
Decryption Failure Attacks on IND-CCA Secure
Lattice-Based Schemes

Jan-Pieter D’Anvers1, Qian Guo2,3, Thomas Johansson3, Alexander Nilsson3,
Frederik Vercauteren1, and Ingrid Verbauwhede1

1 imec-COSIC, KU Leuven, Kasteelpark Arenberg 10, Bus 2452, B-3001
Leuven-Heverlee, Belgium

{janpieter.danvers,frederik.vercauteren,ingrid.verbauwhede}@esat.
kuleuven.be

2 Dept. of Informatics, University of Bergen, Box 7803, N-5020 Bergen, Norway
qian.guo@uib.no

3 Dept. of Electrical and Information Technology, Lund University, P.O. Box 118,
221 00 Lund, Sweden

{thomas.johansson,alexander.nilsson}@eit.lth.se

Abstract. In this paper we investigate the impact of decryption failures
on the chosen-ciphertext security of lattice-based primitives. We discuss
a generic framework for secret key recovery based on decryption failures
and present an attack on the NIST Post-Quantum Proposal ss-ntru-pke.
Our framework is split in three parts: First, we use a technique to in-
crease the failure rate of lattice-based schemes called failure boosting.
Based on this technique we investigate the minimal effort for an adver-
sary to obtain a failure in three cases: when he has access to a quantum
computer, when he mounts a multi-target attack or when he can only
perform a limited number of oracle queries. Secondly, we examine the
amount of information that an adversary can derive from failing cipher-
texts. Finally, these techniques are combined in an overall analysis of the
security of lattice based schemes under a decryption failure attack. We
show that an attacker could significantly reduce the security of lattice
based schemes that have a relatively high failure rate. However, for most
of the NIST Post-Quantum Proposals, the number of required oracle
queries is above practical limits. Furthermore, a new generic weak-key
(multi-target) model on lattice-based schemes, which can be viewed as
a variant of the previous framework, is proposed. This model further
takes into consideration the weak-key phenomenon that a small fraction
of keys can have much larger decoding error probability for ciphertexts
with certain key-related properties. We apply this model and present an
attack in detail on the NIST Post-Quantum Proposal – ss-ntru-pke – with
complexity below the claimed security level.

Keywords: Lattice-based cryptography, NIST post-quantum standard-
ization, decryption failure, LWE, NTRU, Reaction attack.

This paper is the result of a merge of [14] and [21].

1 Introduction

The position of integer factorization and the discrete logarithm problem as a cor-
nerstone for asymmetric cryptography is being threatened by quantum comput-
ers, as their ability to efficiently solve these mathematical problems compromises
the security of current asymmetric primitives. These developments have led to
the emergence of post-quantum cryptography and motivated NIST to organize
a post-quantum cryptography standardization process, with the goal of stan-
dardizing one or more quantum-resistant public-key cryptographic primitives.
Submissions originate from various fields within post-quantum cryptography,
such as lattice-based, code-based and multivariate cryptography.

Lattice-based cryptography has recently developed into one of the main re-
search areas in post-quantum cryptography. Lattice-based submissions to the
NIST Post-Quantum process can be broadly put into one of two categories:
NTRU-based schemes (e.g. [47,39]) and schemes based on the learning with er-
rors (LWE) hard problem [36]. A lot of research has been done on their security,
such as provable post-quantum secure transformations from IND-CPA to IND-
CCA secure schemes [25,46,38,29], security estimates of post-quantum primitives
[3,4] and provable reductions for various hard problems underlying the schemes
[36,35,32,7,11]

A striking observation is that numerous proposed Key Encapsulation Mech-
anisms (KEM’s) have a small failure probability during decryption, in which the
involved parties fail to derive a shared secret key. This is the case for the majority
of schemes based on lattices, codes or Mersenne primes. The probability of such
failure varies from 2−64 in Ramstake [45] to 2−216 in New Hope [41], with most
of the failure probabilities lying around 2−128. As this failure is dependent on the
secret key, it might leak secret information to an adversary. However, reducing
this probability has a price, as the parameters should be adjusted accordingly,
resulting in a performance loss. An approach used by some schemes is to use
error-correcting codes to decrease the failure probability. This leads to a reduc-
tion in the communication overhead, but makes the scheme more vulnurable to
side-channel attacks.

As suggested by the wide range of failure probabilities in the NIST submis-
sions, the implications of failures are still not well understood. In the absence
of a clear evaluation technique for the impact of the failure rate, most NIST
submissions have chosen a bound on the decryption failure probability around
2−128 based on educated guessing. As far as we know, only NIST-submission Ky-
ber [40] provides an intuitive reasoning for its security against decryption failure
attacks, but this approximation is not tight. They introduce a methodology that
uses Grover’s search algorithm to find ciphertexts that have a relatively high
probability of triggering a decryption failure.

1.1 Related Works

The idea of exploiting decryption errors has been around for a long time and
applies to all areas of cryptography [9]. For lattice-based encryption systems,

2

the Ajtai-Dwork scheme and NTRU have been a target for attacks using de-
cryption failures. Hall, Goldberg, and Schneier [23] developed a reaction attack
which recovers the Ajtai-Dwork private key by observing decryption failures.
Hoffstein and Silverman [24] adapted the attack to NTRU and suggested modi-
fying NTRU to use the Fujisaki-Okamoto transform [18] to protect against such
attacks. Further work in this direction is given in [28], [26] and [19]. Fluhrer [17]
described an attack against Ring-Learning with Errors (RLWE) schemes. In [15]
his work was extended to more protocols and in [8] a chosen-ciphertext attack
on the proposal HILA5 [37] was given, using decryption failures.

These attacks are chosen-ciphertext attacks on proposals with only IND-
CPA-security and can be thwarted using an appropriate transformation to a
chosen-ciphertext secure scheme, such as the Fujisaki-Okamoto transformation [18].
Hofheinz et al. [25] and later Jiang et al. [29] proved a bound on the impact of
the failure rate on an IND-CCA secure KEM that is constructed using this
transformation, but their bounds are squared in the failure probability in the
quantum oracle setting, which seems a very conservative result. Guo, Johansson
and Stankovski [22] proposed a key-recovery attack against the IND-CCA-secure
version of QC-MDPC, which is a code-based scheme. It uses a distinguishing
property that “colliding pairs” in the noise and the secret can change the de-
cryption failure rate.

1.2 Contributions

In this paper we investigate the requirements for KEM’s to resist decryption
failure cryptanalysis. Having better security estimates can benefit the param-
eter selection process, resulting in improved security and efficiency. We focus
on IND-CCA secure KEM’s based on the (Ring/Module-)Learning with Errors
and (Ring/Module-)Learning with Rounding paradigms. Nonetheless, the gen-
eral method can also be applied to investigate the impact of failures on other
schemes.

The exploitation of decryption failures of an IND-CCA secure cryptographic
scheme proceeds in two main steps: obtaining ciphertexts that result in a de-
cryption failure and estimating the secret based on these ciphertexts. In the first
step, an adversary can use failure boosting to find ‘weak’ input vectors that ar-
tificially enlarge the failure rate of the scheme. In Section 3, we examine how an
adversary can generate these ‘weak’ ciphertexts that increase the failure prob-
ability. We provide a theoretical framework and a Python implementation4 to
calculate an estimate of the minimum effort required for an adversary to obtain
one failing ciphertext.

Once ciphertexts that trigger a decryption failure are collected, they can be
used to estimate the secret. In Section 4, we study how much information is
leaked by the collected failures. We develop a statistical model to estimate the
secret from the failures and determine the residual entropy of the secret after a

4 The software is available at https://github.com/danversjp/failureattack

3

https://github.com/danversjp/failureattack

certain number of failures is collected. The estimate of the secret can be used to
construct an easier problem that can be solved faster.

Section 5 combines failure boosting and the secret estimation technique from
Section 4 to estimate the security of schemes based on (Ring/Module)-Learning
with Errors and (Ring/Module)-Learning with Rounding under an attack ex-
ploiting decryption failures. We show that an attacker could significantly reduce
the security of some schemes if he is able to perform sufficient decryption queries.
However, for most NIST submissions, the number of decryption queries required
is above practical limits.

In Section 6 we propose a new generic weak-key (multi-target) model ex-
ploiting the fact that a fraction of keys employed can have much higher error
probability if the chosen weak ciphertexts satisfy certain key-related properties.
The detailed attack procedure is similar to the attack discussed in the previous
sections. It first consists of a precomputation phase where special messages and
their corresponding error vectors are generated. Secondly, the messages are sub-
mitted for decryption and some decryption errors are observed. Finally, a phase
with a statistical analysis of the messages/errors causing the decryption errors
reveals the secret key.

In Section 7 we apply the model to to ss-ntru-pke, a version of NTRUEncrypt
targeting the security level of NIST-V. The proposed attack is an adaptive CCA
attack with complexity below the claimed security level. We provide a Rust
implementation5 where parts of the attack are simulated.

2 Preliminaries

2.1 Notation

Let Zq be the ring of integers modulo q represented in (−q/2, q/2], let Rq denote
the ring Zq[X]/(Xn+1) and let Rk1×k2q denote the ring of k1×k2 matrices over
Rq. Matrices will be represented with bold uppercase letters, while vectors are
represented in bold lowercase. Let AAAij denote the element on the ith row and
jth column of matrix AAA, and let AAAijk denote the kth coefficient of this element.
Denote with AAA:j the jth column of AAA.

The rounding operation bxeq→p is defined as bp/q · xe ∈ Zp for an element
x ∈ Zq, while abs(·) takes the absolute value of the input. These operations
are extended coefficient-wise for elements of Rq and Rk1×k2q . The two-norm of a
polynomial a ∈ Rq is written as ‖a‖2 and defined as

√∑
i a

2
i , which is extended

to vectors as ‖aaa‖2 =
√∑

i ‖aaai‖
2
2. The notation a ← χ(Rq) will be used to

represent the sampling of a ∈ Rq according to the distribution χ. This can be
extended coefficient-wise for AAA ∈ Rk1×k2q and is denoted as AAA← χ(Rk1×k2q). Let
U be the uniform distribution. Denote with χ1 ∗ χ2 the convolution of the two

5 The software is available at https://github.com/atneit/ss-ntru-pke-attack-
simulation

4

https://github.com/atneit/ss-ntru-pke-attack-simulation
https://github.com/atneit/ss-ntru-pke-attack-simulation

distributions χ1 and χ2, and denote with χ∗n = χ ∗ χ ∗ χ ∗ · · · ∗ χ ∗ χ︸ ︷︷ ︸
n

the nth

convolutional power of χ.

2.2 Cryptographic definitions

A Public Key Encryption (PKE) is defined as a triple of functions PKE =
(KeyGen, Enc, Dec), where the key generation KeyGen returns a secret key sk and
a public key pk, where the encryption Enc produces a ciphertext c from the
public key pk and the message m ∈ M, and where the decryption Dec returns
the message m′ given the secret key sk and the ciphertext c.

A Key Encapsulation Mechanism (KEM) consists of a triple of functions
KEM = (KeyGen, Encaps, Decaps), where KeyGen generates the secret and public
keys sk and pk respectively, where Encaps generates a key k ∈ K and a ciphertext
c from a public key pk, and where Decaps requires the secret key sk, the public
key pk and the ciphertext c to return a key k or the decryption failure symbol ⊥.
The security of a KEM can be defined under the notion of indistinguishability
under chosen ciphertext attacks (IND-CCA),

Advind-ccaKEM (A) =

∣∣∣∣∣∣P
b′ = b :

(pk, sk)← KeyGen(), b← U({0, 1}),
(c, d, k0)← Encaps(pk),

k1 ← K, b′ ← ADecaps(pk, c, d, kb),

− 1

2

∣∣∣∣∣∣ .
2.3 LWE/LWR problems

The decisional Learning with Errors problem (LWE) [36] consists of distin-
guishing a uniform sample (AAA,UUU) ← U(Zk1×k2q × Zk1×mq) from an LWE-sample
(AAA,BBB = AAASSS+EEE), wereAAA← U(Zk1×k2q) and where the secret vectors SSS andEEE are
generated from the small distributions χs(Zk2×mq) and χe(Zk1×mq) respectively.
The search LWE problem states that it is hard to recover the secret SSS from the
LWE sample.

This definition can be extended to Ring- or Module-LWE [32,30] by using
vectors of polynomials. In this case, the problem is to distinguish the uniform
sample (AAA,UUU) ← U(Rk1×k2q × Rk1×mq) from a generalized LWE sample (AAA,BBB =

AAASSS + EEE) in which AAA ← U(Rk1×k2q) and where the secret vectors SSS and EEE are
generated from the small distribution χs(R

k2×m
q) and χe(R

k1×m
q) respectively.

Analogous to the LWE case, the search problem is to recover the secret SSS from
a generalized LWE sample.

The decisional generalized Learning with Rounding (LWR) problem [7] is
defined as distinguishing the uniform sample (AAA, bUUUeq→p), with AAA← U(Rk1×k2q)

and UUU ← U(Rk1×mq) from the generalized LWR sample (AAA,BBB = bAAASSSeq→p) with
AAA← U(Rk1×k2q) and SSS ← χs(R

k2×m
q). In the analogous search problem, one has

to find SSS from a generalized LWR sample.

5

2.4 (Ring/Module-)LWE based encryption

Let gen be a pseudorandom generator that expands seedAAA into a uniformly
random distributed matrix AAA ∈ Rk×kq . Define enc as an encoding function that
transforms a message m into a polynomial representation, and dec as the inverse
decoding function. A general (Ring/Module-)LWE based PKE, consisting of a
key generation, an encryption and a decryption phase, can then be constructed
as described in Algorithms 1 to 3 respectively. The randomness required for the
generation of the secrets SSS′B , EEE

′
B and EEE′′B during the encryption, is generated

pseudorandomly from the uniformly distributed seed r that is given as an input.

Algorithm 1 PKE.KeyGen

Input:
Output: Public key pk = (BBB, seedAAA), secret key sk = SSSA).
1) seedAAA ← U({0, 1}256)
2) AAA← gen(seedAAA) ∈ Rl×lq

4) SSSA ← χs(R
l×m
q),EEEA ← χe(R

l×m
q)

5) BBB = bAAASSSA +EEEAeq→p

Algorithm 2 PKE.Enc

Input: Public key pk = (BBB, seedAAA), message m, randomness r
Output: Ciphertext c = (VVV ′,B′B′B′)
1) AAA← gen(seedAAA) ∈ Rl×lq

2) SSS′B ← χs(R
l×m
q),EEE′B ← χe(R

l×m
q)

3) EEE′′B ← χe(R
m×m
q)

4) BBBr = dBBBep→q
5) BBB′ = bAAATSSS′B +EEE′Beq→p
6) VVV ′ = bBBBTr SSS′B +EEE′′B + enc(m)eq→t

Algorithm 3 PKE.Dec

Input: Secret key sk = SSSA, ciphertext c = (VVV ′,B′B′B′)
Output: Message m′
1) BBB′r = bBBB′ep→q
2) VVV ′r = bVVV ′et→q
3) VVV = BBB′Tr SSSA
4) m′ = dec(VVV ′r − VVV)

6

Using this general framework, specific schemes can be described with ap-
propriate parameter choices. When the ring Rq is chosen as Zq, the encryption
is LWE-based as can be seen in FrodoKEM [33] and Emblem [42]. A value of
l = 1 indicates a Ring-LWE based scheme including New Hope [5], LAC [31],
LIMA [43] or R.Emblem [42]. If l 6= 1 and Rq 6= Zq, the scheme is based on
the Module-LWE hard problem such as Kyber [10]. When referring to Kyber
throughout this paper, we will consider the original version that includes round-
ing. The special case that χe = 0 corresponds to (Module/Ring)-LWR-based
schemes such as Round2 [6] and Saber [13]. In Lizard [12], a combination of
an LWE and LWR problem is proposed. In most (Ring/Module-)LWE based
schemes, q = p and no rounding is performed in the calculation of BBB and BBB′,
while t is in most schemes much smaller than q leading to a drastic rounding of
VVV ′.

We defineUUUA,UUU ′B enUUU ′′B as the errors introduced by the rounding operations,
which is formalized as follows:

UUUA = AAASSSA +EEEA −BBBr , (1)

UUU ′B = AAATSSS′B +EEE′B −BBB′r , (2)

UUU ′′B = BBBTr SSS
′
B +EEE′′B + enc(m)− VVV ′r . (3)

Let SSS be the vector constructed as the concatenation of the vectors −SSSA and
EEEA+UUUA, let CCC be the concatenation of EEE′B+UUU ′B and SSS′B , and letGGG = EEE′′B+UUU ′′B .
An attacker that generates ciphertexts can compute CCC andGGG and tries to obtain
information about SSS. These variables are summarized below:

SSS =

(
−SSSA

EEEA +UUUA

)
, CCC =

(
EEE′B +UUU ′B

SSS′B

)
, GGG = EEE′′B +UUU ′′B . (4)

After the execution of this protocol, the two parties will arrive at the same
key if the decoding dec(VVV ′r−VVV) equals m. The term VVV ′r−VVV can be rewritten as
(EEEA +UUUA)

TSSS′B −SSSTA(EEE′B +UUU ′B) + (EEE′′ +UUU ′′B) + enc(m) = SSSTCCC +GGG+ enc(m).
The message can be recovered if and only if abs(SSSTCCC +GGG) < qt for a certain
threshold qt that is scheme dependent.

We will say that a (decryption) failure occurred if the parties do not arrive at
a common key due to a coefficient of abs(SSSTCCC+GGG) that is larger than qt, and will
define F (CCC,GGG) as the probability of a decryption failure given CCC andGGG averaged
over all SSS, which can be expressed as

∑
SSS P (abs(SSS

TCCC +GGG) > qt | SSS)P (SSS).

2.5 Fujisaki-Okamoto transformation

Using the Fujisaki-Okamoto transform [18,25], one can transform a chosen plain-
text secure PKE to an IND-CCA secure KEM. On top of the encryption from the
PKE, the KEM defines an encapsulation and decapsulation function as described
in Algorithms 4 and 5, using hash functions H and G.

7

Algorithm 4 KEM.Encaps

Input: Public key pk
Output: Ciphertext c, key K
1) m← U({0, 1}256)
2) r = G(m)
3) c = PKE.Enc(pk,m, r)
4) K = H(r)

Algorithm 5 KEM.Decaps

Input: Public key pk, secret key sk, ciphertext c
Output: Key K or ⊥
1) m′ = PKE.Dec(sk, c)
2) r′ = G(m′)
3) c′ = PKE.Enc(pk,m′, r′)
4) If c = c′:
5) K = H(r)
6) Else:
7) K =⊥

3 Weak-ciphertext failure boosting

In this section, we will develop a method to estimate the minimum amount of
work to obtain one ciphertext that triggers a decryption failure. In contrast to
an honest party that generates ciphertexts randomly, an attacker can search
for ciphertexts that have a higher failure probability than average, which will
be called ‘weak’. As CCC and GGG are the only terms with which an attacker can
influence decryption failures, the search for weak ciphertexts boils down to the
search for weak (CCC,GGG). However, the pair (CCC,GGG) is generated through a hashH()
with random seed r, and during decryption it is checked whether the generator
of the ciphertext knew the preimage r of (CCC,GGG). Therefore an attacker is forced
to resort to a brute force search, which can be sped up at most quadratically
using Grover’s algorithm [20].

To find a criterion for our search, we sort all possible (CCC,GGG) according to an
increasing failure probability F (CCC,GGG). This list can then be divided into two sets
using a threshold failure probability ft: weak vectors with a failure probability
higher or equal than ft, and strong vectors with lower failure probability. Let
f() be the deterministic function that generates CCC and GGG from the random
seed r. For a certain ft, we can calculate the probability of generating a weak
pair: α = P (F (CCC,GGG) > ft | r ← U , (CCC,GGG) = f(H(r))), and the probability of a
decryption failure when a weak pair is used: β = P (abs(SSSTCCC +GGG) > qt | r ←
U , (CCC,GGG) = f(H(r)), F (CCC,GGG) > ft).

The amount of work for an adversary to find a weak pair (CCC,GGG) is pro-
portional to α−1, but can be sped up quadratically using Grover’s algorithm

8

on a quantum computer, resulting in an expected workload of
√
α−1. On the

other hand, the probability of a decryption failure given a weak pair cannot
be improved using quantum computation assuming that the adversary has no
quantum access to the decryption oracle. This assumption is in agreement with
the premise in the NIST Post-Quantum Standardization Call for Proposals [2].
The expected work required to find a decryption failure given ft is therefore the
expected number of queries using weak ciphertexts times the expected amount
of work to find a weak ciphertext, or (α · β)−1 with a classical computer and
(
√
α ·β)−1 with a quantum computer. An optimization over ft gives the minimal

effort to find one decryption failure.

3.1 Practical calculation

For most schemes, the full sorted list (CCC,GGG) is not practically computable, but
using some observations and assumptions, an estimate can be found. The next
three steps aim at calculating the distribution of the failure probability F (CCC,GGG),
i.e. what is the probability of finding a (CCC,GGG) pair with a certain failure prob-
ability f . This distribution gives enough information to calculate α and β for a
certain ft.

First, we can remove the hash H(.) in the probability expression by assum-
ing the output of f(H(.)) given random input r to behave as the probability
distributions (χC , χG), resulting in: α = P (F (CCC,GGG) > ft | (CCC,GGG) ← (χC , χG))
and β = P (abs(SSSTCCC +GGG) > qt | (CCC,GGG)← (χC , χG), F (CCC,GGG) > ft).

Secondly, we assume that the coefficients of SSSTCCC are normally distributed,
which is reasonable as the coefficients are a sum of 2(l · n) distributions that
are somewhat close to a Gaussian. The coefficients of the polynomial (SSSTCCC)ij
will be distributed with mean µ = 0 because of symmetry around 0, while the
variance can be calculated as follows, after defining χe+u as the distribution of
the coefficients of EEEA +UUUA:

var((SSSTCCC)ijk) =var(

l−1∑
i=0

n−1∑
k=0

CCCijksijk +

2l−1∑
i=l

n−1∑
k=0

CCCijkeijk) (5)

where: sijk ← χs and eijk ← χe+u (6)

=

l−1∑
i=0

n−1∑
k=0

CCC2
ijkvar(χs) +

2l−1∑
i=l

n−1∑
k=0

CCC2
ijkvar(χe+u) (7)

=‖(EEE′B +UUU ′B):j‖22var(χs) + ‖(SSS′B):j‖22var(χe+u) . (8)

Therefore, the variance of the coefficients of SSSTCCC for a given CCC is the same
for all coefficients in the same column. This variance will be denoted as σ2

j

for coefficients in the jth column of SSSTCCC. Furthermore, following the Gaussian
assumption, the failure probability given σ2

j is the same as the failure probability
given the jth column of CCC.

9

In the third step we gradually calculate the distribution of the failure proba-
bility. We start from the distribution of the failure probability of the coefficient
at the ijkth position given σj , denoted with χcoef |σ. This distribution expresses
the probability of finding aGGG so that the failure probability is equal to fijk given
a certain value of CCC (or equivalently σ2

j) and can be expressed as follows:

P (fijk |GGG← χG,CCC) , (9)
(10)

where:

fijk = P (abs(SSSTCCC +GGG)ijk > qt |GGG,CCC) (11)

≈ P (abs(x+GGGijk) > qt |GGG, x← N (0, σ2
j), σ

2
j) . (12)

The distribution χcol |σ, which models the probability of a failure in the jth
column of abs(SSSTCCC +GGG) given σ2

j , can be calculated using the convolution of
the distributions of the mn individual coefficient failures χcoef |σ as follows:

χcol |σ = χ∗nmcoef |σ . (13)

The conditioning on σ2
j is necessary to counter the dependency between the

coefficients of the columns of abs(SSSTCCC +GGG), which are dependent as a result of
sharing the same variance σ2

j .
The distribution of failure probabilities in the jth column of SSSTCCC, denoted

as χcol, can then be calculated using a weighted average over the possible values
of σ2

j as follows:

χcol =
∑
lc

P (f | f ← χ∗nmcol,σ)P (σ
2
j = lc) . (14)

Finally we can calculate the full failure distribution χFAIL as the convolution
of the m probability distributions corresponding to the failure distributions of
the different columns. This convolution does not have the dependency on σ2

j as
failures of different columns are independent conditioned on CCC and GGG, therefore:

χFAIL = χ∗mcol . (15)

From this failure distribution, we can calculate α and β for an arbitrary value
of ft:

α = P (f > ft | f ← χFAIL) , (16)

β =

∑
f>ft

f · P (f | f ← χFAIL)

α
. (17)

10

We want to stress that this calculation is not exact, mainly due to the Gaus-
sian assumption in the second step. More accurate estimates could be obtained
with a more accurate approximation in step 2, tailored for a specific scheme. In
this case, the assumptions and calculations of step 1 and step 3 remain valid.
For the estimations of LAC [31] in subsequent paragraphs, we followed their ap-
proach for the calculation of the effect of the error correcting code. Note that this
is not an exact formula as the inputs of the error correcting code are correlated
through their polynomial structure.

In Figure 1 we compare the values of α and β calculated using the technique
described above, with exhaustively tested values on a variant of LAC128 without
error correction. For step 2 of the practical calculation, we use both a Gaussian
approximation as well as a binomial approximation that is more tailored for
LAC. We can observe that our estimation of the effect of failure boosting is
relatively close to reality.

20 22 24 26 28 210 212 214 216

work to generate one weak sample (1/)

2 5

2 4

we
ak

 c
ip

he
rte

xt
 fa

ilu
re

 ra
te

 (
)

test results
estimate (gaussian)
estimate (binomial)

Fig. 1. The failure rate of one weak ciphertext (β) as a function of the work
required to generate one weak ciphertext (α) on a classical computer for LAC128
without error correction.

3.2 Applications of failure boosting

Failure boosting is a useful technique in at least three scenarios: first, if there is
no multi-target protection, second, if the adversary can only perform a limited
number of queries to the decryption oracle and third, if the adversary has access
to a quantum computer.

11

In some (Ring/Module-)LWE/LWR schemes, the seed r is the only input to
the pseudorandom generator that generates CCC and GGG. This paves the way to
a multi-target attack where precomputed weak values of r can be used against
multiple targets: after choosing the parameter ft, the adversary can generate
weak ciphertexts in approximately α−1 time (

√
α−1 if he has access to a quantum

computer). Each precomputed sample has then a failure probability of β against
every target. Figure 2 shows the failure probability of one weak ciphertext versus
the amount of work to generate that ciphertext on a classical computer. Multi-
target protection, for example by including the public key into the generation of
CCC en GGG as proposed in Kyber [10] and Saber [13] is a relatively cheap option to
resolve this issue.

20 235 270 2105 2140 2175 2210 2245 2280

work to generate one weak sample (1/)

2 190

2 168

2 146

2 124

2 102

2 80

2 58

2 36

we
ak

 c
ip

he
rte

xt
 fa

ilu
re

 ra
te

 (
)

Kyber768
FrodoKEM-976
LAC-256
Saber
LizardCat3

Fig. 2. The failure rate of one weak ciphertext (β) as a function of the work
required to generate one weak ciphertext (α) on a classical computer.

If the adversary can only perform a limited number of decryption queries, for
example 264 in the NIST Post-Quantum Standardization Call for Proposals [2],
the adversary can use failure boosting to reduce the number of required decryp-
tion queries. To this end, he chooses the parameter ft so that the inverse of the
failure probability β−1 equals the decryption query limit nd, which results in a
probability of finding a decryption failure of approximately (1−e−1) ≈ 0.63 . To
find i failures with similar probability, the failure probability should be brought
up so that β−1 = nd/i. Since the amount of work to generate one input of the
decryption query is approximately α−1 (

√
α−1 quantumly), the total amount of

work expected is α−1β−1, (
√
α−1β−1 quantumly). Figure 3 shows the expected

12

total amount of work to find one decryption failure with a classical computer,
versus the failure rate of one weak ciphertext.

2 190 2 168 2 146 2 124 2 102 2 80 2 58 2 36

weak ciphertext failure rate ()

283

2124

2165

2206

2247

2288

2329

2370

2411
to

ta
l w

or
k

to
 g

en
er

at
e

a
fa

ilu
re

 (1
/

)
Kyber768
FrodoKEM-976
LAC-256
Saber
LizardCat3

Fig. 3. The expected amount of work (α−1β−1) on a classical computer, as
a function of the failure rate of one weak ciphertext (β). The red dotted line
indicates a failure rate of 2−64.

An adversary with a quantum computer always benefits from failure boosting,
as the search for weak ciphertexts can be sped up using Grover’s algorithm.
However, this speedup is not quadratic if the adversary has no quantum access
to the decryption oracle. Figure 4 shows the total amount of expected work to
find one decryption failure, versus the amount of work to find one weak ciphertext
on a quantum computer

√
α−1.

4 Estimation of the secret

Finding a decryption failure does not immediately break the security of the
KEM, but it does provide extra information to an adversary. In this section we
will investigate how much this information leaks about the secret. An adversary
that has obtained ciphertexts that produce decryption failures can use them to
make an estimation of the secret SSS.

When a failure occurs, we know that at least one coefficient of abs(SSSTCCC+GGG)
is larger than the threshold qt. This leads to a classification of the coefficients
in the set of fail coefficients vf and no-fail coefficients vs. To each coefficient at
position (i, j, k), a vector of integers sss can be associated by taking the coefficients

13

20 218 236 254 272 290 2108 2126 2144

work to generate one weak sample (1/)

2104

2128

2152

2176

2200

2224

2248

2272

to
ta

l w
or

k
to

 g
en

er
at

e
a

fa
ilu

re
 (1

/
)

Kyber768
FrodoKEM-976
LAC-256
Saber
LizardCat3

Fig. 4. The expected amount of work (
√
α−1β−1) as a function of the work

required to generate one weak ciphertext (
√
α−1) on a classical computer.

of SSS:i. Similarly, the coefficient can be linked to a vector of integers ccc calculated
as a function of CCC :j and k, so that the multiplication sssccc equals that coefficient.

No-fail vectors will contain negligible information about the secret sss, but fail-
ure vectors do carry clues, as the threshold exceeding value of the coefficients of
SSSTCCC +GGG implies a correlation between the corresponding ccc and sss. This correla-
tion can be positive, in case of a large positive value of the coefficient, or negative,
in case of a large negative value of the coefficient. Consequently, the fail coeffi-
cients can be further divided into the sets of positive vfp and negative vfn fail
coefficients respectively. Moreover, negative fail vectors can be transformed into
positive fail vectors by multiplication with −1. Note that failure coefficients at
position (i, j, k) will only contain information about the jth column of SSS, which
is why the estimation of the columns of SSS can be performed independently.

4.1 One positive failure vector

We will first examine the case where we know one positive fail vector ccc and
associated coefficient GGGi,j,k, which we will denote with g. This corresponds to
the case where one failing ciphertext and the location and sign of the error is
known. The question is how much the knowledge about ccc and g can improve
our estimate of the associated secret sss. Applying Bayes’ theorem and assuming
independence between the coefficients of ccc and sss that are on different positions,
we can write:

14

P (sssi |ccc, g, sssccc > qt − g) ≈P (sssi |ccci, g, sssccc > qt − g) (18)

=
P (sssccc > qt − g |sssi, ccci, g)P (sssi |ccci, g)

P (sssccc > qt − g |ccci, g)
(19)

=
P (
∑j 6=i
j sssjcccj > qt − g − sssiccci |sssi, ccci, g)P (sssi)

P (sssccc > qt − g |ccci, g)
. (20)

The improved estimates for the coefficients of sss can in turn be used to get
an estimate sssest that minimizes its variance E[(sssest − sss)2] as follows:

0 =
d

dsssest,i
E((sssest,i − sssi)2) (21)

= 2
∑
sssi

(sssest,i − sssi)P (sssi) , (22)

or: sssest,i =
∑
sssi

sssi · P (sssi) . (23)

The estimate of sss gives the estimate of the jth column of SSS, which can be
divided trivially in an approximation SSSA,est of (SSSA):j and EEEA,est of (EEEA+UUUA):j .
These vectors can be used to transform the original (Ring/Module-)LWE/LWR
sample (AAA,AAA(SSSA):j + (EEEA + UUUA):j) into a (Ring/Module-)LWE alike problem
with a smaller secret variance by subtracting AAASSSA,est +EEEA,est. This results in
the sample (AAA,AAA((SSSA):j −SSSA,est) + (EEEA +UUUA):j −EEEA,est), which is a problem
with smaller secret (SSSA):j −SSSA,est and noise (EEEA+UUUA):j −EEEA,est. We will call
this new problem the simplified problem.

4.2 Multiple fail vectors

Having access to m positive fail vectors ccc(1) . . . ccc(m) from the same column, with
corresponding values of G as g(1) . . . g(m), an adversary can improve his estimate
of P (sss) and therefore obtain a better estimate sssest, assuming that the failure
vectors ccci are independent conditioned on sss. This corresponds to knowing m
failing ciphertexts and the location and sign of their errors.

P (sssi |ccc(1) . . . ccc(m), g(1) . . . g(m)) ≈ P (sssi |ccc(1)i . . . ccc
(m)
i , g(1) . . . g(m)) (24)

=
P (ccc

(1)
i . . . ccc

(m)
i |sssi, g(1) . . . g(m))P (sssi | g(1) . . . g(m))

P (ccc
(1)
i . . . ccc

(m)
i | g(1) . . . g(m))

(25)

=
P (sssi)

∏m
k=1 P (ccc

(k)
i |sssi, g(k))∏m

k=1 P (ccc
(k)
i | g(k))

. (26)

15

Similar to Equation 20, P (ccci |sssi, g(k)) can be calculated as:

P (ccci |sssi, g, sssccc > qt − g) =
P (sssccc > qt − g |sssi, ccci, g)P (ccci |sssi, g)

P (sssccc > qt − g |sssi, g)
(27)

=
P (
∑j 6=i
j sssjcccj > qt − g − sssiccci |sssi, ccci, g)P (ccci)

P (sssccc > qt − g |sssi, g)
. (28)

In subsequent calculations, each value of the coefficient of g is taken as the
maximum possible value.

4.3 Classification of vectors

The above approach assumes a prior knowledge of the exact position and sign
of the errors. This information is needed to link coefficients of CCC with their
corresponding coefficient of SSS. However, this is not always a trivial problem.
For most schemes there are three sources of extra information that will allow to
perform this classification with a high probability using only a few decryption
failures.

Firstly, a large coefficient of GGG would induce a higher failure probability for
the corresponding coefficient of the error term SSSTCCC+GGG. Thus, failures are more
likely to happen at positions linked to that coefficient of GGG. Moreover, a positive
value of the coefficient suggests a positive error so that ccc ∈ vfp, while a negative
value hints at a negative error, or ccc ∈ vfn.

Secondly, as vectors ccc ∈ vf are correlated with the secret sss, they are also
correlated with each other. Therefore, vectors ccc ∈ vf are more correlated between
each other than a vector ccc ∈ vf with a vector ccc ∈ vs. Moreover, a high positive
correlation suggests that the vectors share the same class vfp or vfn, while
a high negative correlation indicates that the vectors have a different classes.
This allows for a clustering of the fail vectors using the higher than average
correlation, under the condition that the correlation difference is high enough.
This correlation difference is related to the failure rate: a low failure rate implies
a higher correlation because only ciphertexts that are highly correlated with
the secret lead to a failure rate in this case. For example, Figure 5 shows an
estimate of the correlations between vectors of the classes vfp (pos), vfn (neg)
and vs (nofail) in Kyber768. This approach does not work for schemes with
strong error correcting codes (ECC) such as LAC, as the bit error rate before
correction is relatively high for these types of algorithms, leading to a relatively
low correlation between failure vectors.

In case of a ring/module structure of the coefficients of SSS, an additional
structure arises leading to an artifact in which some pairs of no-fail coeffi-
cients within the same polynomial also have high correlation of their corre-
sponding vectors. Imagine a pair of failure coefficients at positions (i, j, k1)
and (i, j, k2) from different decryption failures a, b, with corresponding matri-
ces CCC(a) and CCC(b). The correlation of the vectors ccc(a) and ccc(b) can be written
as Xk1CCC

(a)T
:,j Xk2CCC

(b)
:,j = Xk1+k2CCC

(a)T
:,j CCC

(b)
:,j , from which is clear that the vectors

16

800 600 400 200 0 200 400 600 800
correlation

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

pr
ob

ab
ilit

y

pos-pos
pos-neg
pos-nofail

Fig. 5. The probability of a certain value of the correlation between different
classes of vectors in Kyber768.

from CCC(a) and CCC(b), with respective positions (i, j, k1 − t) and (i, j, k2 + t) have
the same correlation. The clustering will thus result in n classes, with one class
containing the failure vectors. Combining this information with the information
of the first method gives an adversary the failure vectors with high probability.
Otherwise, an adversary can estimate the secret n times and check the validity
of the result using the (Ring/Module-)LWE/LWR problem.

Finally, for schemes that use error correcting codes to reduce their failure
probability, side channel leakage during the error correction might reveal infor-
mation on the presence or position of failure coefficients. Note that if this is the
case, it might not even be necessary to obtain a decryption failure since failing
coefficients could also be collected on successful decryptions where there is at
least one failing coefficient.

4.4 Implications

Figure 6 depicts the relative variance reduction of the secret as a function of the
number of positive failure vectors for various schemes. For schemes that have
a very low failure probability for individual coefficients of SSSTCCC + GGG, such as
Kyber, Saber and FrodoKEM, the variance of the secret drastically reduces upon
knowing only a few failing ciphertexts. Assuming that the simplified problem,
that takes into account the estimate of the secret, has the same complexity
as a regular (Ring/Module-)LWE problem with similar secret variance, we can
calculate the remaining hardness of the simplified problem as a function of the
number of positive failure vectors as shown in Figure 7 using the toolbox provided
by Albrecht et al. [4] using the Q-core sieve estimate.

The effectiveness of the attack declines as the failure probability of the in-
dividual coefficients increases, since the correlation between the secret and the

17

failing ciphertext is lower in this case. This can be seen in the case of LAC, where
the individual coefficients have relatively high failure rates due to a strong error
correcting code. On the other hand, a failing ciphertext will contain multiple
errors, making it easier to collect multiple failure vectors.

Note that once one or more failures are found, they can be used to estimate
the secret. This estimate in turn can be used to improve the search for weak
ciphertexts by considering F (CCC,GGG) as

∑
SSS P (FAIL(CCC,GGG),SSS), where SSS is not

sampled from χSSS , but from the new probability distribution χSSSest
. Therefore,

the search for weak keys could become easier the more failures have been found.
However, we do not take this effect into account in this paper.

20 21 22 23 24 25 26 27 28

positive failure vectors

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

va
ria

nc
e

Saber
Kyber768
FrodoKEM-976
LAC-256

Fig. 6. The relative reduction in entropy as a function of the number of positive
failure vectors

5 Weak-ciphertext attack

Using the failure boosting technique from Section 3 and the secret estimation
method from Section 4, we can lower the security of a (Ring/Module-)LWE/LWR
scheme on the condition that its failure rate is high enough. To this end, we first
collect i decryption failures using the failure boosting technique, which would
cost approximately i

√
α−1β−1 work. Then, the exact error position and failure

type should be determined for all of the failure vectors using the techniques of
Subsection 4.3. Based on this information, the secret can be estimated, which
in turn can be used to simplify the (Ring/Module-)LWE/LWR problem. These

18

20 21 22 23 24 25 26 27 28

positive failure vectors

100

120

140

160

180

se
cu

rit
y

Kyber768
FrodoKEM-976
Saber

Fig. 7. The hardness of the simplified problem as a function of the number of
positive failure vectors

last two operations require a negligible amount of work compared to finding
decryption failures. Finally, we need to solve the simplified problem, with has a
complexity Ssimplified(i) as estimated in Section 4. The total amount of work is
therefore O(Ssimplified(i)+i

√
α−1β−1), which is depicted in Figure 8 as a function

of the number of failures i. Note that the practical security of Kyber relies on
an error term EEEA as well as a rounding term UUUA. Both are taken into account
in the security calculation.

Table 1 gives an overview of the original hardness of the scheme before de-
cryption failure usage S, and the attack cost Ssimplified(i) + i

√
α−1β−1 using

decryption failures for ideal values of i and ft, which are calculated through a
brute force sweep. The number of collected decryption failures i and the expected
number of decryption queries iβ−1 is also included. These values are calculated
assuming that the adversary can perform an unlimited number of decryption
queries. From this table we can see that the security of Kyber and Saber is con-
siderably reduced. This is due to the fact that finding a failure is easier than
breaking the security of the scheme S. For the case of FrodoKEM976, the se-
curity is not affected as the work to obtain a failure is considerably larger than
breaking the security S.

In other situations such as a multi-target attack or having only a limited
number of decryption queries, other values of ft and i will obtain optimal re-
sults. For example in a multi-target attack scenario one would select a higher
threshold ft to be able to efficiently re-use the precomputation work α−1 for
weak ciphertexts and therefore reduce the overall work. A limit on the number

19

21 23 25 27 29

positive failure vectors

140

150

160

170

180

190

200

at
ta

ck
 c

os
t

Saber
Kyber768
FrodoKEM-976

Fig. 8. The full amount of work to break the scheme as a function of the number
of collected decryption failures

of decryptions nd could make it necessary to increase the amount of precomputa-
tional work α−1 in order to reduce the failure rate β−1 < nd/i. This would make
the attack more expensive or might even invalidate it. For example, the NIST
Post-Quantum Standardization Process decryption limit is set to 264, which rules
out a decryption failure attack on schemes with a low enough failure rate such
as Saber and Kyber, which can be deduced from Figure 3. As such, the security
of this schemes is not affected within the NIST framework.

6 A weak-key attack model

In this section we elaborate a weak-key (multi-target) attack model when the
adversary can only have a limited number of decryption queries to one user
but multiple users can be queried. We observe that for certain keys, the error
probability can be much higher when applying the failure boosting technique, i.e.,
choosing ‘weak’ ciphertexts as discussed in Section 3, if the chosen ciphertexts
satisfy certain key-related properties. The major targets are the same as before –
lattice-based NIST post-quantum proposals with CCA security using some CCA
transformations.

We set the maximun number of ciphertexts that can be submitted to a node
with a public key to be 2K and we set the maximum number of public keys in
the system to be 2L. Refering again to the NIST Post-Quantum Standardization
Process, they have indicated in their call that at least K = 64 can be considered.
In the discussion forum [1] for the same project, we have also seen researchers

20

original attack reduction decryption decryption
security cost factor failures queries

Saber 2184 2139 245 77 2131

FireSaber 2257 2170 287 233 2161

Kyber768 2175 2142 233 42 2131

Kyber1024 2239 2169 270 159 2158

LAC256 2293 297† 2196 106 · 56 280

FrodoKEM976 2188 2188 20 0 0

† Note that it seems not straightforward for LAC256 to obtain the exact position and
type of the errors, which is required to obtain this result

Table 1. The security of different schemes with and without decryption failures

mentioning that L = 64 can be considered. We will adopt K = L = 64 in
the further sections since it seems these values are not questioned, although
larger values of K and L can give more powerful attacks and could definitely
be relevant. For example, comparing with attacks on symmetric schemes, such
attacks may require a number of plaintext-ciphertext pairs that are close to the
number of possible keys (like 2200), and still they are considered valid attacks.

The proposed attack procedure is split in three steps.

1. Do a precomputation step to establish pairs of messages and corresponding
ciphertexts and let informally the set F denote error vectors corresponding
to the different messages, which are equivalent to the (CCC,GGG) pairs chosen
before. These selected error vectors should be with particular properties,
e.g, with large norm and/or with several large entries in certain positions,
etc.

2. Send the ciphertexts contained in F and assume that we learn the decrypted
messages. Assume further that a subset have been erroneously decrypted
(wrong decoding due to too large error) and let F ′ be the error vectors
causing decryption failure. The cardinality of this set could be larger than
average if certain properties (related to F) of the secret vector hold. So we
submit the set of ciphertexts to each node holding a public key. The node
giving the largest decryption failure rate is selected as the target public key
for the attack.

3. Do statistical testing on the set F ′ (and possibly the set F) to establish
relationships between the secret key and given the noise vectors leading to
a decryption failure. Analyzing their correlation, we may be able to recover
partial secrets, which can considerably reduce the solving complexity of the
underlying hard problem. We are then able to perform a full key-recovery
attack via classic approaches such as lattice reduction algorithms.

Note that the above procedure is very close to the weak-ciphertext attack
described in the previous sections. One major difference is that here we choose
the set F of ‘weak’ ciphertexts to be related to the ‘weak’ keys targeted, while

21

in the prior, the ‘weak’ ciphertexts are chosen to have a larger decryption failure
rate averaged over all keys.

We discuss the three steps briefly. In the precomputation step, we can observe
a first difference between different schemes. Most schemes include the public key
in the generation of the noisy vectors (as input in the hash function generating
the noise). This means that a constructed set F can only be used for a single
public key and a new such set must be constructed for the next public key. For
simplicity, we assume |F| = 2K and note that the number of nodes with a public
key is 2L. If we set the computational complexity of precomputing a set F to
be 2λ, the overall complexity of this first step is 2λ+L. On the other hand, there
are also schemes where error vectors are generated independent of the public
key (e.g. LAC). In such a case the same set F can be used on all public keys
and the complexity is only 2λ. We could also use Grover’s search algorithm to
accelerate the pre-computation step, as discussed in Section 3. However, since
the pre-quantum and post-quantum security goals in the NIST Post-Quantum
Standardization Process are different for a certain security level, this quantum
acceleration may not help us to break the claimed security level of a submission.

For the second step, the idea is that among many public keys, there will
be one where the corresponding secret values have a property that causes more
decryption errors than on average. So to increase the decryption error probability
to a reasonable and detectable level, we consider that a special property in the
secret value is held with probability at least p′, where 0 < p′ < 1. We then
assume that p′ = 2−L, so we can expect that this special property in the secret
value holds for one public key. As mentioned, with respect to the CCA security,
NIST restricts to have at most 264 decryption calls to each user (public key). So
in order to distinguish a special property in the secret value corresponding to a
public key, one needs to get the failure rate for this case to be larger than 2−64.

Finally, in the statistical testing part, we have a set of error vectors that
have caused decryption errors. There seems to be a plethora of methods that
can be used to recover secret values. For instance, the strong maximum-likelihood
approach has been discussed in Section 4 and heuristic approaches can also be
applied. A general approach that we can adopt is to consider a smaller part of
the secret vector under reconstruction, and select the most probable values for
this part, based on the observed error vectors in F . Then one combines such
guesses for different parts and builds an approximation of a secret vector. A
good approximation will mostly be sufficient as it can be used in lattice-basis
reduction algorithms.

We note that in many applications, the challenge is to detect the first de-
cryption failure, since we can usually have adaptive approaches to find more
failures afterwards with a lower complexity. This idea is further demonstrated in
the next section where an adaptive CCA attack on ss-ntru-pke will be presented,
and also in a code-based application [34].

22

7 A weak-key attack on ss-ntru-pke

We have applied the described weak-key approach and provide the details of
attacking ss-ntru-pke, a version in the submission to the NIST Post-Quantum
Standardization Process – NTRUEncrypt [47]. Connected is also the provably
secure NTRU [44] whose security is based purely on the hardness of Ring-LWE.
NTRUEncrypt with different parameter choices has been around for a long time
and is one of the most competitive lattice-based schemes when it comes to per-
formance.

Note that our attack in this section is in the pre-quantum (classic) security
framework due to the different security goal for NIST-V when Grover’s algorithm
is considered. We adopt the notations from the NTRUEncrypt submission [47]
throughout this section.

7.1 The ss-ntru-pke scheme

ss-ntru-pke is the version of NTRUEncrypt targeting the highest security level, be-
ing 256 bits. This scheme achieves CCA2 security via the NAEP transform [27],
a transform similar to the Fujisaki-Okamoto transformation with an additional
mask. We give a very brief explanation of the scheme. For most of the descrip-
tion and details, we refer to [47]. In the key generation (see Algorithm 6), two
secret polynomials f ,g ∈ R are selected, where the coordinates are chosen from
a discrete Gaussian Xσ distribution with standard deviation σ. A public key is
formed by computing h = g/(pf + 1).

Algorithm 6 ss-ntru-pke.KeyGen

Input: Parameter sets Param = {N, p, q, σ} and a seed.
Output: Public key h and secret key (f ,g).
1) Instantiate Sampler with XNσ and seed;
2) f ← Sampler, g← Sampler;
3) h = g/(pf + 1) mod q;

We show in Algorithm 7 the encryption algorithm of ss-ntru-pke and in Algo-
rithm 8 the decryption algorithm, both from the original proposal [47]. In these
descriptions, Hash() represents a hash function, and B represents a set including
all binary polynomials with degree at most N−1. The Pad() operation is a func-
tion to ensure the message has sufficient entropy, and the Extract() operation is
the inverse of Pad().

In each encryption of a message m, two polynomials r, e ∈ R are generated,
where the coordinates are again chosen from a discrete Gaussian distribution
Xσ with standard deviation σ. This randomness source uses a seed generated as
Hash(m,h). This means that each choice of a message m will generate also the

23

polynomials r, e ∈ R. Let us denote this by

(r, e) = G(m,h).

Algorithm 7 ss-ntru-pke.Encrypt

Input: Public key h, message msg of length mlen, Param and a seed.
Output: Ciphertext c.
1) m = Pad(msg, seed);
2) rseed = Hash(m|h);
3) Instantiate Sampler with XNσ and rseed;
4) r← Sampler, e← Sampler;
5) t = p · r ∗ h;
6) tseed = Hash(t);
7) Instantiate Sampler with B and tseed;
8) mmask ← Sampler;
9) m′ = m - mmask (mod p);
10) c = t+ p · e+m′;

In decryption, with ciphertext c, one computes the message by computing

f ∗ c =p · r ∗ g + p · e ∗ f +m′ ∗ f .

A decryption error occurs if ||p · r ∗ g+ p · e ∗ f +m′ ∗ f ||∞ > q/2. This basically
translates to ||r ∗ g + e ∗ f ||∞ > q/4 as p = 2 and the last term is much smaller
than the first two.

The proposed parameters for ss-ntru-pke for the security level of NIST-V are
shown in Table 2. The decoding error probability is estimated to be less than
2−80 in [47].

N q p R σ ε Security

1024 230 + 213 + 1 2 Zq [x]

xN+1
724 < 2−80 V

Table 2. Proposed ss-ntru-pke parameters.

7.2 The attack

We now follow the approach of the previous section and describe an attack. The
detailed attack is shown in Algorithm 9, where a more efficient CCA2 version is

24

Algorithm 8 ss-ntru-pke.Decrypt

Input: Secret key f, public key h, ciphertext c, and Param.
Output: result.
1) m′ = f ∗ c (mod p);
2) t = c − m′;
3) tseed = Hash(t);
4) Instantiate Sampler with B and tseed;
5) mmask ← Sampler;
6) m = m′ +mmask (mod p);
7) rseed = Hash(m|h);
8) Instantiate Sampler with XNσ and rseed;
9) r← Sampler;
10) e = p−1 (t − r ∗ h);
11) if ||e||∞ is big then

result = ⊥;
else

result = Extract(m);

Algorithm 9 The CCA2 attack against ss-ntru-pke

Input: A number (say 264) of public keys.
Output: The secret polynomials (f ,g) of one public key.
1) Collect messages/ciphertexts with special form for all public keys;
2) Submit them for decryption and determine a weak public key h;
1’) Prepare messages/ciphertexts with special form for this weak key h;
2’) Submit them for decryption and collect the decryption results;
3) Use statistical analysis to have a guess (f̂ , ĝ) close to the corresponding
secret key (f ,g);
4) Use lattice reduction algorithms to recover the secret key (f ,g);

adopted. We define an equivalence relation for two polynomials u(x), v(x) ∈ R
if u(x) = xi ·v(x)

(
mod xN + 1

)
, or if u(x) = −xi ·v(x)

(
mod xN + 1

)
, for i ∈ Z.

Attack step 1 – pre-computation.
We pick random messages m and generate corresponding (r, e) = G(m,h)

for a given public key h. We keep only vectors e equivalent to a polynomial that
has the first l (e.g., l = 2) positions with the same sign and each with size larger
than c · σ, where c is a constant determining the computational effort of finding
such error vectors. These vectors form our chosen set F .

We set l = 2 to illustrate the idea in a concrete attack. For one position, the
probability that the entry is larger than cσ is 1 − erf(c/

√
2). As we can start

from any position, the probability to have two consecutive positions with the
same sign and entries larger than cσ is pe = N ∗ (1− erf(c/

√
2))2/2. If we set pe

to be 2−120, then c can be as large as 9.193.

Attack step 2 – submit ciphertexts for decryption.

25

We then send the ciphertexts corresponding to the noise vectors in F to the
decryption algorithm. If the targeted secret key f is also equivalent to a polyno-
mial that has the first l (e.g., l = 2) positions with the same sign and each with
size larger than cs ·σ, where cs is another constant, then the decoding errors can
be detectable. We expect to collect several errors and store their corresponding
error vectors (r, e). The probability to have two consecutive positions with the
same sign and entries larger than csσ is ps = N ∗ (1− erf(cs/

√
2))2/2. If we set

ps to be 2−64, then cs can be as large as 6.802.
If we run 2120 precomputation steps for each stored vector with the desired

properties, then the overall complexity is 2248 since ps = 2−64. Let C1 denote
2·cscσ2. We can then have a coefficient in r∗g+e∗f whose absolute contribution
from these two big entries is at least C1 = 225.97. We consider the probabilistic
behavior of the remaining (2N − 2) positions. As the coefficients of r,g, e, f
are all sampled from a Gaussian distribution with mean 0 and stand deviation
σ = 724, the expected norm of the rest vector in f ,g with 2N−2 entries is about√
2N − 2 ·σ. Given a public key, f ,g is fixed. Thus, this coefficient of r∗g+e∗ f

can be approximated as C1+Φ0, where Φ0 is Gaussian distribution with mean 0
and standard deviation

√
2N − 2 ·σ2. As the error appears when this coefficient

is larger than q/4, the error probability6 can be approximated as

Pe =

(
1− erf(

q/4− C1√
2(2N − 2)σ2

)

)
· 1
2
.

We obtain a decoding error probability of 2−57.3 for this example.
Thus we can obtain about 26.7 errors from the 264 decryption trails.
An adaptive CCA attack. If we keep the previous setting, i.e., a CCA1

attack, the cost is larger than 2248. However, we can adopt a much more pow-
erful attack model, namely an adaptive CCA (CCA2) attack, consisting of two
phases. In the first phase, the attacker spends half of his computational power
to determine a weak key; in the later phase, he would put all his remaining
resources into attacking this weak key.

To be more specific, we first prepare 263 messages/ciphertexts for each of the
264 public keys. Then we expect two errors corresponding to one key, which can
be claimed as a weak key.

We can also reduce the precomputation work for each key to 289, if there
are 264 public keys. We have c = 7.956 and the error probability is 2−62.0, so
we expect to have two errors in the testing stage. We then spend 2216 work on
another precomputation to have 263 messages with c to be 10.351, done only for
this weak key. The error probability in the second phase is estimated as 2−53.0,
so we can have 210 errors. The overall complexity is 2217.

6 The error can occur in both directions. We omit the term
(
1− erf(q/4+C1√

2(2N−2)σ2
)

)
· 1
2

as it is negligible compared with
(
1− erf(q/4−C1√

2(2N−2)σ2
)

)
· 1
2
for C1 a very big positive

integer.

26

Attack step 3 – statistical analysis.
In this step we will try to recover the secret f . Let us first assume that f has

its two big entries in the first two positions of the vector. Then the position in
e∗ f where the error occurs, denoted i0, is the position where the two significant
coefficients in e and those in f coincide. We now transform each e in such a way
that its two big entries are also to be found in the first two positions. This is
done by replacing e with the corresponding equivalent vector where the two big
entries are in the first two positions. Assuming M decryption errors, this now
gives us the following knowledge from the received decryption errors:

N−1∑
i=2

e
(j)
i fi +N

(j)
i > q/4− 2 · cscσ2,

for j = 1 . . .M and where N (j) denotes the remaining contribution to the noise.
Finally we note that assuming that f has its two big entries in the first two
positions is not a restriction, as such an f vector will just be an equivalent
vector of the true f . So we need only to recover f and then check all equivalent
vectors.

We next show how to derive more knowledge of f ,g with statistical tools.
A heuristic approach. As we have assumed that the two big entries in

(f ,g) (or (e, r)) are the first two entries, we use K (or Vi for 1 ≤ i ≤ M) to
denote a vector consisting of the remaining 2N − 2 entries. Thus, the size of K
(or Vi) can be estimated as

√
(2N − 2)σ.

We adopt the heuristic assumptions from [19] that all the errors are very
close to the folding bound q/4, meaning that all the messages leading to an
error belong to a hyperplane

Vi ·K =
q

4
− C1,

where C1 is the contribution from the two significant entries.
Thus, the mean vector V̂ of Vi should be close to a scaled vector of K, i.e.,

V̂ =

∑M
i=1 Vi

M
≈ q/4− C1

‖K‖2
K.

We can have an estimation K̂ = (2N−2)σ2

q/4−C1
V̂. If we round the entries of K to the

nearest integer in Zq, we obtain an estimation (f̂ , ĝ) of the secret vector (f ,g).
The remaining question is how good this estimation can be? We heuristically

answer this question using the central limit theorem.
Each observation Vi with approximated norm

√
2N − 2σ can be viewed as

the summation of the signal point

q/4− C1

‖K‖2
K,

27

q error rate
-estimated- -simulated-

q = 229 2−9.05 2−9.19

q = 229 + 226 2−12.64 2−12.96

q = 229 + 227 2−16.91 2−17.09

q = 229 + 227 + 226 + 225 2−24.62 2−24.57

Table 3. The simulated error rates v.s. the estimated error rates.

and a noise vector with squared norm

(2N − 2)σ2 − (q/4− C1)
2

(2N − 2)σ2
.

By the central limit theorem, if we have M observations, then the squared
norm (variance) of the noise can be reduced by a factor of M . Hence, the error
norm should be √

1

M
·
(
(2N − 2)σ2 − (q/4− C1)2

(2N − 2)σ2

)
.

As we consider K̂ instead of V̂, the true error norm should be resized as

(2N − 2)σ2

q/4− C1
·

√
1

M
·
(
(2N − 2)σ2 − (q/4− C1)2

(2N − 2)σ2

)
. (29)

Using this formula, we can have a candidate with error norm 0.169
√
2N − 2σ,

assuming that 1024 errors have been collected.

Attack step 4 – lattice reduction.
If (∆f , ∆g) = (f ,g)− (f̂ , ĝ) is small, we can recover it using lattice reduction

algorithms efficiently. Thus, we obtain the correct value of (f ,g).
If we have the error size to be only 0.169

√
2N − 2σ, as assumed in the pre-

vious step, using the LWE estimator from Albrecht et al. [4], it takes about 2181
time and 2128 memory if one uses sieving to implement the SVP oracle in BKZ.
Though the authors of [47] discussed about memory constraint for applying siev-
ing in lattice-based cryptanalysis, we believe it is reasonable to assume for 2128
memory when considering a scheme targeting the classic 256-bit security level.
Another possibility is to implement the SVP oracle using tuple sieving, further
reducing the memory complexity to 2117. The time complexity then increases to
2223, but still far from achieving the claimed 256-security level.

7.3 Experimental results

We have implemented some of the parts of the attack to check performance
against theory. We have chosen exactly the same parameters in ss-ntru-pke as

28

well as in the attack, except for the q value, which in the experiment was set to
the values shown in Table 3. The reason being that is we wanted to lower the
decryption error rate so that simulation was possible.

We put two consecutive entries in f each of size 6.2 ·σ and we generated error
vectors with two large positive entries each of size 9.2 · σ. For such choice, we
first verified the decryption error probabilities, as seen in Table 3. These match
the theoretical results well.

q error norm /(
√
2N − 2σ)

-estimated- -simulated-

q = 229 0.487 0.472
q = 229 + 226 0.391 0.360
q = 229 + 227 0.326 0.302

q = 229 + 227 + 226 + 225 0.261 0.250

Table 4. The simulated error norm v.s. the estimated error norm. (M = 1024)

M error norm /(
√
2N − 2σ)

-estimated- -simulated-

M = 256 0.522 0.490
M = 512 0.369 0.348
M = 1024 0.261 0.250
M = 1536 0.213 0.212

Table 5. The simulated error norm v.s. the estimated error norm. (q = 229 +
227 + 226 + 225)

For each choice of q we then collected up toM = 210+29 = 1536 error vectors
and processsed them in a statistical analysis step, to get a good approximation
of (f ,g). As the heuristic approach described, we first created an approximation

of (f ,g), say denoted by (f̂ , ĝ), by simply computing f̂i = E ·
∑M−1

j=0 e
(j)
i

M as the
value in the ith position. Here E is a constant that makes the norm of the vector
to be as the expected norm of f . Clearly, this is a very simple way of exploring
the dependence between fi and ei, but still it seems to be sufficient.

We have plotted the simulated error norms for various q and M in Figure 9.
Furthermore, we show in Table 4 and Table 5 the comparison between the sim-
ulated error norms and the estimated error norms according to Equation 29.

29

In the prior table, M is fixed to 1024 and q varies, while in the latter table,
q is fixed to 229 + 227 + 226 + 225 and M varies. We see that in all the cases,
the simulated data match the estimated data well, though the simulation seems
always better than the estimation, i.e., with smaller error norms. Another ob-
servation from Table 5 is that the estimation using the central limit theorem
becomes more accurate when M becomes larger, which is also very reasonable.

2
5
6

5
1
2

1
,0
2
4

1
,5
3
6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

#(Errors)

E
rr
or

no
rm

/
(√

2
N
−

2
σ
)

error rate= 2−9.19

error rate= 2−12.95

error rate= 2−17.09

error rate= 2−24.57

Fig. 9. Error norm as a function of the number of collected error vectors.

7.4 Summarizing the attack

The best attack is a CCA2 type attack where we in precomputation use 289+63 =
2152 operations to derive 263 special ciphertexts that are submitted for decryp-
tion. With probability 2−64 the secret f has the desired property of two consec-
utive big entries. If so, we will most likely see several decoding errors and such a
weak key has been detected. When the weak key has been detected, we perform
yet another precomputation that uses 2216 operations to derive 263 additional
special ciphertexts again submitted for decryption. We receive in expectation
1024 decryption errors and the knowledge from the error vectors will allow us

30

to reconstruct f without too much trouble using lattice reduction algorithms,
as experimental results strongly indicated. The overall complexity is thus ap-
proximately 2217 if the SVP oracle in BKZ is implemented via lattice sieving.
Actually, the cost of the lattice reduction algorithms in the final stage is not the
bottleneck, since we can employ other powerful statistical tools in Step 3 (e.g.,
the Maximum Likelihood Test approach) to make this cost negligible.

8 Conclusion

In this paper we introduced a method to increase the decryption failure rate of
a scheme, based on the search for ‘weak’ ciphertexts. This method benefits an
adversary in at least three scenarios: if he has access to a quantum computer, if he
can only perform a limited number of decryption queries or if he wants to stage a
multi-target attack on schemes that do not have the appropriate protection. We
explicitly calculated the effect of failure boosting in these scenarios for various
(Ring/Module-)LWE/LWR schemes. We also proposed a method to estimate
the secret key given ciphertexts that lead to decryption failures. The remaining
security after a certain number of decryption failures was calculated, given the
exact location of the error. We suggested three methods to obtain the exact
location of errors in failing ciphertexts. Finally, we estimated the security of
several schemes under an attack that optimally uses these decryption failures
and show that for some schemes the security is drastically reduced if an attacker
can perform sufficient decryption queries. However, for most NIST post-quantum
standardization candidates, the expected number of required decryption queries
is too high for a practical attack. We also identify the changes to this attack
under a multi-target scenario or when an attacker has only access to a limited
number of decryption queries.

We further proposed a generic weak-key attack model against lattice-based
schemes, which is slightly different from the previous attack, based on the ob-
servation that the error probability can be much higher for certain ‘weak’ keys.
We applied this model to attacking ss-ntru-pke, a version in the NTRUEncrypt
submission to the NIST Post-Quantum Standardization Process. Specifically, we
have presented an adaptive CCA attack on the claimed 256-bit classic security
level (NIST-V) of ss-ntru-pke. This attacking idea can be treated as extension of
reaction attacks [22,16] that already jeopardize the CCA security of MDPC and
LDPC based crypto-systems.

9 Acknowledgements

The authors would like to thank Tancrède Lepoint and the anonymous review-
ers for their helpful comments. They would also like to thank Andreas Hülsing
for interesting discussions. This work was supported in part by the Research
Council KU Leuven: C16/15/058, by the European Commission through the
Horizon 2020 research and innovation programme Cathedral ERC Advanced
Grant 695305, by the Research Council KU Leuven grants C14/18/067 and

31

STG/17/019, by the Norwegian Research Council (Grant No. 247742/070), by
the Swedish Research Council (Grant No. 2015-04528), by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation, and by the Swedish Foundation for Strategic Re-
search (SSF) project RIT17-0005.

References

1. NIST Post-Quantum Cryptography Forum. https://groups.google.com/a/
list.nist.gov/forum/#!forum/pqc-forum, accessed: 2019-01-11

2. Submission requirements and evaluation criteria for the post-quantum cryp-
tography standardization process (2016), https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/call-for-proposals-
final-dec-2016.pdf

3. Albrecht, M., Player, R., Scott, S.: On the concrete hardness of learning with errors.
Journal of Mathematical Cryptology (10 2015)

4. Albrecht, M.R., Curtis, B.R., Deo, A., Davidson, A., Player, R., Postlethwaite,
E.W., Virdia, F., Wunderer, T.: Estimate all the LWE, NTRU schemes! Cryptology
ePrint Archive, Report 2018/331 (2018), https://eprint.iacr.org/2018/331

5. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
– a new hope. In: USENIX Security 2016 (2016)

6. Baan, H., Bhattacharya, S., Garcia-Morchon, O., Rietman, R., Tolhuizen, L.,
Torre-Arce, J.L., Zhang, Z.: Round2: Kem and pke based on glwr. Cryptology
ePrint Archive, Report 2017/1183 (2017), https://eprint.iacr.org/2017/1183

7. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom Functions and Lattices, pp.
719–737. Springer Berlin Heidelberg, Berlin, Heidelberg (2012), https://doi.org/
10.1007/978-3-642-29011-4_42

8. Bernstein, D.J., Bruinderink, L.G., Lange, T., Panny, L.: HILA5 Pindakaas: On
the CCA security of lattice-based encryption with error correction. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 18: 10th International Conference on
Cryptology in Africa. Lecture Notes in Computer Science, vol. 10831, pp. 203–216.
Springer, Heidelberg, Germany, Marrakesh, Morocco (May 7–9, 2018)

9. Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: On symmetric encryp-
tion with distinguishable decryption failures. In: Moriai, S. (ed.) Fast Software
Encryption – FSE 2013. Lecture Notes in Computer Science, vol. 8424, pp. 367–
390. Springer, Heidelberg, Germany, Singapore (Mar 11–13, 2014)

10. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., StehlÃľ, D.: Crystals – kyber: a cca-secure module-lattice-based kem.
Cryptology ePrint Archive, Report 2017/634 (2017), http://eprint.iacr.org/
2017/634

11. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
Annual ACM Symposium on Theory of Computing. pp. 575–584. ACM Press, Palo
Alto, CA, USA (Jun 1–4, 2013)

12. Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: Cut off the tail! practical post-
quantum public-key encryption from lwe and lwr. Cryptology ePrint Archive, Re-
port 2016/1126 (2016), http://eprint.iacr.org/2016/1126

13. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: Module-lwr based
key exchange, cpa-secure encryption and cca-secure KEM. In: AFRICACRYPT
2018. pp. 282–305 (2018), https://doi.org/10.1007/978-3-319-89339-6_16

32

https://groups.google.com/a/list.nist.gov/forum/#!forum/pqc-forum
https://groups.google.com/a/list.nist.gov/forum/#!forum/pqc-forum
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://eprint.iacr.org/2018/331
https://eprint.iacr.org/2017/1183
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
http://eprint.iacr.org/2017/634
http://eprint.iacr.org/2017/634
http://eprint.iacr.org/2016/1126
https://doi.org/10.1007/978-3-319-89339-6_16

14. D’Anvers, J.P., Vercauteren, F., Verbauwhede, I.: On the impact of decryption
failures on the security of LWE/LWR based schemes. Cryptology ePrint Archive,
Report 2018/1089 (2018), https://eprint.iacr.org/2018/1089

15. Ding, J., Alsayigh, S., RV, S., Fluhrer, S., Lin, X.: Leakage of signal function with
reused keys in RLWE key exchange. Cryptology ePrint Archive, Report 2016/1176
(2016), http://eprint.iacr.org/2016/1176

16. Fabsic, T., Hromada, V., Stankovski, P., Zajac, P., Guo, Q., Johansson, T.: A reac-
tion attack on the QC-LDPC McEliece cryptosystem. Cryptology ePrint Archive,
Report 2017/494 (2017), http://eprint.iacr.org/2017/494

17. Fluhrer, S.: Cryptanalysis of ring-lwe based key exchange with key share reuse.
Cryptology ePrint Archive, Report 2016/085 (2016), https://eprint.iacr.org/
2016/085

18. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In: Wiener, M.J. (ed.) Advances in Cryptology – CRYPTO’99.
Lecture Notes in Computer Science, vol. 1666, pp. 537–554. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 15–19, 1999)

19. Gama, N., Nguyen, P.Q.: New chosen-ciphertext attacks on NTRU. In: Okamoto,
T., Wang, X. (eds.) PKC 2007: 10th International Conference on Theory and Prac-
tice of Public Key Cryptography. Lecture Notes in Computer Science, vol. 4450,
pp. 89–106. Springer, Heidelberg, Germany, Beijing, China (Apr 16–20, 2007)

20. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing.
pp. 212–219. STOC ’96, ACM, New York, NY, USA (1996), http://doi.acm.org/
10.1145/237814.237866

21. Guo, Q., Johansson, T., Nilsson, A.: A generic attack on lattice-based schemes
using decryption errors with application to ss-ntru-pke. Cryptology ePrint Archive,
Report 2019/043 (2019), https://eprint.iacr.org/2019/043

22. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with
CCA security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) Advances
in Cryptology – ASIACRYPT 2016, Part I. Lecture Notes in Computer Science,
vol. 10031, pp. 789–815. Springer, Heidelberg, Germany, Hanoi, Vietnam (Dec 4–8,
2016)

23. Hall, C., Goldberg, I., Schneier, B.: Reaction attacks against several public-key
cryptosystems. In: Varadharajan, V., Mu, Y. (eds.) ICICS 99: 2nd International
Conference on Information and Communication Security. Lecture Notes in Com-
puter Science, vol. 1726, pp. 2–12. Springer, Heidelberg, Germany, Sydney, Aus-
tralia (Nov 9–11, 1999)

24. Hoffstein, J., Silverman, J.H.: NTRU Cryptosystems Technical Report Report#
016, Version 1 Title: Protecting NTRU Against Chosen Ciphertext and Reaction
Attacks

25. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017: 15th Theory of
Cryptography Conference, Part I. Lecture Notes in Computer Science, vol. 10677,
pp. 341–371. Springer, Heidelberg, Germany, Baltimore, MD, USA (Nov 12–15,
2017)

26. Howgrave-Graham, N., Nguyen, P.Q., Pointcheval, D., Proos, J., Silverman, J.H.,
Singer, A., Whyte, W.: The impact of decryption failures on the security of NTRU
encryption. In: Boneh, D. (ed.) Advances in Cryptology – CRYPTO 2003. Lecture
Notes in Computer Science, vol. 2729, pp. 226–246. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 17–21, 2003)

33

https://eprint.iacr.org/2018/1089
http://eprint.iacr.org/2016/1176
http://eprint.iacr.org/2017/494
https://eprint.iacr.org/2016/085
https://eprint.iacr.org/2016/085
http://doi.acm.org/10.1145/237814.237866
http://doi.acm.org/10.1145/237814.237866
https://eprint.iacr.org/2019/043

27. Howgrave-Graham, N., Silverman, J.H., Singer, A., Whyte, W.: NAEP: Provable
security in the presence of decryption failures. Cryptology ePrint Archive, Report
2003/172 (2003), http://eprint.iacr.org/2003/172

28. Jaulmes, É., Joux, A.: A chosen-ciphertext attack against ntru. In: Bellare, M. (ed.)
Advances in Cryptology — CRYPTO 2000. pp. 20–35. Springer Berlin Heidelberg,
Berlin, Heidelberg (2000)

29. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: Post-quantum ind-cca-secure
kem without additional hash. Cryptology ePrint Archive, Report 2017/1096 (2017),
https://eprint.iacr.org/2017/1096

30. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Designs, Codes and Cryptography 75(3), 565–599 (Jun 2015), https://doi.org/
10.1007/s10623-014-9938-4

31. Lu, X., Liu, Y., Jia, D., Xue, H., He, J., Zhang., Z.: Lac. Technical report, National
Institute of Standards and Technology (2017), available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-1-submissions

32. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors over Rings, pp. 1–23. Springer Berlin Heidelberg (2010), https://doi.org/
10.1007/978-3-642-13190-5_1

33. Naehrig, M., Alkim, E., Bos, J., Ducas, L., Easterbrook, K., LaMacchia, B.,
Longa, P., Mironov, I., Nikolaenko, V., Peikert, C., Raghunathan, A., Stebila.,
D.: Frodokem. Technical report, National Institute of Standards and Technology
(2017), available at https://frodokem.org/files/FrodoKEM-specification-
20171130.pdf

34. Nilsson, A., Johansson, T., Stankovski, P.: Error amplification in code-based cryp-
tography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 238–258 (2019),
https://doi.org/10.13154/tches.v2019.i1.238-258

35. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
Extended abstract. In: Proceedings of the Forty-first Annual ACM Symposium on
Theory of Computing. pp. 333–342. STOC ’09, ACM, New York, NY, USA (2009),
http://doi.acm.org/10.1145/1536414.1536461

36. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Symposium on Theory
of Computing. pp. 84–93. ACM Press, Baltimore, MA, USA (May 22–24, 2005)

37. Saarinen, M.J.O.: Hila5. Tech. rep., National Institute of Standards and Tech-
nology (2017), available at https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions

38. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mecha-
nism in the quantum random oracle model. Cryptology ePrint Archive, Report
2017/1005 (2017), https://eprint.iacr.org/2017/1005

39. Schanck, J.M., Hulsing, A., Rijneveld, J., Schwabe, P.: Ntru-hrss-kem. Tech. rep.,
National Institute of Standards and Technology (2017), available at https://csrc.
nist.gov/projects/post-quantum-cryptography/round-1-submissions

40. Schwabe, P., Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky,
V., Schanck, J.M., Seiler, G., Stehle., D.: Crystals-kyber. Technical report, National
Institute of Standards and Technology (2017), available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-1-submissions

41. Schwabe, P., Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky,
V., Schanck, J.M., Seiler, G., Stehle., D.: Newhope. Technical report, National
Institute of Standards and Technology (2017), available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-1-submissions

34

http://eprint.iacr.org/2003/172
https://eprint.iacr.org/2017/1096
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://frodokem.org/files/FrodoKEM-specification-20171130.pdf
https://frodokem.org/files/FrodoKEM-specification-20171130.pdf
https://doi.org/10.13154/tches.v2019.i1.238-258
http://doi.acm.org/10.1145/1536414.1536461
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://eprint.iacr.org/2017/1005
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

42. Seo, M., Park, J.H., Lee, D.H., Kim, S., Lee., S.J.: Emblem and r.emblem.
Technical report, National Institute of Standards and Technology (2017), avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/round-
1-submissions

43. Smart, N.P., Albrecht, M.R., Lindell, Y., Orsini, E., Osheter, V., Paterson, K.,
Peer., G.: Lima. Technical report, National Institute of Standards and Tech-
nology (2017), available at https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions

44. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) Advances in Cryptology – EUROCRYPT 2011.
Lecture Notes in Computer Science, vol. 6632, pp. 27–47. Springer, Heidelberg,
Germany, Tallinn, Estonia (May 15–19, 2011)

45. Szepieniec., A.: Ramstake. Technical report, National Institute of Standards
and Technology (2017), available at https://csrc.nist.gov/projects/post-
quantum-cryptography/round-1-submissions

46. Targhi, E.E., Unruh, D.: Post-Quantum Security of the Fujisaki-Okamoto and
OAEP Transforms, pp. 192–216. Springer Berlin Heidelberg (2016), https://doi.
org/10.1007/978-3-662-53644-5_8

47. Zhang, Z., Chen, C., Hoffstein, J., Whyte, W.: Ntruencrypt. Tech. rep., National
Institute of Standards and Technology (2017), available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-1-submissions

35

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

	Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes
	 Jan-Pieter D'Anvers, Qian Guo, Thomas Johansson, Alexander Nilsson, Frederik Vercauteren, and Ingrid Verbauwhede

