
Efficiently Masking Binomial Sampling at
Arbitrary Orders for Lattice-Based Crypto

Tobias Schneider1, Clara Paglialonga2, Tobias Oder3, and Tim Güneysu3,4

1ICTEAM/ELEN/Crypto Group, Université Catholique de Louvain, Belgium
tobias.schneider@uclouvain.be

2Technische Universität Darmstadt, Germany
clara.paglialonga@crisp-da.de

3Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany
{tobias.oder,tim.gueneysu}@rub.de

4DFKI, Germany

Abstract. With the rising popularity of lattice-based cryptography, the
Learning with Errors (LWE) problem has emerged as a fundamental core
of numerous encryption and key exchange schemes. Many LWE-based
schemes have in common that they require sampling from a discrete
Gaussian distribution which comes with a number of challenges for the
practical instantiation of those schemes. One of these is the inclusion of
countermeasures against a physical side-channel adversary. While several
works discuss the protection of samplers against timing leaks, only few
publications explore resistance against other side-channels, e.g., power.
The most recent example of a protected binomial sampler (as used in
key encapsulation mechanisms to sufficiently approximate Gaussian dis-
tributions) from CHES 2018 is restricted to a first-order adversary and
cannot be easily extended to higher protection orders.
In this work, we present the first protected binomial sampler which pro-
vides provable security against a side-channel adversary at arbitrary
orders. Our construction relies on a new conversion between Boolean
and arithmetic (B2A) masking schemes for prime moduli which out-
performs previous algorithms significantly for the relevant parameters,
and is paired with a new masked bitsliced sampler allowing secure and
efficient sampling even at larger protection orders. Since our proposed
solution supports arbitrary moduli, it can be utilized in a large variety of
lattice-based constructions, like NewHope, LIMA, Saber, Kyber, HILA5,
or Ding Key Exchange.

1 Introduction

Ever since the first publication by Kocher [24], protection against side-channel
analysis (SCA) has become an essential optimization goal for designers of security-
critical applications. It has been shown numerous times that an adversary, which
does not only have access to the inputs and outputs of a system but can also
measure some physical characteristics (e.g., timing) of the target, is capable
of extracting sensitive information from an unprotected implementation with

ease [18]. This affects especially embedded systems, as they (a) allow exten-
sive physical access to the adversary enabling the exploitation of additional
side-channels (e.g., power, EM) which requires more sophisticated protection
schemes, and (b) often possess only limited resources which makes the integra-
tion of dedicated countermeasures a complex task.

One important type of countermeasure in this context is masking [9]. Its core
idea is splitting the sensitive information into multiple shares and transforming
the target implementation to securely compute on these shares. Based on certain
assumptions, it is possible to prove that an adversary needs to combine at least t
intermediate values (so called probes) of the circuit to extract any sensitive data.
In practice, an increase in the number of required probes exponentially increases
the attack complexity given a sufficient level of noise in the measurements [32].
The seminal work of Ishai et al. [22] introduces a security model, which identifies
the attack situation described above. It introduces the probing model, that allows
to prove the security of a masked gadget. Still, the imprudent composition of
such gadgets can introduce security flaws, due to the extra information that an
adversary might be able to extract when using the outputs of a gadget as input
to another one. The notion of Strong Non-Interference (SNI), introduced in [5],
provides stronger conditions that ensure a secure composition of masked gadgets.

While for common symmetric and asymmetric constructions the applica-
tion of masking schemes has been extensively examined and achieves a high
level of security and efficiency, this is still ongoing research for most post-
quantum schemes. First approaches to achieve first-order side-channel security
were made [10, 11, 25, 28], but the overhead for higher-order masking of post-
quantum cryptography has not been studied, except in [6] for the specific GLP
signature scheme [20]. However, GLP has not been submitted to the standard-
ization process for post-quantum cryptography run by the National Institute of
Standards and Technology (NIST) [26]. Among those 69 complete and proper
submissions to this competition, lattice-based cryptography is clearly the largest
group with a total of 29 submissions due to advantages, such as reasonable pa-
rameter sizes, simple implementation, as well as advanced constructions like
identity-based encryption and homomorphic encryption. The competition ex-
plicitly takes into account the ease of integration of physical countermeasures as
an evaluation metric [27], which is therefore a primary contribution of this work.

Most of the lattice-based encryption and key exchange schemes rely on the
Learning with Errors (LWE) problem or variants like Ring-LWE for which many
of them require noise polynomials with small Gaussian distributed coefficients.
For small standard deviations, the binomial sampler as presented in [1] and
implemented in [2] is the best choice as it has a constant run time by design,
is easy to implement and does not require any precomputed tables. However,
applying masking schemes to sampling algorithms for protection against side-
channel analysis is a non-trivial task. It has been shown in [25] by Oder et al.
that this can easily become even the bottleneck of an implementation, causing
a performance overhead of more than 400%.

2

This reduction in performance stems mostly from the mixture of different
masking schemes. Oder et al. initially generate uniformly-random bits by run-
ning SHAKE for a given seed. Using a pseudo random number generator (PRNG)
is common as a first step in such samplers and, as shown in [25], needs to in-
clude side-channel countermeasures as well. From this uniform randomness, the
approximated Gaussian randomness is derived, e.g., [1] proposes to subtract the
Hamming weight of two uniform bit vectors. For both steps, Boolean masking is
an obvious choice, since many PRNGs rely on Boolean operations and the com-
putation of the Hamming weight requires bit-wise manipulations of the shares,
which is complex for arithmetic masking (assuming not every bit is separately
masked). However, the subsequent operations in the lattice scheme favor arith-
metic masking. Therefore, it is necessary to apply a conversion at some point of
the protected sampler.

Related work. In [6], Barthe et al. propose the first provably-secure sampler
for arbitrary orders. However, the targeted GLP signature schemes requires a
uniform sampler, which poses different challenges to the implementer than a
binomial one. Thus, their results cannot be straight-forwardly transferred to
protect a binomial sampler, as required for many NIST submissions.

One of these submissions is NewHope [1] and its potential for physical pro-
tection was evaluated in [25], where, as part of their construction, Oder et al.
presented a masked binomial sampler. However, it was heavily-optimized for
first-order protection and not easily extendable to higher orders. In addition,
their results show that masking such a sampler can severely impact the perfor-
mance of the whole scheme. Therefore, it is an open problem how to efficiently
protect binomial samplers against side-channel adversaries.

While the authors of [25] convert Boolean-masked bits to arithmetic shares,
they do not formally specify the conversion algorithm. Such Boolean-to-arithmetic
(B2A) conversions have been extensively researched [7, 8, 12–14, 16, 21, 23, 30, 33]
as many symmetric primitives mix Boolean and arithmetic operations. However,
they focus solely on power-of-two moduli. In contrast, many lattice schemes
employ other moduli (not necessarily power-of-two) to allow optimizations. For
these cases, it is necessary to apply specific conversions (in the following denoted
as B2Aq). The first of such conversion algorithms which work with arbitrary mod-
uli was proposed in [6] based on the cubic conversion of [14] and proven to be
secure at arbitrary orders. Since these algorithms are a non-negligible part of
masking a binomial sampler, any improvements regarding the conversion will
also improve the sampling performance.

Our contribution. Our first contribution is a revised version of the quadratic
B2A algorithm of [14] which is combined with some of the ideas outlined in [6].
While this is technically straightforward, we still provide the essential proof of
security, resulting in A2Bq and B2Aq algorithms with the best asymptotic run
time complexity (i.e., O(n2 log k), where k denotes the bit size of the operands
and n the number of shares) to date.

3

As a second contribution, we present a new B2Aq conversion with a run time
complexity of O(n2 · k). Our new algorithm is proven to be t − SNI enabling
composition with n = t+1 shares. While its asymptotic complexity is worse than
our quadratic adaption of [6], it still significantly reduces the conversion time
for relevant values of k. The new algorithm even outperforms the established
standard B2A algorithms for power-of-two moduli for certain parameters (e.g.,
n ≥ 11 for k = 32). Therefore, it is not only relevant for our considered use case,
but might also improve the performance of masked symmetric algorithms.

Thirdly, relying on B2Aq conversions we propose two masked binomial sam-
plers for lattice-based encryption and key exchange schemes. The first sampler is
a higher-order extension of the approach from [25], while the second variant uses
bitslicing to further increase the throughput. Again, we prove both solutions to
be t − SNI to enable easy composition in larger constructions, e.g., for CCA2-
transformations. This results in the first provable SCA-protected binomial sam-
plers at arbitrary orders. Since our proposed solutions support arbitrary moduli,
they can be adopted in a large variety of NIST submissions, e.g., NewHope [1],
LIMA [31], Saber [15], Kyber [3], HILA5 [29], or Ding Key Exchange [17].

Finally, we present an ARM Cortex-M4F microcontroller implementation of
our constructions to evaluate their performance on a popular embedded proces-
sor platform. We find that our new B2Aq conversion improves the performance of
the samplers over the adaption of [6] up to a factor of 46, while our new bitsliced
sampler improves the performance over a generalized version of the approach
of [25] up to a factor of 15. The combination of both approaches results in the
currently most-efficient masked binomial sampler. At first-order, it even out-
performs the implementation from [25], which is highly-optimized for first-order
security, while our contribution provides generic protection for arbitrary orders.

Organization of the paper. In Section 2, we start by briefly reviewing the
state-of-the-art regarding B2A conversions and masked binomial sampling. In
Section 3, we provide the adaption of the quadratic B2Aq from [14] using the
prime addition from [6] and its corresponding proof of security. In Section 4, our
new B2Aq algorithm is presented and compared to the current state-of-the-art
considering both standard and prime moduli. Finally in Section 5, we propose our
new masked sampling algorithms and conduct a case study using the parameters
of the NIST submission NewHope.

2 Background

In this section, we first introduce the notation used throughout this paper and
the considered notions of physical security. Then we briefly introduce the B2A

algorithms relevant to our work and review the masked binomial sampler of [25].

2.1 Notation

In the rest of the paper we denote with q a prime number, with B2A the standard
conversion from Boolean to arithmetic masking and with B2Aq the same transfor-

4

mation for prime moduli. We will indicate with k the bit size of the conversion, κ
the bit size of the input vectors of the samplers, n the number of shares and t the
security order. Moreover, the lower case will be used for Boolean encoding and
the upper one for arithmetic encoding. Operations on the whole encoding, i.e.,
vector of shares, are denoted in bold and performed share-wise, e.g., z = x⊕ y.
We denote the k bits of a share as

(
x
(k)
i . . . x

(1)
i

)
= xi, i.e., the least-significant

bit (LSB) of xi is written as x(1)i (resp. x(1) denotes the LSB of x).

2.2 Notions of Physical Security

Counteracting side-channel analysis via masking informally means to randomize
the information leaked during the computation of sensitive variables in order to
make the representation of such variables independent from the actual processed
data. The security of a masking scheme has been formalized for the first time
by Ishai et al. in [22]. Their seminal work introduces the t-probing model, where
an adversary is allowed to read up to t wires in a circuit (the so called probes).
Every sensitive variable s is encoded into n shares si, such that the sum of them
gives the original masked variable s and only the combination of all the shares
gives some information about s. In order to keep this independence throughout
the whole circuit, every operation is performed on the shares si and, especially in
the case of non-linear operations, it makes use of additional randomness, which
helps to guarantee that every t-tuple of intermediate variables is independent
from at least one of the shares of s. Such transformed gates are commonly called
gadgets and, in order to provide sound claims of their composability, they must
satisfy the conditions of one of the following definitions.

Definition 1 (t− NI). A given gadget G is t-Non-Interfering (t− NI), if every
set of t probes can be simulated by using at most t shares of each input.

Definition 2 (t − SNI). A given gadget G is t-Strong-Non-Interfering (t − SNI),
if every set of t1 probes on the internal values and t2 probes on the output values,
with t1 + t2 ≤ t, can be simulated by using at most t1 shares of each input.

Both definitions have been introduced in [4] and are refinements of the original
definition of probing security, given in [22]. They require the existence of a sim-
ulator, which can simulate the adversary’s view, without accessing the sensitive
variables, using only part of their shares. In particular, the definition of t − SNI
is important when designing a gadget, which is supposed to be part of a bigger
algorithm. In this case indeed, using the output of a gadget as input to another
one might add sensitive information to the knowledge of the adversary and t−NI
would not be sufficient to ensure global security. On the other hand, the condi-
tions of t − SNI are stronger, since they require an independence between the
number of probes on the output shares and the number of the shares needed
to perform the simulation, therefore they allow to compose gadgets securely. In
the rest of the paper, we will prove our algorithms to be t − SNI making them
suited to be composed with other gadgets as part of a larger circuit.

5

2.3 Conversion from Boolean to Arithmetic Masking

The first sound transformation from Boolean to arithmetic masking (B2A) has
been proposed by Goubin in [19] and it is based on the fact that the function
Φ(x, r) : F2k × F2k 7→ F2k such that

Φ(x, r) = (x⊕ r)− r mod 2k (1)

is affine in r over F2. The algorithm is very efficient, since it has a run time
complexity of O(1), i.e., independent of the size of the inputs k. However, the
initial algorithm was only proven secure against a first-order adversary (t = 1).

The first B2A algorithm secure at higher orders was presented in [14]. Instead
of relying on the aforementioned affine relationship Φ(x, r), the main idea is to
first initialize the shares (Ai)1≤i≤n−1 with random samples in F2k . Then they
are used to generate a random encoding A′ of the form

∑n
i=1A

′
i = −

∑n−1
i=1 Ai

mod 2k. This encoding is given to a higher-order secure arithmetic-to-Boolean
(A2B) conversion algorithm to compute the Boolean shares

⊕
i yi =

∑
iA
′
i

mod 2k, which are then added to the input encoding x via a Boolean-masked
addition algorithm. This results in

⊕
i

zi =
⊕
i

xi +
⊕
i

yi = x−
n−1∑
i=1

Ai mod 2k.

Using the function FullXOR : Fn2k 7→ F2k [14], which securely decodes a given
input encoding, the remaining share of A is set to An = FullXOR(z), which
completes the transformation given

n∑
i=1

Ai =

n−1∑
i=1

Ai + (x−
n−1∑
i=1

Ai) = x mod 2k.

In theory, the aforementioned framework can be instantiated with any secure
A2B and Boolean-masked addition algorithm. In practice, however, there is only
one secure higher-order A2B algorithm to the best of our knowledge, which was
also published in the same work [14]. Its underlying concept is rather simple.
Each share of the arithmetic input encoding A is first transformed to a Boolean
encoding with n shares. These n Boolean encodings are then added together us-
ing a Boolean-masked addition algorithm resulting in a Boolean encoding x with⊕

i xi =
∑
iAi mod 2k. With a simple addition algorithm this basic version has

a cubic complexity of O(n3 · k). In [14], the authors also propose an improved
version which relies on recursion and has a quadratic complexity of O(n2 · k).
Instead of summing the input shares Ai sequentially one by one, the main algo-
rithm splits the n shares into two halves of bn2 c and d

n
2 e, and recursively calls

itself for the two halves. The resulting encodings are then added together as

x =
(
A1 + · · ·+Abn/2c

)
+
(
Abn/2c+1 + · · ·+An

)
=
(
y1 ⊕ · · · ⊕ ybn/2c

)
+
(
z1 ⊕ · · · ⊕ zdn/2e

)
x = x1 ⊕ · · · ⊕ xn.

(2)

6

The complexity of both these B2A and A2B algorithms can be improved by using
a more efficient masked addition algorithm, e.g., using the logarithmic addition
from [13] reduces the run time complexity of both directions to O(n2 · log k).

An alternative higher-order B2A conversion algorithm relying on the affine
relation given in Equation (1) was recently presented by Bettale et al. in [7]
following previous work of [21] and [12]. Since it is not based on the Boolean-
masked addition of shares, its run time is independent of the input bit size.
This makes it especially efficient for small values of n for which it is possible
to achieve a significant speedup over the previous solutions based on [14]. For
increasing number of shares, however, the performance of the new algorithm
quickly deteriorates given its asymptotic run time complexity of O(2n).

Conversion with prime moduli. All the aforementioned approaches assume
an arithmetic modulus of the form 2k, i.e., a power of two, and cannot be di-
rectly applied for prime moduli. The foundation for some very basic solutions for
A2Bq and B2Aq conversions were given in [25]. However, the algorithms were not
strictly formalized, their application is very specific to the presented use case,
and their security is limited to a first-order adversary. Therefore, we refrain from
giving further details on both algorithms and will only briefly mention their B2Aq
approach when discussing the masked binomial sampler in the next subsection.

The first generic solution for arbitrary orders was recently given in [6]. The
authors present a new Boolean-masked addition algorithm which works modulo
a prime q with 2k ≥ 2q. Based on this adder, both the A2B and B2A algorithms
from [14] can be changed to feature moduli other than a power-of-two. Their
B2Aq solution is given in Algorithm 1 which as the approach from [14] relies on
an A2B conversion. Due to page limitations, we do not discuss all algorithms
necessary for the conversion inside the paper (e.g., FullXOR) and instead refer
to their original publications1. In their work, the authors only provide the proofs
for an adaption of the A2B algorithm from [14] with cubic complexity (cf. Al-
gorithm 2). In Section 3, we complement their work by providing the security
proofs for an adaption of the conversion algorithm with quadratic complexity
(cf. Algorithm 3) which leads to conversions for both directions with currently
the lowest complexity of O(n2 · log k).2

2.4 Masked Sampler from [25]

The construction of [25] initially uses a Boolean-masked SHAKE core to gen-
erate masked pseudo-random bits with a uniform distribution. As defined in
1 In the full version of this paper, all algorithms are given as supplementary material.
2 The authors of [6] also hint that the k-independent algorithm of [7] can be adopted to
other moduli. However, we did not find a working solution. Nevertheless, an adapted
algorithm would share the exponential complexity of the original making it only
viable for small number of shares and, therefore, not a generic solution for masking
at any order. In addition, the bit sizes considered in our case study are relatively
small which would further decrease the benefit of a prime-adjusted algorithm.

7

Algorithm 1 SecBoolArithModp [6]

Input: x = (xi)1≤i≤n ∈ Fk
2 such that

⊕
i xi = x ∈ Fk

2

Output: A = (Ai)1≤i≤n ∈ Fq such that
∑

iAi = x mod q

1: (Ai)1≤i≤n−1
$← Fq

2: (Ai)
′
1≤i≤n−1 ← q − (Ai)1≤i≤n−1

3: A′n ← 0
4: y← SecArithBoolModp (A′)
5: z← SecAddModp (x,y)
6: An ← FullXOR(z)

Algorithm 2 SecArithBoolModp (cubic) [6]
Input: A = (Ai)1≤i≤n ∈ Fq such that

∑
iAi = x mod q ∈ Fq

Output: x = (xi)1≤i≤n ∈ Fk
2 with 2k > 2q such that

⊕
i xi = x

1: (xi)1≤i≤n ← 0
2: for j = 1 to n do
3: (yi)1≤i≤n ← (Aj , 0, . . . , 0)
4: y← RefreshXOR(y, k)
5: x← SecAddModp(x,y, k)
6: end for

the specification of NewHope, the sampler takes two 8-bit vectors (x, y) of
this pseudo-randomness as input and computes the difference of the Hamming
weight between them. Since the subsequent operations of the lattice scheme are
performed modulo q = 12289, the masked sampler needs to convert from Boolean
masking to arithmetic masking modulo the prime q. Again, the B2Aq conversion
is not explicitly given and analyzed in [25], but rather directly integrated in the
overlying algorithm. In particular, the authors exploit that Boolean-masked bits
(x1, x2) with x1 ⊕ x2 = x provide the following arithmetic relation

x = x1 + x2 − 2 · x1 · x2 (3)

which is used to transform these Boolean masked bits to an arithmetic encoding
modulo q. The resulting masked sampler (cf. Algorithm 4 in [25]) is highly-
customized for a first-order adversary and the authors do not provide any dis-
cussion on how to extend this approach to higher orders. Our new higher-order
B2Aq conversion algorithm, given in Section 4, relies on this arithmetic relation
as well, but contains further optimizations to significantly improve the efficiency
and security at higher orders.

3 Improved Higher-Order B2Aq from [6]

In this section, we discuss the adaption of the B2Aq conversion algorithm with
quadratic complexity from [14] to the setting of prime moduli. The basic idea was
already proposed in [6] without any concrete instantiation or proof. Nevertheless,

8

Algorithm 3 SecArithBoolModp (quadratic)
Input: A = (Ai)1≤i≤n ∈ Fq such that

∑
iAi = x mod q ∈ Fq

Output: x = (xi)1≤i≤n ∈ Fk
2 with 2k > 2q such that

⊕
i xi = x

1: if n=1 then
2: x1 ← A1

3: end if
4: (yi)1≤i≤bn/2c ← SecArithBoolModp

(
(Ai)1≤i≤bn/2c

)
5: (yi)1≤i≤n ← RefreshXOR

(
(y1, . . . , ybn/2c, 0, . . . , 0), k

)
6: (zi)1≤i≤dn/2e ← SecArithBoolModp

(
(Ai)bn/2c+1≤i≤n

)
7: (zi)1≤i≤n ← RefreshXOR

(
(z1, . . . , zdn/2e, 0, . . . , 0), k

)
8: x← SecAddModp(y, z)

we provide the algorithmic description of the adjusted conversion and prove
its t − SNI property to enable comparison with our new approach of Section 4.

3.1 Construction

In the original algorithm from [6], SecBoolArithModp calls the simple version
of SecArithBoolModp, i.e., the shares are added sequentially as depicted in Al-
gorithm 2, which leads to a run time complexity of O(n3 · log k). To improve
this, we adapt the recursive structure previously discussed in Equation (2). In
particular, the input encoding given to SecArithBoolModp is split into two sets
of bn/2c and dn/2e elements. These are then separately given to a new call of
SecArithBoolModp and the resulting Boolean encodings are summed to derive
the correct result. This comes with the advantage that each sub routine pro-
cesses a smaller number of shares which reduces the complexity of the refresh
and addition, decreasing the overall complexity to O(n2 · log k).

The complete A2Bq algorithm with quadratic complexity is given in Algo-
rithm 3 which would simply replace the call to SecArithBoolModp in Algorithm 1
to derive a corresponding quadratic B2Aq conversion. To map the bn/2c (resp.
dn/2e) Boolean shares to the n shares required for the secure masked addition,
we choose to rely on the t − SNI-refresh RefreshXOR from [6] instead of the
Expand function from [14]. To this end, the Boolean encodings are first padded
with zeros and the resulting n shares are refreshed. An exemplary structure for
the case n = 4 is depicted in Figure 2.

3.2 Security

The t − SNI security of SecBoolArithModp in Algorithm 1, when using the
quadratic version of SecArithBoolModp, relies on the fact that SecArithBoolModp
itself is t − SNI. Before proceeding with proving that Algorithm 3 is t − SNI,
we give the following Lemma.

Lemma 1. Given a circuit C as in Figure 1, where f, g are t − SNI gadgets
and h is t− NI, the circuit C is t − SNI.

9

f

t − SNI

Sf

g

t − SNI

Sg

h

t− NI

Sh1

Sh2

Fig. 1: Recurrent scheme in Algorithm 3

Proof. Let Ω = (I,O) be the set of adversarial observations on C, where I are
the probes on the internal values and O the ones on the output values, with
|I|+ |O| ≤ t. In particular, let If be the set of probes on f, Ig the set of probes
on g and Ih be the set of probes on h, with |If ∪ Ig ∪ Ih| ≤ |I|.

We prove the existence of a simulator which can simulate the adversary’s
view by using at most |I| input shares, analyzing the circuit from right to left.

Gadget h. Since h is t−NI and |Ih∪O| ≤ t, then there exist two observation
sets Sh1 ,Sh2 such that |Sh1 | ≤ |Ih ∪ O|, |Sh2 | ≤ |Ih ∪ O| and the gadget can be
simulated using at most |Sh1 |+ |Sh2 | shares of the inputs.

Gadget f. Since f is t − SNI and |If ∪ Sh1 | ≤ t, then there exists an
observation set Sf such that |Sf| ≤ |If| and the gadget can be simulated using
at most |Sf| shares of the inputs.

Gadget g. Since g is t − SNI and |Ig ∪ Sh2 | ≤ t, then there exists an
observation set Sg such that |Sg| ≤ |Ig| and the gadget can be simulated using
at most |Sg| shares of the inputs.

Combining the previous steps of the simulation, we can claim that C can be
simulated by using at most |Sf ∪ Sg| ≤ |If| + |Ig| ≤ |I| shares of the inputs,
completing the proof. ut

Proposition 1. SecArithBoolModp in Algorithm 3 is t − SNI, for t = n− 1.

Proof. In order to prove SecArithBoolModp to be t − SNI we iteratively split
the circuit in sub-circuits Ci, for i = 2, . . . , n as in Figure 2, where in particular
Cn := SecArithBoolModp and we prove the thesis by induction on i ∈ N.

We remark that C2 is of the form of the circuit in Figure 1. Indeed RefreshXOR

is t − SNI and SecAddModp is t−NI, as proven in [6]. Therefore thanks to Lemma
1, the circuit C2 is t − SNI.

Let us suppose now that Cn−2 is t − SNI and we prove the thesis for Cn.
Since the composition of t − SNI gadgets is still t − SNI, as pointed out in [4],

we know that both Cn−2((Ai)1≤i≤bn/2c) and Cn−2((Ai)bn/2c+1≤i≤n) composed
with the RefreshXOR gadget are t − SNI. Therefore, the circuit Cn can be rep-
resented as the circuit in Figure 1, with f = RefreshXOR(Cn−2((Ai)1≤i≤bn/2c)),
g = RefreshXOR(Cn−2((Ai)bn/2c+1≤i≤n)) and h = SecAddModp. From Lemma 1
we conclude therefore that Cn is t − SNI, completing the proof. ut

10

x1 RefreshXOR

x2 RefreshXOR

SecAddModp RefreshXOR

x3 RefreshXOR

x4 RefreshXOR

SecAddModp RefreshXOR

C2 SecAddModp O

C2

C4

Fig. 2: Structure of SecArithBoolModp in Algorithm 3 for n = 4

4 A New B2Aq Conversion Algorithm

In this section, we present our new B2Aq conversion algorithm. Initially, we de-
scribe how the aforementioned arithmetic relationship of Boolean-masked bits
can be used to construct a higher-order-secure conversion algorithm. We use this
bit-wise transformation to derive a generic method to convert Boolean encodings
to arithmetic encodings for arbitrary bit size k, number of shares n, and modulus
q. The security of our solution is extensively proven and the t − SNI property
is shown. In the last subsection, we compare the performance of our proposal
not only against the new SecArithBoolModp (quadratic) algorithm for a prime
modulus, but also against standard B2A conversions assuming a modulus of 2k.

4.1 Conversion for x ∈ F2

Firstly, we discuss how to securely transform the Boolean shares (x1, x2) ∈ F2

with x1 ⊕ x2 = x into arithmetic shares (A1, A2) with A1 + A2 = x mod q for
some arbitrary modulus q. For conciseness, we will not explicitly indicate ev-
ery time that the arithmetic operations are done modulo q. To perform the
conversion, the Boolean shares are transformed to the arithmetic encodings
B1 + B2 = x1 and C1 + C2 = x2. This results in the following equations

x = x1 ⊕ x2 = (B1 +B2)⊕ (C1 + C2)

= (B1 +B2) + (C1 + C2)− 2 · (B1 +B2) · (C1 + C2).

11

Algorithm 4 SecB2Aq−Bit (simple)

Input: x = (xi)1≤i≤n ∈ F2 such that
⊕

i xi = x
Output: A = (Ai)1≤i≤n ∈ Fq such that

∑
iAi = x mod q

1: (Ai)1≤i≤n ← 0
2: for j = 1 to n do
3: (Bi)1≤i≤n ← (xj , 0, . . . , 0)
4: B← RefreshADD(B, q)
5: C← SecMul(A,B)
6: A← A+B− 2 ·C
7: end for

Before deriving the final arithmetic encoding A, we have to sample a fresh ran-
dom element R ∈ Fq to secure the shared multiplication (B1 + B2) · (C1 + C2).
Now, it is easily possible to compute the shares as

A1 = B1 + C1 +R− 2 ·B1 · C1 − 2 ·B1 · C2

A2 = B2 + C2 −R− 2 ·B2 · C1 − 2 ·B2 · C2.

Extending this simple first-order approach to arbitrary n simply requires a
proper refresh and multiplication algorithm, as described in Algorithm 4.

However, similarly as before, the algorithm has a run time complexity of
O(n3), i.e., cubic in the number of shares, and, therefore, quickly becomes inef-
ficient for increasing security orders. Therefore, we further optimize the simple
version of the conversion to increase the performance significantly.

1. Instead of using the t − SNI refresh RefreshADD for every iteration round,
we found that it is sufficient to use a t−NI refresh for every round and only
perform a final t − SNI refresh at the end. This reduces the complexity of
the refresh for every iteration from O(n2) to O(n).

2. Instead of multiplying two complete encodings as SecMul(A,B)3, we do not
refresh xj and instead compute the component-wise multiplication A · xj .
Obviously, this requires that the encoding A is independent of xj , which we
achieve with the aforementioned t−NI refresh. In this way, we save another
operation with O(n2) and reduce it to O(n). Furthermore, we can save n−1
operations of the addition A+ xj .

3. Similar to the previous conversions, we vary the number of considered shares
in each iteration, e.g., for j = 2 the operations are done on two shares. Note
that we cannot use the same recursive approach as the previous examples,
because it would not allow us to employ the second optimization.

The optimized conversion is given in Algorithm 5, which now has a run time
complexity of O(n2). Its structure is depicted in Figure 3.

Correctness. We prove the correctness of B2Aq−Bit, since the refreshing after-
wards does not change the decoded output. The proof is based on the following
3 SecMul is implemented similar to SecAnd of [14].

12

Algorithm 5 SecB2Aq−Bit (optimized)

Input: x = (xi)1≤i≤n ∈ F2 such that
⊕

i xi = x ∈ F2

Output: A = (Ai)1≤i≤n ∈ Fq such that
∑

iAi = x mod q
A← B2Aq−Bit(x)
A← RefreshADD(A, q)

Algorithm 6 B2Aq−Bit

Input: x = (xi)1≤i≤n ∈ F2 such that
⊕

i xi = x ∈ F2

Output: A = (Ai)1≤i≤n ∈ Fq such that
∑

iAi = x mod q
1: A← x1
2: for j = 2 to n do
3: A← B2A

(j)
q−Bit(A, xj)

4: end for

property, already mentioned in Equation (3). Given x1, x2 ∈ F2, the XOR between
the two bits can be written as x1⊕x2 = x1 +x2− 2 ·x1 ·x2. Generalizing to the
case of n values, it is easy to see that

n⊕
i=1

xi = ((((x1 ⊕ x2)⊕ x3) . . .)⊕ xn) =
n−1⊕
i=1

xi + xn − 2 ·
n−1⊕
i=1

xi · xn (4)

Now, adding the output shares of Algorithm 6 we get

n∑
i=1

Ai =

n∑
i=1

Bi − 2 ·
n∑
i=1

Bi · xn + xn =

n−1∑
i=1

Ai − 2 ·
n−1∑
i=1

Ai · xn + xn

=

n−1⊕
i=1

xi − 2 ·
n−1⊕
i=1

xi · xn + xn

which, for Equation 4, is exactly
⊕n

i=1 xi.

Security. In the following propositions we show that our conversion scheme
SecB2Aq−Bit in Algorithm 5 satisfies the t − SNI property, when t = n−1. We
underline that t − SNI ensures that our conversion algorithm can be securely
composed in larger circuits.

Proposition 2. B2A
(2)
q−Bit in Algorithm 7 is 1− NI.

Proof. Let us suppose that the adversary has exactly 1 probe w in Algorithm 7.
This belongs to the following possible groups:

(1) x1, x2
(2) B2

13

Algorithm 7 B2A
(n)
q−Bit

Input: A = (Ai)1≤i≤n−1 ∈ Fq such that
∑

iAi = x; xn ∈ F2

Output: C = (Ci)1≤i≤n ∈ Fq such that
∑

i Ci = (x⊕ xn) mod q

1: Bn
$← Fq

2: B1 ← A1 −Bn mod q
3: for j = 2 to n− 1 do
4: R

$← Fq

5: Bj ← Aj −R mod q
6: Bn ← Bn +R mod q
7: end for
8: for j = 1 to n do
9: Cj ← Bj − 2 · (Bj · xn) mod q
10: end for
11: C1 ← C1 + xn mod q

x1 B2A
(2)
q−Bit B2A

(3)
q−Bit

. . . B2A
(n)
q−Bit RefreshADD A

x2 x3 xn

C2

C3

Cn := B2Aq−Bit

Fig. 3: Structure of SecB2Aq−Bit in Algorithm 5.

(3) B1 := A1 −B2 = x1 −B2

(4) B1 · x2 = (x1 −B2) · x2, b := B1 − 2(B1 · x2)
(5) B2 · x2, B2 − 2(B2 · x2)
(6) b+ x2 = (B1 − 2(B1 · x2)) + x2

We construct a set of indexes I of cardinality 1, by adding the index 1 (resp. 2)
if w = x1 (resp. w = x2). The simulation of the probe w, by using at most 1
share of the inputs, is straightforward.

– If the probe w is in group (1), by construction 1 ∈ I or respectively 2 ∈ I.
Thus the values can be simulated as x1 (resp. x2) as in the real algorithm.

– If the probe w is in one of the groups from (2) to (6), thanks to the presence
in the computation of w of the random values B1 or B2, it is simulated by
assigning it to a random and independent value in Fq. ut

We remark that the algorithm is not t− SNI. Indeed, if an adversary probes the
output share (B1−2(B1 ·x2))+x2 = ((x1−B2)−2((x1−B2) ·x2))+x2 and the

14

internal value B2, then the adversary gets the knowledge of two inputs shares,
contradicting the definition of t − SNI.

In the following proposition we prove that the algorithm B2Aq−Bit is t−NI.

Proposition 3. B2Aq−Bit in Algorithm 6 is t− NI.

Proof. In the following, we denote with Ci the execution of Algorithm 6 until the
ith iteration of the for, for i = 2, . . . , n, as indicated in Figure 3. In particular
Cn := B2Aq−Bit.

We prove the thesis by induction on the value i. From Proposition 2 the
condition is satisfied for the case of i = 2.

Let now assume that Ci is (i − 1) − NI for all i ≤ n − 1 and we show that
under this condition Cn is t− NI as well. First of all let us denote with A(i)

j the
output shares of Ci for all i ≤ n − 1 and with j = 1, . . . , n. We can classify the
internal and output values of Cn in the following groups:

(1) Bj for j = 2, . . . , n, r
(2) An−11 ,
(3) b1 := An−11 −B2 − · · · −Bj , with j = 2, . . . , n

(4) A(n−1)
j − rj =: bj , with j = 2, . . . , n

(5) A(n)
1 = (An−11 −B2 − · · · −Bn) + xn = b1 + xn

(6) A(n)
j = (A

(n−1)
j − rj)− 2((A

(n−1)
j − rj) · xn) = bj − 2(bj · xn)

(7) xn

Let us suppose w.l.o.g. that an adversary has Ω probes on Cn with |Ω| = t =
t1+· · ·+tn, where t1+· · ·+ti are the probes on Ci. We show that the adversary’s
observation on Cn can be simulated by using at most t shares of the input.

We first construct a set of indexes I accordingly to the following instructions:
for each probe in group (5), add n to I, and for each probe in group (6), add n
to I. The simulation follows the steps below.

– Step 1. The probes in group (1) are simulated by assigning them to a
random and independent value in Fq.

– Step 2. Since by hypothesis B2A(n−1)q−Bit is t−NI, the probes in group (2) can
be simulated by using at most t1 + · · ·+ tn−1 shares.

– Step 3. If a probe is in group (3) and at least one of the B2, . . . , Bj is not
in Ω, then the values can be assigned to a random and independent value.
Otherwise, if B2, . . . , Bj ∈ Ω, then since B2A(n−1)q−Bit is t−NI the probes can be
simulated by using at most t1+· · ·+tn−1 shares of the input and the assigned
values of B2, . . . , Bj in Step 1. Otherwise, if a sum An−11 −B2−· · ·−Bk ∈ Ω,
with k < j and Bk+1, . . . , Bj ∈ Ω, then the values can be computed as in the
real execution of the algorithm, by using the values Bk+1, . . . , Bj assigned
in Step 1 and the simulated sum An−11 −B2− · · · −Bk, in one of the phases
of this Step.

– Step 4. If a probe is in group (4) and rj /∈ Ω, then the values can be
assigned to a random and independent value. Otherwise, if rj ∈ Ω, then since
B2A

(n−1)
q−Bit is t−NI the probes can be simulated by using at most t1+· · ·+tn−1

shares and the value rj assigned in Step 1.

15

– Step 5. If a probe is in group (5) and b1 ∈ Ω, then by construction n ∈ I
and we can compute the value as in the algorithm, by using the b1 simulated
at Step 3 and xn. Otherwise, if b1 /∈ Ω, we can simulate b1 as in Step 3, by
using at most t1 + · · ·+ tn+1 input shares and xn, since n ∈ I.

– Step 6. If a probe is in group (6) and bj ∈ Ω, then by construction n ∈ I
and we can compute the value as in the algorithm, by using the bj simulated
at Step 4 and xn. Otherwise, if bj /∈ Ω, we can simulate bj as in Step 4, by
using at most t1 + · · ·+ tn+1 input shares and xn, since n ∈ I.

– Step 7. If a probe is in group (7), by construction n ∈ I and we can trivially
simulate xn.

In all the steps listed above, we showed that the simulation uses at most t input
shares, as required from Definition 1, completing the proof. ut

Before proceeding with the next proposition, we remind that the refreshing
scheme added at the end of SecB2Aq−Bit is an algorithm presented in [6] and
proven to be t − SNI. The t − SNI security of SecB2Aq−Bit relies exactly on the
introduction of this gadget after the computation of SecB2Aq−Bit. We see below
a more detailed security proof.

Proposition 4. SecB2Aq−Bit in Algorithm 5 is t− SNI.

Proof. The t − SNI security of SecB2Aq−Bit easily follows from the fact that
B2Aq−Bit is t− NI and RefreshADD is t − SNI.

Let Ω = (I,O) be the set of probes on SecB2Aq−Bit, where I1 are the probes
on the internal wires of B2Aq−Bit and I2 are the probes on the internal wires of
RefreshADD, with |I| = |I1|+ |I2| ≤ t1 and |I|+ |O| ≤ t.

Since RefreshADD is t − SNI and |I2∪O| ≤ t, then there exists an observation
set S2 such that |S2| ≤ |I2| and the gadget can be simulated from its input shares
corresponding to the indexes in S2.

Since SecB2Aq−Bit is t − NI and |I1 ∪ S2| ≤ |I1 ∪ I2| ≤ t, then it exists an
observation set S1 such that |S1| ≤ |I1 ∪ S2| and the gadget can be simulated
from its input shares corresponding to the indexes in S1.

Now, composing the simulators that we have for the two gadgets RefreshADD
and SecB2Aq−Bit, all the probes of the circuit can be simulated from |S1| ≤
|I1|+ |I2| ≤ t1 shares of the input x and therefore, according to Definition 2, the
circuit in Figure 3 is t − SNI.

ut

4.2 Conversion for x ∈ F2k

While the current solution is very efficient and simple, it only computes the
correct results for Boolean encodings of bit values. Otherwise, the arithmetic
property does not hold anymore. In order to extend our approach to include
arbitrary bit sizes, we apply the previous conversion to each input bit separately
and combine with component-wise addition. This trivially results in a complexity
of O(n2 ·k), as we have k calls to SecB2Aq−Bit. The complete conversion is given
in Algorithm 9 and its basic structure for k = 3 is depicted in Figure 4.

16

Algorithm 8 RefreshADD (based on RefreshXOR [6])
Input: A = (Ai)1≤i≤n ∈ Fq such that

∑
iAi = x mod q, modulus q

Output: B = (Bi)1≤i≤n ∈ Fq such that
∑

iBi = x mod q
1: B← A
2: for i = 1 to n− 1 do
3: for j = 1 + i to n do
4: R

$← Fq

5: Bi ← Bi + r
6: Bj ← Bj − r
7: end for
8: end for

Algorithm 9 SecB2Aq

Input: x = (xi)1≤i≤n ∈ F2k such that
⊕

i xi = x ∈ F2k

Output: A = (Ai)1≤i≤n ∈ Fq such that
∑

iAi = x mod q
1: A← SecB2Aq−Bit ((x >> (k − 1)) ∧ 1)
2: for j = 2 to k do
3: B← SecB2Aq−Bit ((x >> (k − j)) ∧ 1)
4: A← 2 ·A+B mod q
5: end for

Correctness. Let us assume that 2k ≤ q. It is easy to see that for each
i = 1, . . . , n the output shares are of the following form

Ai = 20 · B2Aq−Bit(x(1)i) + 21 · B2Aq−Bit(x(2)i) + · · ·+ 2k−1 · B2Aq−Bit(x(k)i)

and therefore
∑n
i=1Ai = x mod q.

Security. As done for the previous algorithms, we give in the following the
proof of security according to the t − SNI property, for t ≤ n− 1.

Proposition 5. SecB2Aq in Algorithm 9 is t − SNI, with t ≤ n− 1.

Proof. Proving that Algorithm 9 is t− SNI follows from the fact that SecB2Aq−Bit
is t − SNI and from the structure of the algorithm itself, depicted in Figure 4.

First, we define Ci, for i = 1, . . . , k as in Figure 4, where C1 := SecB2Aq−Bit
and Cn := SecB2Aq. We prove the thesis by induction on i ∈ N.

Thanks to Proposition 4, C1 is t − SNI .
We suppose now that Ci is t − SNI for all i = 1, . . . , n − 1 and we prove that
Cn is t − SNI. Let Ω = (I,O) be the set of adversarial observations on Cn,
where I are the ones on the internal values and O the ones on the output values,
with |I|+ |O| ≤ t. In particular, let I1 be the set of probes on +, I2 the set of
probes on 2·, I3 be the set of probes on Cn−1 and I4 be the set of probes on
SecB2Aq−Bit, with

∑
j |Ij | ≤ |I|.

We prove the existence of a simulator which can simulate the adversary’s
view by using at most |I| input shares. We proceed with the analysis of the
circuit from right to left.

17

x(3) SecB2Aq−Bit

x(2) SecB2Aq−Bit

2·

+

x(1) SecB2Aq−Bit

I4
S4

2·

I2
S2

+

I1

S1
2

S1
1

O

C1

C2 I3

C3

S3

Fig. 4: Structure of SecB2Aq in Algorithm 9 for k = 3.

Since + is a linear operation and |I1∪O| ≤ t, then there exist two observation
sets S11 ,S12 such that |S11 | ≤ |I1 ∪ O|, |S12 | ≤ |I1 ∪ O| and the gadget can be
simulated using at most |S11 |+ |S12 | shares of the inputs.

Since 2· is a linear operation and |I2∪S12 | ≤ t, then there exists an observation
set S2 such that |S2| ≤ |I2 ∪S12 | and the gadget can be simulated using at most
|S2|+ |S12 | shares of the inputs.

Since, for the assumption step, Cn−1 is t − SNI and moreover |I3 ∪ S2| ≤ t,
there exists an observation set S3 such that |S3| ≤ |I3| and the gadget can be
simulated using at most |S3| shares of the inputs.

Since SecB2Aq−Bit is t − SNI and moreover |I4 ∪ S11 | ≤ t, there exists an
observation set S4 such that |S4| ≤ |I4| and the gadget can be simulated using
at most |S4| shares of the inputs.

By combining the steps above, we see that Cn can be simulated by using in
total |S3 ∪ S4| ≤ |I3|+ |I4| ≤ |I| input shares, completing the proof. ut

4.3 Performance Analysis

We analyze both of our new conversion algorithms regarding the number of
required operations and randoms. They are compared to the cubic conversion
from [6] for a prime modulus q = 12289 as used in NewHope. Furthermore, we
compare SecB2Aq to the conversions from [14] and [7], since they are currently
the fastest algorithms for power-of-two moduli secure at arbitrary orders4.

4 Note that there are order-optimized algorithms which can provide an even better
performance for specific values of t (i.e., Goubin [19] for t = 1, and Hutter and
Tunstall [21] for t = 2). However, for power-of-two moduli our SecB2Aq is only

18

Table 1: Operation count for Boolean-to-arithmetic conversions with prime mod-
ulo q = 12289 for (A) SecB2Aq, (B) SecBoolArithModp (cubic) [6], and (C)
SecArithBoolModp (quadratic).

n 2 3 4 5 6 7 8 9 10 11 16

k = 4 (A) 76 174 308 478 684 926 1,204 1,518 1,868 2,254 4,724

k = 8 (A) 156 354 624 966 1,380 1,866 2,424 3,054 3,756 4,530 9,480

k = 15

(A) 296 669 1,177 1,820 2,598 3,511 4,559 5,742 7,060 8,513 17,803
(B) 765 2,451 5,617 10,722 18,225 28,585 42,261 59,712 81,397 107,775 326,125
(C) 695 1,948 3,513 5,842 8,483 11,592 15,013 19,354 24,007 29,128 60,973

Number of Operations. For comparison, we estimate the number of opera-
tions of the different Boolean-to-arithmetic conversions. Similar to [12], we as-
sume that randomness generation takes unit time, and we do not consider the
modulo reductions. For [14] we use the estimation given in [12]5, and for [7] the
authors provide a closed equation to compute the number of operations. Our
newly-proposed SecB2Aq has a run time complexity6 of

TSecB2Aq(n, k) =
9kn2

2
+

5kn

2
− 2n− 3k.

We compare the B2Aq conversions considering the prime modulus from the NIST
submission NewHope q = 12289. It should be noted that the modular ad-
dition SecAddModp requires 2k > 2q. Therefore, we always call the function
SecBoolArithModp with k′ = dlog2 2qe = 15 in this evaluation. The results are
presented in Table 1. It is noticeable that SecB2Aq outperforms both versions
of SecBoolArithModp significantly. This is mostly due to the small values of k.
It is expected that for larger k the quadratic variant of SecBoolArithModp is
the most efficient B2Aq conversion, as it scales with O(log k) instead of O(k).
Nevertheless, for our case study we obtain a large performance improvement by
using SecB2Aq, since we need to transform either 1- or 5-bit variables.

Additionally, we compare our new algorithms with the state-of-the-art B2A
conversions assuming a modulus of 2k for different values of k. The resulting per-
formances are given in Table 2. As expected, the algorithm of [7] outperforms all
other solutions for small n. Surprisingly, however, our new conversion SecB2Aq
outperforms the approach of [14] for the considered values of k. We expect that,
for larger bit sizes and by incorporating a logarithmic adder, [14] will eventually
outperform our approach.7 Nevertheless, for k = 32, which is used in many sym-

competitive for larger values of t, and we, thus, exclude these specific examples from
the comparison.

5 Note that there is typo in the final equation: T ′n = 2n+ Tn +Bn + 3n2 + n.
6 In the full version of the paper we derive the complexity of the remaining algorithms.
7 It was shown in [13] that the logarithmic adder offers a significant improvement over
the linear approach for k > 32 at first-order.

19

Table 2: Operation count for Boolean-to-arithmetic conversions mod 2k for (A)
SecB2Aq, (D) Bettale et al. [7], and (E) Coron et al. [14]. The bold operation
counts indicate that our new algorithm provides the best performance of the
considered algorithms for a given value of k.

n 2 3 4 5 6 7 8 9 10 11 16

∀k (D) 15 49 123 277 591 1,225 2,499 5,053 10,167 20,401 655,251

k = 1
(A) 12 33 63 102 150 207 273 348 432 525 1,125
(E) 56 135 234 374 534 721 928 1,183 1,458 1,760 3,640

k = 4
(A) 76 174 308 478 684 926 1,204 1,518 1,868 2,254 4,724
(E) 134 354 636 1,052 1,530 2,098 2,728 3,520 4,374 5,318 11,248

k = 8
(A) 156 354 624 966 1,380 1,866 2,424 3,054 3,756 4,530 9,480
(E) 238 646 1,172 1,956 2,858 3,934 5,128 6,636 8,262 10,062 21,392

k = 32
(A) 636 1,434 2,520 3,894 5,556 7,506 9,744 12,270 15,084 18,186 38,016
(E) 862 2,398 4,388 7,380 10,826 14,950 19,528 25,332 31,590 38,526 82,256

metric algorithms, our SecB2Aq−Bit does provide a performance improvement
even for standard moduli assuming n ≥ 11. We further want to note that our
algorithm comes with a proof of t − SNI, which allows composability with other
modules under certain assumptions [5].

Randomness Complexity We estimate the number of required random bits
for the different Boolean-to-arithmetic conversions. We denote the bit size of the
input encoding as k1 and for samples in Fq, where q is not a power-of-two, we
assume k2 = dlog2 qe bits. A more detailed discussion of the sampling process
of such values is provided in the case study. Again, for [7] the authors pro-
vide a closed equation to compute the number of random elements. Our newly-
proposed SecB2Aq has a randomness complexity ofRSecB2Aq(n, k1) = k2k1(n

2−n).
As before, we initially compare the B2Aq conversions considering the prime

modulus from the NIST submission NewHope q = 12289. The results are pre-
sented in Table 3 and again SecB2Aq outperforms SecBoolArithModp. However,
it should be noted that all random samples for SecB2Aq are from Fq, while
SecBoolArithModp only requires (n−1) random values from Fq and the remain-
ing are sampled from F2k1 , which can be more efficient depending on the RNG.

In the typical use cases of a power-of-two modulus (like in symmetric crypto),
there is no difference between k1 and k2 and thus we evaluate the number of RNG
calls instead of random bits for this case. The resulting performances are given
in Table 4. Again, the algorithm of [7] outperforms all other solutions for small
n, while SecB2Aq provides the best performance for certain values of k and n.

20

Table 3: Required random bits for Boolean-to-arithmetic conversions with
q = 12289 for (A) SecB2Aq, (B) SecBoolArithModp (cubic) [6], and (C)
SecArithBoolModp (quadratic). Note that sampling from Fq is estimated
with dlog2 qe bits.

n 2 3 4 5 6 7 8 9 10 11 16

k=4 (A) 112 336 672 1,120 1,680 2,352 3,136 4,032 5,040 6,160 13,440

k=8 (A) 224 672 1,344 2,240 3,360 4,704 6,272 8,064 10,080 12,320 26,880

k=15

(A) 420 1,260 2,520 4,200 6,300 8,820 11,760 15,120 18,900 23,100 50,400
(B) 1,244 4,933 12,282 24,506 42,820 68,439 102,578 146,452 201,276 268,265 828,210
(C) 854 2,968 5,922 10,556 16,030 22,764 30,338 40,012 50,526 62,300 137,970

Table 4: Number of RNG calls for Boolean-to-arithmetic conversions mod 2k for
(A) SecB2Aq, (D) Bettale et al. [7], and (E) Coron et al. [14]. The bold call
counts indicate that our new algorithm provides the best performance of the
considered algorithms for a given value of k.

n 2 3 4 5 6 7 8 9 10 11 16

∀k (D) 2 7 18 41 88 183 374 757 1,524 3,059 98,286

k = 1
(A) 2 6 12 20 30 42 56 72 90 110 240
(E) 9 23 41 66 95 129 167 213 263 318 663

k = 4
(A) 8 24 48 80 120 168 224 288 360 440 960
(E) 15 44 83 141 209 291 383 498 623 762 1,647

k = 8
(A) 16 48 96 160 240 336 448 576 720 880 1,920
(E) 23 72 139 241 361 507 671 878 1,103 1,354 2,959

k = 32
(A) 64 192 384 640 960 1,344 1,792 2,304 2,880 3,520 7,680
(E) 71 240 475 841 1,273 1,803 2,399 3,158 3,983 4,906 10,831

5 Higher-Order Masked Binomial Sampling

Our sampling algorithms assume that they are given two variables (x, y) that
have a length of κ bits and are Boolean-encoded as (x,y). This is in accordance
with many of the aforementioned schemes which rely on a PRNG (Boolean-
masked) to produce uniform pseudo-randomness. The sampler needs to compute
HW(x) − HW(y) in a secure fashion on these encodings and produce arithmetic
shares A with

∑
iAi = HW(x) − HW(y) mod q for a given modulus q to fit the

subsequent lattice operations. Since this conversion can be done with any of the
aforementioned B2Aq schemes, the algorithms contain a generic function call.
Initially, we present a generalization of [25], before proposing a more efficient
sampling algorithm based on bitslicing. Both algorithms are proven to be t − SNI
and their performances are compared using NewHope as a case study.

21

Algorithm 10 SecSampler1

Input: x = (xi)1≤i≤n ∈ F2κ , y = (yi)1≤i≤n ∈ F2κ such that
⊕

i xi = x,
⊕

i yi = y
Output: A = (Ai)1≤i≤n ∈ Fq such that

∑
iAi = HW(x)− HW(y) mod q

1: (Ai)1≤i≤n ← 0
2: for j = 0 to κ− 1 do
3: B← B2Aq ((x >> j) ∧ 1)
4: C← B2Aq ((y >> j) ∧ 1)
5: A← A+B mod q
6: A← A−C mod q
7: end for

5.1 Generalization of [25]

As briefly discussed in Section 2.4, the bits of (x,y) are transformed separately to
arithmetic shares. We extend this approach in Algorithm 10 to be generic for any
number of shares n, modulus q, and length of the bit-vectors κ. In particular, we
first transform each of the 2κ bits separately to an arithmetic encoding modulo
q. These are then summed component-wise to compute the Hamming weight of
each variable and the results are subtracted again component-wise.

Correctness. The correctness of SecSampler1 follows directly by the construc-
tion of the algorithm. Indeed, since at every iteration of the loop

A =B2Aq ((x >> 0) ∧ 1)− B2Aq ((y >> 0) ∧ 1)

+ · · ·+ B2Aq ((x >> κ− 1) ∧ 1)− B2Aq ((y >> κ− 1) ∧ 1)

we have∑
i

Ai =
∑
i

(
B2Aq ((xi >> 0) ∧ 1)− B2Aq ((yi >> 0) ∧ 1) + . . .

+ B2Aq ((xi >> κ− 1) ∧ 1)− B2Aq ((yi >> κ− 1) ∧ 1)
)

=HW(x)− HW(y) mod q

Security. The security of the sampler described in Algorithm 10 can be easily
derived from its basic structure and utilization of t − SNI gadgets.

Proposition 6. Sampler1 in Algorithm 10 is t − SNI, with t ≤ n− 1

Proof. We point out that the t − SNI security of both considered B2Aq al-
gorithms, i.e., SecB2Aq−Bit proven in Proposition 4 and SecArithBoolModp in
Proposition 1, receiving independent inputs, guarantees that every loop of Al-
gorithm 10 represents a t − SNI gadget and therefore the output A can be
securely injected in the sum of the following loop. ut

22

Algorithm 11 SecBitAdd

Input: x = (xi)1≤i≤n ∈ F2κ such that
⊕

i xi = x, λ = dlog2(κ+ 1)e+ 1
Output: z = (zi)1≤i≤n ∈ F2λ such that

⊕
i zi = HW(x)

1: (ti)1≤i≤n ← 0
2: (zi)1≤i≤n ← 0
3: for j = 1 to κ do
4: t(1) ← z(1) ⊕ x(j)

5: w← x(j)

6: for l = 2 to λ do
7: w← SecAnd(w, z(l−1))
8: t(l) ← z(l) ⊕w
9: end for
10: z← t
11: end for

z SecBitAdd

I4

SecBitSub

I3

SecConstAdd

I2

B2Aq

I1
S4 S3

1 S2 S1

A
O

y

S3
2

κ

Fig. 5: Structure of SecSampler2 in Algorithm 15 (lines 1-4).

5.2 New Bitsliced Masked Binomial Sampler

In our improved sampler SecSampler2, we first compute the Hamming weight of
x on the Boolean encodings using bitslicing to significantly increase the through-
put. We further improve the performance by directly subtracting the Hamming
weight of y from the result, again using bitslicing. In this way, the sampler only
requires a single conversion. However, to correctly map the sign of the difference
(i.e., negative values would be transformed incorrectly) it is necessary to add
κ before converting. A generic algorithm to add such a constant to a Boolean
encoding is provided in Algorithm 13. However, for specific values of κ this can
be significantly optimized, e.g., for κ = 8 as in NewHope the addition can be
done with only component-wise XOR, as shown in Algorithm 14. Finally, after
the B2Aq conversion, the additional κ needs to be subtracted to recover the cor-
rect result, and this can be done component-wise on the arithmetic shares. The
complete procedure is given in Algorithm 15. Since the input variables are in a
bitsliced format, we directly denote the j-th bit of the l-th share of x as x(j)l .

23

Algorithm 12 SecBitSub

Input: z = (zi)1≤i≤n ∈ F2λ ,y = (yi)1≤i≤n ∈ F2κ such that
⊕

i zi = z and
⊕

i yi = y,
λ = dlog2(κ+ 1)e+ 1

Output: z = (zi)1≤i≤n ∈ F2λ such that
⊕

i zi = z − HW(y)
1: (ti)1≤i≤n ← 0
2: for j = 1 to κ do
3: t(1) ← z(1) ⊕ y(j)

4: w← y(j)

5: for l = 2 to λ do
6: u← z(l−1)

7: u1 ← ¬u1

8: w← SecAnd(w,u)
9: t(l) ← z(l) ⊕w
10: end for
11: z← t
12: end for

Algorithm 13 SecConstAdd

Input: x = (xi)1≤i≤n ∈ F2λ , λ = dlog2(κ+ 1)e+ 1
Output: y = (yi)1≤i≤n ∈ F2λ such that

⊕
i yi = x+ κ

1: (ti)1≤i≤n ← (κ, 0, . . . , 0)
2: t← RefreshXOR(t, λ)
3: y← SecAdd(x, t)

Correctness. The correctness of SecSampler2 is easy to show.∑
i

Ai = B2Aq(SecConstAdd(SecBitSub(SecBitAdd(x),y), κ))− κ

= B2Aq(SecConstAdd(SecBitSub(HW(x),y), κ))− κ
= B2Aq(SecConstAdd(HW(x)− HW(y), κ))− κ
= B2Aq(HW(x)− HW(y) + κ)− κ = HW(x)− HW(y) mod q.

Security. Before proving the security of SecSampler2 in Algorithm 15, we
briefly summarize the security properties which its subroutines satisfy.

First we show that SecBitAdd in Algorithm 11 is t − NI and we start the
analysis by focusing on its structure. We recall that SecAnd [14] is t − SNI and it
receives at every iteration independent inputs (line 7). The output of each SecAnd

is added with a XOR to a value independent from its inputs (line 8), therefore
the entire inner loop (lines 6-9) represents a t − SNI gadget. This is recursively
composed in the outer loop (lines 3-11) providing the outputs (t(2), . . . , t(λ))
and preserving the t − SNI property. Additionally, at every iteration of the
outer loop, x(j) is added with a XOR to z(1) (line 4), resulting in the output
t(1) = x(1) + . . . + x(κ). Let us suppose an attacker probes a set of t1 values
P1 on the shares (t(2), . . . , t(λ)) or on the internal values produced during the

24

Algorithm 14 SecConstAdd (optimized for κ = 8)
Input: x = (xi)1≤i≤n ∈ F2λ

Output: y = (yi)1≤i≤n ∈ F2λ such that
⊕

i yi = x+ 8
1: y← x
2: y(5) ← y(5) ⊕ y(4)

3: y(4)1 ← y
(4)
1 ⊕ 1

Algorithm 15 SecSampler2

Input: x = (xi)1≤i≤n ∈ F2κ , y = (yi)1≤i≤n ∈ F2κ , κ, such that
⊕

i xi = x,
⊕

i yi = y
Output: A = (Ai)1≤i≤n ∈ Fq such that

∑
iAi = HW(x)− HW(y) mod q

1: z← SecBitAdd(x)
2: z← SecBitSub(z,y)
3: z← SecConstAdd(z, κ)
4: A← B2Aq (z)
5: A1 ← A1 − κ mod q

concatenation of the inner loop, and a set of t2 values P2 on the computation of
t(1), with t1 + t2 ≤ t. In particular let tO1 , tO2 be the probes on the output values
and tI1, t

I
2 the ones on the internals, with tO1 + tI1 = t1 and tI2 + tO2 = t2. The

t − SNI of the inner loop guarantees that every value in P1 can be simulated
by using at most tI1 shares of the inputs. On the other hand, because of the
linearity of the computation of t(1), the probes in P2 can be simulated using at
most tI2+ tO2 shares of the input. Therefore, by Definition 1, SecBitAdd is t−NI.

Now, since SecBitSub in Algorithm 12 follows the same procedure as Algo-
rithm 11, with the exception of Lines 6 and 7, which simply add a negation to
the interested value, then it is t− NI as well.

As for SecConstAdd in Algorithm 13, from [6] we know that RefreshXOR is
t − SNI and SecAdd is t−NI. Therefore it is easy to see that the composition of
them, as it appears in Algorithm 13, is t− NI. Regarding the optimized version
of SecConstAdd in Algorithm 14, here the security comes directly from the fact
that the algorithm is linear.

Proposition 7. SecSampler2 in Algorithm 15 is t − SNI, with t ≤ n− 1

Proof. Before proceeding with the proof, we point out that SecSampler2 is given
by the circuit in Figure 5 with the addition of a share-wise sum between the
output share A1 and the public value −κ (line 5 of Algorithm 15). Since the
simulation of such value depends only on the simulation of A1, the security level
of SecSampler2 is not influenced by this additional operation and it corresponds
to the one of the algorithm in Figure 5.

Let Ω = (I,O) be the set of adversarial observations on the circuit in Figure
5, where I are the ones on the internal values and O on the output shares,
with |I| + |O| ≤ t. In particular, let I1 be the set of probes on B2Aq, I2 on
SecConstAdd, I3 on SecBitSub and I4 on SecBitAdd, with

∑
j |Ij | ≤ |I|.

25

We prove the existence of a simulator which simulates the adversary’s view
by using at most |I| input shares, analyzing of the circuit from right to left.

Since B2Aq is t − SNI, there exists an observation set S1 such that |S1| ≤ |I1|
and the gadget can be simulated using at most |S1| shares of its input.

Since SecConstAdd is t−NI and |I2∪S1| ≤ t, then there exist an observation
set S2 such that |S2| ≤ |I2 ∪S1| and the gadget can be simulated using at most
|S2| shares of the inputs.

Since SecBitSub is t−NI and |I3 ∪S2| ≤ t, then there exist two observation
sets S31 ,S32 such that |S31 | ≤ |I3 ∪ S2|, |S32 | ≤ |I3 ∪ S2| and the gadget can be
simulated using at most |S31 |+ |S32 | shares of the inputs.

Since SecBitAdd is t− NI and |I4 ∪ S31 | ≤ t, then there exist an observation
set S4 such that |S4| ≤ |I4 ∪S31 | and the gadget can be simulated using at most
|S4| shares of the inputs.

By combining the steps above, we see that SecSampler2 can be simulated by
using in total |S4| ≤ |I4|+ |S31 | ≤ |I4|+ |I3|+ |S2| ≤ |I4|+ |I3|+ |I2|+ |S1| ≤
|I4|+ |I3|+ |I2|+ |I1| ≤ |I| input shares, proving that it is t − SNI. ut

5.3 Performance Analysis

To better compare the two sampling approaches, we derive the run time com-
plexity for both. The calls to B2Aq and SecConstAdd are not substituted, since
their performance strongly depends on the used parameters, which may allow
further optimizations, e.g., Algorithm 14. With λ = dlog2(κ+1)e+1, we derive

TSecSampler1(n, κ) = 2κTB2Aq (n, 1) + 6nκ,

TSecSampler2(n, κ) = TSecBitAdd(n, κ) + TSecBitSub(n, κ) + TSecConstAdd(n, κ)

+ TB2Aq (n, λ) + n

= TB2Aq (n, λ) + TSecConstAdd(n, κ)

+ 7κλn2 − 7κn2 + 7κλn+ κλ− 5κn− κ+ n.

It is noticeable that SecSampler2 requires only one conversion of λ bits, while
SecSampler1 consists of 2κ conversion of one bit. This can lead to significant
advantages for the former approach assuming small κ as shown in the case study.

Regarding the randomness complexity, we observe a similar trend:

RSecSampler1
(n, κ) = 2κRB2Aq (n, 1),

RSecSampler2
(n, κ) = RSecBitAdd(n, κ)

+RSecBitSub(n, κ) +RSecConstAdd(n, κ) +RB2Aq (n, λ)

= RB2Aq (n, λ) +RSecConstAdd(n, κ) + κλn2 − κn2 − κλn+ κn

5.4 Case Study: NewHope

To concretely evaluate the performance of our proposed sampling algorithms, we
conduct a case study using the parameters of the NIST submission NewHope.

26

We set the length of the bit-vectors to κ = 8 and the prime to q = 12289. The
same prime can be found in multiple NIST submissions, like Kyber and HILA5.
The parameter κ is usually different though and for Kyber set to 3, 4, or 5
and for HILA5 set to 16. Both sampling approaches are evaluated with the
proposed B2Aq conversions SecB2Aq and SecArithBoolModp (quadratic). The
latter is instantiated with k′ = dlog2 2qe = 15 as discussed in the previous
section.

We implement all variants on a 32-bit ARM Cortex-M4F microcontroller
embedded in an STM32F4 DISCOVERY board with 1 Mbyte of flash memory,
192 kbyte of RAM, a floating-point unit (FPU), and a true random number
generator (TRNG). The TRNG needs 40 cycles of a 48 MHz clock to generate a
random 32-bit value. The sampling of a true random value runs simultaneously
to other computations of the microcontroller. Assuming a sufficient amount of
clock cycles between two calls to the TRNG, a sample will be generated without
any wait cycles and therefore the average TRNG call will be much faster than
40 cycles at 48 MHz. The maximum clock frequency of the microcontroller is
168 MHz. We use the CYCCNT register of the data watchpoint and trace unit of
the microcontroller to measure the performance of our implementation.

To prevent timing leakage, our implementations have a secret-independent
running time. In particular, we refrained from using conditional statements or
instructions with varying execution time in critical parts of our implementation.
We furthermore disabled the data and instruction cache of our target micro-
controller. For the implementation of the B2Aq conversions, we need uniform
random numbers mod q = 12289. The TRNG of our development board outputs
32 uniform random bits. To sample a uniform random number mod q, we split
the 32-bit output of the TRNG into two 14-bit vectors and drop the remaining
four bits. We then check whether the first 14-bit vector is smaller than q or not.
If yes, we accept and return the value. If not we also check the second value. If
this check fails again, we get more true random 32-bit vectors from the TRNG
until we find a valid sample. This means that there is a q

214 = 0.75 probability
of a sample being accepted and a 0.25 probability of a sample being rejected.
Such a sampling approach does not have a constant run time, but it still does
not introduce a timing leakage, as the time required to generate a valid sample
is completely independent from the value of the generated sample.

The results of our implementation can be seen in Table 5, where the compari-
son for n = 2 also includes the masked binomial sampler from Oder et al. [25]8.
It is noticeable that SecB2Aq outperforms SecArithBoolModp (quadratic) for
every order. As discussed before, this huge speed-up is due to the specific pa-
rameters of the case study. Indeed the bit sizes of the input k = 1, 5 do not
fulfill the requirement of 2k > 2q, which thwarts its performance since we need

8 In contrast to [25], our cycle counts do not include the generation of the input bit
vectors. Therefore, our 3,757 cycles for one sample do not match the 6 million cycles
for 1024 coefficients reported in [25]. However, as the generation of the input samples
is a constant overhead that is independent from the sampling algorithm or the B2Aq
conversion, we decided to exclude it from our measurements.

27

Table 5: Cycle counts for masked sampling of one binomial distributed coefficient
using the B2A conversions (A) SecB2Aq and (C) SecBoolArithModp (quadratic).
We excluded the generation of the input bit vectors for better comparison as this
is a constant overhead for all approaches.

n 2 3 4 5

[25] 3,637 - - -

SecSampler1
(C) 271,423 638,315 1,076,155 1,758,184
(A) 6,145 13,913 24,397 37,880

SecSampler2
(C) 17,564 40,977 68,914 112,402
(A) 2,649 5,573 9,462 14,587

to instantiate it with a larger k′. This is especially problematic for SecSampler1,
which requires conversions with k = 1. Overall, our SecSampler2 offers a sig-
nificant improvement over SecSampler1 for both conversion algorithms and it
even outperforms the approach from Oder et al. [25], that is highly optimized
for n = 2. Applying a similar degree of optimization to our proposed sampler
for this special case would help to decrease the number of cycles even further.

6 Conclusions

In this work, we initially presented two new conversion techniques to transform
Boolean shares to arithmetic shares that work with arbitrary moduli and orders.
While the first provides the best asymptotic complexity of B2Aq algorithm with
O(n2 log k), the second proposal offers a significant performance improvement
for relevant bit sizes. It can even be applied in symmetric cryptography as for
certain number of shares (e.g., n ≥ 11 for k = 32), it outperforms previous work
that is optimized for power-of-two moduli. Using these conversions as basis, we
further constructed masked binomial sampling algorithms. To evaluate them,
we developed implementations for a popular microcontroller platform to obtain
realistic performance measurements. Thereby, we show that the combination of
SecB2Aq with our bitsliced sampler outperforms previous work and leads to the
currently most-efficient masked binomial sampling algorithm for the considered
parameters. Our work helps to better understand the overhead cost for masking
of post-quantum cryptography and, thus, is an important contribution for the
evaluation of these schemes in the ongoing NIST standardization process.

Acknowledgement

The authors are grateful to the AsiaCrypt2018 reviewers for useful comments
and feedback. The research in this work was supported in part by the European
Unions Horizon 2020 program under project number 644729 SAFEcrypto and

28

724725 SWORD, by the VeriSec project 16KIS0634 from the Federal Ministry of
Education and Research (BMBF) and by H2020 project PROMETHEUS, grant
agreement ID 780701.

References

1. E. Alkim, R. Avanzi, J. Bos, L. Ducas, A. de la Piedra, T. Pöppelmann, P. Schwabe,
and D. Stebila. NewHope Algorithm Specifications and Supporting Documen-
tation. https://newhopecrypto.org/data/NewHope_2017_12_21.pdf. Accessed:
2018-05-09.

2. E. Alkim, P. Jakubeit, and P. Schwabe. NewHope on ARM Cortex-M. In SPACE,
2016.

3. R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé. CRYSTALS-kyber. Technical report, National
Institute of Standards and Technology, 2017. available at https://pq-crystals.
org/kyber/data/kyber-specification.pdf.

4. G. Barthe, S. Belaïd, F. Dupressoir, P. Fouque, and B. Grégoire. Compositional
Verification of Higher-Order Masking: Application to a Verifying Masking Com-
piler. IACR Cryptology ePrint Archive, 2015:506, 2015.

5. G. Barthe, S. Belaïd, F. Dupressoir, P. Fouque, B. Grégoire, P. Strub, and R. Zuc-
chini. Strong Non-Interference and Type-Directed Higher-Order Masking. In ACM
CCS 2016, pages 116–129. ACM, 2016.

6. G. Barthe, S. Belaïd, T. Espitau, P. Fouque, B. Grégoire, M. Rossi, and M. Ti-
bouchi. Masking the GLP Lattice-Based Signature Scheme at Any Order. In
EUROCRYPT (2). Springer, 2018.

7. L. Bettale, J. Coron, and R. Zeitoun. Improved High-Order Conversion From
Boolean to Arithmetic Masking. TCHES, 2018, 2018.

8. A. Biryukov, D. Dinu, Y. L. Corre, and A. Udovenko. Optimal first-order boolean
masking for embedded iot devices. In CARDIS. Springer, 2017.

9. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards Sound Approaches to
Counteract Power-Analysis Attacks. In CRYPTO. Springer, 1999.

10. C. Chen, T. Eisenbarth, I. von Maurich, and R. Steinwandt. Differential Power
Analysis of a McEliece Cryptosystem. In ACNS. Springer, 2015.

11. C. Chen, T. Eisenbarth, I. von Maurich, and R. Steinwandt. Masking Large Keys
in Hardware: A Masked Implementation of McEliece. In SAC. Springer, 2015.

12. J. Coron. High-Order Conversion from Boolean to Arithmetic Masking. In TCHES.
Springer, 2017.

13. J. Coron, J. Großschädl, M. Tibouchi, and P. K. Vadnala. Conversion from Arith-
metic to Boolean Masking with Logarithmic Complexity. In FSE. Springer, 2015.

14. J. Coron, J. Großschädl, and P. K. Vadnala. Secure Conversion between Boolean
and Arithmetic Masking of Any Order. In CHES. Springer, 2014.

15. J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren. SABER:
Mod-LWR based KEM. Technical report, National Institute of Stan-
dards and Technology, 2017. available at https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-1-Submissions.

16. B. Debraize. Efficient and provably secure methods for switching from arithmetic
to boolean masking. In CHES. Springer, 2012.

17. J. Ding, T. Takagi, X. Gao, and Y. Wang. Dingkeyexchange. Technical report,
National Institute of Standards and Technology, 2017. available at https://csrc.
nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions.

29

https://newhopecrypto.org/data/NewHope_2017_12_21.pdf
https://pq-crystals.org/kyber/data/kyber-specification.pdf
https://pq-crystals.org/kyber/data/kyber-specification.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

18. T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, and M. T. M.
Shalmani. On the Power of Power Analysis in the Real World: A Complete Break
of the KeeLoqCode Hopping Scheme. In CRYPTO. Springer, 2008.

19. L. Goubin. A Sound Method for Switching between Boolean and Arithmetic Mask-
ing. In CHES. Springer, 2001.

20. T. Güneysu, V. Lyubashevsky, and T. Pöppelmann. Practical Lattice-Based Cryp-
tography: A Signature Scheme for Embedded Systems. In CHES. Springer, 2012.

21. M. Hutter and M. Tunstall. Constant-time higher-order boolean-to-arithmetic
masking. IACR Cryptology ePrint Archive, 2016:1023, 2016.

22. Y. Ishai, A. Sahai, and D. A. Wagner. Private Circuits: Securing Hardware against
Probing Attacks. In CRYPTO. Springer, 2003.

23. M. Karroumi, B. Richard, and M. Joye. Addition with blinded operands. In
COSADE. Springer, 2014.

24. P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In CRYPTO. Springer, 1996.

25. T. Oder, T. Schneider, T. Pöppelmann, and T. Güneysu. Practical CCA2-Secure
and Masked Ring-LWE Implementation. TCHES, 2018, 2018.

26. N. I. of Standards and Technology. Post-Quantum Cryptography - Round 1
Submissions. https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions. Accessed: 2018-12-10.

27. N. I. of Standards and Technology. Submission Requirements and Evalua-
tion Criteria for the Post-Quantum Cryptography Standardization Process.
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/call-for-proposals-final-dec-2016.pdf. Accessed: 2018-05-10.

28. O. Reparaz, S. S. Roy, R. de Clercq, F. Vercauteren, and I. Verbauwhede. Masking
ring-LWE. J. Cryptographic Engineering, 6(2):139–153, 2016.

29. M.-J. O. Saarinen. HILA5. Technical report, National Institute of Stan-
dards and Technology, 2017. available at https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-1-Submissions.

30. T. Schneider, A. Moradi, and T. Güneysu. Arithmetic addition over Boolean mask-
ing - towards first- and second-order resistance in hardware. In ACNS. Springer,
2015.

31. N. P. Smart, M. R. Albrecht, Y. Lindell, E. Orsini, V. Osheter, K. G. Paterson, and
G. Peer. LIMA-1.1: A PQC encryption scheme. Technical report, National Institute
of Standards and Technology, 2017. available at https://lima-pq.github.io/
files/lima-pq.pdf.

32. F. Standaert, N. Veyrat-Charvillon, E. Oswald, B. Gierlichs, M. Medwed,
M. Kasper, and S. Mangard. The World Is Not Enough: Another Look on Second-
Order DPA. In ASIACRYPT. Springer, 2010.

33. Y. Won and D. Han. Efficient conversion method from arithmetic to boolean
masking in constrained devices. In COSADE. Springer, 2017.

30

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://lima-pq.github.io/files/lima-pq.pdf
https://lima-pq.github.io/files/lima-pq.pdf

	Efficiently Masking Binomial Sampling at Arbitrary Orders for Lattice-Based Crypto
	 Tobias Schneider1, Clara Paglialonga2, Tobias Oder3, and Tim Güneysu3,4

