What about Bob?
The Inadequacy of CPA Security for
Proxy Reencryption *

Aloni Cohen

MIT, Cambridge MA, USA,
aloni@mit.edu

Abstract. In the simplest setting of proxy reencryption, there are three
parties: Alice, Bob, and Polly (the proxy). Alice keeps some encrypted
data that she can decrypt with a secret key known only to her. She wants
to communicate the data to Bob, but not to Polly (nor anybody else).
Using proxy reencryption, Alice can create a reencryption key that will
enable Polly to reencrypt the data for Bob’s use, but which will not help
Polly learn anything about the data.

There are two well-studied notions of security for proxy reencryption
schemes: security under chosen-plaintext attacks (CPA) and security un-
der chosen-ciphertext attacks (CCA). Both definitions aim to formalize
the security that Alice enjoys against both Polly and Bob.

In this work, we demonstrate that CPA security guarantees much less
security against Bob than was previously understood. In particular, CPA
security does not prevent Bob from learning Alice’s secret key after re-
ceiving a single honestly reencrypted ciphertext. As a result, CPA secu-
rity provides scant guarantees in common applications.

We propose security under honest reencryption attacks (HRA), a strength-
ening of CPA security that better captures the goals of proxy reencryp-
tion. In applications, HRA security provides much more robust security.
We identify a property of proxy reencryption schemes that suffices to
amplify CPA security to HRA security and show that two existing proxy
reencryption schemes are in fact HRA secure.

Keywords: proxy reencryption - definitions - public-key cryptography

1 Introduction

Consider three parties: Alice, Bob, and Polly Proxy. Alice keeps encrypted data
(created with a public key) that she can decrypt with a secret key known only

* Supported by Facebook Fellowship 2018, NSF GRFP, NSF MACS CNS-1413920,
DARPA IBM W911NF-15-C-0236, and Simons Investigator Award Agreement Dated
6-5-12. We would like to thank Rio LaVigne, Akshay Degwekar, Shafi Goldwasser,
Vinod Vaikuntanathan, and anonymous reviewers for their helpful feedback.

to her. She wants to communicate some of the data to Bob, but not to Polly
(nor anybody else). Assuming Alice and Polly know Bob’s public key, how can
she communicate the data to him?

If she is willing to entrust Bob with all her secrets, past and future, Alice
might try to tell Bob her secret decryption key by encrypting it using Bob’s
public key. We call this the Trivial Scheme. If she does not have such trust in
Bob, Alice can instead decrypt the data, and reencrypt it using Bob’s public key.
But what if Alice does not want to do the work of decrypting and reencrypting
large amounts of data?

Proxy reencryption (PRE) provides an elegant solution: Alice creates and
gives to Polly a reencryption key that will enable Polly to reencrypt her data
under Bob’s public key for his use, but that will not reveal the data to Polly.
Proxy reencryption guarantees that Bob can recover the data uncorrupted (cor-
rectness) and that Polly cannot learn anything about Alice’s data (security). The
most widely-studied model of security for proxy reencryption is called CPA se-
curity, named after the corresponding notion from standard encryption on which
it is based.

But what about Bob? As already observed, if we do not require any secu-
rity against Bob, proxy reencryption is trivial: Alice uses the Trivial Scheme,
simply sending Bob her encrypted secret key. This is undesirable, unsatisfying,
and insufficient for a number of supposed applications of proxy reencryption
(Section 2).

Surprisingly, the Trivial Scheme is a CPA secure proxy reencryption scheme
when the public key encryption scheme used is circularly secure [6]! Bob com-
pletely learns Alice’s secret key, and circular security is used only to prove se-
curity against a malicious Polly. Furthermore, the CPA-security of any proxy
reencryption scheme remains uncompromised if Polly attaches the reencryption
key to every reencrypted ciphertext sent to Bob, even though this would enable
Bob to decrypt messages encrypted under Alice’s public key (Section 3.1).

These “constructions” of CPA-secure proxy reencryption—original to this
work—demonstrate the inadequacy of CPA security for proxy reencryption. If
they had been observed previously, perhaps CPA security would not have gained
the traction that it has.

Throughout this work, we use CPA (respectively, CCA and HRA) to refer
to the security notion for proxy reencryption, and Enc-CPA (resp., Enc-CCA)
to refer to the security notion for standard encryption. We restrict our attention
to unidirectional proxy reencryption, where the reencryption key allows Alice’s
ciphertexts to be reencrypted to Bob’s key, but not the reverse. In a bidirectional
scheme, Bob—using his own secret key and Alice’s public key— is able compute
the Alice-to-Bob reencryption key himself; thus a lack of security against Bob is
inherent.

1.1 CPA and CCA Security of Proxy Reencryption

First considered by Blaze, Bleumer, and Strauss [5], proxy reencryption has
received significant and continuous attention in the last decade, including defi-

nitions [22, 4, 10, 28], number-theoretical constructions [3, 26, 12], lattice-based
constructions [19, 2, 30, 17], implementations [25, 20, 31, 8], and early success
in program obfuscation [21, 11].

Adapting notions from standard encryption, this literature considers two
main indistinguishability-based security notions for proxy reencryption: security
under chosen plaintext attacks (CPA) [3] and chosen ciphertext attacks (CCA)
[10]. While CCA security is considered the gold-standard, CPA security has
received significant attention [4, 3, 21], especially in latticed-based constructions
[19, 2, 30, 31]. CPA security has been used as a testing ground for new techniques
for proxy reencryption and in settings where efficiency concerns make the added
security of CCA undesirable.

We now briefly describe the definitions of CPA and CCA security for proxy
reencryption, with the goal of communicating the underlying intuition. For this
informal description, we restrict our attention to the limited three party setting
of Alice, Bob, and Polly and strip away many of the complexities of the full
definition. For a full definitions of CPA and CCA security, see Definitions 3 and
the full version of this article [13], respectively.

Both notions are typically defined using a security game between an adver-
sary and a challenger in which the adversary’s task is to distinguish between
encryptions of two messages. Both notions allow the adversary to corrupt either
Bob (learning skpep) or Polly (learning the reencryption key rk). CCA and CPA
security differ in the additional power granted to the adversary.

CCA security grants the adversary access to two oracles:

— Opec: The decryption oracle takes as input a ciphertext along with the public
key of either Alice or Bob, and outputs the decryption of the ciphertext using
the corresponding secret key.

— OReknc: The reencryption oracle takes as input a ciphertext ct,jice and outputs
a reencrypted ciphertext ctpop.

These oracles come with restrictions to prevent the adversary from simply reen-
crypting or decrypting the challenge ciphertext, adapting replayable chosen-
ciphertext security of standard encryption (Enc-CCA) in the natural way.

CPA security of proxy reencryption, however, removes both oracles.® Why?
First, to adapt chosen-plaintext security from standard encryption (Enc-CPA)
to proxy reencryption, we must of course do away with Opec. Secondly, it seems
we must also remove Ogegnc: otherwise, by corrupting Bob it seems that the ad-
versary can use the combination of Oregne and skpep to simulate Opec. Removing
both decryption and reencryption oracles, according to [3], naturally extends the
Enc-CPA security to proxy reencryption, yielding CPA security.

As we observe in this work, a natural definition is not always a good defini-
tion. Not only is the above intuition for removing Ogegnc false (see full version

! This description is an oversimplification. In the many party setting, the adversary
has access to a reencryption oracle which will reencrypt ciphertexts between two
uncorrupted parties or between two corrupted parties, but not from an honest party
to a corrupted party.

[13]), but CPA security as defined above guarantees little against a honest-but-
curious Bob, even under normal operation. The definition only requires that
the adversary will not win the game as long as it never sees any reencrypted
ciphertexts. It guarantees nothing if Bob sees even a single reencrypted cipher-
text. This vulnerability is not purely theoretical: in the CPA secure scheme of
[31], Bob can recover Alice’s secret key with significant probability from a single
reencrypted ciphertext (Theorem 4).

This makes CPA security ill-suited for the most commonly cited applications
of proxy reencryption, including forwarding of encrypted email and single-writer,
many-reader encrypted storage (Section 2). CPA security is inadequate for proxy
reencryption and must be replaced.

1.2 Security Against Honest Reencryption Attacks

What minimal guarantees should proxy reencryption provide? First, it should
offer security against a dishonest proxy Polly when Alice and Bob are honest and
using the proxy reencryption as intended. Polly’s knowledge of a reencryption key
from Alice to Bob (or vice versa) should not help her learn anything about the
messages underlying ciphertexts encrypted under pkyje or pkpop- Such security
against the corrupted proxy is guaranteed by CPA.

Second, proxy reencryption should offer security against a dishonest receiver
Bob when Alice and Polly are honest and using the proxy reencryption as in-
tended. Bob’s knowledge of honestly reencrypted ciphertexts (that were honestly
generated to begin with) should not help him learn anything about the mes-
sages underlying other ciphertexts encrypted under pk,j. that have not been
reencrypted. As we show in this work, such security against the corrupted re-
ceiver is not guaranteed by CPA.

Generalizing these dual guarantees to many possibly colluding parties, we
want security as long as the adversary only sees honestly reencrypted ciphertexts.
In Section 4, we formalize this notion as proxy reencryption security against hon-
est reencryption attacks (HRA). Recall that CCA security provides the adversary
with both Opec and Oregnc while CPA provides neither oracle. In contrast, HRA
security provides the adversary with a restricted reencryption oracle which will
only reencrypt honestly generated ciphertexts.

By guaranteeing security of both kinds described above, HRA is a strength-
ening of CPA security that better captures our intuitions for security of proxy
reencryption. Furthermore, HRA guarantees more meaningful security in the
most common applications of proxy reencryption (Section 4.1). HRA security is
an appropriate goal when developing new techniques for proxy reencryption and
in settings where full CCA security is undesirable or out of reach.

alice

Security of Existing Schemes. Can we construct a proxy reencryption scheme
that is HRA secure? HRA security is a strict strengthening of CPA security,so it
is not immediately clear that any existing constructions are HRA secure without
redoing the proofs from scratch. Indeed, the CPA secure scheme of [31] is not
HRA secure (Theorem 4).

In Section 5, we identify a property—reencryption simulatablity—which is
sufficient to boost CPA security to HRA security. Very roughly, reencryption
simulatability means that reencrypted ciphertexts resulting from computing
ReEnc(rkalice—sbob, Ctalice) can be simulated without knowledge of the secret key
skalice (but with knowledge of the plaintext message m). Reencryption simulata-
bility allows a reduction with access to the CPA oracles to efficiently implement
the honest reencryption oracle, thereby reducing HRA security to CPA security.

We the examine the simple construction of proxy reencryption from any
fully-homomorphic encryption [19], and the pairing-based construction of [4].
In the first case, if the fully-homomorphic encryption secure is circuit private,
then the resulting proxy reencryption scheme is reencryption simulatable. In
the second case, rerandomizing reencrypted ciphertexts suffices for reencryption
simulation.?

1.3 Related Work

The below mentioned works are just the most directly relevant. There is by
now an extensive research literature on proxy reencryption, presenting a zoo of
definitions. There have been three main approaches to defining security: CPA,
CCA, and (to a much lesser extent) obfuscation-based. The CPA notion, in one
form or another, is by far the most well studied. In this work, we make the
deliberate choice to address the core CPA definition, not to present an ultimate
definition of security for proxy reencryption nor to address the vast array of
different criticisms or strengthenings of CPA security that have been or may be
considered. We hope that doing so will make these ideas more understandable
and adaptable.

RIND-CPA Security In concurrent and independent work defining and con-
structing forward-secure proxy reencryption, Derler, Krenn, Loriinser, Ramacher,
Slamanig, and Striecks identify the same problem with CPA security as discussed
in this work [14, Definition 14]. As in our work, they address the problem with
CPA security by defining a new security notion—RIND-CPA security—which
expands the power of the adversary. They additionally separate RIND-CPA and
CPA security with a construction that is essentially our Concatenation Scheme.

However, this is where the resemblance between [14] and our work ends. In
the RIND-CPA game offered by [14], the adversary gets access to an reencryption
oracle that works on all inputs (not just honestly generated ones), but only before
the challenge ciphertext is generated.® In contrast, HRA allows reencryption
both before and after the challenge, but only for honestly generated ciphertexts.

RIND-IND is inadequate as a replacement for CPA security in the research
literature: its usefulness in applications is unclear, and it appears too strong

2 While we don’t examine every pairing-based construction of proxy reencryption, we
suspect that rerandomizing reencryption will suffice for reencryption simulation in
many, if not all.

3 The full version [13] discusses the related definition of IND-CCAo,; security from [28]

to provide a useful testing ground for the development of new techniques for
constructing proxy reencryption.

In the course of normal operation of a proxy reencryption in applications, an
adversarial party will typically see many reencrypted ciphertexts. These cipher-
texts may come at any time—both before and after other ciphertexts whose con-
tents should remain secret. HRA is meaningful in many such applications—many
more than CPA security. But because RIND-CPA restricts the reencryption or-
acle to the period before the challenge ciphertext, its usefulness in applications
is not clear.

The challenge of proving CCA security for encryption (proxy or otherwise) is
demonstrating that an adversary cannot use dishonestly generated, malformed
ciphertexts to win in the security game. In this respect, RIND-CPA security
is much more akin to CCA security than to CPA security. HRA, on the other
hand, makes minimal assumptions about the distribution of plaintext messages
by allowing the adversary to choose messages itself, just as in Enc-CPA for
standard encryption.

Appendix B discusses RIND-CPA security in more depth, expanding on the
arguments above and proving that RIND-CPA and HRA security are incompa-
rable.

Subsequent Work Two subsequent works continue the study of HRA secure
proxy reencryption. Fuchsbauer, Kamath, Klein, and Pietrzak study CPA and
HRA secure proxy reencryption in an adaptive corruption model [18]. As in our
work, they prove the HRA security of their construction by first proving CPA
security and then lifting it to full HRA security using a version of reencryption
simulatability.

More recently, Dottling and Nishimaki study the problem of converting ci-
phertexts between different public-key encryption schemes, a problem they call
universal proxy reencryption [15]. They define security by extending HRA secu-
rity to the universal setting. [15] extends Theorem 5 to show that a computa-
tional version of reencryption simulatability suffices to lift CPA to HRA security.
However, they prove HRA security directly rather, finding that proving compu-
tational reencryption simulatability is not much more simple than proving HRA
security itself.

Other Related Work Our dual-guarantee conception of proxy reencryption
security mirrors the security requirements of what Ivan and Dodis call CPA
security [22]. Their notion differs substantially from what is now referred to
by that name. The [22] conception of CPA security is only defined in a proof
in the appendix of that work and seems to have been completely overlooked
by the later works proposing the modern notion of CPA security (beginning
with [4] and then in its present form in [3]). If, however, Ivan and Dodis had
undertaken to revisit proxy reencryption after [3], they might have proposed a
security definition similar to HRA.

In [28], Nunez, Agudo, and Lopez provide a parameterized family of CCA-
type attack models for proxy reencryption. Their weakest model corresponds to
CPA security and their strongest to full CCA security. That work is partially
a response to a claimed construction of CCA-1 secure proxy reencryption in a
security model that does not allow reencryption queries. [28] provide an attack
on the construction in the presence of a reencryption oracle consisting of care-
fully constructed, dishonestly generated queries which leak the reencryption key.
They do not consider restricting the reencryption oracle in the security game to
honestly generated ciphertexts. We discuss [28] further in the full version [13].

Finally, a parallel line of work initiated by Hohenberger, Rothblum, shelat,
Vaikuntanathan which studies proxy reencryption using an obfuscation-based
definition that is incomparable to CPA security [21]. Their definition requires
that the functionality of the obfuscated reencryption circuit be statistically close

to that of the ideal reencryption functionality: namely, that ReEnc(rk;_, ;, Enc(pk;, m)) ~

Enc(pk;, m). Thus the definition of [21] (and even the relaxed correctness found
in [11]) imply reencryption simulatability defined in Section 5.

1.4 Organization

We begin by discussing applications of proxy reencryption and identifying the
weaknesses of CPA security in those applications (Section 2). Then we present
the existing CPA security definition and further demonstrate its weaknesses with
two new schemes: the Trivial Scheme and Concatentation Scheme (Section 3).
We propose a new security notion to overcome those weaknesses: security against
honest reenecryption attacks (HRA) (Section 4). We examine the relationship
between CPA and HRA security and the HRA security (or insecurity) of existing
reencryption schemes (Section 5). The appendix provides additional discussion
of the Trivial Scheme (Appendix A) and comparison between HRA and RIND-
CPA security (Appendix B). The full version provides additional discussion of
CCA security [13].

2 Insufficiency of CPA Security for Applications

In Section 3, we recall the definition of CPA security of proxy reencryption
from [3] and formalize the Trivial Scheme from the introduction satisfying the
notion. In the Trivial Scheme, Bob learns Alice’s secret key after receiving a
single reencrypted ciphertext.

We are faced with a choice: accept the existing definition of CPA security, or
reject it and seek a definition that better captures our intuitions. In support of
the latter, we describe a number of applications of proxy reencryption proposed
in the literature for which CPA security (as implemented by the Trivial Scheme)
is potentially unsatisfactory, but for which full CCA security may not always be
necessary.* We revisit these applications in Section 4.1 after proposing our new
security notion.

4 We might also appeal for support to [22], the only paper in the proxy reencryption
literature of which we are aware adopting a security definition providing a reencryp-

S

Encrypted Email Forwarding [5, 23, 4]. Forwarding of encrypted email with-
out requiring the sender’s participation might be desirable for temporary
delegation during a vacation [23] or for spam filtering [4]. Does the Triv-
ial Scheme suffice? The Trivial Scheme enables Bob, the receiver of Alice’s
forwarded (and reencrypted) email, to recover Alice’s secret key. If Alice
trusts Bob enough to use the Trivial Scheme, she could instead reveal her
secret key. The Trivial Scheme might be preferable in very specific trust or
interaction models, but it does not offer meaningful security against Bob if
Alice only wishes to forward a subset of emails (for example, from particular
senders or during a specific time period).

Key Escrow [22]. Similar to email forwarding, Ivan and Dodis describe the
application of key escrow as follows: “The problem is to allow the law en-
forcement agency to read messages encrypted for a set of users, for a limited
period of time, without knowing the users secrets. The solution is to locate
a key escrow agent between the users and the law enforcement agency, such
that it controls which messages are read by the law enforcement agencies.”
As in email forwarding, the “for a limited period of time” requirement sug-
gests that Ivan and Dodis would not have been satisfied with the Trivial
Scheme.?

Single-Writer, Many-Reader Encrypted Storage [4, 24, 25, 31]. Under
different monikers (including DRM and publish/subscribe systems), these
works describe systems in which a single privileged writer encrypts data and
determines an access control policy for readers. A semi-honest proxy server
is entrusted with reencryption keys and is tasked with enforcing the access
control policy. Whether the Trivial Scheme suffices for these applications
depends on what sort of access control policies are envisioned. If the access
is all or nothing (i.e., all readers may access all data), the Trivial Scheme
suffices; if the access is fine grained (i.e., each reader may access only a
specific subset of the data), then it does not. Existing works are often unclear
on which is envisioned.

For completeness, we mention that CPA security does suffice for two important
applications of proxy reencryption: namely, key rotation for encrypted cloud
storage [7, 16] and fully homomorphic encryption [19].

tion oracle without a decryption oracle. One could look to the originators of proxy
reencryption for guidance, but the shortcoming we identify does not manifest in the
original setting of [5] (there is only Alice and Bob; there is no Proxy). It is therefore
of little help.

Note that Ivan and Dodis do not adopt the CPA definition used elsewhere, but a
definition much closer to our own. There is no gap between their security guarantees
and the requirements of their briefly-described application.

Though primarily focused on the setting where the key escrow agent enforces
the limited time requirement by eventually refusing to reencrypt, [22] considers the
possibility of dividing time into epochs and enforcing the time limitation technically.
Such a proxy reencryption is called temporary in [4]. We do not discuss temporary
proxy reencryption further.

ot

3 Security Against Chosen Plaintext Attacks

In this section, we recall the definition of CPA security for proxy reencryption
and illustrate its shortcomings. We begin with the definitions of syntax, correct-
ness, and CPA security from [3, Definition 2.2] (with minor changes in notation
and presentation, and the change noted in Remark 1 at the end of this subsec-
tion). The syntax and correctness requirements are common to CPA, HRA, and
CCA security.

For the sake of concreteness, simplicity, and brevity, we restrict the discussion
to unidirectional, single-hop schemes. In multi-hop schemes, reencryption keys
rka_p and rkp_,c can be used to reencrypt a ciphertext ct4 from pk, to pke.
In single-hop schemes, they cannot. Single-hop or multi-hop schemes each have
their benefits and drawbacks, and works typically focus on one or the other
notion.® To the best of our knowledge, our observations and results can all be
adapted to the multi-hop setting.

Definition 1 (Proxy Reencryption: Syntax [3]). A proxy reencryption scheme
for a message space M is a tuple of algorithms PRE = (Setup, KeyGen, ReKeyGen,
Enc, ReEnc, Dec):

Setup(1?) — pp. On input security parameter 1, the setup algorithm outputs
the public parameters pp.

KeyGen(pp) — (pk,sk). On input public parameters, the key generation algo-
rithm outputs a public key pk and a secret key sk. For ease of notation, we
assume that both pk and sk include pp and refrain from including pp as input
to other algorithms.

ReKeyGen(sk;, pk;) — rk;—;. On input a secret key sk; and a public key pk;,
where i # j, the reencryption key generation algorithm outputs a reencryp-
tion key rki_;.

Enc(pk,,m) — ct;. On input a public key pk, and a message m € M, the
encryption algorithm outputs a ciphertext ct;.

ReEnc(rk;—j,ct;) — ctj. On input a reencryption key from i to j rk;; and
a ciphertext ct;, the reencryption algorithm ouputs a ciphertest ct; or the
error symbol L.

5 The literature is divided about whether “single-hop” is merely a correctness property
(i.e., able to reencrypt at least once, but agnostic about whether reencrypting more
than once is possible) or if it is also a security property (i.e., a ciphertext can be reen-
crypted once, but never twice). This distinction manifests in the security definition.
In works that consider only single-hop correctness [4, 3, 21, 28], the oracle OgrekeyGen
in the security game will not accept queries from honest users to corrupted users
(i-e., (4,7) such that s € Hon and j € Cor). We adopt this formalism in Definitions 3
and 5 for simplicity of presentation only.

In works that consider single-hop security [26, 12, 17], the oracle will answer such
queries, but the challenge ciphertext must be encrypted under the key of an honest
user ¢* for which no such reencryption key was generated (which can be formalized
in a number of ways).

This work adopts the simplest model, requiring only one hope of correctness, but
neither requiring nor forbidding additional functionality.

Dec(skj,ct;) — m. Given a secret key sk; and a ciphertext ctj, the decryption
algorithm outputs a message m € M or the error symbol L.

Definition 2 (Proxy Reencryption: Correctness [3]). A proxy reencryp-
tion scheme PRE is correct with respect to message space M if for all A € N,
pp + Setup(1?), and m € M:

1. for all (pk,sk) «+ KeyGen(pp):
Dec(sk, Enc(pk, m)) = m.
2. for all (pk;,ski), (pk;,sk;) «— KeyGen(pp), rk;—; < ReKeyGen(sk;, pk;):
Dec(sk;, ReEnc(rk;_;, Enc(pk;, m))) = m.

Security is modeled by a game played by an adversary A. A has the power
to corrupt a set of users Cor (learning their secret keys) while learning only
the public keys for a set of honest users Hon. Additionally, A may reencrypt
ciphertexts (either by getting a reencryption key or calling a reencryption oracle)
between pairs of users in Hon or in Cor, or from Cor to Hon, but not from Hon
to Cor. This is in contrast to the simplified three-party setting discussed in the
introduction, where the A could not reencrypt whatsoever.

Definition 3 (Proxy Reencryption: Security Game for Chosen Plain-
text Attacks (CPA) [3]). Let A\ be the security parameter and A be an oracle
Turing machine. The CPA game consists of an execution of A with the following
oracles. The game consists of three phases, which are executed in order. Within
each phase, each oracle can be executed in any order, poly(\) times, unless oth-
erwise specified.

Phase 1:

Setup: The public parameters are generated and given to A. A counter numKeys
is initialized to 0, and the sets Hon (of honest, uncorrupted indices) and Cor
(of corrupted indices) are initialized to be empty. This oracle is executed first
and only once.

Uncorrupted Key Generation: Obtain a new key pair (pKyumkeys: SKnumkeys) <
KeyGen(pp) and give pkn,mkeys t0 A. The current value of numKeys is added
to Hon and numKeys is incremented.

Corrupted Key Generation: Obtain a new key pair (pknumkeys: SKnumkeys)
KeyGen(pp) and given to A. The current value of numKeys is added to Cor
and numKeys is incremented.

Phase 2: For each pair i,j < numKeys, compute the reencryption key rk;_; <
ReKeyGen(sk;, pk;).

Reencryption Key Generation Orekeygen: On input (4, j) where i, < numKeys,
ifi =7 orifi € Hon and j € Cor, output L. Otherwise return the reencryp-
tion key rk;_;.

10

Reencryption Ogegnc: On input (i, j,ct;) where 4,5 < numKeys, if i = j or if
i € Hon and j € Cor, output L. Otherwise return the reencrypted ciphertext
ReEnc(rk;,;, ct;).

Challenge Oracle: On input (i, mg, m;) where i € Hon and mg, m; € M, sam-
ple a bit b < {0, 1} uniformly at random, and return the challenge ciphertext
ct* < Enc(pk;, my). This oracle can only be queried once.

Phase 3:
Decision: On input a bit b’ € {0,1}, return win if b=1'.
The CPA advantage of A is defined as

AdvZ, () = Prlwin],
where the probability is over the randomness of A and the oracles in the CPA
game.

Definition 4 (Proxy Reencryption: CPA Security [3]). Given a security
parameter 1%, a prozxy reencryption scheme is CPA secure if for all probabilistic
polynomial-time adversaries A, there exists a negligible function negl such that

AdvA,(\) < % + negl(\)
Remark 1. Another definitional subtlety of proxy reencryption worth discussing
affects not just CPA security, but HRA and CCA security as well. Consider the
specification of ORrekeyGen and ORegnc in Definition 3. As defined, the reencryption
keys rk;_,; are persistent: the same key is used each time a pair (¢,) is queried.
This follows [3, Definition 2.5] and [2, 17], though we find our formalization
somewhat simpler.

Contrast this with [3, Definition 2.2] in which reencryption keys are ephemeral:
they are generated afresh each time either oracle is invoked on the same pair
(4,7). [7, 30, 10] similarly use ephemeral keys in their definitions. In the re-
maining papers we examined, it was less clear whether reencryption keys were
ephemeral or persistent.

Neither definition implies the other; any scheme secure with persistent keys
can be modified into one that is insecure with ephemeral keys, and vice-versa.
The definitions, however, are not in serious tension; any scheme secure with per-
sistent keys and having deterministic ReKeyGen is also secure with ephemeral
keys, and ReKeyGen can in general be derandomized using pseudorandom func-
tions. Of course, one can easily define a hybrid notion stronger than both by
allowing the adversary to specify for each query whether it wants to use reen-
cryption keys that are new or old.

We adopt the persistent formalization as it better captures ‘typical’ use.
To the best of our knowledge, all claims in this work can be adapted to the
ephemeral setting.

11

Remark 2. The power of the adversary above can be strengthened by allowing
adaptive corruptions instead of dividing the game into phases. Our definitions of
CPA and HRA security follow the convention of [3] primarily because it is most
common in the research literature. For an examination of CPA and HRA security
in the adaptive setting, see the subsequent work of Fuchsbauer, Kamath, Klein,
and Pietrzak [18]. Adaptive-secure, bidirectional, CCA secure proxy reencryption
has been studied in [10, 28].

3.1 Concatenation Scheme and Trivial Scheme

The weakness of CPA security lies in the specification of Oregnc, which does
not reencrypt any ciphertexts from honest to corrupt users. Said another way,
OkreEnc Teencrypts between only those pairs keys for which Orekeygen Outputs a
reencryption key (rather than returning 1). We now describe two schemes that
are CPA secure, but are insecure against a dishonest receiver of reencrypted
ciphertexts. In both schemes, a single ciphertext reencrypted from an honest
index to a corrupted index enables the decryption of messages encrypted under
the honest index’s public key.

Concatenation Scheme Let PRE = (Setup, KeyGen, Enc, Dec, ReKeyGen, ReEnc)
be a CPA-secure proxy reencryption scheme. Define a new scheme by mod-
ifying only reencryption and decryption:

ReEnc’(rk, ct) := ReEnc(rk, ct)||rk

/ [Dec(sk, ct!) if ct = ctt||ct?
Dec'(sk, ct) = { Dec(sk, ct) otherwise
Theorem 1. Let PRE = (Setup, KeyGen, Enc, Dec, ReKeyGen, ReEnc) be a CPA-
secure proxy reencryption scheme. The corresponding Concatenation Scheme
PRE" = (Setup, KeyGen, Enc, Dec’, ReKeyGen, ReEnc’) is a CPA-secure prozy reen-
cryption scheme.

Proof. For any probabilistic, polynomial-time algorithm A’ (the CPA adversary
against PRE"), we construct an efficient algorithm A such that Adv;‘:,a = Advé;.
By the CPA security of PRE, this advantage is negligible, completing the proof.

A runs A’ and simulates the CPA security game for PRE" (if A’ does not
follow the specification of the game, A simply aborts). Except for calls to ORegnc,
all oracle calls by A’ are passed along unaltered by A, along with their responses.

A begins Phase 2 by requesting all admissible reencryption keys rk;_,; from
its own reencryption key generation oracle. To answer oracle calls from A’ to
OReEnc, A first queries its own reencryption oracle, which returns ct!. If ct! = 1,
then A’ returns L. Otherwise, A’ concatenates the appropriate reencryption key
rk to form the new ciphertext ct = ct!||rk. This is possible because if ct! # 1,
then A is able to get the corresponding reencryption key at the beginning of
Phase 2.

12

A perfectly implements the CPA security game for PRE’, and A’ wins that
game if and only if .4 wins the corresponding game for PRE. Therefore, Adv;‘;a =

Advf:,;. Finally, the running time of A is polynomially related to that of A’.

While the Concatenation Scheme builds upon any CPA-secure proxy reen-
cryption scheme, the Trivial Scheme presented next makes use of public-key en-
cryption enjoying circular security. Informally, circular security guarantees that
encryptions of messages that are a function of the secret key(s) are as secure
as encryptions of messages that are independent of the secret key(s), a security
property that does not follow from standard semantic security.

In the Trivial Scheme, the reencryption key from party i to j is simply rk;_,; =
Enc(pk;,sk;). CPA security of the resulting proxy reencryption scheme requires
security against an adversary who has both rk;_,; and rk;_,;. This requires that
the underlying encryption scheme is circular secure.

Because existing definitions and constructions of circular secure encryption
schemes based on standard assumptions (e.g., [6] from DDH) require a bound
on the total number of public keys n, the corresponding Trivial Scheme will only
satisfy a bounded-key variant of CPA security. Any circular secure encryption
scheme without this limitation would yield a Trivial Scheme secure according
to Definition 4. We defer the definitions of circular security, bounded-key CPA
security, and the proof of Theorem 2 to Appendix A.

Trivial Scheme Let (KeyGen,, Encgc, Decgrc) be an n-way circular-secure en-
cryption scheme. Let Setup = 1, KeyGen = KeyGeng,.; Enc = Encg;

circy

ReKeyGen(sk;, pkj) = Enccirc(pkj, sk;)
ReEnc(rk;—j,ct;) = ct;||rki—;

| Deccire(Deccire (sk, ct?), ct?) if ct = ct!|ct?
Dec(sk, ct) := {Decc;rc(sk,ct) otherwise '

Theorem 2. Let (KeyGeng,., Enceirc, Deccirc) be an n-way circular-secure encryp-
tion scheme. The corresponding Trivial Scheme PRE is an n-way CPA secure
proxy reencryption scheme.

4 Security Against Honest Reencryption Attacks

We seek a definition of security which holds as long as the adversary only sees
honestly reencrypted ciphertexts, unless the set of corrupt parties can trivially
violate security (by some chain of reencryption keys from an uncorrupted public
key to a corrupted public key).

We term this notion security against honest reencryption attacks (HRA). To
formalize it, we model the ability of an adversary to see honest reencryptions by
granting it access to a modified reencryption oracle Ogegnc. Instead of taking a
ciphertext as input, the modified Ogegnc takes as input a reference to a previously
generated ciphertext (either as the output of Ognc or ORegnc itself).

13

To implement such an oracle, we introduce to the security game a key-value
store C as additional state: the values are ciphertexts ct which are keyed by a
pair of integers (i, k), where 7 denotes the index of the key pair (pk;, sk;) under
which ct was (re)encrypted, and k is a unique index assigned to ct.

As described, this new Ogegnc admits a trivial attack: simply reencrypt the
challenge ciphertext to a corrupted key and decrypt. To address this issue, we
adapt an idea from [10]’s definition of CCA security: we rule out the trivial attack
by storing a set Deriv of ciphertexts derived from the challenge by reencrypting,
and rejecting queries to Ogegne for ciphertexts in Deriv and a corrupted target
key. We might have instead chosen to forbid any reencryptions of the challenge
ciphertext, even between uncorrupted keys. Though this would have simplified
the definition, it would have been unsatisfactory. For example, in the single-
writer, many-reader encrypted storage application the contents of a message m
that gets reencrypted from Alice to Charlie should be hidden from Bob.

We now present the honest reencryption attacks security game. The game is
similar to the CPA security game with some modifications to Setup, Challenge,
and ORegnc, and the addition of an Enc oracle Og,. to Phase 2. Og,c may be
executed poly(A) times and in any order relative to the other oracles in Phase 2.
For the sake of clarity we reproduce the full game below and mark the modified
oracles with a *.

Definition 5 (Proxy Reencryption: Security Game for Honest Reen-
cryption Attacks (HRA)). Let A be the security parameter and A be an oracle
Turing machine. The HRA game consists of an execution of A with the following
oracles.

Phase 1:

* Setup: The public parameters are gemerated and given to A. A counter
numKeys is initialized to 0, and the sets Hon (of honest, uncorrupted in-
dices) and Cor (of corrupted indices) are initialized to be empty.

Additionally the following are initialized: a counter numCt to 0, a key-value
store C to empty, and a set Deriv to be empty. This oracle is executed first
and only once.

Uncorrupted Key Generation: Obtain a new key pair (PKnymkeys» SKnumkeys) =
KeyGen(pp) and give pko,mkeys 10 A. The current value of numKeys is added
to Hon and numKeys is incremented.

Corrupted Key Generation: Obtain a new key pair (pknumkeyss SKnumkeys)
KeyGen(pp) and given to A. The current value of numKeys is added to Cor
and numKeys is incremented.

Phase 2: For each pair i,j < numKeys, compute the reencryption key rk;_; <
ReKeyGen(sk;, pk;).

Reencryption Key Generation Orekeygen: On input (4, j) where i, < numKeys,
ifi =7 orifi € Hon and j € Cor, output L. Otherwise return the reencryp-
tion key rk;_;.

14

* Encryption Ogne: On input (i, m), where i < numKeys, compute ct < Enc(pk;, m)
and increment numCt. Store the value ct in C with key (i,numCt). Return
(numCt, ct).

* Challenge Oracle: On input (i,mg, m;) where i € Hon and mg,m; € M,
sample a bit b + {0, 1} uniformly at random, compute the challenge cipher-
text ct* « Enc(pk;, my), and increment numCt. Add numCt to the set Deriv.
Store the value ct* in C with key (i, numCt). Return (numCt, ct*). This oracle
can only be queried once.

* Reencryption Oregnc: On input (i, j, k) where i, j < numKeys and k < numCt,
if j € Cor and k € Deriv return L. If there is no value in C with key (i, k),
return L.

Otherwise, let ct; be that value in C, let ctj <— ReEnc(rk;—;,ct;), and incre-
ment numCt. Store the value ct; in C with key (j,numCt). If k € Deriv, add
numCt to the set Deriv.

Return (numCt, ct;).

Phase 3:
Decision: On input a bit b’ € {0,1}, return win if b=1'.
The HRA advantage of A is defined as
Advir, (\) = Pr[win],
where the probability is over the randomness of A and the oracles in HRA game.

Definition 6 (Proxy Reencryption: HRA Security). Given a security
parameter 1*, a proxzy reencryption scheme is HRA secure if for all probabilistic
polynomial-time adversaries A, there exists a negligible function negl such that

1
Advil () < 5 +negl(})

The Concatenation Scheme demonstrates that CPA security does not neces-
sarily imply HRA security. Together with following theorem, we see that HRA
security is a strict strengthening of CPA security.

Theorem 3. Let PRE be an HRA secure proxy reencryption scheme. Then PRE
18 CPA secure.

Proof. From any probabilistic, polynomial-time algorithm A (the CPA adver-
sary), we construct an efficient algorithm A" such that Advf‘r; = Advé pa- By the
HRA security of PRE this advantage is negligible, completing the proof.

A’ runs A and simulates the CPA security game (if A does not follow the
specification of the CPA security game, A’ simply aborts). Except for calls to
OReEnc, all oracle calls by A’ are passed along unaltered by A to the corresponding
HRA oracles, along with their responses.

A’ begins Phase 2 by requesting all (admissible) reencryption keys rk;_;
from ORekeyGen- racle calls from A to Ogegnc are answered by A’ by computing

15

the reencryption using the appropriate reencryption key; this is possible because
OReknc returns | if and only if A’ is unable to get the corresponding reencryption
key.

A’ prefectly implements the CPA security game, and A wins that game if and
only if A" wins the HRA security game. Therefore Adv,’f}; = Advélp 4. Finally,
the running time of A’ is polynomially related to the that of A.

4.1 Sufficiency of HRA Security for Applications

Returning to the applications of proxy reencryption described in Section 2, we
observe that HRA security provides substantially stronger security guarantees.

Encrypted email forwarding Using proxy reencryption with HRA security,
Alice can forward encrypted email to Bob for a short period of time (during a
vacation, say) and be sure that Bob cannot read her email after she returns.

Key escrow Similar to encrypted email forwarding, proxy reencryption with
HRA can be used to enable law enforcement to read certain encrypted mes-
sages without compromising the secrecy of documents outside the scope of
a search warrant or subpoena, for example.

Single-writer, many-reader encrypted storage Whereas proxy reencryp-
tion with CPA security can only support all or nothing access (i.e., all readers
may access all data), HRA security can support fine grained access control
(i.e., each reader may access only a specific subset of the data).

There is no question that HRA does not provide as much security as CCA, and
that CCA-secure proxy reencryption would yield more robust applications. HRA
security, however, can provide meaningful guarantees in the above applications.

Encrypted email forwarding If Alice is forwarding all emails to Bob, then
Bob could certainly mount an attack outside the honest reencryption model.
On the other hand, if Alice is forwarding only those emails from a third-party
sender Charlie, then such an attack is impossible without the involvement
of Charlie (supposing of course that the sender of an email can be authenti-
cated).

Key escrow The hypothetical legal regime that establishes the government’s
power of exceptional access by way of key escrow could additionally pro-
hibit the government from mounting chosen-ciphertext attacks. In the United
States, a Constitutional argument could perhaps be made that law-enforcement
use of chosen-ciphertext attacks must be limited.

Single-writer, many-reader encrypted storage The only ciphertexts be-
ing reencrypted are those uploaded by the single-writer to the proxy server
(hence the name). It is by no means a stretch to require that the proxy server
does not allow writes by unauthorized parties (i.e., the readers). If the honest
writer only uploads honestly generated ciphertexts, HRA is appropriate.

16

5 Security of Existing Proxy Reencryption Schemes

Can we construct HRA-secure proxy reencryption? The most natural place to
begin is with existing schemes.

We begin by demonstrating that the CPA secure scheme of [31] is not HRA
secure. Although CPA security is strictly weaker than HRA security, we might
hope that the existing CPA secure schemes already satisfy the more stringent
definition. To this end, we identify a natural property—reencryption simulata-
bility—sufficient to boost CPA security to HRA security.”

We examine the simple construction of CPA secure proxy reencryption from
any fully-homomorphic encryption (FHE) presented in [19]. While the resulting
proxy reencryption may not be HRA secure in general, if the FHE is circuit
private—a property Gentry imbues into his FHE by rerandomization—the same
construction will be HRA secure. We then examine pairing-based schemes, find-
ing there too that rerandomization provides a direct path to HRA security.?

Remark 3. It may seem that CCA security should imply HRA security, but
unfortunately the situation is not so clear. Intuitively, CCA security allows
the adversary to make relatively unrestricted queries to both Ogregne and Opec,
whereas HRA restricts the adversary to making only honest reencryption queries
to OReEnc~

However the oracles in the CCA definition are restricted in a way that stymies
a naive attempt at a reduction. The CCA definition prevents reencryptions or de-
cryptions of all ciphertexts that could in principle be derived from the challenge
(including by rerandomization). On the other hand, the HRA security game re-
stricts reencryption queries only when the ciphertext is actually a derivative of
the challenge. The adversary may reencrypt other encryptions of the challenge
messages, so long as those encryptions were honestly generated independently
from the challenge ciphertext.

We do not resolve the question of whether CCA security implies HRA se-
curity. By Theorem 5, any CCA secure proxy reencryption scheme satisfying
reencryption simulatability is also HRA secure. See the full version of this arti-
cle [13] for further discussion.

5.1 HRA Insecurity of [31]

Though it is easy to construct CPA secure encryption schemes that are not
HRA secure, the question remains whether any previously proposed schemes

7 Some existing notions in the proxy reencryption literature seem powerful enough to
elevate CPA security to HRA security, including proxy invisibility [4], unlinkability
[17], and punctured security [1]. However, these notions are not sufficiently well
defined to draw any concrete conclusions. The notion of key-privacy [3] does not in
general suffice for HRA security.

8 While we do not examine every pairing-based construction of proxy reencryption,
we suspect that rerandomizing reencryption will suffice for reencryption simulation
in many, if not all.

17

fail to satisfy HRA security. In this section, we show that the construction of
Polyakov, Rohloff, Sahu, and Vaikuntanathan [31, Section 5] is one such scheme.
Their construction is based on a public key encryption scheme of Brakerski and
Vaikuntanathan [9] and is CPA secure assuming the hardness of Ring Learning
With Errors (RLWE).

As with the Trivial and Concatenation schemes, the HRA attack is simple
yet severe: any single honestly generated ciphertext enables the recipient Bob to
recover the sender Alice’s secret key with significant probability.

Theorem 4. The prozy reencryption scheme of [31, Section 5] is not HRA se-
cure.

Proof. Except where noted, the notation used below is consistent with [31]; we
restrict our description to those facts necessary to describe the HRA attack.

For n a power of 2 and prime ¢ = 1 mod 2n, let R, = Z,[z]/(z™ + 1) be
a ring of degree (n — 1) polynomials with coefficients in Z,. The sender Alice’s
secret key is s, and the recipient Bob’s secret key is s*. Bob’s public key includes
O(log q) = poly(n) RLWE samples 0 = f; - s* + pe;, where p is a public prime
and the 3; and e; are ring elements sampled by Bob.? Ciphertexts are pairs of
ring elements (co, ¢1) € Rg. By [9, Lemma 4], the distribution of ¢; is statistically
close to uniform over R,. By [27, Lemma 2.25], ¢; is invertible with probability
at least e=! — negl(n). The result of reencrypting (co,c1) is a pair (), c}) such
that ¢f — s* - ¢} = cop — s+ 1+ pE1, where F; is computable given ¢; and the e;.
This fact is used by [31] to prove the correctness of their scheme. Rearranging
the above, we see that

/ /
s-c1=co+pEy —cy+5"- .

Given any ciphertext (cg,c1) and its reencryption (¢, c}), Bob can evaluate
the above and compute s - ¢;. With probability at least e~! — negl(n), ¢; is
invertible and Bob can recover the secret s.

5.2 Reencryption Simulatability.

While HRA is a strictly stronger security notion than CPA, we now show that if
a CPA secure proxy reencryption scheme has an additional property we call
reencryption simulatability, then it must also be HRA secure. Very roughly,
reencryption simulatability means that ciphertexts resulting from computing
ReEnc(rk;j, ct;) can be simulated without knowledge of the sender’s secret key
sk; (but with knowledge of the plaintext message m and the recipient’s secret
key sk;). Note that ReEnc uses rk;_,; which is a function of sk;.

Reencryption simulatability allows an algorithm with access to the CPA or-
acles to efficiently implement the honest reencryption oracle. For intuition, con-
sider the following approach to reducing HRA security to CPA security. Suppose

9 [31] separate the computation of 6] from Bob’s public key, but this is only a matter
of presentation.

18

there existed an adversary Ay, violating the HRA security of a scheme; the re-
duction plays the roles of both the CPA adversary and the challenger in the HRA
security game, and attempts to violate CPA security. To succeed, the reduction
must be able to answer honest reencryption queries from uncorrupted keys to
corrupted keys. Though the reduction knows the messages being reencrypted,
it does not know the appropriate reencryption key. However, if it could indis-
tinguishably simulate these reencryptions then it could indeed leverage Ap,a to
violate CPA security.

We emphasize that the goal of Definition 7 is to capture a large swath of
possible schemes while still enabling very simple proofs of simulatability (and
thus of HRA security for existing CPA secure schemes). It is not intended to be
the only avenue for proving HRA security of new or existing constructions. Reen-
cryption simulatability is not necessary for HRA security of proxy reencryption.
In particular, analogous versions of Theorem 5 hold with computational simu-

latability guarantees, but are more complicated [15, Foonote 7 and Appendix
Al

Definition 7 (Reencryption Simulatability). A proxzy reencryption scheme
PRE is reencryption simulatable if there exists a probabilistic, polynomial-time
algorithm ReEncSim such that with high probability over aux, for all m € M:

(ReEncSim(aux), aux) =, (ReEnc(rk,—_»p,cty), aux),

where ~4 denotes statistical indistinguishability, and ct, and aux are sampled
according to

pp Setup(l)‘),

(Pkq, ska) <= KeyGen(pp),

(Pky, sky) < KeyGen(pp),
rka—b < ReKeyGen(sk,, pk,),
ct, + Enc(pk,, m),

aux = (pp, pk,, pky, skp, Ctq, m).

A special case of the above is when ReEncSim(aux) = Enc(pk;, m) simply com-
putes a fresh encryption of the message. That is, if reencrypted ciphertexts are
distributed like fresh ciphertexts, then the scheme is reencryption simulatable.

Theorem 5. Let PRE be an CPA secure, reencryption simulatable, proxy reen-
cryption scheme. Then PRE is HRA secure.

Proof (Outline). The proof proceeds according to the intuition above. From any
probabilistic, polynomial-time algorithm A = A, (the HRA adversary), we

construct an algorithm A" = A, such that Advé); (A) > Advit, (M) — negl(\); by
the CPA security of PRE this advantage is negligible, completing the proof.
Acpa runs Ap,, and simulates the HRA security game (if Ap. does not follow

the specification of the HRA security game, Ac,, simply aborts). To answer

19

oracle calls by Apr, to any oracle other than Ogegnc, Acpa simply passes the calls
and answers unaltered to the corresponding CPA oracles.

To answer oracle calls to Oregnc between two uncorrupted keys or two cor-
rupted keys, Acpa uses the corresponding reencryption key. On the other hand,
for calls to ORegnc from an uncorrupted key to a corrupted key, Acpa simulates
the reencryption using ReEncSim. This is possible because A, knows the un-
derlying m (along with the other information in aux).

Reencryption simulatability implies that the views of Ay, in the real security
game (using the real Ogegnc) and the simulated security game (using ReEncSim)
are statistically close. Acpa wins the CPA security game if and only if Ap; wins
in the simulated HRA game described above.

5.3 Fully Homomorphic Encryption and Proxy Reencryption

There is an intimate connection between FHE and proxy reencryption: a suffi-
ciently powerful somewhat homomorphic encryption scheme implies CPA secure
proxy reencryption, which can be used to “bootstrap” the scheme to achieve
fully homomorphic encryption [19]. For the relevant FHE definitions, see [19,
Section 2].

Let FHE = (Setupgyg, KeyGengye, Encene, Decpne, Evalgne) be an FHE scheme.
Proxy reencryption can be constructed as follows (compare to the Trivial Scheme):

KeyGenpge, Encpre and Decpre are identical to their FHE counterparts.
ReKeyGenpge (ski, pk;) = Encrhe(pk;, ski)|[pk;. The reencryption key rk;; is

an encryption under pk; of sk;, along with the target public key pk;.
ReEncpre(rki—j, ct;): Let ctj; EncFHE(pkj, ct;). Homomorphically compute

the FHE decryption function Decgpe(sk;, ct;) using the corresponding cipher-

texts rk;,; and ct;_,; (under pk;). Namely, ct; = Evalrug(pk;, Decrr, rki—, cti— ;).

The correctness of the FHE implies the correctness of the resulting proxy reen-
cryption:

Decpre(sk;j, ctj) = Decpre(sk;, ctj) = Decpre(sk;, ct;) = Decpre(sk;, ct;).

Furthermore, the proxy reencryption scheme is CPA secure.

To demonstrate that the construction might not be HRA secure, consider
the following fully homomorphic encryption scheme FHE" constructed from any
existing scheme FHE. The only modification made in FHE’ is to Evalpyg::

Evalgye (pkj7 C,cty, Ctg) = EVE)|F|—|E(pkj7 C,cty, CtQ)HCtl.

Note that FHE does not violate FHE compactness if ct; (in the proxy reencryp-
tion construction, rk;_,;) is always of some size bounded by a polynomial in the
security parameter of the FHE scheme; this suffices for our purpose. Instanti-
ating the proxy reencryption construction with FHE' essentially results in the
Concatenation Scheme, which is not HRA secure.

20

Circuit Privacy. An FHE scheme is circuit private if ciphertexts resulting
from FHE evaluations are statistically indistinguishable from fresh ciphertexts
[19]. Namely, if for any circuit C' and any ciphertexts cty,. .. ct:

Encepe(pk, C(cty, . .., cty)) =, Evalpne(pk, C, cty, . .., cty).

In [19], an FHE scheme without circuit privacy is modified to be circuit private
by rerandomizing the ciphertexts resulting from Evalgyg.

While our proxy reencryption construction above is not in general HRA se-
cure, it is easy to see that if the underlying FHE is circuit private, then the
proxy reencryption is reencryption simulatable (Definition 7). By Theorem 5,
the resulting scheme is therefore HRA secure.

5.4 Pairing-Based Proxy Reencryption

Many constructions of proxy reencryption are based on the hardness of Diffie-
Hellman-type problems over certain bilinear groups, including [4, 10, 26, 3, 21].

A prototypical construction is that of [4], which itself is based on the original
scheme of [5]. For every A, let Gy and G5 be groups of prime order ¢ = 6(2%),
and let g be a generator of GG;. Let e be a non-degenerate bilinear map e :
G1 x G1 — Gs (e, for all h € Gy and a,b € Z,, e(h®, h®) = e(h, h)?, and for
all generators g of Gy, e(g,g) # 1). Let Z = e(g, g). The message-space of the
scheme is Gs.

Setup(1*): Output pp = (¢, 9, G1, Ga,).

KeyGen(pp): Sample a < Z, uniformly at random. Output sk = @ and pk = ¢°.

Enc(pk, m): Sample k < Z, uniformly at random. Output ct = (pk®, mZz*) =
(g**, mZ*).

ReKeyGen(sk 4 = a,pkp = ¢): Output rka_,p = g*/.

ReEnc(rka—p,cta): Let cta = (a1, a2). Output

Ctp = (6(041, rkA—>B)7a2> = (e(gak’gb/a)vmzk) = (Zbkvak)'

Dec(sk, ct): Let ct = (a1,a2). If a1 € G2 (i.e., if it is the result of ReEnc),
then output ag/ai/a =mZ%/Z% = m. Otherwise a; € Gy (i.e., it is a fresh
ciphertext); output as/e(ay, g)"/* = mZ*/e(g°*, g)V/* = mZ* /7% = m.

Is this scheme HRA secure? It is tempting to say that the scheme is reen-
cryption simulatable; after all, given a message m it is indeed straightforward
to sample (Z%% mZ*) for random k < Z,. However cty = (¢°*, mZ*) and
ctp = ReEnc(rka_,p,cta) = (Z°%, mZ¥) share the randomness k. Given cty =
(g**, mZ*) and m, it is not clear how to output (¢°*, mZ*).

Rerandomization A minor modification to the scheme above guarantees reen-
cryption simulatability and therefore HRA security. Replace ReEnc above with
ReEnc’:

21

ReEnc’(rka_, B, cta): Compute (2% mZ*) = ReEnc(rk4_.p,ct4). Sample k' <
7 uniformly at random, and output (Z% - e(g® ¢*), mZ¥ - e(g,g")) =
(Zb(chrk')7 mZk?“rk').

The resulting proxy reencryption scheme maintains the CPA security of the orig-
inal, as the only modification is the rerandomization of reencrypted ciphertexts
(which can be done by anyone with knowledge of the public parameters).

Furthermore, the scheme is now reencryption simulatable. To see why, ob-
serve that the resulting reencrypted ciphertexts are uniformly distributed in
{(cty,ctz) € G2 x Gy : ctg/ct}/b = m}, independent of all other keys and cipher-
texts. Such ciphertexts are easily sampled with knowledge of pp, pkz = ¢* and
m as follows.

REE”CSim(PP/ pkp, m): Salmple K « ZLq uni{formly at random, and and output
(e(pkg, g*), m-e(g,g")) = (Z°F ,mZ""").

Thus, by Theorem 5, the modified scheme is HRA secure. Observe that reran-
domization was the key to achieving circuit privacy (and thereby HRA security)
in the FHE-based proxy reencryption construction as well.

The pairing-based schemes of [3] and [21] already incorporate rerandomiza-
tion during reencryption. In the former case, it is used to achieve “key privacy;”
in the latter, to achieve obfuscation of the reencryption functionality. In each,
it is straightforward to show that the schemes are also reencryption simulatable
and therefore HRA secure.

References

1. Ananth, P., Cohen, A., Jain, A.: Cryptography with updates. In: Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques.
pp. 445-472. Springer (2017)

2. Aono, Y., Boyen, X., Wang, L., et al.: Key-private proxy re-encryption under lwe.
In: International Conference on Cryptology in India. pp. 1-18. Springer (2013)

3. Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption. In:
CT-RSA. vol. 5473, pp. 279-294. Springer (2009)

4. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Transactions on
Information and System Security (TISSEC) 9(1), 1-30 (2006)

5. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Advances in CryptologyEUROCRYPT’98, pp. 127-144. Springer
(1998)

6. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption
from decision diffie-hellman. In: Annual International Cryptology Conference. pp.
108-125. Springer (2008)

7. Boneh, D.; Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic prfs
and their applications. In: Advances in Cryptology—CRYPTO 2013, pp. 410-428.
Springer (2013)

8. Borcea, C., Polyakov, Y., Rohloff, K., Ryan, G., et al.: Picador: End-to-end en-
crypted publish—subscribe information distribution with proxy re-encryption. Fu-
ture Generation Computer Systems 71, 177-191 (2017)

22

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe
and security for key dependent messages. In: Annual cryptology conference. pp.
505-524. Springer (2011)

Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proceedings of the 14th ACM conference on Computer and communications secu-
rity. pp. 185-194. ACM (2007)

Chandran, N., Chase, M., Liu, F.H., Nishimaki, R., Xagawa, K.: Re-encryption,
functional re-encryption, and multi-hop re-encryption: A framework for achieving
obfuscation-based security and instantiations from lattices. In: PKC. pp. 95-112.
Springer (2014)

Chow, S.S., Weng, J., Yang, Y., Deng, R.H.: Efficient unidirectional proxy re-
encryption. In: International Conference on Cryptology in Africa. pp. 316-332.
Springer (2010)

Cohen, A.: What about bob? the inadequacy of cpa security for
proxy reencryption. Cryptology ePrint Archive, Report 2017/785 (2017),
https://eprint.iacr.org/2017/785

Derler, D., Krenn, S., Lortinser, T., Ramacher, S., Slamanig, D., Striecks, C.: Revis-
iting proxy re-encryption: Forward secrecy, improved security, and applications. In:
TACR International Workshop on Public Key Cryptography. pp. 219-250. Springer
(2018)

Dttling, N., Nishimaki, R.: Universal proxy re-encryption. Cryptology ePrint
Archive, Report 2018/840 (2018), https://eprint.iacr.org/2018/840

Everspaugh, A., Paterson, K., Ristenpart, T., Scott, S.: Key rotation for authen-
ticated encryption. In: Annual International Cryptology Conference. pp. 98—129.
Springer (2017)

Fan, X., Liu, F.H.: Proxy re-encryption and re-signatures from lattices (2017)
Fuchsbauer, G., Kamath, C., Klein, K., Pietrzak, K.: Adaptively secure
proxy re-encryption. Cryptology ePrint Archive, Report 2018/426 (2018),
https://eprint.iacr.org/2018/426

Gentry, C.: A fully homomorphic encryption scheme. Stanford University (2009)
He, Y.J., Hui, L.C., Yiu, S.M.: Avoid illegal encrypted drm content sharing
with non-transferable re-encryption. In: Communication Technology (ICCT), 2011
IEEE 13th International Conference on. pp. 703-708. IEEE (2011)

Hohenberger, S., Rothblum, G., Shelat, A., Vaikuntanathan, V.: Securely obfus-
cating re-encryption. Theory of Cryptography pp. 233-252 (2007)

Ivan, A.A., Dodis, Y.: Proxy cryptography revisited. In: NDSS (2003)

Jakobsson, M.: On quorum controlled asymmetric proxy re-encryption. In: Inter-
national Workshop on Public Key Cryptography. pp. 112-121. Springer (1999)
Khurana, H., Heo, J., Pant, M.: From proxy encryption primitives to a deploy-
able secure-mailing-list solution. In: International Conference on Information and
Communications Security. pp. 260-281. Springer (2006)

Lee, S., Park, H., Kim, J.: A secure and mutual-profitable drm interoperability
scheme. In: Computers and Communications (ISCC), 2010 IEEE Symposium on.
pp. 75-80. IEEE (2010)

Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: International Workshop on Public Key Cryptography. pp. 360-379.
Springer (2008)

Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-lwe cryptography. In:
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 35-54. Springer (2013)

23

28. Nunez, D., Agudo, I., Lopez, J.: A parametric family of attack models for proxy
re-encryption. In: Computer Security Foundations Symposium (CSF), 2015 IEEE
28th. pp. 290-301. IEEE (2015)

29. Oz, F., Murray, B., Dreyfuss, R.: What About Bob. Touchstone Pictures (1991)

30. Phong, L., Wang, L., Aono, Y., Nguyen, M., Boyen, X.: Proxy re-encryption
schemes with key privacy from lwe. Tech. rep., Cryptology ePrint Archive, Re-
port 2016/327, 2016. http://eprint. iacr. org/2016,/327 (2016)

31. Polyakov, Y., Rohloff, K., Sahu, G., Vaikuntanathan, V.: Fast proxy re-encryption
for publish/subscribe systems. ACM Transactions on Privacy and Security (TOPS)
20(4), 14 (2017)

A The Trivial Scheme

The following description and definition of circular security is adapted with slight
modification from [6].

Let (KeyGen, Enc, Dec) be a public-key encryption scheme with key space K
and message space M such that C M. Let n > 0 be an integer and let C be
the set of functions C = {f : K™ — M} consisting of

— all |M] constant functions f,,,(z) = m for all z € K", and
— all n selector functions f;(x1,...,x,) =x; for 1 <i <mn.

We define circular security using the following game between a challenger
and an adversary A. For an integer n > 0 and a security parameter A, the game
proceeds as follows:

Initialization: The challenger chooses a random bit b « {0,1}. It generates
(pky,sk1), ..., (pk,,sk,) by running KeyGen(1*) n times, and sends (pk, - . . ,
pk,,) to A.

Queries: The adversary repeatedly issues queries where each query is of the
form (i, f) with 1 < i < n and f € C. The challenger responds by setting
y = f(sky,...,sky,) and

Enc(pk;,y) ifb=0
Enc(pk;,01) ifb=1

and sends ct to A.
Finish: Finally, the adversary outputs a bit ¥’ € {0,1}.

We say that A wins the game if b = '. Let win be the event that A wins the
game and define A’s advantage as

Adv

circ,n(

A) = Prfwin].

Definition 8 (n-Circular Security). We say that a public-key encryption
scheme (KeyGen, Enc, Dec) is n-way circular secure if for all probabilistic poly-
nomial time adversaries A, there exists a negligible function negl such that

Advi,. (N < % + negl(\).

circ,n

24

Because existing constructions of circularly secure encryption schemes based
on standard assumptions require a bound on the total number of public keys
n, the corresponding Trivial Scheme will only satisfy a bounded-key variant of
CPA security, defined next.

Definition 9 (Proxy Reencryption: n-CPA Security). For n € N, the n-
CPA security game is identical to the CPA security game in Definition 8 except
for the following underlined modifications. Recall that numKeys is initialized to
0 and is incremented after every key generation call in the security game.

Uncorrupted Key Generation: If numKeys = n, return L. Otherwise, obtain a
new key pair (pk;,sk;) < KeyGen(pp). A is given pk;. The current value of
numKeys is added to Hon and numKeys is incremented.

Corrupted Key Generation: If numKeys = n, return L. Otherwise, obtain a new
key pair (pk;,sk;) < KeyGen(pp). A is given (pk;,sk;). The current value of
numKeys is added to Cor and numKeys is incremented.

The corresponding n-CPA advantage of A is denoted Advga}n (N). A proxy reen-

cryption scheme is n-CPA secure if for all probabilistic polynomial-time adver-
saries A, there exists a negligible function negl such that

1
Adv;‘;a)n()\) <3 + negl(\)

Trivial Scheme Let (KeyGen,., Enceirc, Decgirc) be an n-way circular secure en-
cryption scheme. Let Setup = 1, KeyGen = KeyGeng,.; Enc = Encgjrc;

circ»
ReKeyGen(sk;, pkj) = Encc;rc(pkj,ski)
ReEnc(rk;j,ct;) = ct;||rki—;

| Decirc(Decirc(sk, ct?), ct!) if ct = ct!|ct?
Dec(sk, ct) := {Decci,c(sk,ct) otherwise ’

Theorem 2 states that if (KeyGeng,, Encgirc, Deceirc) is an n-way circular se-
cure encryption scheme, then the corresponding Trivial Scheme PRE is an n-CPA
secure proxy reencryption scheme. In fact, the proof below extends the case when
there are n uncorrupted keys and any number of corrupted keys.

Proof (of Theorem 2). For all n € N and any probabilistic, polynomial-time
algorithm A (the adversary against the trivial scheme), we construct an effi-
cient algorithm Ag such that Advg‘:c“fn = % . Adv;‘:)ayn. By the hypothesis, this
advantage is negligible, completing the proof.

At the beginning of the game, the circular security challenger picks a random
bit b. If b = 0, then the Queries oracle encrypts all messages correctly; if b = 1,
then the Queries oracle encrypts only the message 0. A runs A and simulates
the CPA security game for PRE (if A does not follow the specification of the
game, Ag. simply aborts).

At the start of Phase 1, A calls its Initialization oracle in the circular
security game. In return it receives the public keys (pk{", ..., pk;"). To answer

25

an Uncorrupted Key Generation query, A gives to A the first unused public
key pk{"™ from this list. To answer a Corrupted Key Generation query, Acirc
generates a new key pair (pk,sk) < KeyGen and gives (pk, sk) to the adversary.

A begins Phase 2 by using its Queries oracle to learn the reencryption keys
for all pairs of uncorrupted keys generated. Using its knowledge of the corrupted
secret keys, it also computes reencryption keys for all the pairs of corrupted keys
generated. Oracle calls from A to ORekeyGen are answered with the corresponding
reencryption key (or with L). To answer oracle calls from A to Oregnc, cOmputes
the appropriate response; namely, it concatenates the reencryption key to the
ciphertext (or returns L).

At some point, A queries the Challenge oracle with an honest key index i
and a pair of messages (mg, my). Agrc chooses a random one of the messages m
and queries its own Queries oracle with the pair (¢, m), returning the resulting
ciphertext to A.

Finally, A guesses whether m = mg or m;. If A guesses correctly, Acic
guesses the bit &’ = 0. Otherwise, A, guesses a random b’ < {0, 1}. Conditioned
on b = 0, Agr perfectly simulates the PRE security game, and guesses b’ = 0
with probability AdvZ, . It follows that Advis< = 1. AdvZ,

cpa,n* circ,n cpa,n*

B Comparison to RIND-CPA

The concurrent work of Derler, Krenn, Loriinser, Ramacher, Slamanig, and
Striecks identify the same problem with CPA security as discussed [14]. They
define a new security notion—RIND-CPA security—as an additional property
that proxy reencryptions schemes should guarantee.

The key feature of RIND-CPA security is that the adversary gets access to
an unrestricted ReEnc oracle, but only before seeing the challenge ciphertext.
The definition is similar to IND-CCA ; of [28]. The definition of the RIND-CPA
security experiment is from [14, Experiment 8.

Definition 10 (RIND-CPA Security Experiment).

pp < Setup(1?*), (pk, sk) «— KeyGen(pp),b « {0,1}
(pk™, st) < A(pp, pk)

rk < ReKeyGen(sk, pk™)

(mg, my,st) « A{ReEnc(ro)} (st)

b* < A(st, Enc(pk, mp))

if b="0" return 1, else return 0.

RIND-CPA security requires that for all efficient adversaries, the probability of
outputting 1 in the experiment is % =+ negl(\).

In this section, we compare the approach of [14] with ours. We begin by de-
scribing RIND-CPA security as defined by [14]. Next, we compare RIND-CPA
with HRA security informally, arguing that HRA provides the better generaliza-
tion of Enc-CPA security to the PRE setting. Finally, we show that HRA and
RIND-CPA security are incomparable notions.

26

B.1 Informal comparison

RIND-CPA is less suitable than HRA as a replacement for CPA security of proxy
reencryption. First and most importantly, HRA better captures the intuitive
guarantees of Enc-CPA security for standard encryption. Second, access to an
unrestricted ReEnc oracle makes it a more useful as a testing ground for the
development of new techniques. Finally, two idiosyncrasies of the [14] formulation
of RIND-CPA security present additional issues.

Capturing Enc-CPA security. In Enc-CPA security for standard encryption, the
adversary is able to arbitrarily affect the distribution of plaintext messages. One
way of viewing this aspect of the definition is that Enc-CPA requires security
while being agnostic as to the true distribution over messages (except that it is
efficiently sampleable). Other than choosing the distribution over messages, the
adversary is only allowed to see publicly-available information (i.e. public keys
and parameters) and honestly encrypted ciphertexts. Informally, the Enc-CPA
guarantee is that security should hold under normal operating conditions against
eavesdropping parties without making distributional assumptions on plaintext
messages. However, Enc-CPA makes no guarantees about dishonestly generated
or malformed ciphertexts.

HRA security captures this intuitive guarantee better than RIND-CPA. In
the course of normal operation of a proxy reencryption, an adversarial party
will see reencrypted ciphertexts. These ciphertexts may come at any time—
both before and after other ciphertexts whose contents should remain secret.
While HRA allows reencryption both before and after the challenge, RIND-CPA
restricts the reencryption oracle to the period before the challenge.

HRA makes minimal assumptions about the distribution of plaintext mes-
sages by allowing the adversary to choose messages itself, just as in Enc-CPA.
RIND-CPA goes further by making requirements in the face of malformed or
dishonestly generated ciphertexts.

A testing ground for new techniques. For classical encryption, Enc-CCA security
is strictly stronger than Enc-CPA security. In fact, there are many settings where
Enc-CPA security is demonstrably insufficient. Why then does the cryptography
community continue to study it? There are many answers to this question, but
we mention only two. First, although insufficient for some applications, Enc-CPA
is useful in others. Second, it is useful as an intermediate goal because it seems
to capture a sort of hard core of the general problem of encryption and spurs
the development of new techniques.

HRA security enjoys these same features; RIND-CPA does not. As for useful-
ness for applications, HRA is meaningful in many of the envisioned applications
of proxy reencryption—many more than CPA security. Because RIND-CPA re-
stricts the reencryption oracle to the period before the challenge ciphertext, its
usefulness in applications is less clear.

The challenge of constructing CCA secure proxy reencryption is the same as
the challenge of Enc-CCA secure encryption: namely, dealing with dishonestly

27

generated, possibly malformed ciphertexts. RIND-CPA, by allowing malformed
ciphertexts, presents similar challenges as full CCA security.

As for the usefulness of HRA as an intermediate goal towards CCA secu-
rity, the historical development of proxy reencryption is proof itself. This sounds
paradoxical: how can this be true if the notion has only just been introduced
in this work? Many of cryptographers that were targeting CPA security de-
veloped schemes that achieve HRA security with only minimal modification.
The techniques developed in these constructions were later adapted to achieve
CCA security. This suggests that cryptographers’ intuitions for the hard core of
reencryption were not flawed, only the formalization of these intuitions as CPA
security. HRA security is a better formalization for these intuitions and thus an
appropriate intermediate goal for reencryption research.

Idiosyncrasies of the RIND-CPA definition. We mention two unusual proper-
ties of the [14] definition. Unlike the adversary’s access to a ReEnc oracle, these
properties are not inherent in the RIND-CPA concept. It would be easy to pro-
pose a modified RIND-CPA definition that did not have these properties (e.g.,
IND-CCAy 1 in [28]).

First, the definition only considers the two party setting. Much like the in-
formal description of proxy reencryption in Section 1, there is only a single
uncorrupted key and a single corrupted key. It is easy to show that security in
the two party setting does not imply security in a many party setting.

Second, not only are inputs to ReEnc allowed to be malformed, but the cor-
rupted public key pk* can be malformed as well. The adversary outputs pk™ itself
and it needs not be honestly generated. This makes RIND-CPA security as de-
fined in [14] formally incomparable to all other definitions of proxy reencryption
security we know of, including the IND-CCAg 1 of [28].

These drawbacks of the [14] definition do not affect the proof of Theorem 7,
but neither does the proof depend on them.

B.2 Separating RIND-CPA and HRA security

The following pair of theorems support the conclusion that HRA security and
RIND-CPA security are incomparable.

Theorem 6. If there exists an HRA secure PRE scheme, then there exists a
PRE scheme that is HRA secure but not RIND-CPA secure.

Proof. Suppose PRE is HRA secure, and let T be a special symbol that is not a
valid ciphertext. Define a new scheme PRE’ by modifying reencryption as follows:

ReEnc(rk,ct) ifct#T

/ Pp—
ReEnc'(rk, ct) := {rk Fot— T

PRE’ is still HRA secure: Oregnes is functionally equivalent to Oregnc when re-
stricted to honestly generated ciphertexts..

28

PRE’ is not RIND-CPA secure: a single call to Ogegne (4,7, T) (made before
the challenge) allows the adversary to learn the reencryption key rk;_,; and
thereby decrypt the challenge ciphertext.

Theorem 7. Under the assumptions stated below, there exists a PRE scheme
that is RIND-CPA secure but not HRA secure.

The claim assumes the existence of pair of encryption schemes, PRE and FHE
with the following properties. PRE is a RIND-CPA secure proxy reencryption
scheme with a ciphertext space Cinner- FHE is a circuit private fully homomorphic
encryption scheme with message space Mgne = Cinner- The message spaces and
ciphertext spaces of the two schemes are all disjoint and efficiently decidable.
Finally, the additional proxy reencryption scheme PREgyg corresponding to the
FHE scheme (see Section 5.3) is RIND-CPA secure.!? For simplicity, we also as-
sume perfect correctness of reencryption (for both schemes) and of homomorphic
evaluation.

Below we present a intuition for the proof of Theorem 7. The proof is included
in the full version [13].

Proof Intuition for Theorem 7 Recall that RIND-CPA security allows the
adversary access to an unrestricted ReEnc oracle, but only before the challenge
ciphertext is generated. The main difficulty in separating RIND-CPA and HRA
security is the restriction in the HRA reencryption oracle to honestly generated
ciphertexts.

The first idea in our construction is the observation that separating RIND-
CPA and HRA security would be easy if it were possible to use Enc oracle
to generate a fresh, honest encryption of the challenge plaintext. This fresh
encryption could be reencrypted by the HRA reencryption oracle to a corrupted
key, revealing the challenge plaintext.

The second idea is to have two layers of encryption, where the message space
of the outer layer is equal to the ciphertext space of the inner layer. If the
challenge ciphertext comes from the inner layer, then it can be used as input to
the Enc oracle to generate a new outer ciphertext containing information about
the challenge plaintext—namely, an encryption of the challenge ciphertext. The
outer ciphertext is honestly generated and can be reencrypted to a corrupt party
and decrypted. But it seems we are no better off; decrypting the outer ciphertext
only returns the challenge ciphertext still encrypted under the key of an honest
party.

The third idea is to modify ReEnc—using fully homomorphic encryption—
to reencrypt both the outer ciphertext and the inner challenge ciphertext. In
addition to the usual reencrypted ciphertext, we augment ReEnc to output an

10 The proof requires that an encryption scheme be both fully homomorphic and sup-
port proxy reencryption with RIND-CPA security. For concreteness, we have chosen
to assume that there exists an FHE scheme whose corresponding PRE is RIND-CPA
secure, but a different construction would suffice. We do not further explore the un-
derlying cryptographic assumptions needed to instantiate this encryption scheme.

29

additional, doubly reencrypted ciphertext, where both the outer and inner ci-
phertexts have been reencrypted. If the recipient of the resulting ciphertext is
corrupt, the adversary can decrypt both layers and recover the challenge plain-
text, violating HRA security.

We now describe the intuition for how to perform double reencryption. Sup-
pose the proxy reencryption scheme used for the outer layer of encryption is also
fully homomorphic. Such a scheme can be constructed from any FHE scheme
(see Section 5.3). Given input an outer layer ciphertext ctouter = Enc(ctinner),
ReEnc will homomorphically evaluate Evalge(ReEnc, ctouter). The result is an
(non-reencrypted) outer ciphertext containing a reencrypted inner ciphertext.
Then, ReEnc reencrypts that outer ciphertext. This produces a reencrypted outer
ciphertext containing a reencrypted inner ciphertext.

Violating HRA security is simple: the adversary encrypts the challenge ci-
phertexts, reencrypts it to a corrupted key, then decrypts the doubly-reencrypted
component twice to recover the challenge message.

It remains to prove that the constructed PRE scheme is RIND-CPA secure.
The homomorphic double reencryption functionality can be simulated by a se-
quence of calls to Enc, Dec and Ogegnc, allowing us to analyze the two-layered
scheme without the double-reencryption modification to ReEnc. The RIND-CPA
security of that scheme follows directly from the RIND-CPA security of the PRE
scheme underlying the two layers.

30

