
Break-glass Encryption

Alessandra Scafuro?

NCSU

Abstract. “Break-glass” is a term used in IT healthcare systems to
denote an emergency access to private information without having the
credentials to do so.
In this paper we introduce the concept of break-glass encryption for cloud
storage, where the security of the ciphertexts – stored on a cloud– can
be violated exactly once, for emergency circumstances, in a way that is
detectable and without relying on a trusted party.
Detectability is the crucial property here: if a cloud breaks glass without
permission from the legitimate user, the latter should detect it and have a
proof of such violation. However, if the break-glass procedure is invoked
by the legitimate user, then semantic security must still hold and the
cloud will learn nothing. Distinguishing that a break-glass is requested
by the legitimate party is also challenging in absence of secrets.
In this paper, we provide a formalization of break-glass encryption and
a secure instantiation using hardware tokens. Our construction aims to
be a feasibility result and is admittedly impractical. Whether hardware
tokens are necessary to achieve this security notion and whether more
practical solutions can be devised are interesting open questions.

1 Introduction

The purpose of an encryption scheme [GM84] is to protect data against any
observer that is not the intended recipient of the data. Encryption has been
historically used to protect messages in transmission over untrusted channels.
Recently however, encryption is progressively being used in the context of cloud
storage to protect the confidentiality of the data uploaded by the users to the
cloud. In a cloud storage setting, the cloud is trusted to guarantee availability
of the uploaded data at any time, but it is not necessarily trusted (or held
accountable) for not leaking clients’ data to third parties. Thus, the cloud can
be seen as an untrusted but reliable channel that the client uses to communicate
data to herself in the future.

The need to break. But what happens if the user loses the key? Or more generally,
what if the user loses the ability to access to the secret key (e.g. because she
lost her laptop, or simply because she is not alive anymore) but there is a need
to retrieve the documents that she uploaded to the cloud? For this emergency
condition, one would like to have a way to break the encryption without knowing
any cryptographic secret associated to the user.

? The author is supported by NSF grant #1012798.

Break-glass encryption. We introduce the concept of break-glass1 encryption.
This is an encryption scheme that guarantees semantic security – just like any
traditional encryption scheme– but it additionally provides a new command
called Break that allows one designated party (the cloud) to help an alleged
user to break her ciphertexts. Each ciphertext can be broken at most one time
in a way that is detectable. Detectability is the crucial property. If the cloud
breaks the ciphertexts without having received any request from the user, then
the user should be able to detect and publicly prove this violation. A bit more
specifically, we consider a setting where a user uploads and updates a (potentially
large) number of ciphertexts and we want two properties: (1) a legitimate break-
glass procedure preserves semantic security, that is, an honest user should be
able to use the cloud to break her ciphertexts in such a way that the cloud
does not learn anything about the plaintexts; (2) an illegitimate break-glass
procedure is detectable, that is, if the cloud breaks user’s ciphertexts without
any permission, this violation is detectable and can be proven to a third party. In
other words, a legitimate break-glass procedure preserves the semantic security
of the ciphertext, while an illegitimate break-glass procedure leaks data but
provides a proof of the violation.

What constitutes a legitimate break-glass request? A peculiar aspect of a break-
glass encryption is that the break-glass procedure should be requested without
knowing any secret. This is indeed crucial since a user wants to break-glass
exactly because he does not remember his secrets.

However, if no secret are required to request to break-glass, how do we dis-
tinguish a legitimate request – coming from the owner of the data– from an
illegitimate one – coming from anyone else? What makes a request illegitimate?

This is a challenge unique for our setting. For any break-glass encryption,
one has to first design a permission mechanism for creating legitimate permis-
sions without any secret and identifying and/or denying illegitimate requests. To
devise such a permission mechanism we leverage the following observation. If a
user did not request a break-glass procedure, this means that she probably still
possesses her secrets, and therefore she can use them to delegitimize the request.

More concretely, the high-level idea behind the permission mechanism is the
following. Any user U has associated a (public) alert address (e.g., an email
address, a Bitcoin account), which we call alert-info. When the cloud receives a
break-glass request from a party on behalf of user U , will first send an “alert”
to user U , by forwarding the break-glass request to the address alert-info. The
cloud will then wait a certain interval of time TWaitPermission, this time could
depend on the application and the permission mechanism. If the users knows
the secret associated to alert-info, then she will be able to stop or endorse the
permission by using her secrets. If not, the user will simply do nothing. After

1 The name break-glass encryption is inspired by the break-glass procedures used in
access control of various systems (healthcare, computer systems, etc.). In a break-
glass procedure the system administrator breaks into the account of a certain user
without the legitimate credentials in order to retrieve his data.

2

waiting TWaitPermission steps, if no denying answer is received from U , the silence
is accepted as a proof that the user did indeed lose the key and a “silence”
permission that U wishes to break the glass. Crucially, it is important that a
cloud is not able to fabricate a “silence” permission; thus the silence response
must be publicly verifiable. This is necessary for protecting the user against a
malicious cloud that pretends that no answer was received; but also to protect
the cloud in case a malicious user remains silent but then later accuses the cloud
by fabricating a proof delegitimizing the request.

We abstract the properties of such verifiable permission mechanism in an
ideal functionality Gperm (see Figure 2) and we discuss possible implementations
using a blockchain or an email provider (see Section 4.3).

Detectability: Why Simple Solutions Do Not Work. At first sight, the break-
glass property might seem trivial to achieve; after all we are adding a method to
reveal something and not to conceal. Unfortunately, this is not the case, and the
main reason is that for each breaking attempt we need to ensure detectability.
To show this, we now discuss some trivial solutions that do not work.

A straightforward solution could be to upload the ciphertexts in one cloud,
and give the secret key to another party, e.g., a friend, another cloud, a group
of colleagues, etc. This approach fails in achieving detectability: if the cloud
colludes with the party holding the key then ciphertexts can be decrypted at
any time and without leaving any trace. Similarly, the approach of selecting a
group of people that collectively holds the secret key suffers of the same problem:
if the group comes together and decides to decrypt, there is no way for the user
to ever notice. Furthermore, in this type of approach, it does not seem possible
to guarantee semantic security in presence of legitimate break-glass procedure.

Another relatively straightforward approach is to use a one-time hardware
token. Namely, the user prepares a token which has the secret key hardwired,
and when queried, it will output the key and then stop responding. The user will
then send to the cloud two things: the ciphertexts and the token, with the under-
standing that the token should be used only in case of emergency. To break the
glass, the cloud simply queries the token and get the key. The user could detect
if the break-glass procedure has been illegitimately performed by periodically
pinging her token. This approach however does not achieve semantic security in
presence of legitimate break-glass procedure. Indeed, since the cloud learns the
key, will be able to decrypt everything even when following a legitimate request,
and also trace the ciphertexts updates over time. Finally, this solution does not
allow for any granularity in case of illegitimate break-glass procedure. Indeed,
since the key is revealed, all ciphertexts are automatically broken. Instead, we
would like a more fine-grained mechanism that tells the user exactly which ci-
phertexts have been compromised, or that it allows the user to setup a leaking
threshold (e.g, not more then 50% of the data should be ever decrypted.)

When to use Break-glass Encryption? Break-glass security is reminiscent of
covert security [AL07], and it is meaningful in scenarios where the loss of rep-
utation is a strong deterrence against cheating. In particular, our definition is

3

stronger than covert security in that we explicitly require that, for any illegit-
imate breaking attempt, the client will get a proof that can be used to pub-
licly accuse the cloud. Thus, we target the scenario of cloud storage, where the
cloud is a functional and mostly credible company (e.g., Dropbox, iCloud Apple,
Google drive). In this scenario the stake for reputation is very high, therefore
it is very reasonable to assume that the benefit from breaking the security of a
single client, are less appealing than losing the reputation and thus all the other
clients. Clearly, break-glass encryption is not suitable for scenarios where the
cloud storage is an unknown server, that has not accountability or credibility. In
this case indeed, there is no reputation to maintain, thus not deterrence against
cheating.

What Break-glass Encryption is Not Break-glass encryption is different from a
“trapdoored” encryption scheme, where one can put a trapdoor that allows a
designed party (who knows the trapdoor) to decrypt. The crucial difference is
that a trapdoor allows to decrypt undetectably, while we want to make sure that
each break is detectable and it can be performed at most one-time.

1.1 Our Contribution and Our Techniques

In this paper we provide two main contributions:

– Definition of break-glass encryption. We introduce the new concept of
break-glass encryption. This is an encryption scheme for the cloud stor-
age setting, that allows a honest user to break her own ciphertexts when
necessary, while preserving semantic security. We formally define break-glass
encryption via an ideal functionality Fbreak. In this context, we also introduce
a new ideal functionality, Gperm, for generating verifiable permissions for a
user U .

– Construction of a break-glass encryption. As a feasibility result, we
show that break-glass encryption can be constructed using (stateful) hard-
ware token [Kat07] in the (Gperm,Gclock)-hybrid model, where Gclock is the
global clock functionality. We also suggest implementations of Gperm using
blockchain or email systems.

In the remaining part of this section we provide more details about the tech-
nical aspects of each contribution.

Definition of Break-glass Encryption We consider a setting where there
is a cloud C and a user U , and the cloud is used for memory outsourcing. The
user can perform the following actions (1) upload/download ciphertexts; (2)
update a ciphertext; (3) break-glass of one (or many) ciphertexts. Our ideal
functionality Fbreak should satisfy the following properties. If the cloud honestly
performs a legitimate break-glass procedure on behalf of a user, then semantic
security should still hold, namely, the cloud does not learn anything about the
decryption. If the cloud performs an illegitimate break-glass command, then this
action must be detectable by the user the very next time the user attempts to
read any ciphertext, and the violation should be publicly verifiable.

4

Defining Permission without Secret: Gperm functionality. We introduce the Gperm
functionality. This a functionality used by cloud C and user U to obtain and
verify valid permissions from U . In Gperm each user Ui is associated to a public
information alert-infoi. We stress that this information is public and a user can
retrieve it even if she loses all her secrets. This functionality provides the fol-
lowing interface: Register, Create Permission, and Verify Permission. Register
is used by U to register the public information alert-info. Create Permission is
used by the cloud to obtain a permission πperm, which is either a publicly verifi-
able endorsement of the request or a publicly verifiable silence proof from Gperm.
This step uses timing information and invoke ideal functionality Gclock. This is
the global clock functionality, previously used in [BMTZ17] in the context of
defining the public ledger functionality and analysing the security of the bit-
coin protocol. VerifyPermission is used by any party who wishes to check that
(alert-info, πperm) is a valid permission granted by U . We discuss realization of
Gperm based on blockchain or email in Section 4.3.

Defining Break-Glass: Fbreak functionality. We capture the security properties
of detectability, accountability and semantic security in presence of legitimate
break-glass procedure in an ideal functionality Fbreak (Fig. 1). Fbreak interacts
with two parties, a cloud C and a user U . Fbreak takes in input messagesm1, . . . ,ml

from U , who can then update and retrieve her messages many times (by invok-
ing commands Update/Retrieve). Fbreak provides a Break command that can be
invoked by C only. It takes in input an index i (denoting the ciphertext that the
party wishes to decrypt), a proof of permission (alert-info, πperm) or a proof of
cheating (πcheat). Fbreak verifies the permission (alert-info, πperm) using Gperm, and
then proceeds by sending mi to the user U only. If the request is illegitimate,
Fbreak checks that πcheat is a proof of cheating. If the check passes, Fbreak sends
mi to the cloud, and records the cheating attempt.

For every operation requested by the user, Fbreak proceeds only after receiving
an ack from C. This captures the real world fact that a cloud can always refuse to
answer (note that this is true in any cloud system). In such case, our functionality
give no explicit guarantees, since the user will just receive the message (refuse,⊥).
In practice however, refusing the answer is a proof of misbehaviour and can be
turned into a legal proof via court.

Construction Our construction relies on hardware tokens. The token is the
point of trust of the user. It is initialized with the secret key k used to encrypt
the data, a signing key sskT , and the verification key of the cloud vpkC . The
token is sent to the cloud C at the very beginning, and it stays with the cloud
throughout the execution. We consider the case where the user can encrypt
arbitrarily long files, but the size of the token is constant, that is, it must be
independent on the number of blocks encrypted. This size constraint rules out
any solution where we just keep all the ciphertexts inside the token or have the
token record all the ciphertexts for which the cloud invoked the Break command.

The token performs a computation only when the inputs are authenticated
wrt the cloud’s public key. Authenticated inputs serve two purposes: first, it pro-

5

vides a proof in case a cloud operated the token illegitimately; second, it protects
the cloud from false accusations about the operation of the token. Finally, the
outputs of the token is also authenticated, in order to avoid that the cloud sends
wrong information to the user.

Warm Up Solution without Granularity As warm up, we describe a solution that
does not provide any granularity. Namely, a user cannot detect which ciphertexts
have been violated and when. The first solution works as follows. The user sends
her ciphertexts C = (c1, . . . , cn), encrypted under a secret key k to the cloud.
Then she initializes a token T with the secret key k, the verification key of the
cloud vpkC and the signature key sskT used to authenticate T ’s outputs. The
token T performs a very simple functionality: on input a permission perm and a
fresh public key pk, it outputs the encryption of the secret key k and stops. Note
that the token only checks that the input perm, pk is correctly signed by C; but
does not check if the permission (if any) given in input is valid. This check will
be done later by the parties only in case of dispute. This solution is simple, but it
leaves little control on the illegitimate queries. Indeed, with one such query, the
cloud can immediately decrypt 100% of the ciphertexts. We would like a more
fine-grained approach that allows the user to identify precisely which ciphertexts
have been broken and potentially to setup a threshold on the total number of
ciphertexts that can be broken.

A Fine-Grained Solution: Breaking Ciphertexts Selectively To break the cipher-
texts selectively, the token should not output the key. Instead, we need the token
to decrypt selectively. The idea is to give in input to the token also a ciphertext
ci, so that the token will answer with mi, i.e., the decryption of ci, rather than
the key. More precisely, the token will output an encryption of mi under the
public key pk, where pk is the public key chosen by the person who is requesting
to break ciphertex ci. Moreover, to make sure that ci is marked as broken, the
token will output a new version, c′i = Enc(mi||broken||perm) that must replace
ci, where perm is the permission used to invoke the break procedure (perm might
be empty). Next time the user will download the i-th ciphertext, she will obtain
c′i and if she still has the key k, she will detect that c′i was illegitimately broken;
similarly, next time the cloud inputs c′i to the token, the token will refuse to
decrypt.

This solution is too naive. A malicious cloud can simply ignore the new
marked ciphertext c′i and send the old unbroken ci to the user. Namely, the
cloud can always replay old ciphertexts, defeating the checks of the token/user.
To overcome this problem, we propose a mechanism that makes valid ciphertext
evolve over time, or in other words, age. We do so by simply adding bookkeeping
information; namely, each encryption now will also contain a time ti when it was
last updated, the time T0 when the first break occurred (if any). This means that
by downloading any of the ciphertexts the user can determine if a break-glass has
happened. Each ciphertext ci needs to be refreshed every I timestamps (where
I is a parameter that can vary with application). Since updating ciphertexts
requires the use of the secret key, the cloud C will use the token to re-encrypt

6

each ciphertext upon each interval I. Updating a ciphertex simply means to re-
encrypt the message mi concatenated with the current time, and the time of the
first break-glass T0 (if any). Now, when a user downloads the i-th ciphertext ci,
and tries to decrypt it, she expects to obtain the most updated time (within a
window of I steps). If not, she will discard the ciphertext as stale, and consider
this as a cheating attempt from the cloud.

Therefore, in this fine grained approach, the token performs two operations
for the cloud: re-encryption and break. When the cloud inputs the command
‘re-encrypt’, then the token expects in input a ciphertext ci that needs to be
re-encrypted with the current time. The token will accept to re-encrypt only if
the time registered in ci are at most I steps behind the current time.

Finally, there is a subtle issue that requires a careful tradeoff between the
size of interval I and the size of the memory of the token. Consider the following
attack. The cloud queries the token to re-encrypt ci at time t obtaining cti.
The cloud then queries the token to break cti, at time t + 1 and obtains mi as
well as the new encryption ct+1

i which is marked as broken. Then, the cloud
completely discard ct+1

i and instead queries the token to re-encrypt cti at time
t + 2. If t + I < t + 2 then the token accepts to re-encrypt cti with the new
time t + 2, and output the new ciphertext ct+2

i which is not marked as broken
(however note that ct+2

i will still have the field T0 6= 0 signaling that a break-
glass took place). Thus, the cloud obtains a clean unmarked version of ci which
is updated to time t + 2, even if ci was broken at time t + 1 and the user will
not detect that this specific ciphertext was broken (however U will still know
that a ciphertext was broken). This problem arises because we allow a interval I
between re-encryptions and can be solved by simply remembering the indexes of
the ciphertexts broken within a window of I steps. The size of this list depends
on the size of I (and logn where n is the number of ciphertexts).

How to get rid of clocks in the token In the outlined solution, the token uses a
clock to check the current time and identify stale ciphertexts. However, requiring
a clock (even only loosely synchronized) in the token is a strong assumption (the
token cannot simply connect to a public server to check the time). We remove this
assumption by having the cloud C provide the current time as input to the token.
Time is simply a monotonic function, and time is “correct” if it moves forward.
Thus, instead of requiring the token to keep its own clock, the token could receive
the time as input, store the last time it was queried, and accept a new “current”
time only if it goes in the forward direction. Checking whether the time provided
by C is actually good will be done by the user when downloading the ciphertext.
As long as the parties (i.e., the cloud and the user) agree on a common source
for reliable time, then there will be no dispute of the current time. We stress
that assuming that C and U agree on a common time is a natural assumption
made by most real world systems that we use in everyday life. The Network
Time Protocol (NTP) [MMBK,CHMV17] is one example of protocols used for
synchronization of the communications over the internet. There has been a lot of
work on attacks and defenses for the NTP protocols (see [MG16,MGV+17]), but
this problem is orthogonal to the one discussed in this paper. Moreover, we stress

7

that we only need C and U to be loosely synchronized, and the parameters of the
encryption (i.e., the interval I and TWaitPermission) can be tailored accordingly.

On the Need of State, Obfuscation, Blockchain We got rid of the clock for the
token, by just assuming that the world (the cloud and the user) has a global
clock. Can we get rid of the state too by assuming that the world share a
global immutable state? If that was possible, we could use a stateless token,
or even further, can we replace the token with Indistinguishability Obfusca-
tion [ABG+13,GGH+13,GGHW17,BCP14]. Very recently blockchain technology
provides the world with a common state that everyone seems to agree on, with-
out trusting any party. Thus, a possible approach could be for the token to store
its state as a transaction in the blockchain, and the cloud can query the token
on input the transaction. However, this seems to be challenging since a token
could not verify the validity of a transaction without having access to the entire
blockchain. Recent work [LKW15,Jag15,KMG17,GG17] show how to construct
one-time programs [GKR08] and time-lock encryption leveraging the blockchain
(but they are based on witness encryption [GKP+13]). We do not rule out that an
interesting solution can be developed using weaker cryptographic assumptions,
we leave it as future work to explore this direction.

Other Considerations For simplicity we assume that the token sent by the user
runs the prescribed code (i.e., the user does not embed malicious code into the
token). This is only for simplicity of exposition, since standard techniques using
zero-knowledge proof could allow us to remove this requirement. We believe that
this is a reasonable relaxation, especially for the envisioned application of break-
glass encryption, and since this is the first attempt to achieve such security
notion. We do not consider side-channel attacks on the token.

On Surveillance and Rational Adversaries One can argue that this scheme has
the undesired effect that it can be used by a government to break the privacy of
its citizens (by subpoena the cloud). This is certainly true, but recall that the
citizens would detect that their privacy is violated. Therefore, one can be in two
cases. Case 1, one lives in a country where the state cares about citizens not
being aware that they are monitored. In this case, the state would not use the
break functionality to break encryption, but something more subtle. Case 2, one
lives in a country where citizens are aware that they are watched. In this case,
even if the state imposes the citizens to use a break-glass encryption scheme,
then the citizens can still break-glass encrypt a ciphertext (rather than their
messages). In this way, even if a break is performed, the perpetrator will only
learn more encryptions.

On Refusing to Provide the Service Just like any client-server system, the cloud
can always refuse to provide the service and ignore user’s requests. In this case
the user will not have a cryptographic proof of cheating as promised by the break-
glass encryption scheme, however, the user can obtain a court order obligating
the cloud to release ciphertexts and users’ token.

8

2 Open Problems

The main goal of this work was to introduce the concept of break-glass encryp-
tion, and show that in principle is achievable. The proposed solution however is
quite impractical and only provides a feasibility result. Several questions are left
open: Are (stateful) hardware token necessary to achieve this notion of security?
Can we devise a solution that achieves some granularity but it does not require
the cloud to continuously update the ciphertexts by querying the token? What
are other interesting implementations of Gperm and can Gperm have applications
in other setting besides break-glass encryption?

3 Related work

Concurrently and independently from our work, recently the concept of “dis-
posable cryptography” has been introduced by Chung, Georgiou, Lai and Zikas
in [CGLZ18]. While sharing some similarity with our work, the aims and the
techniques are very different. The goal of this work is to provide an encryption
scheme for cloud storage, that can be broken by anyone exactly once, in a de-
tectable way. The motivation for break-glass is the case when the legitimate user
wants to decrypt the data she uploaded to the cloud, but she lost all her secret
keys. The goal of [CGLZ18] is to realize trapdoored cryptographic schemes that
can be violated once, by a designated entity who possesses the trapdoor, which is
not the legitimate user and without being detected. The motivation for dispens-
able backdoors is to allow law enforcement to break the scheme exactly once, the
envisioned application is breaking into mobile phones undetectably. Somewhat
related to the concept of break-glass cryptography is the idea of time-locked en-
cryption [BN00,BGJ+16,BM09,BM17,LPS17]. In time-locked encryption some
information is meant to be protected for a certain period time T , thus when the
time expires, the cloud will be able to decrypt the information contained in the
ciphertext. The difference between break-glass and time-locked encryption is in
the fact that our cloud can always break the encryption if she wishes to do so,
but at the price of being detected. Our adversarial model is very close in spirit
to the covert model [BM09]. In this model the adversary is allowed to cheat and
violate the privacy to the parties, but by doing so he will be caught and thus
lose reputation.

4 Definitions

4.1 Break the Glass Encryption Scheme

A break-glass encryption is a private-key encryption scheme designed for the
cloud storage setting. It provides a procedure called Break which allows a user
to decrypt her ciphertexts without knowing the secret key, exactly once. At
high-level a break-glass encryption scheme must satisfy the following properties:

9

– Completeness. If the cloud and the user follow the protocol then the user is
able to obtain the plaintexts that she encrypted originally, without knowing
the key.

– Confidentiality (Semantic-Security). If no Break is performed, then the ci-
phertexts are semantically secure against any PPT malicious cloud.

– Break-glass Confidentiality. If break-glass is requested by a legitimate user,
the cloud does not learn anything about the broken ciphertexts.

– Break-glass Detectability. If break-glass is performed by the cloud without
user’s permission, the cloud can decrypt each ciphertext exactly once, and
each violation is detected by the user (unless the cloud refuses to respond).

– Break-glass Accountability. A user should be able to prove that the cloud
performed an illegitimate break-glass request.

We provide a simulation-based definition [Gol04,HL10] and capture the above
security requirements via an ideal functionality Fbreak (Figure 1). To capture
break-glass accountability, Fbreak is designed so that it will proceed with an
illegitimate break requested by the cloud C, only if C provides a proof of cheating,
that we denote by cheat-proof. Fbreak invokes ideal functionalities Gperm and Gclock
(which are defined as global functionalities). This definitional approach was used
in previous work in the (stronger) GUC setting by Badertscher et al. [BMTZ17].
Finally, Fbreak captures the real world fact that a cloud can always refuse to
provide a service. Thus, every operation on the outsourced messages is fulfilled
by Fbreak only if the cloud agrees on responding.

Definition 1 (Break-glass encryption scheme.). A scheme Π is a secure
break-glass encryption scheme if it realizes the functionality Fbreak in the sense
of [HL10].

4.2 The Gperm Ideal Functionality

The ideal functionality Gperm is described in Figure 2 and is inspired by the
signature ideal functionality of [Can04]. The purpose of this functionality is
to alert the user Ui, registered with alert address alert-infoi, that a permission
request was triggered by a party. The user Ui can then provide a proof to either
legitimate or to invalidate the permission request. This proof is then sent to the
cloud Ci associated to alert-infoi. If the user fails to provide any proof within
time TWaitPermission, then a proof of silence is generated and provided to C.

4.3 How to implement Gperm

In this section we informally discuss two possible implementations of Gperm.

Implementation using a Blockchain Assuming the existence of a blockchain,
Gperm could be instantiated as follows. Procedure (register, alert-info,Ui) consists
in having the user compute keys for a digital signature scheme and send the
corresponding public key vpkUi to the cloud. C will then set alert-info= vpkUi .

10

FunctionalityFbreak.

Participants: The cloud C, a user U , the adversary.
Variables: a boolean flag, when flag = 1 means that there has been an illegitimate
break. A vector Status = Status[1], . . . , Status[l], with Status[i] = b|nlegit where b = 1
means that the i-th ciphertext was broken; nlegit = 1 means that the break was
not legitimate. A vector CheatΠ[1], . . . ,CheatΠcheat[l] collects proofs of illegitimate
break-glass.
External Functionality: Gperm.
Algorithms: Fbreak is parameterized by VrfyCheatProof to check the proofs of ille-
gitimate access provided by a corrupted cloud.
Procedure:
. Upload. Upon receiving (upload, sid,m1, . . . ,ml,U) from user U , store the vector
M = m1, . . . ,ml. (Ignore any other request of this type). Send (uploaded, sid, l,U) to
the cloud C and the adversary.
. Update. Upon receiving (update, sid, i,m) from user U , send (update, sid, i) to C.
If C is corrupted, then wait for answer (ack-updated, sid,U , resp). If resp = no send
(refuse, ⊥) to U . Else, update mi := m. Send (updated, sid, i) to U , C.
. Break. Upon receiving (break, sid, i, perm-proof, cheat-proof) from C.
1. Case 1: User’s Request. Parse perm-proof = (alert-info, πperm).

(a) Validate permission: Send (verify-permission, alert-info, πperm) to Gperm. If the
output is granted, proceed.

(b) Send (break-request, sid, i, alert-info, πperm) to C. If C is corrupted, wait to re-
ceive (ack-break, sid,U , resp). If resp = no send (refuse, ⊥) to U . Else pro-
ceed with the break procedure as follows:
− (Never broken before) if Status[i] = 00 then send (mi, f lag) to P.
− (Already broken) if Status[i] = 1|nlegit, send (i is broken) to P.

2. Case 2. Illegitimate Request. If VrfyCheatProof(cheat-proof) = 1:
* Set flag = 1. Set Status[i] = 11 and send mi to C.
* Register CheatΠ[i]:=cheat-proof.

. Retrieve. Upon receiving (get, sid, i,U) from U . Send (retrieve-request, sid, i,U) to
C. If C is corrupted, then wait for the command (ack-retrieve, sid,U , resp); if resp = no
send (refuse, ⊥) to U . Else send (mi, flag, Status[i]) to U .
. Accuse with Proof. Upon receiving (accuse, sid, j) from a party P. Send
(accused, sid,P) to C and CheatΠ[j] to P.

Fig. 1: Fbreak functionality

11

Functionality Gperm.
Gperm is parameterized by procedure InfoCheck used to check the validity of the cre-
dential provided by the user at registration phase.

Variables. TWaitPermission is the time allowed to generate a valid permission or to deny
a permission. LU is the list of registered users.

External Functionality. Gclock
. Register. Upon receiving (register, alert-info,Ui, Ci) from user Ui. If
InfoCheck(alert-info,Ui) = 1 then add (Ui, alert-info, Ci) to the list of registered
users LU (where Ci is the party that obtains permissions from Ui) and send it to the
adversary.

. Create Permission. Upon receiving (CreatePermission, alert-info,Ui) from a party
P . If (Ui, alert-info, Ci) is in LU , then send (CreatePermission, alert-info) to Ui.

– Upon receiving (ack-check, (alert-info,Ui), ans) from Ui. Send (GetProof,
alert-info,Ui, ans) to the adversary and obtain π.

– Else, if TWaitPermission time has elapsed (use Gclock for this), send
GenSilenceProof(Ui, alert-info,P) to the adversary, and obtain πε. Set π = πε.

– Check that no entry (alert-info,Ui, π, 0) is recorded. If it is, output error message
to Ui. Else, record (sid, alert-info,Ui, π, ans, 1).

– Finally, send (Permission, alert-info, π, ans) to Ci.

. Verify permission. Upon receiving (verify-permission, alert-info, π) from any party
Pj , send (VerifyPerm, alert-info, π, Φ) to the adversary. Then,

1. If there is an entry (alert-info,Ui, π, ans, 1) then
– If ans = Y ES. Send (alert-info, verifiably − granted, π) to Pj .
– Else, if if ans = NO Send (alert-info, verifiably − denied, π) to Pj .

2. If there is no entry (alert-info,Ui, π, ans, 1) recorded and Ui is not corrupted, then
send (alert-info, notverified, π) and record (alert-info,Ui, π, ans, 0).

3. Else, if there is an entry (alert-info,Ui, π, ans, 0) send (alert-info, notverified, π) to
Pj .

4. Else, set (alert-info,Ui, π, ans, Φ) and performs checks 1, 2, 3.

Fig. 2: Gperm functionality

12

To make a break-glass request, Ui, who potentially lost all the keys, will send
a break-glass request to C (this request can be sent via a website form; to avoid
denial of service attack one can enforce that to submit a request the user must
pay some small amount of money). Upon receiving the request, C will look up
the alert-info for Ui and proceed with the CreatePermission procedure.

Procedure (CreatePermission, alert-info,Ui) is implemented as follows. C pre-
pares a permission request by posting a transaction Txalert on the blockchain.
Such transaction will contain a break-glass request in reference to the tuple
(alert-info, C). After the transactions has been posted in a block of the blockchain,
C waits TWaitPermission time (this duration can be agreed on by the parties). Then,
C downloads the blocks of the blockchain that appeared after the transaction
Txalert was posted and:

1. If there is no signed transaction that verifies under public key alert-info, then
this sequence of TWaitPermission blocks (b1, . . . ,bTWaitPermission

) represents a proof
of “silence” πε = (b1, . . . ,bTWaitPermission

) that C will use when querying the
token.

2. Else, if within these blocks there is a transaction πans signed by alert-info
denying τalert-info, this transaction will be the proof of denied permission
π=(τalert-info, b1, . . ., bTWaitPermission

, πans).
3. Else, if transaction πans is endorsing τalert-info, then such transaction alone

will be the proof of permission π = πans.

Note that the token is not connected to the blockchain, and it does not check
any transaction. The blockchain transactions are checked only by the parties who
will check the permission in case of a dispute. The advantage of a blockchain-
based implementation is that it is decentralized, therefore the validity of the
permission does not depend on any third party. The downside however is that
the permission request must be posted on the blockchain, therefore revealing
some information about the fact that a user of a certain cloud C lost her key.

Implementation with a (Trusted) Email Provider. Gperm can also be im-
plemented simply using an email system, and it requires the collaboration of the
email service provider. In this case, the email provider is a trusted third party
between the user and the cloud. Procedure (register, alert-info,Ui) consists in hav-
ing the user register an email address alert-info that will be used for break-glass
communications.

To make a break-glass request, Ui, who potentially lost all the keys, and
therefore also the password to access to the email address alert-info, will send to
C a break-glass request (via a web-form, for example, as above).

Procedure (CreatePermission, alert-info,Ui) is implemented by having the cloud
sending an email to the address alert-info with the detailed information about
the break-glass request received for Ui. If the cloud does not receive any reply
after a period of TWaitPermission, it will proceed with the request. The proof πε for
not having received a reply would require the intervention of the email providers
of both user and cloud. A proof of valid permission is simply the email sent by

13

address alert-infoi to the cloud, authorizing the procedure. Similarly, a proof of
denied permission, is the email sent by address alert-infoi to the cloud, denying
the permission.

5 Construction

A break-glass encryption scheme is defined by two procedures: the user’s proce-
dure, described in Figure 3 and Figure 4, and the cloud’s procedure, described
in Figure 6. The cloud’s procedure consists in interacting with the token T , the
token’s algorithm is described in Figure 5. We assume that the token behaves like
the ideal token functionality Fwrap [Kat07] (described in Figure 10). However,
for simplicity of notation we do not use the ideal functionality interface. Also,
we assume that all communications are carried over authenticated channels.

In the following we describe user’s procedures. C’s procedure and T ’s proce-
dure follow naturally.

5.1 User’s procedures

Procedure Setup(1λ). U ’s procedure starts with a one-time initialization step
when the token T is prepared. U generates a secret key k for the symmetric-key
encryption scheme and keys for the signature scheme (vkT , sskT). Key k is used
to encrypt the data; the token uses this key to decrypt and re-encrypt the cipher-
texts. Signing keys (vkT , sskT) are used by the token to authenticate its outputs.
Hence, the token is initialized with secret keys (k, sskT), the current time, and a
parameter I denoting the window of time within which the ciphertext is consid-
ered valid. In this step, the user also register his alert address alert-info and the
identity of the party she wants to authorize (i.e., C) to the Gperm functionality.
Namely U sends (register, alert-info,U , C) to Gperm.

Procedure Upload(). The second step for the user is to upload her data.
We represent the data as a vector of l blocks (l can be very large). The user will
encrypt each block, adding some bookkeeping information. The encryption of
the i-th block will have the following format: ctxi = Enck(mi||bookkeep||perm)

where:

– mi is the message,
– bookkeep = [ti, T0, Ti] contains the bookkeeping information, keeping track

of the time of last update, and time of break-glass operations. Specifically:
– ti is the time when ciphertext ci was last updated. This time is used to

defeat replay attacks.
– T0 is a global value (i.e., it is the same for all ciphertexts) and indicates

the time when the first break-glass was performed. Adding this informa-
tion allows the user to know that a break-glass has happened at least
once (without needing to query the token).

– Ti is the time when the i-th ciphertext was broken. This information
allows fine-grained information about which ciphertexts have been com-
promised and when.

14

– perm = [alert-info, πperm, pk, σC] will contain the info about the break-glass
permission (if any) generated by the cloud. This field is empty in normal cir-
cumstances. Specifically, (alert-info, πperm) is the actual proof of permission
obtained by the cloud – it can be empty if the cloud performs an illegit-
imate break-glass; pk is the public key used to encrypt the result of the
decryption (when the break is legitimate, this ensures that only the client
choosing pk will be able to decrypt the result of the decryption). Finally,
σC is the signature computed by C. This signature is necessary to hold the
cloud accountable of invoking the break-glass procedure.

Procedure Get(i, k) is used to retrieve the i-th ciphertext. The cloud could
refuse to send the ciphertext. If this happens, the user will consider this as a
cheating behaviour and will accuse the cloud. The network data can be used as
evidence that the cloud received the request but did not fulfill it 2. If the cloud
replies with ciphertext ci, U will decrypt it and obtain bookkeeping information:
bookkeep = [ti, T0, Ti] and permission information perm= (alert-info, πperm, pk, σC).
U first checks the following:

1. Case 1. Stale Ciphertext. If ti < t − I, this means that the ciphertext is
not updated. Thus, the cloud replied with an older version of the ciphertext,
perhaps to hide the fact that the updated ciphertext would have been marked
with a information about an illegitimate break. A stale ciphertext triggers a
red flag, and the user will use this communication and the network data as
an evidence of cheating.

2. Case 2. Unauthorized break. If T0 6= 0 (recall that T0 denotes the time
the first break occurred) but the user never requested/approved a break-
glass procedure then the user U will us the σC computed on a wrong or
empty πperm information, as a proof of cheating, and she invokes procedure
CloudCheating(perm, t). (Indeed, since the user did not approve any permis-
sion on Gperm there exists no valid pair (alert-info, πperm) that could justify
the break-glass action performed by C).

3. Case 3. Unauthorized break of i-th ciphertext. If Ti 6= 0 (recall that Ti
denotes the time when ciphertext ci was broken) but the user never asked
to break ciphertext ci, U proceeds as in Step 2.

Else, if none of the conditions above is satisfied, there were no illegitimate
breaks, and the user simply outputs the decrypted plaintext mi.

Procedure Break(i, alert-info). This procedure is invoked by any party who
would like to break ciphertext ci. A break-glass procedure starts with a party
sending a request to the cloud C. The request has the following info: (break, i, alert-info)
(recall that alert-info is the address used to alert user U). On receiving such re-
quest, the cloud C will send a request to Gperm to obtain a proof of permission.
Namely, C sends (CreatePermission, alert-info,U) to Gperm.

2 We do not formally cover this cheating case, as it requires formalization of the
network interface, which is outside the scope of this work.

15

The functionality Gperm will then send an alert to the actual user U by sending
(permission-request, C) to U . At this point the user can entire compute a proof π
to endorse /deny the request by sending (ack-check, (alert-info,Ui), yes / no, π)
to Gperm; or she can not respond at all, triggering the generation of a “proof of
silence” πε. The cloud will then obtain (granted,πε) or (granted,π) in case the
permission is granted, or (denied, π) in case the permission is denied. If granted,
the cloud will use proof πε or π as input to the token T in the break procedure.

Below we provide a table for the notation used in the procedures.

I Maximum time between two updates

TWaitPermission Time waited before providing a silence proof

T0 Time when the first Break has been received by T
Ti Time when ci was broken

bookkeep contains ti, T0, Ti
perm contains alert-info, πperm, pk, σC

alert-info Used to notify a user of a break-glass request

πperm Equal to either πε or πUi or ⊥
πε Proof of silence

6 Security Proof

Theorem 1. Assume (KeyGen,Enc,Dec) is an INT-CTXT NM CPA-secure en-
cryption scheme (Definition in Fig. 9[BN08]), (PKGen,PKEnc,PKDec) is a CPA-
secure public key encryption scheme, (GenSignKey,Sign,Verify) is a EUF-CMA
secure signature scheme; assume that all communications are carried over au-
thenticated channels. Then the scheme described in Fig. 3, Fig. 4, Fig. 5 and
Fig. 6 securely realize the Fbreak functionality in the (Gperm,Gclock,Fwrap)-hybrid
model.

6.1 Case Malicious Cloud

The proof consists in showing a PPT simulator Sim that generates the view of
a malicious cloud C∗ while only having access to Fbreak (Fig. 1), and an indis-
tinguishability proof that the transcript generated by the simulator is indistin-
guishable from the output generated by the cloud in the real world execution.

Simulator Sim has blackbox access to C∗ and interacts with Fbreak in the ideal
world. The ideal functionality Gclock is used by both the environment and Sim
to get the current time, and Gperm is used to get/validate a permission to break-
glass. The simulator also simulates the Fwrap functionality to C∗. Sim is described
in Figure 7.

Informally, the goal of the simulator is to (1) simulate the ciphertexts with-
out knowing the messages uploaded by the user, and (2) to correctly intercept
the break-glass requests coming from the malicious cloud (Sim obtains the legit-
imate break-glass procedure requests from Gperm via the command (Permission,

16

User Procedures I

Cryptographic Primitive Used.
Π = (KeyGen,Enc,Dec): INT-CTXT NM-CPA secure encryption scheme.
Σ = (GenSignKey, Sign,Verify): a EUF-CMA digital signature scheme.

Parameters.
– I: denotes the frequency with which the ciphertexts need to be updated.
– vpkC is the public key of the cloud C.
– alert-info: public alert info used for requesting permission via Gperm.

External Functionalities: Gclock and Gperm.

Procedure Setup(1λ)

– Generate key for encryption of the data: k ← Π.KeyGen(1λ);
– Generate signature keys for token: (vkT , sskT)← Σ.GenSignKey(1λ).
– Initialize token T with encryption key k, signature key sskT , cloud’s public key

vpkC , interval I and mytime := t, where t is the current time from Gclock. T ’s
procedure is described in Figure 5.

– Send T to the cloud C, publish verification key vkT to a public repository D.
– Register with Gperm: send (register, alert-info,U , C) to Gperm.

Procedure Upload(M)

– Parse M = (m1, . . . ,ml).
– Encrypt each block mj : ctxj = Enck(mj ||bookkeep||perm) for j ∈ {1, . . . , l},

where bookkeep := [t, 0, 0] and perm = [⊥,⊥,⊥,⊥].
– Send (ctxj)j∈[l] to C.

Procedure Get(i, k)
Get current time time from Gclock.

– (Download ciphertext) Send command Get(i, time) to C. If C does not respond,
or responds with an invalid ciphertext then output (refuse, time) and halt.

– Else, let ci be ciphertext received from C and let (m||bookkeep||perm) :=
Dec(k, ci). Parse bookkeep = [ti||T0||Ti] and perm = (v1, v2, pk, σC), and perform
the following checks.
1. BAD CASES:

• (Stale ciphertext) If ti < time − I. This means that the ciphertext was
not updated, and considered as potential cheating attempt without im-
mediate proof, hence output (refuse, time).

• (Unauthorized Break) . If (T0 6= 0 ∧ Break(·, alert-info)) was never called
before, OR if (Ti 6= 0 ∧ Break(i, alert-info)) was never called before, then:
* If v1, v2 is not a valid permission, then set x = (i, Ti, pk) and construct
proof π = (x, σC). Call procedure CloudCheating(π, time) (Described in
Fig. 4).
* If v1, v2 is a valid permission, then output “Gperm failure”.

2. GOOD CASE. (No illegitimate break) Else if ti ∈ [time± I] output mi.

Fig. 3: User Procedures 1

17

User Procedures II

Cryptographic Primitive Used.

Π = (PKGen,PKEnc,PKDec): CPA-secure Public Key encryption scheme.
Procedure Break(i, alert-info)
Get current time time from Gclock. Send (CreatePermission, alert-info,Ui) to Gperm. Set
Tbreak = time. Then:

– Generate fresh keys (pk′, sk′)← PKGen(1λ).
– Send break-glass request. Send command (break, i,U , alert-info, pk′) to C. If C does

not respond after more than TWaitPermission + δ steps then output (refuse, time).
– Check authenticity of the answer. Upon receiving (cbreak, input, σC , σi) from C.

For input = [Ti, alert-info, πperm, pk
′]), let x = (cbreak, input, σC). Check that

VerifyvkT
(x, σi) = 1 and Ti = time. If not, output (refuse, time). Else, recover

(mi|| bookkeep|| VerifyPerm)← PKDec(sk′, cbreak) and proceeds with the checks
as in Procedure Get(·, ·).

Procedure Update(i,m′, k)
Get current time time from Gclock.

– Run Get(i, k). If the output is OK continue.
– Send the new ciphertext. Send c′i = Enck(m′||bookkeep′||perm′) to C, where

bookkeep′ = (time||0||0) and perm′ = (⊥,⊥,⊥,⊥).

Procedure CloudCheating(π, time)
Parse π = (x, σC). If Verify(vpkC , x, σC) = 1 Accuse C of cheating with proof π, time.

Interaction with Gperm
Upon receiving (CreatePermission, alert-info) from Gperm. Get current time time from
Gclock. Let δ a time interval depending on the implementation of Gperm.

– If time = Tbreak ± δ, then endorse request and send (ack-check, (alert-info,Ui),
Y ES) to Gperm.

– time = Tbreak ± δ but secrets are lost do nothing.
– Else, deny the request: send (ack-check, (alert-info,Ui), NO) to Gperm.
– If time 6= Tbreak ± δ but secrets are lost, then output: Failure to Stop

Illegitimate Request.

Fig. 4: User Procedures 2

18

Token Procedure T
Hardwired Values. Encryption key k, signing key sskT .

Variables.
List of the last κ broken ciphertexts L.
Current time mytime. Set σ0

C = ε

On input:(CMD, c, i, external-time, perm′).

0. Check that i is not in the breaking list: If i ∈ L do nothing.

1. Check and Update time.
If external-time ≤ mytime output ⊥ (The cloud is querying with a time that is too far
in the past). Else, update current time: set mytime := external-time.

2. Decrypt.
Decrypt c using key k and obtain (m||bookkeep||perm). If decryption fails, do nothing.
Let bookkeep = (ti||T0||Ti).

– (Already Broken) If Ti 6= 0 then halt and output ⊥. (This ciphertext is already
broken. No re-encryption required)

– (Stale) If ti < mytime− I then halt and output ⊥.
– (Error) If ti > mytime+I then halt and output output “Error, someone encrypted

under my key?” and stop.

3. Execute Command CMD.

Break If CMD =break.
0. Parse perm′ = (alert-info, πperm, pk, σC).
1. Checks: If VerifyvpkC

(i||external-time||perm′, σC ,) = 1 continues. (Add i to the
list of recently broken ciphertext). Unqueue L, then add i to L. Else, ignore
the request.

2. Case: First Break. If T0 = 0 then set T0 = mytime, set σ0
C = σC .

3. Re-encrypt using the fresh key pk. cbreak ← PKEnc(pk,mi, bookkeep).
4. Authenticate the break-info: σT = SignsskT

(cbreak, perm-proof, σC).
5. Mark the i-th ciphertext as broken.

(a) Update bookkeep = (mytime, T0,mytime).
(b) Compute c′i = Enck(cbreak, bookkeep, perm′). (Note. This ciphertext will

never be re-encrypted again).
6. Output cbreak, perm-proof, σC , σT , c

′
i.

Re-encryption. If CMD = Reencrypt.
Set bookkeep = (mytime, T0, 0). Set perm = (⊥,⊥,⊥, σ0

C).
Output c′i= Enck(m||bookkeep||perm).

Fig. 5: The Token Procedure

19

Cloud Procedures

Parameters.
I: denotes the frequency with which the ciphertexts need to be updated.

Private Input. Signing key: sskC . External Functionalities: Gclock and Gperm.

Setup for user Ui.
Upon receiving TU , vkT , (ctxi)i∈[l] from user U :

– Store ciphertexts (ctxi)i∈[l] and user’s verification key vkT .
– Activate Maintenance procedure for U .

Procedure Maintenance(ctxi, TU , vkT)
Get time from Gclock.
Every I steps: query T (ci, i, Reencrypt, time,⊥) and obtain cnewi . Replace ci := cnewi ,
∀i ∈ [l].

Answering User’s requests.

– Get. Upon receiving Get(i, t). Get current time: time ← Gclock(clockread). If t ∈
[time± δ] then reply with ci.

– Break. Upon receiving (break, i,U , alert-info, pk′).
1. Send (GetPermission, alert-info,U , C) to Gperm. If Gperm outputs (granted,

πperm). compute σC = SignsskC
(i, time, alert-info, πperm, pk

′) (else, do nothing).
2. Query token T (Break, i, ci, time, perm), where perm=

(alert-info, πperm, pk
′, σC) and forward the answer to U .

Fig. 6: Cloud Procedure

20

alert-info, π)). The ciphertexts are simulated as encryptions of 0. Due to the
INT-CTXT NM CPA security property of the underlying encryption scheme,
and the tamper-proof property of hardware tokens (modeled as an ideal black-
box by Fwrap) this difference cannot be detected by the malicious cloud. Gperm
guarantees that a permission cannot be fabricated on behalf of Ui (if Ui is hon-
est), thus an illegitimate break-glass procedure can be detected by observing the
queries made to the token that have an invalid perm-proof field.

Indistinguishability Proof. Overview. We start by outlining the differences
between the view of C∗ in the ideal world and in the real world. The view of C∗
consists in the initial set of ciphertexts (ctx0i)i∈[l] , and the output computed by
the token T . The crucial differences between the views in the two worlds are:

– Encryptions. In the real world C∗ will observe correct encryptions of messages
of the form (m||bookkeep||perm). Instead, in the ideal world, the ciphertexts
are only encryptions of 0. The indistinguishability of the two set of encryp-
tions intuitively follows from the CPA security of the underlying encryption
scheme.

– Token’s functionality. In the real world, the token will accept any valid en-
cryption provided in input. Namely, on input a ciphertext c, the token will
first try to decrypt with its secret key, and if the decryption is successful will
proceed with the necessary steps. Instead, in the ideal word, the simulated
token accepts only encryptions that were computed by the simulator itself.
In other words, if the cloud is able to compute a ciphertext that is valid in
the real world and accepted by the real token, this ciphertext will not be ac-
cepted by the simulated token. Similarly, in the Get functionality, a real user
would accept any valid ciphertext that C∗ provides, instead the simulated
user would abort if a valid ciphertext was not computed by the simulated
token. The indistinguishability between the two worlds follows from the in-
tegrity ciphertext property INT-CTXT NM CPA security defined by Bellare
and Namprempre in [BN08], which we report in Figure 9.

– Break invocation. Recall, there are two types of break requests. The ones
generated by the user, and the ones generated by the cloud. The simulator
obtains the user requests directly from Fbreak, and will forward them to the
adversary C∗. The main task of the simulator however is to identify the break
requests that are initiated by the cloud. Since the cloud must interact with
the token in order to successfully decrypt a ciphertext 3 the simulator will
use the simulated token to intercept requests that do not have a valid proof
of permission and send them to the ideal functionality. Note that at this
step, we are using security of Gperm. Namely, we are assuming that a cloud

3 To see why, note that, besides the access to the token, a cloud only has a list of
ciphertexts. The output of the token is either a ciphertext, or a message m, but no
other information about the secret key is given in output. Thus, if a cloud is able to
decrypt a ciphertext, without calling the break command, this cloud is violating the
CPA-security of the ciphertext.

21

Simulator Sim

Upload and Initialization. Upon receiving request (uploaded, sid, l,U) from Fbreak

do:
– Generate key for encryption k ← Π.KeyGen(1λ) and prepare ciphertexts:

[ctx01, . . . , ctx0l] where ctx0i = Enck(0p(λ)).
– Generate signature keys for token: (vkT , sskT)← Σ.GenSignKey(1λ).
– Get the initial time from Gclock and store it in variable tkntime.
– Initialize matrices L,Lsign,B. L stores the ciphertexts computed by Sim, Lsign

stores the signatures computed by SimT , B stores the ciphertexts that have
been broken. We denote by L[i] = (ci0, t0), (ci1, t1), . . . the list of ciphertexts
generated for the i-th element. At the beginning, L[i] := [ctx0i , tkntime]
Lsign contains the signatures computed by the token.

– Send vkT , [ctx01, . . . , ctx0l] to C∗.
Update. Upon receiving (update, sid, i) from Fbreak. Get current time: time ←
Gclock(clockread).
First, send Get(i, time) to C∗. If no response is received then send
(ack-updated, sid,U , NO) to Fbreak. Else, let c′i be the ciphertext received from
C∗. Analyse c′i as follows:
– Bad Cases.

1. (Case: Broken ciphertext) If c′i ∈ B then do nothing.
2. (Case: Wrong ciphertext) If c′i /∈ L and decryption fails, then send

(ack-updated, sid,U , NO).
3. (Case: Stale ciphertext) If there exists a pair (c′i, t

′) ∈ L[i, t′] but t′ <
time− I then send (ack-updated, sid,U , NO).

4. (Failure Case: Good ciphertext not provided by the simulated token) If
c′i /∈ L and Dec(k, c′i) 6= ⊥ then output Integrity Encryption Failure

and stop.
– Good cases. If there exists pair (c′i, t) ∈ L s.t. t′ ∈ [time − I] then

send (ack-updated, sid,U , yes) to Fbreak. Then compute c′′ ← Enck(0), add
(c′′, time) to L[i] and finally send the updated ciphertext c′′ to C∗.

User’s Initiated Break Upon receiving (Permission, sid, alert-info, π, ans) from
Gperm. If ans = no, record π in a list of denied permissions DeniedList. Else,
if ans = 1 continue with the break-glass procedure as an honest user.

1. (break, sid, i, perm-proof = π, cheat-proof = ⊥)
2. Get current time: time← Gclock(clockread). Store (user-break, time).
3. Generate fresh keys (pk′, sk′)← PKGen(1λ).
4. Send (break, i, alert-info, pk′) to C∗.
5. Upon receiving response ans from C∗ do.

– C∗ refuses to collaborate If ans= ⊥ then send (ack-break, sid,U , NO)
to Fbreak.

– C∗ gives (x, σ). Parse x= (cbreak, ci, external-time,alert-info, π, pk, σC).
(a) Good signature. If (x, σ) ∈ Lsign[external-time] then send

(ack-break, sid,U , yes) to Fbreak

(b) Forgery. If σ verifies on x, but (x, σ) /∈ Lsign[external-time] then out-
put Forgery Failure and halt.

Retrieve Upon receiving (retrieve-request, sid, i,U) at time time, send
(Get, i, time, σU) to C∗.
– If C∗ sends ⊥ then send (ack-retrieve, sid, i,U , no).
– Else, let c∗ be the ciphertext sent by the cloud. Let t ∈ [time− δ, time+ δ].
• If there exists (c∗, t) ∈ L[i] then send (ack− inquire, sid,U , yes).
• Else, send (ack− retrieve, sid,U , no) to Fbreak.

Fig. 7: Simulator

22

Token simulation SimT .
B stores the ciphertexts that have been broken.
On input (CMD, c, i, alert-info, external-time, π, σC):
0. Check broken list If c ∈ B||I| then do nothing.

1. Check time and Ciphertext Validity. If mytime < external-time then update
mytime = external-time

1. (Stale Ciphertext) If (c, j) ∈ L[i] but j /∈ [mytime± I] then do nothing.
2. (Invalid iphertext c) If there is no (c, j) ∈ L[i] do nothing.
3. (Forged Ciphertext) If there is no (c, j) ∈ L[i] but Deck(c) 6= ⊥ then output

Integrity Encryption Failure and halts.

Re-encryption If CMD =Reencrypt. Compute c ← Enck(0) and add L[i] :=
[c, tkntime]. Output c.

Break CMD =Break. Verify signature σC on input x =
(alert-info, π, break, i, pk,mytime). If check passes do:
1. Detect illegitimate request. If π 6= ⊥ check if it is a legitimate permission by

sending (verify-permission, alert-info, π) to Gperm. If Gperm sends (sid, alert-info,
verifiably − denied, π) or (sid, alert-info, notverified, π) then this is a marked
as an illegitimate request.

2. Send illegitimate request to Fbreak. First, set cheat-proof = (ξ, σC) and send
(break, sid, i, ⊥, cheat-proof) and receive mi.
(a) Add i to the list of broken ciphertexts: B ← B ∪ i.
(b) Set break time: Record Ti = tkntime; (if T0 = 0) Record T0 = tkntime,

record σ0
C = σC .

(c) Compute encryption. Set ci = Enck(0p(n)), add L[i] = (ci, tkntime).
(d) Compute token’s signature. Set σi on input (mi||ci||tkntime||auth||π||σC)

add σiLsign.
(e) Return (mi, ci) to C∗

3. (Initiated by User.) Else, send (ack-break, sid,U , yes) to Fbreak. Do steps as
above, but instead of outputting mi, output a dummy encryption c∗ =
PKEnc(pk, 0).

Fig. 8: Token Simulator

23

cannot fabricate a valid permission without the help of the user. If this was
not the case the simulator could not use the absence of permission to detect
illegitimate break-glass requests.

We will prove the above intuition via a sequence of hybrid games.

Hybrid Arguments Overview. We show the following sequence of hybrid experi-
ments. Hybrid H0 denotes the real world, in hybrid H1 all ciphertexts generated
by the user and the token are collected in a table, and the user’s procedure
and the token’s procedure will accept only ciphertexts in this table (i.e., valid
ciphertexts that are not part of this table are not accepted). Indistinguishabil-
ity between H0 and H1 follows from the INT-CTXT NM CPA Security of the
symmetric key encryption scheme. In H2 and H̄2 we remove the semantic from
all the encryptions and simply compute encryptions of 0. Indistinguishability
between H1 and H2 follows from the CPA security of the underlying symmetric-
key encryption scheme. Finally, in H3 the user accepts only signatures generated
by the simulated token, instead of accepting any valid signature. Indistinguisha-
bility between H2 and H3 follows from the unforgeability of the underlying
signature scheme. We assume that all communications between cloud and token
are authenticated.

Hybrid H0. This is the real world experiment. Sim honestly follows the user
procedure Figure 3 and Figure 4, and T ’s procedure (Fig. 5).

Hybrid H1 (Integrity and Non-malleability) This experiment is asH0 with
the only difference that Sim stores the encryptions computed by the user
and the token in a matrix L, and token and user accept only encryptions
that are in L. If they receive any other encryption that is valid but it is
not in L, then the simulated user/ token will abort and output Integrity

Encryption Failure . Note that H0 and H1 are different only in the case
where C∗ is able to find at a ciphertext c∗ that is a valid encryption under
secret key k, but it was not computed by the token/user.
In the following lemma we show that probability that C∗ generates such
a valid ciphertext is negligible, therefore H0 and H1 are computationally
indistinguishable.

Lemma 1 (Ciphertext Integrity). If (KeyGen,Enc,Dec) achieves integrity
of ciphertext property (INT-CTX, Fig. 9) then event Integrity Encryption

Failure happens with negligible probability.

Towards a contradiction, assume that there exists a C∗ such that Integrity
Encryption Failure happens with non-negligible probability p(λ). This
means that C∗ queried SimT with a valid ciphertext c∗ (i.e., a ciphertext
that can be correctly decrypted but it was not compute neither by SimT nor
by the user). If this is the case, then we can construct an adversary A that
wins the INT-CTXT game with the same probability, as follows.

Reduction INT-CTX security A playing in experiment ExpINT−CTX (Fig. 9),
has access to encryption oracle and black-box access to C∗. A simulates real
world experiment to C∗:

24

– (0) A plays as the honest user and therefore knows all the plaintexts
m1, . . . ,ml.

– (1) Encryption. To generated ciphertexts on behalf of the token and
the user, A uses its oracle access to Enc, provided by the experiment
ExpINT−CTX. A collects all the ciphertext generated, together with the
plaintext used, in a matrix L′. (This matrix is different from the matrix
used by the simulator in that the simulator does not need to remember
the correspondent plaintexts).

– (2) Decryption. To decrypt a ciphertexts c provided by the cloud, A will
first check if the ciphertexts are contained in the matrix L′. If c /∈ L′

then A will call VF(c) in ExpINT−CTX and obtain answer m. If m 6= ⊥
then A wins the game and halts. Else, if m = ⊥, A simply continues the
reduction, following the honest user and token procedure.

Analysis Note that A follows the honest user’s procedure and honest token’s
procedure just like in the H0. A will interrupt the reduction and deviate from
H0, only if the cloud provides a ciphertext c that is accepted V F (c) in which
caseA simply halts, just like the simulator inH1. Thus the probability thatA
wins the game and halts the reduction, it is closely related to the probability
that there is a difference betweenH0 andH1. Since the underlying encryption
scheme is assumed to be INT-CTX secure, the probability of A winning is
negligible, consequently, the distributions of transcripts in H0 and H1 are
distinguishable with negligible probability.
Due to Lemma 1, it follows that probability that C∗ generates such a valid
ciphertext is negligible, therefore H0 and H1 are computationally indistin-
guishable.

Hybrid Hj
2 j = 1, . . . (CPA-security) In this sequence of hybrid experiments

we change the value encrypted in the j-th ciphertext. Instead of encrypting
the actual information (m||bookkeep||perm) we will encrypt to 0 (but for the
sake of the simulation we will still keep record of the plaintexts that should
be instead encrypted.) The difference between Hj

2 and Hj−1
1 is that in Hj

2

one more ciphertext is computed as encryption of 0. Assume that there is a
distinguisher between the two experiments, we will construct an adversary
for CPA-security.

Hybrid H̄j
2 for j = 1,(PK CPA-security) In this sequence of hybrid we

replace the encryptions output by the token after a user-triggered break-glass
encryption (i.e., cbreak). Instead of encrypting the actual message mi, it will
encrypt 0. This sequence of hybrid is indistinguishable to the CPA-security
of the public key encryption scheme.

Hybrid H3 (Unforgeability of Token’s signature) In this hybrid, the pro-
cedure of the simulated user is modified as follows. The simulator (playing as
user) accepts only signatures that are in Lsign. When a signature (x∗, σ∗) ver-
ifies under vkT but σ∗ /∈ Lsign then the simulated user will output Forgery

Failure and abort. Therefore, the difference between H2 and H3 is that
in H2 a user would accept any signature σ∗ that verifies under vkT (i.e.,
Verify(vkT , x

∗, σ∗)), instead in H3, when a valid signature σ∗ /∈ Lsign is pre-
sented by C∗, the user will abort.

25

The following lemma shows that the probability that C∗ can compute such a
signature is negligible due to the unforgeability of the underlying signature
scheme.

Lemma 2. If (GenSignKey,Sign,Verify) is a EUF-CMA digital signature
scheme, then event Forgery Failure happens with negligible probability.

Assume, towards a contradiction, that there exists an adversary C∗ that is
able to generate a signature valid σ∗ that was not generated by SimT with
probability p(λ) Thus, we can construct an adversary A that computes a
forgery with the same probability as follows.

Reduction EUF-CMA security

A playing in experiment Expforge, has oracle access to C∗ and simulates ex-
periment H2 to C∗ with the following difference:
1. Token Signatures. When the token is required to compute a signature on

a message x, A will forward x to Expforge and obtain signature σ. Add σ
to the list Lsign and set it as the output of the token.

2. Decision. Upon receiving a signature (x∗, σ∗) from C∗, such that σ∗ /∈
Lsign. If (x∗, σ∗) verifies then send σ∗ to Expforge and output win.

Analysis. A wins the forgery game Expforge with the same probability that C∗
computes a valid σ∗ and trigger event Forgery Failure . Since by assump-
tion the underlying signature scheme is EUF-CMA secure, then probability
that A trigger the above event is negligible.

6.2 Exculpability in presence of a Malicious User

In the ideal functionality a user obtains a proof to accuse a cloud only if the
cloud actually invoked a break command without permission granted from Gperm.
In the ideal world there is nothing that the user can do to trigger an accusation
against an honest cloud (without violating Gperm).

Instead in the real world, there are several ways the user could accuse an
honest cloud. We divide them in four categories: network attack, permission
attack, token attack and forgery attack, which we describe below. We show that
three of them can be quickly ruled out by definition, while the implausibility
of the fourth one can be ruled out by unforgeability property of the underlying
signature scheme.

1. Network Attack. A malicious user could accuse the cloud of not responding.
This accusation can be challenged by the cloud by having access to logs on
the network traffic that guarantees that a correct answer was correctly and
timely delivered to the user.

2. Permission Attack. A malicious user could trigger a break-glass procedure,
and then accuse the cloud of having fabricated such permission. Since our
protocol works in the Gperm-hybrid model, we assume that the procedure for
granting permission cannot be counterfeit by anyone.

26

3. Token Attack. A malicious user could accuse the cloud of not correctly up-
dating the ciphertext. We note however that accusation is not possible since
we assume that the token is trusted and will follow the honest procedure.
Thus, the cloud will be able to show updated ciphertexts as a proof of honest
behaviour.

4. Forgery Attack. A user could accuse an honest cloud by fabricating a valid
signature σ that verifies under vpkC , on a message that contains the word
break but does not contain any valid authorization received by Gperm. Let us
call this event Sign Forgery Accusation. We show in Lemma 3 that this
events happen with negligible probability.

Permission attack and Token attack are ruled out, since we are assuming to
work in the Gperm-hybrid model, and we assume that the token is trusted. For
network attacks, we also implicitly assume that there is a way for the cloud to
prove that the messages were timely delivered to the user.

Lemma 3. If (GenSignKey,Sign,Verify) is a EUF-CMA digital signature scheme,
then event Sign Forgery Accusation happens with negligible probability.

Assume, towards a contradiction, that there exists a malicious user U∗ that
is able to accuse C by generating a valid signature σ∗ that was not generated by
C with probability p(λ) Thus, we can construct an adversary A that computes
a forgery with the same probability as follows.

Reduction EUF-CMA security

A playing in experiment Expforge, has oracle access to U∗ and simulate the
cloud to U∗.

1. Protocol Execution. A receives the token from U∗ and fulfills all the requests
received by U∗ by simply following the honest cloud procedure and using the
Signature oracle provided by Expforge.

2. Accuse. When U∗ sends an accusation on input π = (x, σ∗), if Verify(vpkC , x, σ
∗) =

1 send π to Expforge and output 1.

Analysis. Since by assumption the underlying signature scheme is EUF-CMA
secure, probability of event Sign Forgery Accusation is negligible.

7 Acknowledgments

We thank Laurie Williams for the initial discussion on break-glass encryption,
as well as many other insightful conversations. We also thank the anonymous
reviewers for their useful comments.

27

References

ABG+13. Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark
Zhandry. Differing-inputs obfuscation and applications. IACR Cryptology
ePrint Archive, 2013:689, 2013.

AL07. Yonatan Aumann and Yehuda Lindell. Security against covert adversaries:
Efficient protocols for realistic adversaries. In Theory of Cryptography, 4th
Theory of Cryptography Conference, TCC 2007, Amsterdam, The Nether-
lands, February 21-24, 2007, Proceedings, pages 137–156, 2007.

BCP14. Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfusca-
tion. In Theory of Cryptography - 11th Theory of Cryptography Conference,
TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceedings, pages
52–73, 2014.

BGJ+16. Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod
Vaikuntanathan, and Brent Waters. Time-lock puzzles from randomized
encodings. In Proceedings of the 2016 ACM Conference on Innovations
in Theoretical Computer Science, Cambridge, MA, USA, January 14-16,
2016, pages 345–356, 2016.

BM09. Boaz Barak and Mohammad Mahmoody-Ghidary. Merkle puzzles are opti-

mal - an O(n2)-query attack on any key exchange from a random oracle. In
Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceed-
ings, pages 374–390, 2009.

BM17. Boaz Barak and Mohammad Mahmoody-Ghidary. Merkle’s key agreement

protocol is optimal: An o(n2) attack on any key agreement from random
oracles. J. Cryptology, 30(3):699–734, 2017.

BMTZ17. Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas.
Bitcoin as a transaction ledger: A composable treatment. In Advances
in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings,
Part I, pages 324–356, 2017.

BN00. Dan Boneh and Moni Naor. Timed commitments. In Advances in Cryp-
tology - CRYPTO 2000, 20th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 20-24, 2000, Proceedings, pages
236–254, 2000.

BN08. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Re-
lations among notions and analysis of the generic composition paradigm.
J. Cryptology, 21(4):469–491, 2008.

Can04. Ran Canetti. Universally composable signature, certification, and authenti-
cation. In 17th IEEE Computer Security Foundations Workshop, (CSFW-
17 2004), 28-30 June 2004, Pacific Grove, CA, USA, page 219, 2004.

CGLZ18. Kai-Min Chung, Marios Georgiou, Ching-Yi Lai, and Vassilis Zikas. Cryp-
tography with dispensable backdoors. IACR Cryptology ePrint Archive,
2018:352, 2018.

CHMV17. Ran Canetti, Kyle Hogan, Aanchal Malhotra, and Mayank Varia. A uni-
versally composable treatment of network time. In 30th IEEE Computer
Security Foundations Symposium, CSF 2017, pages 360–375, 2017.

GG17. Rishab Goyal and Vipul Goyal. Overcoming cryptographic impossibility
results using blockchains. In Theory of Cryptography - 15th International

28

Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Pro-
ceedings, Part I, pages 529–561, 2017.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In 54th Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley,
CA, USA, pages 40–49, 2013.

GGHW17. Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implau-
sibility of differing-inputs obfuscation and extractable witness encryption
with auxiliary input. Algorithmica, 79(4):1353–1373, 2017.

GKP+13. Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikun-
tanathan, and Nickolai Zeldovich. How to run turing machines on encrypted
data. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part II, pages 536–553, 2013.

GKR08. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time
programs. In Advances in Cryptology - CRYPTO 2008, 28th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2008. Proceedings, pages 39–56, 2008.

GM84. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput.
Syst. Sci., 28(2):270–299, 1984.

Gol04. Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Ap-
plications. Cambridge University Press, 2004.

HL10. Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols
- Techniques and Constructions. Information Security and Cryptography.
Springer, 2010.

Jag15. Tibor Jager. How to build time-lock encryption. IACR Cryptology ePrint
Archive, 2015:478, 2015.

Kat07. Jonathan Katz. Universally composable multi-party computation using
tamper-proof hardware. In Advances in Cryptology - EUROCRYPT 2007,
pages 115–128, 2007.

KMG17. Gabriel Kaptchuk, Ian Miers, and Matthew Green. Managing secrets with
consensus networks: Fairness, ransomware and access control. IACR Cryp-
tology ePrint Archive, 2017:201, 2017.

LKW15. Jia Liu, Saqib A. Kakvi, and Bogdan Warinschi. Extractable witness
encryption and timed-release encryption from bitcoin. IACR Cryptology
ePrint Archive, 2015:482, 2015.

LPS17. Huijia Lin, Rafael Pass, and Pratik Soni. Two-round concurrent non-
malleable commitment from time-lock puzzles. IACR Cryptology ePrint
Archive, 2017:273, 2017.

MG16. Aanchal Malhotra and Sharon Goldberg. Attacking NTP’s authenticated
broadcast mode. Computer Communication Review, 46(2):12–17, 2016.

MGV+17. Aanchal Malhotra, Matthew Van Gundy, Mayank Varia, Haydn Kennedy,
Jonathan Gardner, and Sharon Goldberg. The security of NTP datagram
protocol. In Financial Cryptography and Data Security - FC, pages 405–
423, 2017.

MMBK. D. Mills, J. Martin, J. Burbank, and W. Kasch. RFC 5905: Network time
protocol version 4: Protocol and algorithms specification. In Internet En-
gineering Task Force (IETF), http: // tools. ietf. org/ html/ rfc5905 .

29

http://tools.ietf.org/html/rfc5905

A Additional Security Definitions

Ciphertext Integrity INT-CTX [BN08] The definition of Cipher Integrity INT-
CTX, introduced by Bellare et al in [BN08] is described in Fig. 9.

INT-CTX NM Experiment

Proc Initialize
K

$←− Gen(1λ), S ← ∅.
Proc Enc (M)

C
$←− EncK(M). S ← S ∪ {C}.

Proc VF(C)
M ← DecK(C).
If M 6= ⊥ and C /∈ S win← true.
Return M 6= ⊥.
Proc Finalize
Return win

Fig. 9: INT-CTX Game [BN08]

Ideal Functionality Fwrap. For completeness we report the ideal Fwrap function-
ality in Fig. 10.

Ideal Functionality Fwrap.
The functionality is parameterized by a polynomial p(·) and an implicit security

parameter λ.

Create: Upon receiving an input (create, sid, C, U, M) from a party C (i.e., the token
creator), where U is another party (i.e., the token user) and M is an interactive
Turing machine, do: If there is no tuple of the form 〈C,U, ?, ?, ?〉 stored, store
〈C,U,M, 0, ∅, 〉. Send (create, 〈sid, C, U〉) to the adversary.

Deliver: Upon receiving (ready, 〈sid, C, U〉) from the adversary, send (ready,
〈sid, C, U〉) to U .

Execute: Upon receiving an input (run, 〈sid, C, U〉,msg) from U , find the unique
stored tuple 〈C,U,M, i, state〉. If no such tuple exists, do nothing. Otherwise, do:
If M has never been used yet (i.e.,i = 0), then choose uniform ω ∈ {0, 1}p(λ) and
set state := ω. Run (out, state′) := M(msg; state) for at most p(λ) steps where out
is the response and state′ is the new state of M (set out := ⊥ and state′ := state
if M does not respond in the allotted time). Send (response,〈sid, C, U〉, out) to
U . Erase 〈C,U,M, i, state〉 and store 〈C,U,M, i+ 1, state′〉.

Fig. 10: Fwrap Functionality [Kat07]

30

	Break-glass Encryption

