
Upper and Lower Bounds for
Continuous Non-Malleable Codes

Dana Dachman-Soled ? and Mukul Kulkarni

University of Maryland, College Park, USA
danadach@ece.umd.edu, mukul@terpmail.umd.edu

Abstract. Recently, Faust et al. (TCC’14) introduced the notion of
continuous non-malleable codes (CNMC), which provides stronger se-
curity guarantees than standard non-malleable codes, by allowing an
adversary to tamper with the codeword in a continuous way instead
of one-time tampering. They also showed that CNMC with informa-
tion theoretic security cannot be constructed in the 2-split-state tamper-
ing model, and presented a construction in the common reference string
(CRS) model from collision-resistant hash functions and non-interactive
zero-knowledge proofs.
In this work, we ask if it is possible to construct CNMC from weaker as-
sumptions. We answer this question by presenting lower as well as upper
bounds. We show that it is impossible to construct 2-split-state CNMC,
with no CRS, for one-bit messages from any falsifiable assumption, thus
establishing the lower bound. We additionally provide an upper bound
by constructing 2-split-state CNMC for one-bit messages, assuming only
the existence of a family of injective one way functions. We note that in a
recent work, Ostrovsky et al. (CRYPTO’18) considered the construction
of a relaxed notion of 2-split-state CNMC from minimal assumptions.
We also present a construction of 4-split-state CNMC for multi-bit mes-
sages in CRS model from the same assumptions. Additionally, we present
definitions of the following new primitives: 1) One-to-one commitments,
and 2) Continuous Non-Malleable Randomness Encoders, which may be
of independent interest.

Keywords: Continuous non-malleable codes, black-box impossibility,
split-state.

1 Introduction

Non-malleable codes (NMC). Non-malleable codes were introduced by Dziem-
bowski, Pietrzak and Wichs [?] as a relaxation of error-correcting codes, and
are useful in settings where privacy—but not necessarily correctness—is desired.

? This work is supported in part by NSF grants #CNS-1840893, #CNS-1453045 (CA-
REER), by a research partnership award from Cisco and by financial assistance
award 70NANB15H328 from the U.S. Department of Commerce, National Institute
of Standards and Technology.

The main application of non-malleable codes proposed in the literature is for
protecting a secret key stored on a device against tampering attacks, although
non-malleable codes have also found applications in other of areas of cryptogra-
phy [?, ?, ?] and theoretical computer science [?].

Continuous Non-malleable codes (CNMC). Importantly, standard non-malleable
codes achieve security only against one-time tampering. So in applications, the
non-malleable encoding of a secret key must be continually decoded and re-
encoded, incurring overhead in computation and in generation of randomness for
re-encoding. This motivated a stronger notion of non-malleable codes, continuous
non-malleable codes (CNMC), introduced by Faust et al. [?]. This definition
allows many-time tampering–i.e. the adversary can continuously tamper with the
codeword and observe the effects of the tampering. Due to known impossibility
results, there must also be a “self-destruct” mechanism: If, upon decode, the
device detects an error, then a “self-destruct” mechanism, which erases the secret
key, is triggered, rendering the device useless.

The notion of CNMC with respect to a tampering class F is as follows: Given
a coding scheme Π = (E,D), where E is the encoding function and D is the
decoding function, the adversary interacts with an oracle OΠ(C), parameterized
by Π and an encoding of a message m, C ← E(m). We refer to the encoding C
as the “challenge” encoding. In each round, the adversary submits a tampering
function f ∈ F . The oracle evaluates C ′ = f(C). If D(C ′) = ⊥, the oracle
outputs ⊥ and a “self-destruct” occurs, aborting the experiment. If C ′ = C, the
oracle outputs a special message “same.” Otherwise, the oracle outputs C ′. We
emphasize that the entire tampered codeword is returned to the adversary in this
case. A CNMC is secure if for every pair of messages m0,m1, the adversary’s
view in the above game is computationally indistinguishable when the message
is m0 or m1.

Recently, Ostrovsky et al. [?] proposed a relaxed definition of CNMC (suf-
ficient for many applications) along with a construction, in which the oracle
OΠ(C) returns, if valid, the decoding of the tampered codeword D(C ′) (or
“same”) instead of the tampered codeword C ′ as in the standard (original) defi-
nition of [?]. In terms of applications, the difference between the original notion
(which we consider in this paper) and the notion of [?], is that the notion we
consider captures stronger types of side-channel attacks: Our notion provides
security against an adversary who tampers and additionally learns information
about the modified codeword C ′ through other side-channels. As a concrete
example, an interesting research direction is to compose a split-state CNMC
(under the original definition) with a leakage-resilient circuit compiler, such as
the compiler of Ishai, Sahai and Wagner [?], in order to yield a compiler that
simultaneously provides security against tampering with memory and leakage
on computation. For more discussion and comparison of this paper with [?] see
Section 1.2.

Split-state tampering. One of the most well-studied tampering classes for non-
malleable codes is split-state tampering. Here, the codeword is split into sections

2

and the adversarial tampering function may tamper each section independently.
The case of 2-split-state tampering, where the codeword is split into two sections,
is of particular interest. See Section 1.4 for a discussion of prior work on NMC
and CNMC against split-state tampering.

Information-theoretic impossibility. The original CNMC paper of [?] showed
an information-theoretic impossibility result for 2-split-state CNMC. To aid
the subsequent discussion, we present an outline of this result. The impossi-
bility result considers a property of 2-split-state CNMC known as (perfect)
“uniqueness.” Informally, perfect uniqueness means that there do not exist triples
(x, y, z) such that either (1) y 6= z ∧ D(x, y) 6= ⊥ ∧ D(x, z) 6= ⊥ OR (2)
x 6= y ∧ D(x, z) 6= ⊥ ∧ D(y, z) 6= ⊥. First, a perfectly unique CNMC can-
not be information-theoretically secure since, given L, the split-state tampering
function can find the unique R such that D(L,R) 6= ⊥ and then tamper based
on m = D(L,R). On the other hand, if the CNMC is not perfectly unique, then
the following is an efficient attack (with non-uniform advice): Given a tuple
L′1, L

′
2, R

′ such that D(L′1, R
′) 6= ⊥ and D(L′2, R

′) 6= ⊥, the adversary can learn
L bit-by-bit by using the following tampering function in the i-th round: fL does
the following: If the i-th bit of L is equal to 0, replace L with L′1. Otherwise,
replace L′ with L′2. fR always replaces R with R′. Now, in the i-th round, if the
oracle returns (L′1, R

′), then the adversary learns that the i-th bit of L is equal
to 0. If the oracle returns (L′2, R

′), then the adversary learns that the i-th bit of
L is equal to 1. Once L is fully recovered, the adversary can tamper based on
m = D(L,R).

The computational setting. The above shows that the CNMC setting is distin-
guished from other NMC settings, since information-theoretic (unconditional) se-
curity is impossible. Prior work has shown how to construct 2-split-state CNMC
in the CRS model under the assumptions of collision-resistant hash functions and
NIZK. On the other hand, CNMC’s imply commitment schemes, which in turn
imply OWF. It remains to determine where CNMC lies in terms of complexity
assumptions and what are the minimal computational assumptions needed to
achieve CNMC. As mentioned previously, a very recent work of Ostrovsky et
al. [?] addressed minimizing computational assumptions under a relaxed defini-
tion of CNMC. See Section 1.2 for more details.

Black-box reductions. In general, it is not feasible to unconditionally rule out
the construction of a primitive G from a cryptographic assumption H, since
unconditionally ruling it out is as hard as proving P 6= NP . Despite this, we can
still show that the proof techniques we have at hand cannot be used to construct
G from assumption H. In the literature, this is typically done by showing that
there is no black-box reduction from primitive G to assumption H. In this work,
what we mean by a black-box reduction is a reduction that accesses the adversary
in an input/output fashion only. However, we allow non-black-box usage of the
assumption H in both the construction and the proof (see Definition 6 for a

3

formal definition tailored to CNMC). While there are some exceptions [?, ?], the
vast majority of cryptographic reductions are black-box in the adversary.

1.1 Our Results

We present upper and lower bounds for CNMC in the 2-split-state model. First,
we show that with no CRS, single-bit CNMC in the 2-split-state model (with a
black-box security proof) is impossible to construct from any falsifiable assump-
tion.

Theorem 1 (Informal). There is no black-box reduction from a single-bit, 2-
split-state, CNMC scheme Π = (E,D) to any falsifiable assumption.

On the other hand, in the CRS model, we show how to achieve single-bit
CNMC in the 2-split-state model from injective one-way functions.

Theorem 2. Assuming the existence of an injective one-way function family,
there is a construction of a 2-split-state CNMC for encoding single bit, in the
CRS model. Moreover, the corresponding reduction is black-box.

Actually, we show a somewhat more general result: First, we define a (to
the best of our knowledge) new type of commitment scheme called one-to-one
commitment schemes in the CRS model. Informally, these commitment schemes
have the additional property that with all but negligible probability over Σ
produced by CRS generation, for every string com, there is at most a single string
d that will be accepted as a valid decommitment for com (See Definition 9 for a
formal definition). We also define the notion of a 2-split-state CNM Randomness
Encoder, which is the continuous analogue of the non-malleable randomness
encoder recently introduced by [?] (See Definition 5). We then show the following:

Theorem 3. Assuming the existence of one-to-one commitment schemes in the
CRS model, there is a construction of a 2-split-state CNM Randomness Encoder
in the CRS model. Moreover, the corresponding reduction is black-box.

One-to-one commitment schemes in the CRS model can be constructed from
any injective one-way function family. Furthermore, we show (see the full ver-
sion of this paper [?])that 2-split-state CNM Randomness Encoders in the CRS
model imply 2-split-state CNMC for encoding single bit, in the CRS model.
We therefore obtain Theorem 2 as a corollary. Moreover, CNMC with perfect
uniqueness in the CRS model implies one-to-one commitment schemes in the
CRS model in a straightforward way (refer to the full version of this paper [?])

We leave open the question of constructing CNMC in the CRS model from
(non-injective) one-way functions and/or showing a black-box separation be-
tween the two primitives. Finally, we extend the techniques from our single-bit
construction above to achieve the following:

Theorem 4. Assuming the existence of one-to-one commitment schemes in the
CRS model, there is a construction of a multi-bit, 4-split-state CNMC in the
CRS model. Moreover, the corresponding reduction is black-box.

4

Are prior CNMC reductions “black-box”? Prior CNMC reductions often proceed
in a sequence of hybrids, where in the final hybrid, the description of the adver-
sary is incorporated in the definition of a leakage function. It is then shown that
the leakage-resilience properties of an underlying encoding imply that the view of
the adversary is statistically close when the encoded message is set to m0 or m1.
While this may seem like non-black-box usage of the adversary, we note that typ-
ically the leakage-resilience of the underlying encoding is information-theoretic.
When converting a hybrid-style proof to a reduction, the reduction will choose
one of the hybrid steps at random and use the fact that a distinguisher between
some pair of consecutive hybrids implies an adversary breaking an underlying
assumption. Therefore, reductions of the type discussed above are still black-box
in the adversary, pairs of consecutive hybrids whose indistinguishability is im-
plied by a computational assumption yield a reduction in which the adversary
is used in a black-box manner.

1.2 Comparison with Ostrovsky et al. [?]

The CNMC notion considered in this work is the original continuous non-malleable
codes notion, first introduced in [?] and then further studied in several follow-up
works (including [?, ?, ?]). Recently, Ostrovsky et. al. [?] introduced a relaxed
notion of CNMC,1 which is sufficient for many applications. In the work of
Ostrovsky et. al. [?], they refer to the original notion as “continuous super-non-
malleability” (since it is analogous to “super-non-malleability”, a notion that
was introduced in the non-continuous setting [?]). They then presented a con-
struction achieving the relaxed definition (which they simply call “continuous
non-malleability”), against 2-split-state tampering functions, assuming the exis-
tence of injective one-way functions in the plain model (without CRS).

The difference between the two CNMC notions is that in the original CNMC
notion, the tampering oracle returns the entire modified codeword C ′ if C ′ =
f(C) 6= C and D(C) 6= ⊥, whereas the relaxation only requires the oracle to
return D(C ′) but not C ′ itself. The original notion captures stronger types of
tampering attacks; specifically, it provides security against an adversary who
learns arbitrary additional information about the modified codeword C ′ through
other side-channels.

Our result and the result of [?] are complementary and together give a full
picture of the landscape of assumptions required for CNMC. Our work shows
that it is necessary to rely on setup assumptions (CRS) in order to achieve
the original, stronger security definition of CNMC. Moreover, if one is willing
to assume the existence of a CRS, we show that this type of CNMC can be
achieved from nearly minimal computational assumptions. In contrast, if one is
not willing to assume the existence of a CRS, the work of [?] achieves weaker
security guarantees in the plain model (with no setup assumptions) from the

1 A similar relaxed definition was previously given for a variant of CNMC, known
as R- CNMC [?], but in this setting it was shown that it is actually impossible to
achieve the stronger notion.

5

same computational assumptions. We also note that the work of Ostrovsky et.
al. [?] explicitly lists the question we address in this work as an interesting open
problem. They state:

Interesting open questions related to our work are, for instance, whether
continuous non-malleability can be achieved, under minimal assump-
tions, together with additional properties, such as strong non-malleability,
super-non-malleability, augmented non-malleability, and locality . . .

1.3 Technical Overview

Lower bound. Recall that prior work has shown that if a CNMC is not perfectly
unique, then there is an efficient attack (with non-uniform advice). Thus, it
remains to show that there is no black-box reduction from a single-bit, perfectly
unique CNMC scheme to any falsifiable assumption. We use the meta-reduction
approach, which is to prove impossibility by showing that given only black-
box access to the split-state adversary, A = (AL, AR), the reduction cannot
distinguish between the actual adversary and a simulated (efficient) adversary
(which is possibly stateful). Since the view of the reduction is indistinguishable
in the two cases, the reduction must also break the falsifiable assumption when
interacting with the simulated adversary. But this in turn means that there is
an efficient adversary (obtained by composing the reduction and the simulated
adversary), which contradicts the underlying falsifiable assumption. Consider
the following stateless, inefficient, split-state adversary A = (AL, AR), which
leverages the uniqueness property of the CNMC scheme: The real adversary,
given L (resp. R), recovers the corresponding unique valid codeword (L,R) (if
it exists) and decodes to get the bit b. If b = 0, the real adversary encodes
a random bit b′ using internal randomness that is tied to (L,R), and outputs
the left/right side as appropriate. If b = 1 or there is no corresponding valid
codeword, the real adversary outputs the left/right side of a random encoding
of a random bit, b′′ (generated using internal randomness that is tied to L or R
respectively). The simulated adversary is stateful and keeps a table containing
all the L and R values that it has seen. Whenever a L (resp. R) query is made,
the simulated adversary first checks the table to see if a matching query to R
(resp. L) such that D(L,R) 6= ⊥ was previously made. If not, the simulated
adversary chooses a random encoding, (L′, R′), of a random bit b′, stores it in
the table along with the L/R query that was made and returns either L′ or R′ as
appropriate. If yes, the simulated adversary finds the corresponding R (resp. L)
along with the pair (L′, R′) stored in the table. The simulated adversary then
decodes (L,R) to find out b. If b = 0, the simulated adversary returns either L′

or R′ as appropriate. Otherwise, the simulated adversary returns the left/right
side of an encoding of a random bit b′′. The uniqueness property allows us to
prove that the input/output behavior of the real adversary is identical to that
of the simulated adversary. See Section 3 for additional details. For a discussion
on why our impossibility result does not hold for the relaxed CNMC notion
considered by [?], see the full version of this paper [?].

6

Upper bound. For the upper bound, we construct a new object called a continu-
ous non-malleable randomness encoder (see Definition 5), which is the continuous
analogue of the non-malleable randomness encoder recently introduced by [?]. In-
formally, a continuous non-malleable randomness encoder is just a non-malleable
code for randomly chosen messages. It is then straightforward to show that a
continuous non-malleable randomness encoder implies a single-bit continuous
non-malleable code (see the full version of this paper [?] for details).

At a high level, the difficulty in proving continuous non-malleability arises
from the need of the security reduction to simulate the interactive tampering
oracle, without knowing the message underlying the “challenge” encoding. The
approach of prior work such as [?] was to include a NIZK Proof of Knowledge in
each part of the codeword to allow the simulator to extract the second part of the
encoding, given the first. This then allowed the simulator (with some additional
leakage) to respond correctly to a tampering query, while knowing only one of
the two split-states of the original encoding. In our setting, we cannot use NIZK,
since our goal is to reduce the necessary complexity assumptions; therefore, we
need a different extraction technique.2 Our main idea is as follows: To respond to
the i-th tampering query, we run the adversarial tampering function on random
(simulated) codewords (L′, R′) that are consistent with the output seen thus
far (denoted Outi−1A) and keep track of frequent outcomes (occurring with non-

negligible probability) of the tampering function, L̂, R̂. I.e. SL (resp. SR) is

the set of values of L̂ (resp. R̂) such that with non-negligible probability over

choice of L′ (resp. R′), it is the case that L̂ = fL(L′) (resp. R̂ = fR(R′)). We
then show that if the outcome of the tampering function applied to the actual
“challenge” split-state L or R is not equal to one of these frequent outcomes (i.e.
fL(L) /∈ SL or fR(R) /∈ SR), then w.h.p. the decode function D outputs ⊥. This
will allow us to simulate the experiment with only a small amount of leakage
(to determine which of the values in SL/SR should be outputted). Note that,
while the sets SL/SR are small, and so only a few bits are needed to specify the
outcome, conditioned on the outcome being in SL/SR, the CNMC experiment
runs for an unbounded number of times, and so even outputting a small amount
of information in each round can ultimately lead to unbounded leakage. To solve
this problem, we also consider the most frequent outcome in the sets SL/SR.

This is the value of L̂ (resp. R̂) that occurs with the highest probability when

fL(L′) (resp. fR(R′)) is applied to consistent L′ (resp. R′). Note that if a value L̂′

(resp. R̂′) is not the most frequent value, then it occurs with probability at most
1/2. We argue that, for each round i of the CNMC experiment, the probability

that a value L̂′ (resp. R̂′) that is not the most frequent value is outputted by
fL (resp. fR) and self-destruct does not occur is at most 1/2. This allows us
to bound, w.h.p., the number of times in the entire tampering experiment that

2 Note that our extraction technique is inefficient. This is ok, since the goal of the ex-
traction technique is simply to show that the view of the adversary can be simulated
given a small amount of leakage on each of the two split-states. Then, information-
theoretic properties of the encoding are used to show that the view of the adversary
must be independent of the random encoded value.

7

the value outputted by fL (resp. fR) is not the most frequent value. Thus, when
the value outputted by fL (resp. fR) is the most frequent value, the leakage
function outputs nothing, since the most frequent value can be reconstructed
from the given information. In contrast, if the value outputted by fL (resp.
fR) is not the most frequent value, but is in the sets SL/SR, then it has a
small description and, moreover, this event occurs a bounded number of times.
Therefore, we can afford to leak this information up to some upperbounded
number of rounds, while the total amount of leakage remains small relative to
the length of the encoding. Looking ahead, our construction will use a two-source
extractor, whose properties will guarantee that even given the leakage (which
contains all the information needed to simulate the CNMC experiment), the
decoded value remains uniform random.

To show that if the outcome of the tampering function is not in SL or SR,
then decode outputs ⊥ w.h.p., we first use the “uniqueness” property, which says
that for every L̂ = fL(L) (resp. R̂ = fR(R)), there is at most a single “match”, R̂′

(resp. L̂′), such that DΣ(L̂, R̂′) 6= ⊥ (resp. DΣ(L̂′, R̂) 6= ⊥). Given the “unique-
ness” property, it is sufficient to show that for every setting of L,Outi−1A

Pr[fR(R) = R̂′ ∧ R̂′ /∈ SR | L ∧ Outi−1A] ≤ negl(n) (1)

and that for every setting of R ∧ Outi−1A

Pr[fL(L) = L̂′ ∧ L̂′ /∈ SL | R ∧ Outi−1A] ≤ negl(n). (2)

To prove the above, we first argue that for the “challenge” codeword, (L,R),
the split-states L and R are conditionally independent, given Outi−1A (assuming
no ⊥ has been outputted thus far) and an additional simulated part of the code-
word. This means that the set of frequent outcomes SL (resp. SR) conditioned
on Outi−1A is the same as the set of frequent outcomes SL (resp. SR) conditioned

on both Outi−1A and R (resp. L). So for any R̂ /∈ SR,

Pr[fR(R) = R̂ | L ∧ Outi−1A] ≤ negl(n)

and for any L̂ /∈ SL,

Pr[fL(L) = L̂ | R ∧ Outi−1A] ≤ negl(n).

Since R̂′ (resp. L̂′) is simply a particular setting of R̂ /∈ SR (resp. L̂ /∈ SL), we
have that (1) and (2) follow.

For the above analysis, we need the encoding scheme to possess the following
property: The L,R sides of the “challenge” codeword are conditionally indepen-
dent given Outi−1A (and an additional simulated part of the codeword), but any
tampered split-state fL(L) or fR(R) created by the adversary has at most a

single “match,” R̂′ or L̂′.
To explain how we achieve this property, we briefly describe our construction.

Our construction is based on a non-interactive, equivocal commitment scheme
in the CRS model and a two-source (inner product) extractor. Informally, an

8

equivocal commitment scheme is a commitment scheme with the normal binding
and hiding properties, but for which there exists a simulator that can output
simulated commitments which can be opened to both 0 and 1. In the CRS
model, the simulator also gets to sample a simulated CRS. Moreover, the CRS
and commitments produced by the simulator are indistinguishable from real
ones.

To encode a random value m, random vectors cL, cR such that 〈cL, cR〉 = m
are chosen. We generate a commitment com to cL||cR. The commitment scheme
has the additional property that adversarially produced commitments are sta-
tistically binding (even if an equivocal commitment has been released) and have
at most a single valid decommitment string. The left (resp. right) split-state
L (resp. R) consists of com and an opening of com to the bits of cL (resp.
cR). The special properties of the commitment scheme guarantee the “perfect
uniqueness” property of the code. In the security proof, we replace the statisti-
cally binding commitment com in the “challenge” codeword with an equivocal
commitment. Thus, each split-state of the challenge encoding, L (resp. R), con-
tains no information about cR (resp. cL). Moreover, assuming “⊥” is not yet
outputted, the output received by the adversary in the experiment at the point
that the i-th tampering function is submitted, denoted Outi−1A is of the form
(f1L(L) = v1, f

1
R(R) = w1), . . . , (f i−1L (L)) = vi−1, f

i−1
R (R) = wi−1), where for

j ∈ [i− 1], vj is equal to the left value outputted in response to the j-th query
and wj is equal to the right value outputted in response to the j-th query.
(note that vj/wj can be set to “same” if the tampering function leaves L/R
unchanged). This allows us to argue that the distribution of L | Outi−1A , R (resp.
R | Outi−1A , L) is identical to the distribution of L | Outi−1A (resp. R | Outi−1A)
which implies that the left and right hand sides are conditionally independent
given Outi−1A and the equivocal commitment, as desired. See Section 4 for addi-
tional details.

Extension to 4-state CNMC in CRS model from OWF. To encode a message
m we now generate random (cL,1, cR,1, cL,2, cR,2) conditioned on 〈cL,1, cR,1〉 +
〈cL,2, cR,2〉 = m (where addition is over a finite field). Now, we generate a com-
mitment com to cL,1||cR,1||cL,2||cR,2. Each of the four split states now consists
of com and an opening of com to the bits of cL,b (resp. cR,b). The analysis is
similar to the previous case and requires the property that at each point in the
experiment the distribution of 〈cL,1, cR,1〉 (resp. 〈cL,2, cR,2〉) is uniform random,
conditioned on the output thus far. Our techniques are somewhat similar to those
used in [?] in their construction of 2t-split-state continuously non-malleable codes
from t-split-state one-way continuously non-malleable codes. See the full version
of this paper [?] for additional details.

1.4 Additional Related Work

Non-Malleable Codes. The notion of non-malleable codes (NMC) was formalized
in the seminal work of Dziembowski, Pietrzak and Wichs [?]. Split-state classes
of tampering functions subsequently received a lot of attention with a long line

9

of works, including [?, ?, ?, ?, ?, ?, ?, ?, ?]. Other works focused on various other
classes of tampering functions, including [?, ?, ?, ?, ?, ?]. NMC have also been
considered in several other models for various applications such as in [?, ?, ?].
Other works on non-malleable codes include [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?].

Continuous Non-Malleable Codes Continuous Non-Malleable codes (CNMC) were
introduced by Faust etal. [?]. They gave a construction based on collision resis-
tant hash functions and non-interactive zero knowledge proof systems in the CRS
model. They also showed the impossibility of constructing 2-split state CNMC
information theoretically. Subsequently, Jafargholi and Wichs [?] presented a
general study of CNMCs and its variants with some existential results. Aggar-
wal et al. [?] gave the first information theoretic construction in the 8-split-state
model. Recently, Damg̊ard et al. [?] gave the first construction of information
theoretic CNMC against permutations. Faonio et al. [?] considered a variant of
CNMC against split-state tampering where the codeword is refreshed (to avoid
self-destruct) in the CRS model. For a discussion related to the recent work of
Ostrovsky et al. [?], see Section 1.2 and refer to the full version of this paper [?]
for further details.

Non-Malleable Randomness Encoders (NMRE) NMRE were introduced recently
by Kanukurthi et al. [?] as a building block for constructing efficient (constant-
rate) split-state NMC. In this work, we present the stronger variant Continuous
NMRE which allows continual tampering in split-state model.

Bounds on Non-Malleable Codes. Cheragachi and Guruswami [?] studied the
“capacity” of non-malleable codes and their work has been instrumental in as-
serting the claims of efficient constructions for non-malleable codes since then
(cf. [?, ?, ?]). A similar study was presented in [?] for locally decodable and
updatable NMC. This work studies bounds for continuous non-malleable codes
in terms of complexity assumptions.

Black-Box Separations. Impagliazzo and Rudich ruled out black-box reductions
from key agreement to one-way function in their seminal work [?]. Their oracle
separation technique was subsequently used to rule out black-box reductions be-
tween various other primitives (cf. [?, ?] and many more). The meta-reduction
technique (cf. [?, ?, ?, ?, ?, ?, ?, ?, ?, ?]) has been useful for ruling out larger
classes of reductions—where the construction is arbitrary (non-black-box), but
the reduction uses the adversary in a black-box manner. The meta-reduction
technique is often used to provide evidence that construction of some crypto-
graphic primitive is impossible under “standard assumptions” (e.g. falsifiable
assumptions or non-interactive assumptions).

2 Definitions and Preliminaries

We present some standard notations and definitions, along with important lem-
mas related to randomness extractors, and the definition of strong one-time
signature schemes in the full version of this paper [?] due to lack of space.

We present some more definitions in the following secrions.

10

2.1 CNMC

Definition 1 (Coding Scheme [?]). A coding scheme, Code = (E,D), consists
of two functions: a randomized encoding function E : {0, 1}λ → {0, 1}n, and a
deterministic decoding function D : {0, 1}n → {0, 1}λ ∪ {⊥} such that, for each
m ∈ {0, 1}λ, Pr [D(E(m)) = m] = 1 (over the randomness of encoding function).

Definition 2 (Split-State Encoding Scheme in the CRS model [?]). A
split-state encoding scheme in common reference string (CRS) model is a tuple
of algorithms, Code = (CRSGen,E,D) specified as follows:

– CRSGen takes the security parameter as input and outputs the CRS, Σ ←
CRSGen(1λ).

– E takes a message x ∈ {0, 1}λ as input along with the CRS Σ, and outputs
a codeword consisting of two parts (X0, X1) such that X0, X1 ∈ {0, 1}n.

– D takes a codeword (X0, X1) ∈ {0, 1}2n as input along with the CRS Σ and
outputs either a message x′ ∈ {0, 1}λ or a special symbol ⊥.

Consider the following oracle,OCNM((X0, X1), (T0,T1)) which is parametrized
by the CRS Σ and “challenge” codeword (X0, X1) and takes functions T0,T1 :
{0, 1}n → {0, 1}n as inputs.
OCNM(Σ, (X0, X1), (T0,T1)):

(X ′0, X
′
1) = (T0(X0),T1(X1))

If (X ′0, X
′
1) = (X0, X1) return same∗

If DΣ(X ′0, X
′
1) = ⊥, return ⊥ and “self destruct”

Else return (X ′0, X
′
1).

“Self destruct” here means that once DΣ(X ′0, X
′
1) outputs ⊥, the oracle answers

all the future queries with ⊥.

Definition 3 (Continuous Non Malleability [?]). Let Code = (CRSGen,E,D)
be a split-state encoding scheme in the CRS model. We say that Code is q-
continuously non-malleable code, if for all messages x, y ∈ {0, 1}λ and all PPT
adversary A it holds that{

CTamperA,x(λ)
}
λ∈N ≈c

{
CTamperA,y(λ)

}
λ∈N where,

CTamperA,x(λ)
def
=

{
Σ ← CRSGen(1λ); (X0, X1)← EΣ(x);

outA ← AOCNM(Σ,(X0,X1),(·,·)); output : outA

}
and A asks total of q queries to OCNM.

The following is an equivalent formulation

Definition 4 (Continuous Non Malleability [?], equivalent formulation).

11

Let Code = (CRSGen,E,D) be a split-state encoding scheme in the CRS
model. We say that Code is q-continuously non-malleable code, if for all mes-
sages m0, m1 ∈ {0, 1}λ, all PPT adversary A and all PPT distinguishers D it
holds that

Pr[D(outbA) = b] ≤ 1/2 + negl(λ)

where b← {0, 1} and

outbA ← AOCNM(Σ,(Xb0 ,X
b
1),(·,·)) : Σ ← CRSGen(1λ); (Xb

0, X
b
1)← EΣ(mb)

and A asks total of q queries to OCNM.

2.2 Continuous Non-Malleable Randomness Encoder

The following definition is an adaptation of the notion of Non-Malleable Ran-
domness Encoders [?] to the continuous setting.

Definition 5. Let Code = (CRSGen,CNMREnc,CNMRDec) be such that CRSGen
takes security parameter λ as input and outputs a string of length Σ1 = poly(λ)
as CRS. CNMREnc : {0, 1}Σ1 × {0, 1}r → {0, 1}λ × ({0, 1}n1 , {0, 1}n2) is de-
fined as CNMREnc(r) = (CNMREnc1,Σ(r),CNMREnc2,Σ(r)) = (m, (x0, x1)) and
CNMRDec : {0, 1}Σ1 × {0, 1}n1 × {0, 1}n2 → {0, 1}λ.

We say that (CRSGen,CNMREnc,CNMRDec) is a continuous non-malleable
randomness encoder with message space {0, 1}λ and codeword space {0, 1}n1 ×
{0, 1}n2 , for the distribution R on {0, 1}r with respect to the 2-split-state family
F if the following holds true:

– Correctness:

Pr
r←R

[CNMRDecΣ(CNMREnc2,Σ(r)) = CNMREnc1,Σ(r)] = 1

– Continuous Non-Malleability:

(Σ,CNMREnc1,Σ(R), outΣ,A(R)) ≈c (Σ,Uλ, outΣ,A(R))

where Σ ← CRSGen(1λ), R is a uniform random variable over {0, 1}r, Uλ is
a uniform random variable over {0, 1}λ and outΣ,A(R) is defined as follows:

outΣ,A(R)← AOCNM(Σ,(X0,X1),(·,·)) : (X0, X1)← CNMREnc2,Σ(R)

where OCNM runs with CNMRDec as decoding algorithm.

2.3 Falsifiable Assumptions and Black-Box Reductions

Definition 6. A falsifiable assumption consists of ppt interactive challenger
C(1λ) that runs in time poly(λ) and a constant 0 ≤ δ < 1. The challenger C

12

interacts with a machine A and may output special symbol win. If this occurs, A
is said to win C. For any adversary A, the advantage of A over C is defined as:

Adv
(C,δ)
A = |Pr

[
A(1λ) wins C(1λ)

]
− δ|,

where the probability is taken over the random coins of A and C. The assump-
tion associated with the tuple (C, δ) states that for every (non-uniform) adversary
A(1λ) running in time poly(λ),

Adv
(C,δ)
A = negl(λ).

If the advantage of A is non-negligible in λ then A is said to break the
assumption.

Definition 7. Let Π = (E,D) be a split-state CNMC. We say that the non-
malleability of Π can be proven via a black-box reduction to a falsifiable as-
sumption, if there is an oracle access machine M(·) such that for every (possibly
inefficient) Π-adversary P∗, the machine MP∗ runs in time poly(λ) and breaks
the assumption.

2.4 Equivocal Commitment Scheme

Definition 8 (Commitment Scheme). A (non-interactive) commitment scheme
in the CRS model for the message space M, is a triple (CRSGen,Commit,Open)
such that:

– Σ ← CRSGen(1k) generates the CRS.
– For all m ∈ M, (c, d)← CommitΣ(m) is the commitment/opening pair for

the message m. Specifically; c is the commitment value for m, and d is the
opening.

– OpenΣ(c, d) → m̃ ∈ M ∪ {⊥}, where ⊥ is returned when c is not a valid
commitment to any message.

The commitment scheme must satisfy the standard correctness requirement,

∀k ∈ N,∀m ∈M and Σ ∈ CRS, Pr [OpenΣ(CommitΣ(m)) = m] = 1

where, CRS is the set of all possible valid CRS’s generated by CRSGen(1k)
and where the probability is taken over the randomness of Commit.

The commitment scheme provides the following 2 security properties:

Hiding: It is computationally hard for any adversary A to generate two mes-
sages m0,m1 ∈M such that A can distinguish between their corresponding
commitments. Formally, for any PPT adversary A = (A1,A2) it should hold
that:

Pr

[
b = b′

∣∣∣∣∣ Σ ← CRSGen(1k), (m0,m1, α)← A1(Σ),

b←r {0, 1}, (c, d)← CommitΣ(mb), b
′ ← A2(c, α)

]
≤ 1

2
+negl(k)

13

Binding: It is computationally hard for any adversary A to find a triple (c, d, d′)
such that both (c, d) and (c, d′) are valid commitment/opening pairs for some
m,m′ ∈ M respectively, and m 6= m′. Formally, for any PPT adversary A
it should hold that:

Pr

[
m 6= m′∧
m,m′ 6= ⊥

∣∣∣∣∣ Σ ← CRSGen(1k), (c, d, d′)← A(Σ),

m← OpenΣ(c, d),m′ ← OpenΣ(c, d′)

]
≤ negl(k)

Definition 9 (One-to-One Commitment Scheme in the CRS Model).
Let (CRSGen,Commit,Open) be a bit-commitment scheme in CRS model. We
say that (CRSGen,Commit,Open) is a one-to-one commitment scheme if with
all but negligible probability over b ← {0, 1}, Σ ← CRSGen(1λ), (com, d) ←
CommitΣ(b), d′ = d is the unique string such that Open(com, d′) 6= ⊥.

Definition 10. Let (CRSGen,Commit,Open) be a bit-commitment scheme in
CRS model. We say that (CRSGen,Commit,Open) is a non-interactive equiv-
ocable bit-commitment scheme in the CRS model if there exists an efficient
probabilistic algorithm SEq which on input 1λ outputs a 4-tuple (Σ′, c′, d′0, d

′
1)

satisfying the following:

– Pr[OpenΣ′(c
′, d′b) = b] = 1 for b ∈ {0, 1}.

– For b ∈ {0, 1}, it holds that outCommit(b) ≈ε outSEq (b) where the random
variables outCommit(b) and outSEq (b) are defined as follows:{
Σ ← CRSGen(1λ); (c, d)← CommitΣ(b);

outCommit(b) : (Σ, c, d)

}
≈

{
(Σ′, c′, d′0, d

′
1)← SEq(1

λ);

outSEq (b) : (Σ′, c′, d′b)

}

We now present variant of the commitment scheme presented by Naor in [?],
specifically we present the same construction in CRS model. This is also pre-
sented in [?].

Let n > 0 be an integer, let G : {0, 1}n → {0, 1}3n be a PRG.

– CRSGen(1n): Output a uniform random string Σ of length 3n.
– CommitΣ(b): Choose uniform random seed s ∈ {0, 1}n and compute t =
G(s). If b = 0, set c := t. If b = 1, set c := t ⊕ Σ. Output c. Output
decommitment d = s.

– OpenΣ(c, d): If c = G(d), then output 0. Else if, c = G(d)⊕Σ, then output
1. Output ⊥ otherwise.

Claim 2.1. The scheme presented above is an equivocal commitment scheme.
The proof of claim 2.1 can be found in the full version of this paper [?].

2.5 One-to-one Equivocal Commitment

The scheme presented in Section 2.4 is not necessarily a one-to-one commitment
scheme, since for PRG G, there may exist two different seeds s and s′ such that
G(s) = G(s′). In this case both s, s′ are valid decommitments of the same bit.

14

We therefore, present a modification of the above scheme that allows us to
achieve an equivocal commitment scheme with the one-to-one property: for every
statistically binding commitment, there is at most a single opening string that
will be accepted by the receiver during the decommitment phase. As an under-
lying ingredient, we use any commitment scheme Π = (CRSGenΠ ,CommitΠ ,
OpenΠ) (not necessarily equivocal) with the above property. Such a commit-
ment scheme can be constructed straightforwardly e.g. from injective one-way
functions. Let n > 0 be an integer, let G : {0, 1}n → {0, 1}3n be PRG.

– CRSGen(1n): Run CRSGenΠ(1n) to generate ΣΠ . Output Σ = ΣΠ , Σ1, Σ2

where Σ1, Σ2 are uniform random strings of length 3n.
– Commit(Σ, b): Choose uniform random seeds s1, s2 ∈ {0, 1}n and compute
t1 = G(s1), t2 = G(s2). Choose β ∈ {0, 1}. Set c1 = t1 ⊕ (b · Σ1). Set c2 =
t2⊕ (β ·Σ2). Generate (comβ , sΠ)← Commit(ΣΠ , s1||s2) and (com1−β , ·)←
Commit(ΣΠ , 0

2n). Output commitment (c1, c2, com0, com1) along with de-
commitment information (β||s1||s2||sΠ). In the following, we sometimes write
Commit(Σ, b;β), explicitly including the randomness β in the input.

– Open(Σ, c, s): Parse c = (c1, c2, com0, com1) and s = β||s1||s2||sΠ . If c2 =
G(s2), check that β = 0. If c2 = G(s2) ⊕ Σ2, check that β = 1. Run
Open(ΣΠ , comβ , sΠ) and check that it outputs s1||s2. Otherwise, output ⊥.
If c1 = G(s1), output 0. If c1 = G(s1)⊕Σ1, output 1. Output ⊥ otherwise.

Clearly, by the binding of the original commitment scheme and the one-to-one
property of Π, the modified scheme has the one-to-one property.

To create equivocal commitments/openings one can do the following: Run
CRSGenΠ(1n) to generate ΣΠ . Choose uniform random seeds s01, s

1
1, s

0
2, s

1
2 ∈

{0, 1}n and compute t01 = G(s01), t02 = G(s02), t11 = G(s11), t12 = G(s12). Choose

β ← {0, 1} Generate comβ = Commit(ΣΠ , s
0
1||s

β
2) and com1−β = Commit(ΣΠ ,

s11||s
1−β
2). Set c1 = t01. Set c2 = t02. Set Σ1 = c1 ⊕ t11. Set Σ2 = c2 ⊕ t12. Output

(c1, c2, com0, com1).

To open the commitment to a 0, output (β||s01||s
β
2 ||openβ), where openβ is

the decommitment information for comβ .

To open the commitment to a 1, output (1 − β||s11||s
1−β
2 ||open1−β), where

open1−β is the decommitment information for com1−β .
We note the following important property: For any commitment string c, and

any CRS Σ, any two valid openings for c s = β||s1||s2||sΠ , s′ = β′||s′1||s′2||s′Π ,
it must be the case that β 6= β′.

2.6 Equivocal Commitment (with extra properties) in the CRS
model

Let Π ′ = (Gen′Com,Com
′,Open′,S′Eq), be an equivocal, one-to-one bit commit-

ment scheme in the CRS model (given in Section 2.5). Let (GenSign,Sign,Verify)
be a strong, one-time signature scheme (for definition, see the full version [?]).
We construct Π = (GenCom,Com,Open,SEq), which is an equivocal commit-
ment scheme, with several additional properties that we describe at the end of
the section and which will be useful for our constructions in Section 4.

15

Key generation GenCom is as follows: On input security parameter 1λ, run
Gen′Com 2t·` times to generate t pairs of vectors of CRS’s [(Σ0,i,j

Eq , Σ1,i,j
Eq)]i∈[`],j∈[t],

where t is the length of the verification key vk output by GenSign.
Commitment Com is as follows: To commit to a message m := m1, . . . ,m` of
length `, generate a key pair (vk, sk)← GenSign. For i ∈ [`], choose βi ← {0, 1} at
random. For i ∈ [`], j ∈ [t], generate (comi,j , di,j)← Com′(Σvkj ,i,j ,mi;βi), where
for each i ∈ [`], [comi,j]j∈[t] is the (bit-by-bit) commitment and [di,j]j∈[t] is the
(bit-by-bit) decommitment information. Generate σ ← Signsk([comi,j]i∈[`],j∈[t]).
Output commitment com = (vk, [comi,j]i∈[`],j∈[t], σ). A sender can decommit
separately to any set of bits of the message m. Decommitment information for
a set S of message bits consists of d[S] = [di,j]i∈S,j∈[t], where di,j is the decom-
mitment information corresponding to the j-th bit of the i-th instance. We also
denote the decommitment for the mi as di := di,1, di,2, . . . di,t.
Decommitment Open w.r.t. a set S: Given a set S, a commitment com,
and an opening [di,j]i∈S,j∈[t], Open does the following: Parse commitment as
(vk, [comi,j]i∈[`],j∈[t], σ). (1) Check that Verifyvk([comi,j]i∈[`],j∈[t], σ) = 1 (2) For
i ∈ S, j ∈ [t], check that di,j is a valid decommitment for comi,j w.r.t. CRS
Σvkj ,i,j .
Equivocal CRS generation and commitment SEq is as follows: On in-
put security parameter 1λ, generate a key pair (vk, sk) ← GenSign. Run S′Eq
t · ` times to generate [Σvkj ,i,j]i∈[`],j∈[t], equivocal commitments [comi,j]i∈[`],j∈[t]
and decommitments [(d0i,j , d

1
i,j)]i∈[`],j∈[t]. Note that for each i ∈ [`], all equivocal

commitments use the same value of β := βi. Run Gen′Com t · ` times to gen-
erate [Σ1−vkj ,i,j]i∈[`],j∈[t]. Set ΣEq := [(Σ0,i,j

Eq , Σ1,i,j
Eq)]i∈[`],j∈[t]. Compute σ ←

Signsk([comi,j]i∈[`],j∈[t]). Output (Σ = ΣEq, com = (vk, [comi,j]i∈[`],j∈[t], σ),
d0 = [d0i,j]i∈[`],j∈[t], d

1 = [d1i,j]i∈[`],j∈[t]).
Additional Check functionality: Given a Σ and commitments com =
(vk, [comi,j]i∈[`],j∈[t], σ), com′ = (vk′, [com′i,j]i∈[`],j∈[t], σ

′), CheckΣ(com, com′)

outputs 1 if (1) vk = vk′; (2) Verifyvk([com
′
i,j]i∈[`],j∈[t], σ

′) = 1.

Additional properties:

1. With overwhelming probability over generation of Σ, for every set S ⊆
[`] and every string com, there is at most a single string d[S] such that
OpenΣ(S, com, d[S]) = 1. This property is achieved by using the equivo-
cal, one-to-one, commitment scheme given in Section 2.5 as the underlying
commitment scheme.

2. Given a pair (Σ, com), a PPT adversary outputs com′ such that com 6= com′

but CheckΣ(com, com′) = 1 with negligible probability. This property follows
from the security of the one-time signature scheme.

3. Given equivocal commitment (ΣEq, com), for every string com′, if CheckΣEq (
com, com′) = 0 then (with overwhelming probability over generation of ΣEq)
com′ has at most one valid opening. Specifically, for every set S ⊆ [`], there
is at most a single string d[S] such that OpenΣEq (S, com

′, d[S]) = 1. Again,
this property is achieved by using the equivocal, one-to-one, commitment
scheme given in Section 2.5 as the underlying commitment scheme.

16

We elaborate on the third property, since it is less straightforward than the
first two. First, note that the third property is a type of “simulation soundness”
property, which essentially says that given an equivocal commitment, the only
way to construct a different commitment with more than one valid opening is
by forging a signature. This type of construction, where the CRS is indexed
by bits of a signature verification key, has been used in various settings in the
literature, such as in the construction of one-time simulation-sound NIZK, as
well as CCA-secure encryption and non-malleable encryption [?, ?, ?, ?, ?]. In
more detail, assume the adversary is given an equivocal commitment (ΣEq, com),

where ΣEq = [(Σ0,i,j
Eq , Σ1,i,j

Eq)]i∈[`],j∈[t], and com = (vk, [comi,j]i∈[`],j∈[t], σ). It
is sufficient to show that any commitment output by the adversary com′ =
(vk′, [com′i,j]i∈[`],j∈[t], σ

′), where vk′ 6= vk can have at most a single valid opening

relative to any set S ⊆ [`]. Assume vk′ 6= vk and that com′ has two valid open-
ings relative to a set S. These openings must be of the form [si,j,0]i∈S,j∈[t] =

[βi||si,j,01 ||si,j,02 ||si,j,0Π]i∈S,j∈[t] [si,j,0]i∈S,j∈[t] = [1 − βi||si,j,11 ||si,j,12 ||si,j,1Π]i∈S,j∈[t].
Since vk′ 6= vk there must be at least one j ∈ [t] such that vk′j = 1 − vkj . But

[Σ1−vkj ,i,j]i∈[`],j∈[t] were generated via Gen′Com, so it is guaranteed with over-

whelming probability that any string com′i,j relative to Σ1−vkj ,i,j has at most a

single valid decommitment. Therefore βi||si,j,01 ||si,j,02 ||si,j,0Π and 1−βi||si,j,11 ||si,j,12 ||si,j,1Π

cannot both be valid decommitments, leading to contradiction.

3 Impossibility of CNMC with no CRS

In this section we present Theorem 5, stating the impossibility of constructing
CNMC without CRS.

Theorem 5. There is no black-box reduction from a single-bit CNMC scheme
Π = (E,D) to any falsifiable assumption, unless the assumption is false.

We know from prior work that continuous NMC are impossible in the info-
theoretic setting. Assume we have a construction of single-bit, continuous NMC
from some falsifiable assumption with no CRS. We only allow black-box usage
of the adversary in the reduction. However, the underlying assumption can be
used in a non-black-box way in the construction/proof.

Preliminaries. Given adversary A = (AL, AR), we say that A has advantage α
in the simplified no-Σ CNMC game against construction Π = (E,D) if:∣∣∣Pr[D(AL(L), AR(R)) 6= ⊥ | (L,R)← E(1n, 0)]

−Pr[D(AL(L), AR(R)) 6= ⊥ | (L,R)← E(1n, 1)]
∣∣∣ = α,

Clearly, if A = (AL, AR) has non-negligible advantage in the simplified no-Σ
CNMC game, it can be used to break the CNMC security of Π = (E,D).

17

Definition 11. A tuple (x, y, z) is bad relative to CNMC scheme Π = (E,D) if
either:

– y 6= z ∧ D(x, y) 6= ⊥ ∧ D(x, z) 6= ⊥ OR
– x 6= y ∧ D(x, z) 6= ⊥ ∧ D(y, z) 6= ⊥.

Definition 12. A single-bit CNMC Π = (E,D) in the standard (no CRS model)
is perfectly unique if there exist no bad tuples relative to Π = (E,D).

We next present the following two lemmas, which, taken together, imply Theo-
rem 5.

Lemma 1. If a single-bit CNMC scheme Π = (E,D) is not perfectly unique
then it is insecure.

This is immediate, since if a bad tuple exists, it can be given to the adversary
as non-uniform advice. Then the same attack from the literature (reviewed in
the introduction) can be run.

Lemma 2. There is no BB reduction from a single-bit CNMC scheme Π =
(E,D) which is perfectly unique to any falsifiable assumption.

The basic idea is that, given only black-box access to the split-state adver-
sary, A = (AL, AR), the reduction cannot tell the difference between the actual
adversary and a simulated adversary. The simulated adversary simply waits to
get matching L and R queries from the reduction, decodes, and re-encodes a
fresh value that is related to the decoded value. The challenges are that the
L and R queries are not received simultaneously. In fact, there could be many
queries interleaved between a L and R match. So the simulated adversary must
return a value upon seeing the L or R half before seeing the other half and be-
fore knowing whether the encoded value is a 0 or a 1. Therefore, the simulated
adversary does the following: It keeps a table containing all the L and R values
that it has seen. Whenever a L or R query is made, the simulated adversary
first checks the table to see if a matching query was previously made. If not,
the simulated adversary chooses a random encoding, (L′, R′), of a random bit
b′, stores it in the table along with the L/R query that was made and returns
either L′ or R′ as appropriate. If yes, the simulated adversary finds the corre-
sponding L/R along with the pair (L′, R′) stored in the table. The simulated
adversary then decodes (L,R) to find out b. If b = 0, the simulated adversary
returns either L′ or R′ as appropriate. Otherwise, the simulated adversary re-
turns the left/right side of an encoding of a random bit b′′. We prove that the
view generated by the reduction interacting with this adversary is identical to
the view of the reduction interacting with the following real adversary: The
real adversary, given L or R, recovers the corresponding unique valid codeword
(L,R) (if it exists) and decodes to get the bit b. If b = 0, the real adversary
encodes a random bit b′ = RO1(L||R) using randomness r = RO2(L||R) (where
RO1,RO2 are random oracles internal to the real adversary that are used to
generate consistent randomness across invocations) and outputs the left/right

18

side as appropriate. Otherwise (i.e. if the corresponding unique codeword does
not exist or if D(L,R) = 1), the real adversary outputs the left/right side of
encoding of a random bit, b′′ = RO3(L) (or b′′ = RO3(R)) using randomness
r′′ = RO4(L) (or r′′ = RO4(R)) (where RO3,RO4 are random oracles internal
to the real adversary that are used to generate consistent randomness across
invocations). Note that since the CNMC is perfectly unique, the real adversary
obtains non-negligible advantage of 1 − negl(n) in the simplified no-Σ CNMC
game.

Proof. We will construct a meta-reduction as follows:
Consider the following inefficient, split state adversary A = (AL, AR) with

internal random oracles RO1,RO2, RO3, and RO4:

AL: On input L, find the unique R such that D(L,R) 6= ⊥ (if it exists). Let b :=
D(L,R). If b = 0, encode b′ = RO1(L||R) using randomness r = RO2(L||R)
to obtain (L′, R′) := E(b′; r) and output L′. If such R does not exist or if
b = 1, compute a random encoding of a random bit b′′ = RO3(L) using
randomness r′′ = RO4(L) to obtain (L′′, R′′) := E(b′′, r′′) and output L′′.

AR: On input R, find the unique L such that D(L,R) 6= ⊥ (if it exists). Let b :=
D(L,R). If b = 0, encode b′ = RO1(L||R) using randomness r = RO2(L||R)
to obtain (L′, R′) := E(b′; r) and output R′. If such L does not exist or if
b = 1, compute a random encoding of a random bit b′′ = RO3(R) using
randomness r′′ = RO4(R) to obtain (L′′, R′′) := E(b′′, r′′) and output R′′.

Clearly, A succeeds with advantage 1−negl(n) in the simplified no-Σ CNMC
game.

The following adversary A′ simulates the above efficiently: Let T be a ta-
ble that records internal randomness. T is initialized to empty. A′ is a stateful
adversary that proceeds as follows:

1. On input L, check if the corresponding R such that D(L,R) 6= ⊥ has been
queried. If yes, decode to get bit b := D(L,R). If b = 0, check the table
T to recover (R,L′, R′). Output L′. Otherwise, if L ∈ T then output L′′

corresponding to entry (L,L′′, R′′). If L /∈ T , choose a random encoding of
a random bit b′′: (L′′, R′′)← E(b′′). Store (L,L′′, R′′) in T . and output L′′.

2. On input R, check if the corresponding L such that D(L,R) 6= ⊥ has been
queried. If yes, decode to get bit b := D(L,R). If b = 0, check the table
T to recover (L,L′, R′). Output R′. Otherwise, if R ∈ T then output R′′

corresponding to entry (R,L′′, R′′). If R /∈ T , choose a random encoding of
a random bit b′′: (L′′, R′′)← E(b′′). Store (R,L′′, R′′) in T and output R′′.

By properties of the random oracle, the view of the reduction Red when
interacting with A versus A′ are equivalent.

Since the reduction succeeds when interacting with Real adversary A with
non-negligible probability p and since the view of the reduction is identical when
interacting with A or A′, Red interacting with A′ must also succeed with non-
negligible probability p. But Red composed with A′ yields an efficient adversary,
leading to an efficient adversary breaking the underlying falsifiable assumption,
which is a contradiction.

19

4 2-State CNMC for One-Bit Messages

In this section we prove the following theorem:

Theorem 6. Assuming the existence of one-to-one commitment schemes in the
CRS model, there is a construction of a 2-split-state CNM Randomness Encoder
in the CRS model.

The corollary is immediate, given the transformation in the full version [?].

Corollary 1. Assuming the existence of one-to-one commitment schemes in the
CRS model, there is a construction of a single-bit, 2-split-state CNMC in the
CRS model.

Notation and parameters. λ is security parameter and length of encoded random-
ness. ` = `(λ) ∈ Θ(λ2) and we assume for simplicity that λ|`. Sets SL, SR ⊆ [2`]
are defined as follows: SL = [`], SR = [2`]\ [`]. yo = yo(`) ∈ Θ(`1/2), yt = yt(`) ∈
Θ(`1/2).
The construction of the 2-state CNM Randomness Encoder is given in Figure 1.

Let (CRSGenCom,Com,Open,SEq) be the non-interactive, equivocal, one-to-one
commitment in the CRS model given in Section 2.6.

CRSGen(1λ): Σ ← CRSGenCom(1λ). Output Σ.

EΣ(cL||cR||rcom):

1. Parse cL, cR as strings in F
`
λ

2λ
.

2. (com, d = d1, . . . , d2`)← ComΣ(cL||cR; rcom)
3. Let d[SL] (resp. d[SR]) correspond to the decommitment of com to the bits

corresponding to SL (resp. SR).
4. E2,Σ outputs L = (com, d[SL]); R = (com, d[SR]). E1,Σ outputs 〈cL, cR〉.

DΣ(L̃, R̃):

1. Parse L̃ = (c̃om, d̃[SL]), R̃ = (c̃om′, d̃[SR]).
2. Check that c̃om = c̃om′.
3. Let c̃L = OpenΣ(SL, c̃om, d̃[SL]) and c̃R = OpenΣ(SR, c̃om, d̃[SR]). Check that

c̃L 6= ⊥ and c̃R 6= ⊥.
4. If all the above checks pass, output 〈c̃L, c̃R〉. Otherwise, output ⊥.

Fig. 1. Construction of 2-State, Continuous, Non-Malleable Randomness Encoder.

To prove Theorem 6, we show that the construction above is a secure CNM
Randomness Encoder, via the following sequence of hybrids.

Hybrid 0: This is the “Real” security experiment.

20

Hybrid 1: The experiment is identical to Hybrid 0 except we modify the decode
algorithm from DΣ to D1

Σ to abort if the tampered codeword submitted is differ-
ent from the challenge codeword and the Check function outputs 1. Specifically,
let (L := (com, d[SL]), R = (com, d[SR])) be the “challenge” codeword (i.e. the
codeword generated by the security experiment).

D1
Σ(L̃, R̃):

1. Parse L̃ = (c̃om, d̃[SL]), R̃ = (c̃om′, d̃[SR]).

2. If L̃ 6= L and CheckΣ(com, c̃om) = 1 or R̃ 6= R and CheckΣ(com, c̃om′) = 1
then output ⊥.

3. Check that c̃om = c̃om′.
4. Let c̃L = OpenΣ(SL, c̃om, d̃[SL]) and c̃R = OpenΣ(SR, c̃om, d̃[SR]). Check that

c̃L 6= ⊥ and c̃R 6= ⊥.
5. If all the above checks pass, output 〈c̃L, c̃R〉. Otherwise, output ⊥.

Fig. 2. Decode in Hybrid 1.

Hybrid 2: The experiment is identical to Hybrid 1, except we switch to equivocal
commitments in the codeword (L,R) that is given to the adversary. Specifically,
CRSGen is replaced with CRSGen2 and the challenge codeword is generated as
shown in Figure 3.

CRSGen2(1λ): (ΣEq, com, d
0 = d01 . . . d

0
2`, d

1 = d11 . . . d
1
2`)← SEq(1

λ). Output ΣEq.
Challenge codeword:

1. Sample cL, cR uniform randomly from F
`
λ

2λ
.

2. Set d[SL] := [d
cL[i]
i]i∈SL ; Set d[SR] := [d

cR[i]
i]i∈SR ;

3. Output L = (com, d[SL]); R = (com, d[SR]).

Fig. 3. Gen and Challenge Codeword generation in Hybrid 2.

Hybrid 3: The experiment is identical to Hybrid 2, except we modify D1 to D3,
which aborts if the outcome of f iL(L) or f iR(R) is not a “likely value.”

Specifically, given (ΣEq, com, d
0 = d01 . . . d

0
2`, d

1 = d11 . . . d
1
2`) and the adver-

sary’s current output Outi−1A = Ôut
i−1
A , we define the sets SL, SR, S ′L, S ′R as:

– SL contains all values of L̂′ that occur with probability at least ε = 1/2yo/3,

where values of L̂′ are sampled as follows: Sample ĉL conditioned on the
output of the experiment in Hybrid 2 thus far being equal to Outi−1A =

21

Ôut
i−1
A . Compute equivocal decommitment of com: d̂[SL] := [d

ĉL[i]
i]i∈SL .

Apply f iL to L̂ = (com, d̂[SL]) to obtain L̂′ (or “same” if the output is L̂
itself).

– SR contains all values of R̂′ that occur with probability at least ε = 1/2yo/3,

where values of R̂′ are sampled as follows: Sample ĉR conditioned on the
output of the experiment in Hybrid 2 thus far being equal to Outi−1A =

Ôut
i−1
A . Compute equivocal decommitment of com: d̂[SR] := [d

ĉR[i]
i]i∈SR .

Apply f iR to R̂ = (com, d̂[SR]) to obtain R̂′ (or “same” if the output is R̂
itself).

– Let S ′L ⊆ SL be the set of L̂′ such that there is a “matching” R̂′ ∈ SR such

that D1
ΣEq

(L̂′, R̂′) 6= ⊥.

– Let S ′R ⊆ SR be the set of R̂′ such that there is a “matching” L̂′ ∈ SL such

that D1
ΣEq

(L̂′, R̂′) 6= ⊥.

Note that the decode oracle is now stateful and depends on the current round of
interaction, as well as the outputs returned in previous rounds. Specifically, note
that the sets S ′L, S ′R change in each round i, since the likely outputs depend on
the tampering function (f iL, f

i
R) submitted by the adversary in round i, and are

conditioned on the output Outi−1A = Ôut
i−1
A seen by the adversary thus far in

rounds 1, . . . , i− 1.

D3
ΣEq

((f iL, f
i
R), L̃, R̃):

1. Check that L̃ ∈ S ′L and that R̃ ∈ S ′R. If not, output ⊥.

2. Parse L̃ = (c̃om, d̃[SL]), R̃ = (c̃om′, d̃[SR]).
3. Check that c̃om = c̃om′.
4. Let c̃L = OpenΣ(SL, c̃om, d̃[SL]) and c̃R = OpenΣ(SR, c̃om, d̃[SR]). Check that

c̃L 6= ⊥ and c̃R 6= ⊥.
5. If all the above checks pass, output 〈c̃L, c̃R〉. Otherwise, output ⊥.

Fig. 4. Decode in Hybrid 3.

Hybrid 4: The experiment is identical to Hybrid 3, except we modify D3 to D4

which aborts if there are more than yt number of queries f iL (resp. f iR) such that
the outcome of f iL(L) (resp. f iR(R)) is not the most “likely value”. Specifically,
at the beginning of the experiment, we initialize counters countL, countR to 0.
We also define L∗ (resp. R∗) to be the element of S ′L (resp. S ′R) that occurs most
frequently. More precisely, we consider the sets

L∗ := argmaxL′∈S′L Pr[f iL(L̂) = L′ | Outi−1A = Ôut
i−1
A].

R∗ := argmaxR′∈S′R Pr[f iR(R̂) = R′ | Outi−1A = Ôut
i−1
A].

22

Then L∗ (resp. R∗) is defined to be the lexicographically first element in L∗
(resp. R∗).

D4
ΣEq

((f iL, f
i
R), L̃, R̃):

1. Check that L̃ ∈ S ′L and that R̃ ∈ S ′R. If not, output ⊥.
2. If L̃ 6= L∗, then set countL := countL + 1.

3. If R̃ 6= R∗, then set countR := countR + 1.
4. If countL > yt or countR > yt, output ⊥.

5. Parse L̃ = (c̃om, d̃[SL]), R̃ = (c̃om′, d̃[SR]).
6. Check that c̃om = c̃om′.
7. Let c̃L = OpenΣ(SL, c̃om, d̃[SL]) and c̃R = OpenΣ(SR, c̃om, d̃[SR]). Check that

c̃L 6= ⊥ and c̃R 6= ⊥.
8. If all the above checks pass, output 〈c̃L, c̃R〉. Otherwise, output ⊥.

Fig. 5. Decode in Hybrid 4.

Claim 4.1. Hybrids 0 and 1 are computationally indistinguishable.
This follows from the additional properties of the equivocal commitment

scheme given in Section 2.6.

Claim 4.2. Hybrids 1 and 2 are computationally indistinguishable.
This follows from the security of the equivocal commitment scheme.

Claim 4.3. Hybrids 2 and 3 are ε · 2q-close, where ε = 1/2yo/3 and yo ∈ O(`1/2).

Proof. To prove indistinguishability of Hybrids 2 and 3, it is sufficient to show
that for each i ∈ [q], Pr[f iL(L) /∈ S ′L ∧ D1

ΣEq
(f iL(L), f iR(R)) 6= ⊥] ≤ ε and

Pr[f iL(R) /∈ S ′R ∧ D1
ΣEq

(f iL(L), f iR(R)) 6= ⊥] ≤ ε. The result then follows by a
union bound over the q LHS and q RHS queries.

To bound the above, we in fact show something stronger: (1) for each i ∈ [q],

each value of Outi−1A = Ôut
i−1
A (which does not contain a ⊥ output) and each

value of R = R̂,

Pr[f iL(L) /∈ S ′L ∧ D1
ΣEq (f

i
L(L), f iR(R)) 6= ⊥ | R = R̂ ∧ Outi−1A = Ôut

i−1
A)] ≤ ε;

and (2) for each i ∈ [q], each value of Outi−1A = Ôut
i−1
A (which does not contain

a ⊥ output) and each value of L = L̂,

Pr[f iR(R) /∈ S ′R ∧ D1
ΣEq (f

i
L(L), f iR(R)) 6= ⊥ | L = L̂ ∧ Outi−1A = Ôut

i−1
A)] ≤ ε.

We first fix (ΣEq, com, d
0 = d01 . . . d

0
2`, d

1 = d11 . . . d
1
2`). Note that for fixed

ΣEq, com, d
0 = d01 . . . d

0
2`, d

1 = d11 . . . d
1
2`, there is a bijection φL (resp. φR)

23

between cL (resp. cR) and (com, d[SL]) (where d[SL] := [d
cL[i]
i]i∈SL). There-

fore the probability of a particular value of cL (resp. cR) occurring is equiv-
alent to the probability of L = φL(cL) (resp. R = φR(cR)) occurring. Ad-
ditionally, Let ρL (resp. ρR) be the function that given f iR(R) (resp. f iL(L))
returns the unique L′ (resp. R′) if it exists such that, D1

ΣEq
(L′, f iR(R)) 6= ⊥

(resp. D1
ΣEq

(f iL(L), R′) 6= ⊥). Note that L′ (resp. R′) is equal to “same” if and

only if f iR(R) = “same” (resp. f iL(L) = “same”). To see why this is so, recall

that in D1, ⊥ is outputted if L̃ 6= L and CheckΣ(com, c̃om) = 1 or R̃ 6= R
and CheckΣ(com, c̃om

′
) = 1. Now, if L′ is equal to same, then it must be that

CheckΣ(com, c̃om) = 1. Therefore, by the above, the only value of f iR(R), for
which ⊥ will not be output is f iR(R) = “same′′. The same is true for the case
that f iR(R) = “same′′.

We first show that for i ∈ [q], cL, cR are conditionally independent given

OutiA = Ôut
i

A. This follows from the fact that the information contained in

Ôut
i

A is of the form (f1L(φL(cL)) = v1, f
1
R(φR(cR)) = w1), . . . , (f iL(φL(cL)) =

vi, f
i
R(φR(cR)) = wi), where for j ∈ [i], vj is equal to the L′ value outputted

in response to the j-th query and wj is equal to the R′ value outputted in
response to the j-th query. (note that vj/wj can be set to “same” if the tampering
function leaves L/R unchanged). Thus, the distribution of cL, cR conditioned on
(f1L(φL(cL)) = v1, f

1
R(φR(cR)) = w1), . . . , (f iL(φL(cL)) = vi, f

i
R(φR(cR)) = wi)

is equal to (U` | (f1L(φL(U`)) = v1, . . . , f
i
L(φL(U`)) = vi))× (U` | (f1R(φR(U`)) =

w1, . . . , f
i
R(φR(U`)) = wi)). Moreover, due to the discussion above, L,R are also

conditionally independent given Outi−1A = Ôut
i−1
A . Therefore, to show (1), we

note that for every (L̂, R̂, Ôut
i−1
A), Pr[L = L̂ | R = R̂ ∧ Outi−1A = Ôut

i−1
A)] =

Pr[L = L̂ | Outi−1A = Ôut
i−1
A)]. So we have that for every fixed R = R̂ (for which

Pr[R = R̂ ∧ Outi−1A = Ôut
i−1
A)] > 0), and every L′ /∈ S ′L, Pr[f i(L) = L′ | R =

R̂ ∧ Outi−1A = Ôut
i−1
A)] ≤ ε. Therefore,

Pr[f iL(L) /∈ S ′L ∧ D1
ΣEq (f

i
L(L), f iR(R)) 6= ⊥ | R = R̂ ∧ Outi−1A = Ôut

i−1
A)]

= Pr[f iL(L) /∈ S ′L ∧
(
f iL(L) = ρL(f iR(R))

)
| R = R̂ ∧ Outi−1A = Ôut

i−1
A)]

≤ ε.

The proof for (2) is analogous.

Claim 4.4. Hybrids 3 and 4 are statistically indistinguishable.

Proof. To prove indistinguishability of Hybrids 3 and 4, we must show that the
probability that the event (1) f iL(L) is not most frequent and D3

ΣEq
(f iL(L), f iR(R))

6= ⊥ or event (2) f iR(R) is not most frequent and D3
ΣEq

(f iL(L), f iR(R)) 6= ⊥ occurs

more than yt times in a single execution is at most (1/2)yt .
We first analyze the event (1). Recall that set S ′L contains values, L′, that

occur with probability p in some experiment. By “most frequent value” in S ′L,

24

we mean the value L′ in S ′L with the maximum associated probability p. Note
that if L′ is not the most frequent value, the associated probability p is at most
1/2, since otherwise, the probabilities will sum to more than 1. More precisely, if
f iL(L) = L′ is not the most frequent query in S ′L then, by definition of the set S ′L
and the above argument, Pr[f iL(L̂) = L′ | Outi−1A = Ôut

i−1
A] ≤ 1/2. Recall that

in the proof of the previous claim, we have shown that for i ∈ {0, . . . , q}, L,R
are conditionally independent given OutiA. Therefore, Pr[f iL(L) = L′ | Outi−1A =

Ôut
i−1
A ∧ R = R̂] ≤ 1/2. This implies that for every fixed R = R̂ (for which

Pr[R = R̂ ∧ Outi−1A = Ôut
i−1
A] > 0),

Pr[f iL(L) 6= L∗ ∧ D3
ΣEq (f

i
L(L), f iR(R)) 6= ⊥ | R = R̂ ∧ Outi−1A = Ôut

i−1
A)]

≤ Pr[f iL(L) 6= L∗ ∧ f iL(L) = ρL(f iR(R)) | R = R̂ ∧ Outi−1A = Ôut
i−1
A)]

≤ 1/2.

We consider the number of adversarial queries such that both f iL(L) = L′

is not the most frequent value (L∗) ∈ S ′L and D3
ΣEq

(f iL(L), f iR(R)) 6= ⊥. (note

that the total number of adversarial queries can be much higher). By the above
argument, the probability that there are yt number of rounds i such that both
f iL(L) = L′ is not the most frequent value (L∗) ∈ S ′L and D3

ΣEq
(f iL(L), f iR(R)) 6=

⊥ is at most (1/2)yt ∈ negl(λ). Thus, we have concluded the proof for event (1).
The proof for event (2) is analogous.

We finally show the main technical claim of this section, which completes the
proof of Theorem 6.

Claim 4.5. In Hybrid 4, the encoded randomness 〈cL, cR〉 is statistically close to
uniform, given the view of the adversary.

Proof. Towards proving the claim, we consider the following leakage functions:

Leakage function on cL: Fix ΣEq, com, d
0, d1, universal hash h : {0, 1}α →

{0, 1}yo ∈ H (where α is the length of a single split-state of the encoding)
and adversary A. On input cL, set output OutA to “” and OutL to “”. Set

L = (com, [d
cL[i]
i]i∈[`]). Repeat the following in rounds i = 1, 2, . . .:

1. Obtain the next tampering function (fL, fR) from adversary A. If A termi-
nates then terminate with output OutL.

2. Set L′ := fL(L). If L′ ∈ S ′L, then:

(a) Find the unique R̂′ ∈ S ′R such that D1
ΣEq

(L′, R̂′) 6= ⊥. Return (L′, R̂′)

to the adversary. Set OutA = OutA||(L′, R̂′).
(b) If L′ is not the most frequent output in S ′L, set OutL := OutL||(i||h(L′)) If
|OutL| > (log(q)+yo)·yt then terminate with output OutL := OutL||(i||⊥).

3. If L′ /∈ S ′L, output ⊥ to the adversary and terminate with output OutL :=
OutL||(i||⊥).

25

The leakage function for the RHS is analogous.
We now show that given OutL and OutR we can reconstruct the full output

sequence for the adversary’s view with probability 1− 2q
ε2·2yo = 1− 2q

2y0/3
in the

following way:
Fix ΣEq, com, d

0 = d01 . . . d
0
2`, d

1 = d11 . . . d
1
2`, universal hash h ← H and

adversary A. Set output OutA to “” and OutL to “”. Repeat the following in
rounds i = 1, 2, . . . , q:

1. Obtain the next tampering function (fL, fR) from adversary A given its
current view, OutA.

2. If (i,⊥) ∈ OutL or (i,⊥) ∈ OutR, set OutA = OutA||⊥ and abort.

3. If (i, y) ∈ OutL, for some y 6= ⊥, set L′ = L̂′ such that L̂′ ∈ S ′L and h(L̂′) = y.

4. If (i, ·) /∈ OutL, set L′ = L̂′ such that L̂′ ∈ S ′L is the most frequent value.

5. If (i, y) ∈ OutR, for some y 6= ⊥, set R′ = R̂′ such that R̂′ ∈ S ′R and

h(R̂′) = y.

6. If (i, ·) /∈ OutR, set R′ = R̂′ such that R̂′ ∈ S ′R is the most frequent value.
7. If L′ = “same” andR′ = “same” output “same” and set OutA = OutA||“same”.
8. Else if one of L′, R′ is “same” and not the other, set OutA = OutA||⊥ and

abort.
9. Else Parse L′ := (com, d[SL]) and R′ := (com′, d[SR]). If com 6= com′, set

OutA = OutA||⊥ and abort.
10. Otherwise, set OutA = OutA||(L′, R′).

It can be determined by inspection that the incorrect value is output only if
in one of the at most 2q instances, there are two distinct values L̂′, L̂′′ ∈ S ′L or

R̂′, R̂′′ ∈ S ′R such that h(L̂′) = h(L̂′′) or h(R̂′) = h(R̂′′). Due to universality of
h and the fact that |S ′L| = |S ′R| = 1/ε, this can occur with probability at most

2q
ε2·2yo , as claimed. 3

Since |OutL| ≤ (log(q) + yo) · yt ≤ 2yo · yt ≤ c · ` for constant c < 1 and
|OutR| ≤ (log(q) + yo) · yt ≤ 2yo · yt ≤ c · ` for constant c < 1, we can use the
properties of the inner product extractor (check the full version of this paper [?]
for more details.) to argue that 〈cL, cR〉 is statistically close to uniform random,
given OutL,OutR. Moreover, since we have shown that the view of the adversary
in the Hybrid 4 can be fully reconstructed given OutL,OutR, we have that, in
the Hybrid 4, the encoded randomness 〈cL, cR〉 is statistically close to uniform,
given the adversary’s view in the CNMC experiment.

5 Acknowledgments

We thank the anonymous PKC 2019 reviewers for pointing out an error and
fix to our lower bound proof. We also thank them for extensive comments that
helped to significantly improve our presentation.

3 Recall that S ′L ⊆ SL, and SL contains all the values of L̂′ which occur with prob-
ability at least ε. Therefore |SL| ≤ 1/ε (and thus |S ′L| ≤ 1/ε), since otherwise the
sum of the probabilities would exceed 1. A similar argument is true for S ′R.

26

	Upper and Lower Bounds for Continuous Non-Malleable Codes

