6 exponentiati-
ons needed for the Schnorr-type proof. The verifier performs 4dlog le < 4 log l+1
exponentiations for the folding protocol and 6 exponentiations for the verifica-
tion equation. This can be heavily optimized by delaying exponentiations; see
[BBB+17, Section 6.2]. We conclude that the total exponentiation costs for the
prover and verifier are less than 10l + 6 log l + 10 and 2l + 4 log l + 10 exponen-
tiations.

5.3 Example

We return to the example of a verifiable encryption scheme from Section 1.5.
In the case of verifiable encryption, one has to prove a matrix equation A~s = ~t
with parameters n = 2, m = 4, k = 1, B = 4. For the ring Rq, a common
example for encrypting messages that are binary polynomials (c.f. [ADPS16])
is setting f = X1024 + 1 and q being a prime of about 13 bits, and p = 2.
With these parameters we find the length l of the secret vectors ~s1 and ~s2 in
the inner product proof to be equal to 100296. It then follows from above that
the prover and verifier need to compute about 724986 and 200667 exponenti-
ations to run our protocol for this application. With current CPUs one expo-
nentiation on a 256 bit elliptic curve can be computed in about 35000 cycles
(see https://bench.cr.yp.to/results-dh.html), which amounts to roughly
85000 exponentiations per second. So computing one of our proofs should be
possible in less than 10 seconds. This can then be improved by using speciali-
zed algorithms for computing multi-exponentiations, in particular Pippenger’s
algorithm [Pip80]. The size of the proof is 1.25 kilobytes.

28

https://bench.cr.yp.to/results-dh.html

Acknowledgements

We thank the reviewers for their careful reading of the proofs and useful sug-
gestions. This work was supported in part by the SNSF ERC Transfer Grant
CRETP2-166734 FELICITY and H2020 FutureTPM.

References

ABB+18. Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstan-
tinos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gen-
nady Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy,
Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorni-
otti, Chrysoula Stathakopoulou, Marko Vukolic, Sharon Weed Cocco, and
Jason Yellick. Hyperledger fabric: A distributed operating system for per-
missioned blockchains. CoRR, abs/1801.10228, 2018.

ADPS16. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - A new hope. In USENIX, pages 327–343, 2016.

BBB+17. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential tran-
sactions and more. IACR Cryptology ePrint Archive, 2017:1066, 2017.

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Chris-
tophe Petit. Efficient zero-knowledge arguments for arithmetic circuits in
the discrete log setting. In Advances in Cryptology - EUROCRYPT 2016
- 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,
Part II, pages 327–357, 2016.

BCK+14. Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyubashev-
sky, and Gregory Neven. Better zero-knowledge proofs for lattice encryption
and their application to group signatures. In ASIACRYPT, pages 551–572,
2014.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. In ITCS, pages 309–325,
2012.

CS03. Jan Camenisch and Victor Shoup. Practical verifiable encryption and de-
cryption of discrete logarithms. In CRYPTO, pages 126–144, 2003.

FGP14. Dario Fiore, Rosario Gennaro, and Valerio Pastro. Efficiently verifiable
computation on encrypted data. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, Scottsdale, AZ,
USA, November 3-7, 2014, pages 844–855, 2014.

FMMC12. Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N.
Cleland. Surface codes: Towards practical large-scale quantum computa-
tion. Phys. Rev. A, 86:032324, Sep 2012.

Gid18. Craig Gidney. Why will quantum computers be slow?
http://algassert.com/post/1800. Last accessed January 18, 2019.,
2018.

LLNW18. Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Lattice-based
zero-knowledge arguments for integer relations. In CRYPTO, pages 700–
732, 2018.

29

LM06. Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knap-
sacks are collision resistant. In ICALP (2), pages 144–155, 2006.

LN17. Vadim Lyubashevsky and Gregory Neven. One-shot verifiable encryption
from lattices. In EUROCRYPT, pages 293–323, 2017.

LPR13. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. J. ACM, 60(6):43, 2013. Preliminary
version appeared in EUROCRYPT 2010.

LTV12. Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-
fly multiparty computation on the cloud via multikey fully homomorphic
encryption. In STOC, pages 1219–1234, 2012.

LWF+17. Bjoern Lekitsch, Sebastian Weidt, Austin G. Fowler, Klaus Mølmer, Si-
mon J. Devitt, Christof Wunderlich, and Winfried K. Hensinger. Blueprint
for a microwave trapped ion quantum computer. Science Advances, 3(2),
2017.

MW16. Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation
via multi-key FHE. In Advances in Cryptology - EUROCRYPT 2016 -
35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,
Part II, pages 735–763, 2016.

Pip80. Nicholas Pippenger. On the evaluation of powers and monomials. SIAM J.
Comput., 9(2):230–250, 1980.

PR06. Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from
worst-case assumptions on cyclic lattices. In TCC, pages 145–166, 2006.

PS16. Chris Peikert and Sina Shiehian. Multi-key FHE from lwe, revisited. In
Theory of Cryptography - 14th International Conference, TCC 2016-B, Bei-
jing, China, October 31 - November 3, 2016, Proceedings, Part II, pages
217–238, 2016.

WTS+18. Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael
Walfish. Doubly-efficient zksnarks without trusted setup. In 2018 IEEE
Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May
2018, San Francisco, California, USA, pages 926–943, 2018.

30

	Short Discrete Log Proofs for FHE and Ring-LWE Ciphertexts

