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Abstract. In this work, we propose new constructions for zero
inner-product encryption (ZIPE) and non-zero inner-product encryp-
tion (NIPE) from prime-order bilinear pairings, which are both attribute
and function private in the public-key setting.
• Our ZIPE scheme is adaptively attribute private under the standard

Matrix DDH assumption for unbounded collusions. It is additionally
computationally function private under a min-entropy variant of the
Matrix DDH assumption for predicates sampled from distributions
with super-logarithmic min-entropy. Existing (statistically) function
private ZIPE schemes due to Boneh et al. [Crypto’13, Asiacrypt’13]
necessarily require predicate distributions with significantly larger
min-entropy in the public-key setting.

• Our NIPE scheme is adaptively attribute private under the standard
Matrix DDH assumption, albeit for bounded collusions. In addition,
it achieves computational function privacy under a min-entropy vari-
ant of the Matrix DDH assumption for predicates sampled from dis-
tributions with super-logarithmic min-entropy. To the best of our
knowledge, existing NIPE schemes from bilinear pairings were nei-
ther attribute private nor function private.

Our constructions are inspired by the linear FE constructions of Agrawal
et al. [Crypto’16] and the simulation secure ZIPE of Wee [TCC’17]. In
our ZIPE scheme, we show a novel way of embedding two different hard
problem instances in a single secret key - one for unbounded collusion-
resistance and the other for function privacy. For NIPE, we introduce
new techniques for simultaneously achieving attribute and function pri-
vacy. We further show that the two constructions naturally generalize to
a wider class of predicate encryption schemes such as subspace member-
ship, subspace non-membership and hidden-vector encryption.

1 Introduction

Predicate encryption (PE) [14, 5, 30] is a modern public-key primitive that en-
ables fine-grained role-based access control on encrypted data, which makes it
desirable for a number of real-life applications. In a PE scheme, a single master
secret key msk is used to derive several secret keys of the form skf , where f is



a Boolean function over Σ. A ciphertext corresponds to an attribute-message
pair (I,M) ∈ Σ×M, where Σ is a pre-defined set of attributes and M is a set
of payload messages. Decryption of a ciphertext corresponding to (I,M) by skf
reveals M if and only if f(I) = 1. Based on the security notion achieved, a PE
scheme may be classified into one or more of the categories described below.

Public Attribute PE. In a public attribute PE system, a ciphertext ct on
(I,M) leaks no information about the message M to an adversary possessing
secret-keys that do not decrypt ct (i.e., skf such that f(I) = 0). The attribute I,
on the other hand, is public. Such schemes are often nomenclatured as attribute-
based encryption (ABE). Concrete ABE schemes have been proposed for a wide
range of Boolean predicates, including equality/identity testing (IBE) [10, 24],
keyword search [9, 1], Boolean formulae [29], regular languages [36], general
polynomial-size circuits [22, 11, 27], and even Turing machines [25].

Attribute Private PE. In an attribute private PE, the ciphertext ct leaks
no information about either the attribute I or the message M to an adversary
possessing secret-keys that do not decrypt ct. Concrete instantiations of private
attribute PE have been achieved for hidden vector encryption (HVE) [14] that
supports, in addition to equality, conjunctive, range and subset predicates, and
also for zero-inner-product encryption (ZIPE) [30, 33]. ZIPE has been realized
using bilinear maps [30, 33] and also from lattice-based techniques [5, 2, 6].

In a more recent work [37], Wee demonstrated many new techniques for
achieving selectively simulation-secure attribute private PE from prime-order
bilinear groups under the standard Matrix DDH assumption. The main result
of this work is a partially hiding predicate encryption scheme for functions that
compute an arithmetic branching program on public attributes, followed by an
inner product predicate on private attributes. In the realm of lattices, Gorbunov
et al. [28] showed how to construct attribute private PE for all circuits from the
learning with errors (LWE) assumption.

Although attribute privacy has been realized for many different predicates
from bilinear pairings, it remains open to construct pairing-based attribute pri-
vate PE for certain simple predicates such as non-zero inner-product encryp-
tion (NIPE) [7] and its natural generalization to a broader class of subspace
non-membership encryption (SNME) predicates.

Function Private PE. In a function private PE, a secret-key skf reveal no
information beyond the absolute minimum about the underlying predicate f .
Note that the notions of attribute and function privacy for a PE are mutually
exclusive in the sense that one does not necessarily imply the other. In the
setting of private-key PE, there already exist function private constructions from
pairings for predicates such as ZIPE [8, 20]. In fact, using techniques introduced
by Brakerski et al. [15], any private-key PE can be made function private in a
generic manner. However, in the setting of public-key PE, formalizing a realistic
notion of function privacy is significantly more challenging [12, 13].
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Consider, for example, an adversary against an IBE scheme who is given a
secret-key skid corresponding to an identity id. As long as the adversary has some
apriori information that id belongs to a set S such that |S| is at most polynomial
in the security parameter λ, it can fully recover id from skid : it can simply resort
to encrypting a random message M under each identity in S, and decrypting
using skid to check for a correct recovery.

Hence, in the setting of public-key PE, function privacy can only hold un-
der the minimal assumption that each predicate is sampled from a distribution
with min-entropy at least super logarithmic in the security parameter λ [12, 13].
Under similar assumptions, function private public-key constructions have been
reported for IBE [12], ZIPE [3] and subspace membership encryption (SME) [13],
which is essentially a generalization of ZIPE. These works throw open several
interesting questions. We discuss them below.

1. The PE schemes proposed in [12, 13] are inherently restricted to satisfying
a statistical notion of function privacy. For a vast majority of applications,
a relaxed computational notion of function privacy suffices. It is currently
open to design public-key PE schemes with function privacy in this relaxed
computational setting.

2. The function private PE schemes in [12, 13] necessarily assume predicate
distributions with min-entropy k ≥ λ (where λ is the security parameter). 1

This is a rather stringent assumption in the context of real-world predicates.
An interesting question is whether a public-key PE scheme can be function
private for predicate distributions with only super-logarithmic min-entropy.

There are several real-world applications that warrant the study of PE
schemes which are simultaneously attribute and function private. These include
searching on encrypted data, secure information retrieval, secure mail gateways
and payment gateways, and many others. The reader is referred to [12] for an
elaborate discussion of these applications.

1.1 Our Contributions

We focus on the following questions discussed in the previous section:

Is it possible to design attribute private PE from bilinear maps for the non-zero
inner product functionality?

What is a meaningful definition of function privacy against resource-bounded
adversaries?

Can the min-entropy requirements on the underlying predicate distributions be
restricted to a bare minimum while defining function privacy?

1 The PE schemes in [12, 13] are not function private, even in the weaker computational
setting, if the min-entropy requirements are relaxed any further.
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Are there constructions for public-key PE that are provably function private, with
respect to the relaxed definition, under standard computational assumptions?

In this paper, we answer these questions in the affirmative by first presenting a
relaxed definition of function privacy taking into account resource bounded ad-
versaries and restricting the min-entropy requirements of the underlying pred-
icate distributions to ω(log λ). We then present new pairing-based construc-
tions in the public key setting for subspace membership encryption (SME) and
subspace non-membership encryption (SNME) that generalize ZIPE and NIPE
respectively. Our constructions are adaptively attribute private and computa-
tionally function private in tandem, under variants of the well-known matrix
Diffie-Hellman (MDDH) assumption.

Our ZIPE scheme is the first to achieve computational function privacy for
predicates with super-logarithmic min-entropy. As already mentioned, existing
(statistically) function private ZIPE schemes due to Boneh et al. [13] neces-
sarily require predicate distributions with significantly larger min-entropy in
the public-key setting. Our NIPE scheme is first to achieve both attribute and
function privacy under group-theoretic assumptions, albeit in the bounded collu-
sion setting. Existing constructions for NIPE based on group-theoretic assump-
tions [7, 16] were neither attribute nor function private, even in the bounded
collusion setting.

Our key technical contributions may be summarized as follows.

• Relaxing function privacy definition to account for resource-bounded ad-
versraries and underlying predicates sampled from distributions with min-
entropy k = ω (log λ) (λ being the security parameter).

• Introduction of a min-entropy variant of MDDH assumption where the ma-
trix provided in the instance does not have the uniform distribution but
guaranteed to have ω(log λ) min-entropy.

• Simple and efficient constructions for ZIPE and NIPE from prime-order
asymmetric bilinear pairings, that are simultaneously attribute and function
private under the presumed hardness of matrix DDH and its min-entropy
variant, respectively, so long as the predicates are sampled from distributions
with super-logarithmic min-entropy.

• Generalizations of the aforementioned constructions to a broader class of
predicates, namely SME and SNME.

Our constructions are inspired by the linear FE constructions of Agrawal et
al. [6] and the simulation secure ZIPE of Wee [37]. In our SME (and hence ZIPE)
scheme, we show a novel way of embedding two different hard problem instances
in a single secret key - one for unbounded collusion-resistance and the other for
function privacy. With respect to SNME (and hence NIPE), we introduce new
techniques for simultaneously achieving attribute and function privacy, albeit in
the bounded collusion setting.
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1.2 Overview of Results and Techniques

In this section, we briefly explain the core ideas of our attribute private and func-
tion private SME/SNME in terms of the simplest cases, namely, ZIPE/NIPE.
The security of our constructions follow from different variants of the Matrix
DDH assumption over both source groups of a bilinear pairing.

The Matrix DDH assumption in a group G of prime order q given by a
generator g requires distinguishing between two distributions – (gA, gAr) and

(gA, gu) – where A ∈ Z(k+1)×k
q , r ∈ Zkq and u ∈ Zk+1

q are sampled uniformly
and independently from their respective domains (here k ≥ 1 and it is assumed
that A has full rank with overwhelming probability). For the function privacy
proofs we rely on a special form of the MDDH assumption parameterized by
(m,n) – an instance (with respect to a group G = 〈g〉) consists of gW, gu where

W
R←− V∗ for some source distribution V∗ over Zm×nq of min-entropy ω(log λ)

and the task is to determine if u = WT · y for y
R←− Zmq or u is randomly

distributed in Znq .

Denote an asymmetric pairing by the 7-tuple G = (G1,G2,GT , q, g1, g2, e)
where |G1| = |G2| = |GT | = q, g1, g2 respectively generate G1,G2 and e :
G1 ×G2 → GT is a non-degenerate, efficiently computable bilinear map. Call G
Matrix DDH-hard if the Matrix DDH assumption holds in both G1 and G2.

Zero Inner-Product Encryption (ZIPE). Our attribute and function pri-
vate ZIPE construction, named ΠZIPE, is inspired by the simulation secure ZIPE
scheme of Wee [37]. The public parameters and the master secret key in ΠZIPE

are given by

pp =

(
g1, g

A
1 , g

S0·A
1 , gS1·A

1 , . . . , gSn·A
1 , e(g1, g2)K·A

)
,

msk = (g2,S0,S1, . . . ,Sn,K,B0) ,

where A
R←− Z(k+1)×k

q , S0,S1, . . . ,Sn
R←− Z(2k+1)×(k+1)

q , K
R←− Z1×(k+1)

q and

B0
R←− Z(2k+1)×k

q are sampled uniformly. A ciphertext ct on attribute vector
x = (x1, . . . , xn) ∈ Znq and message M is given by

ct =
(
c0, {cj}nj=1, cn+1

)
=

(
g

(A·r)T

1 ,
{
g

((xj ·S0+Sj)·A·r)T

1

}n
j=1

,M · e(g1, g2)(K·A·r)T
)
,

for r
R←− Zkq . The secret key skw on a vector w = (w1, . . . , wn) ∈ Znq is defined as

skw =
(
h0, {hj}nj=1

)
=

(
g
K+y

∑n
j=1 wj ·t·Sj

2 ,
{
g
ywjt
2

}n
j=1

)
,

where y
R←− Zq and t = (B0 · s)T for s

R←− Zkq .
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For correctness, we restrict the message spaceM to an exponentially smaller
subset of GT . The decryption algorithm computes

M = cn+1 ·

 n∏
j=1

e(cj , hj)

/e(c0, h0),

which returns the correct message if 〈x,w〉 = 0. When 〈x,w〉 6= 0 the message
thus computed is uniformly distributed in GT and with high probability will be
outside M. In such a case, the decryption algorithm may return a symbol ⊥
indicating failure.

We prove that ΠZIPE is adaptively attribute private assuming the hardness
of the decisional MDDH problems in G1 and G2. The attribute privacy game
asks an adversary to distinguish between encryptions to attribute vectors x0 and
x1. Or in other words, the adversary is given a challenge ciphertext for xb where

b
R←− {0, 1} and its task is to guess b. Essentially, we need to argue that the

components {cj}nj=1 in the challenge ciphertext hide the attribute x.
The proof relies on the dual system proof methodology and proceeds through

a sequence of games, each changing the distribution of challenge ciphertext and
keys. The key steps in the proof are listed below.

1. The reduction first embeds an instance of MDDH in G1 in the challenge
ciphertext to make it semi-functional. At this stage, the exponent of cipher-
text component c0 is no longer correlated to A and this is consistent with
the other components.

2. In a series of subsequent games, we turn each secret key provided to the
adversary upon a key extract query to semi-functional form by embedding
MDDH instances in the group G2. This step is crucial for unbounded collu-
sion resistance.

3. Once the distribution of all keys are modified, we apply a “change of basis”
to the challenge ciphertext, and argue that xb is information theoretically
hidden from the adversary.

We prove the indistinguishability of each pair of consecutive games by resorting
to a set of techniques involving dual bases in prime-order bilinear groups (similar
techniques have been used in prior works, notably [23, 26, 17]). The reader may
refer to Section 4 and the full version [?] for details of the proof.

For showing function privacy of ΠZIPE, we rely on the min-entropy variant of
the MDDH assumption. In the function privacy experiment, the adversary picks
two vector distributions, each component of which is an ω(log λ)-source over
Zq. The challenger samples a vector w according to one of the distributions,
computes a secret key skw for vector w and gives it to the adversary. The adver-
sary’s task is to determine the distribution of w looking at skw. To prove that
the secret key hides the distribution from which w was sampled, we embed an
instance of the min-entropy variant of the MDDH assumption in the challenge
secret key provided to the adversary. If the instance is sampled from the correct
distribution, the secret key is well-formed. On the other hand, if the instance is
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uniformly random, the secret key perfectly hides the distribution from which w
was sampled. The reader may refer to Section 4 for the detailed proof.

Note that our ZIPE scheme essentially embeds two different problem in-
stances in the same secret key - an MDDH problem instance over G2 that is
exploited to achieve unbounded collusion-resistance in the attribute privacy ex-
periment, and a min-entropy MDDH instance over G2, which is the basis for
the proof of function privacy. We believe that this “simultaneous embedding”
strategy is of independent interest, and may be useful in other applications.

Non-Zero Inner-Product Encryption (NIPE). Our NIPE scheme is in-
spired by the linear FE construction of Agrawal, Libert and Stehlé [6] referred
to as LinFE in what follows. A LinFE ciphertext ct is created by encrypting a
vector x of length n. Decryption of ct by a secret key, generated for a linear
function (given by a length n vector w), returns the value of the inner-product
〈x,w〉.

In a NIPE scheme, a ciphertext is associated with a payload message Mand
a vector x while a secret key corresponds to a vector y. to be encoded in the
ciphertext. Decryption algorithm should be designed to return M iff 〈x,w〉 6=
0. To derive NIPE from LinFE, we use two instantiations of the LinFE with
independent master secret keys. The public parameters and master secret key
for the resulting scheme would be

pp =
(
g, gA, gS1 , gS2

)
msk = (S1,S2).

The ciphertext for (x,M) will result from encoding x and M · x using the two
individual schemes as shown below:

ct =
(
gAr1 , gx+S1Ar1 , gAr2 , gM ·x+S2Ar2

)
.

Here r1, r2 are sampled uniformly at random from Zkq . A secret key skw =

(wTS1,w
TS2) helps in recovering gM〈x,w〉 and g〈x,w〉 with respect to g. One

may recover M by simply computing the discrete logarithm of gM〈x,w〉 by g〈x,w〉

which is possible only when 〈x,w〉 6= 0. The restriction on the inner-products
now shifts to the messages that is, the messages have to lie in a polynomial-sized
subset of Zq. A similar technique has been previously used in [4] to construct
public revocation and traitor-tracing from LinFE and revocation, in particular,
can be seen as a special case of NIPE. However, our naive construction is not
sufficient to (simultaneously) achieve attribute privacy and function privacy since
the secret key already reveals too much information about w.

To circumvent the problem, we adapt the construction to the bilinear map
setting. This is because functions are associated with secret keys and a basic
step to ensure privacy of the function encoded in the secret key components
is to hide them in the exponents of elements coming from a discrete log hard
group. Ciphertext components already live in a cyclic group. Decryption requires
combining the ciphertext and key components to recover the message which
can be facilitated if the two groups are equipped with a pairing/bilinear map.
Furthermore, the secret key is additionally randomized with y ∈ Zq (for the
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generalized case of SNME, this would be a vector y ∈ Zmq where w is replaced by
a matrix W ∈ Zm×nq ). Randomization is essential for the function privacy proof,
which exploits the hardness of a min-entropy variant of the MDDH assumption.
We now discuss the construction of a NIPE scheme possessing both attribute
and function privacy.

Let G = (G1,G2,GT , q, g1, g2, e) denote an asymmetric bilinear map ensem-
ble. The public parameters and master secret key for our modified scheme ΠNIPE

would be similar to the naive scheme we described earlier except that pp com-
ponents now live in G1.

pp =
(
g1, g

A
1 , g

S1
1 , gS2

1

)
msk = (g2,S1,S2) .

Similarly, the ciphertext for (x,M) for ΠNIPE is given by

ct =
(
gAr1

1 , gx+S1Ar1
1 , gAr2

1 , gM ·x+S2Ar2
1

)
,

where r1, r2 are uniformly distributed in Zkq . Secret key for w would now be
defined as

skw =
(
gy·w2 , gy·w

TS1

2 , gy·w
TS2

2

)
randomized by y sampled uniformly from Zq. During decryption, ciphertext
and key components are paired to obtained e(g1, g2)My〈x,w〉 and e(g1, g2)y〈x,w〉.
Message M can be recovered by computing the discrete logarithm of the former
with respect to the latter, conditioned on 〈x,w〉 6= 0.

Unlike the SME case, we can only prove attribute privacy of our SNME
scheme in the bounded collusion model. More precisely, an adversary is allowed
to query at most n − 1 secret keys, so that the master secret key components
S0,S1 . . . ,Sn retain sufficient entropy from the adversary’s point of view. The
proof then proceeds via a sequence of two hybrid experiments, in each of which
the proof embeds a fresh MDDH instance in the challenge ciphertext.

We argue that when these instances are sampled from the “random” distri-
bution instead of the “real” distribution, the challenge ciphertext perfectly hides
which attribute-message pair among (x0,M0) and (x1,M1) is being encrypted.
The argument for perfect hiding relies on hash proof systems [18, 19], similar to
those used by Agrawal et al. in proving the security of their linear FE scheme [6].
Finally, the scheme is adaptively secure because the reduction knows the master
secret key at any time, which allows it to answer all secret key queries without
knowing the challenge attributes beforehand. For more details on the proof, the
reader may refer to Section 5 and the full version [?].

To prove function privacy, we again rely on the min-entropy variant of the
MDDH assumption over the group G2. This proof is technically very similar
to the proof of function privacy for our SME scheme. The reader may refer to
Section 5 for the detailed proof.

Hidden Vector Encryption (HVE). We extend our techniques to construct
a hidden vector encryption wherein a secret key for a vector y ∈ (Σ ∪ {?})n al-
lows decryption of a ciphertext on attribute vector x ∈ Σn if for each j ∈ [1, n],
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either yj = xj or yj = ?. Although attribute-private HVE is implied by attribute-
private SME, the implication does not extend to function privacy. In fact, defin-
ing function privacy for HVE itself is tricky given the presence of wildcard char-
acters. We overcome this issue by presenting a weaker notion of function privacy
for HVE that allows revealing positions of the wildcard (?) characters in a given
predicate vector, while hiding the contents of the other “non-wildcard” posi-
tions. Also presented is a construction of HVE that is provably function private
in this weaker model from bilinear maps. The construction is quite similar to our
SME construction, except for certain minor tweaks to account for the presence
of wildcard characters. The proofs of attribute and function privacy (in the weak
model) also follow analogously.

1.3 Open Problems

Several interesting questions remain unanswered. The construction of
NIPE/SNME we present have a restriction – attribute privacy only holds in
the bounded collusions model. It would be interesting to obtain constructions
free of this restriction. Another problem is to construct efficient function-private
PE for richer functionalities such as Boolean and arithmetic span programs from
standard assumptions.

1.4 Organization of the Paper

In Section 2, we present the notation, a quick review of bilinear maps and re-
lated assumptions followed by definitions of PE and associated security notions.
This is followed by a description of min-entropy variants of MDDH assumption
required for our proofs. We formalize the relaxed computational notion of func-
tion privacy and discuss related issues in Section 3. In Section 4, we present our
SME construction followed by proofs of attribute privacy and function privacy.
Section 5 describes our construction of SNME. Due to lack of space, we omit
details of the proofs. Interested readers are referred to the full version [?].The
full version also describes a function private hidden vector encryption along with
a sketch of its security proof.

2 Background and Preliminary Definitions

In this section, we fix notation, present background material on predicate encryp-
tion and recall certain standard computational assumptions in bilinear groups.
We also introduce certain min-entropy variants of these assumptions useful for
our proofs.

2.1 Notation

This section summarizes the notations used throughout the rest of the paper. We

write x
R←− χ to represent that an element x is sampled uniformly at random from
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a set/distribution X . The output a of a deterministic algorithm A is denoted by
x = A and the output a′ of a randomized algorithm A′ is denoted by x′ ← A′.

We refer to λ ∈ N as the security parameter, and denote by exp(λ), poly(λ)
and negl(λ) any generic (unspecified) exponential function, polynomial function
and negligible function in λ respectively. Note that a function f : N→ N is said
to be negligible in λ if for every positive polynomial p, f(λ) < 1/p(λ) when λ is
sufficiently large.

For a, b ∈ Z such that a ≤ b, we denote by [a, b] the set of integers lying
between a and b (both inclusive). For a finite field Fq (q being a λ-bit prime)
and m,n ∈ N, we denote by Fm×nq the space of all m × n matrices W with
elements from Fq. We use the short-hand notation Fmq to represent the vector

space Fm×1
q . The transpose of a matrix W ∈ Fm×nq is denoted as WT. The

symbol 0 is used to denote an all-zero matrix of appropriate dimension.

Finally, the min-entropy of a random variable Y is denoted as H∞(Y) and
is evaluated as H∞(Y) = − log (maxy Pr[Y = y]). A random variable Y is said
to be a k-source if H∞(Y) ≥ k.

2.2 Predicate Encryption

Definition 1. (Predicate Encryption). A predicate encryption (PE) scheme
for a class of predicates F over an attribute space Σ and a payload-message space
M is a quadruple of PPT algorithms Π = (Setup,KeyGen,Enc,Dec), defined as
follows:

• Setup(1λ): On input the security parameter λ, the setup algorithm generates
the public parameter pp and the master secret key msk.

• KeyGen(pp,msk, f): On input the public parameter pp, the master secret key
msk and a predicate f ∈ F , the key-generation algorithm outputs a secret
key skf .

• Enc(pp, I,M): On input the public parameter pp, an attribute I ∈ Σ and a
payload message M ∈M, the encryption algorithm outputs a ciphertext ct.
• Dec(pp, skf , ct): On input the public parameter pp, a ciphertext ct and a

secret key skf , the decryption algorithm outputs either a payload-message
M ∈M or the symbol ⊥.

Correctness. A PE scheme is said to be functionally correct if for any security
parameter λ ∈ N, any predicate f ∈ F , any attribute I ∈ Σ, and any payload
message M ∈ M, letting (pp,msk)← Setup(1λ), skf ← KeyGen (pp,msk, f) and
ct← Enc (pp, I,M), the following hold:

1. If f(I) = 1, Pr [Dec (pp, ct, skf ) = M ] = 1,

2. If f(I) = 0, Pr [Dec (pp, ct, skf ) = ⊥] with overwhelmingly large probability,

where the probabilities are computed over the randomness of the Setup,KeyGen
and Enc algorithms.
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Experiment Expt
(b)
AP,Π,A(λ):

1. The challenger samples (pp,msk)← Setup(1λ) and provides pp to A.
2. The adversary A adaptively issues key-generation queries. For each query

predicate f , the challenger responds with

skf ← KeyGen (pp,msk, f) .

3. The adversary A outputs attribute-message pairs (I0,M0) and (I1,M1), such
that for each predicate f queried, it holds that

f(I0) = f(I1) = 0.

The challenger responds to the adversary A with the ciphertext

ct← Enc (pp, Ib,Mb) .

4. The adversary A continues to adaptively issue key-generation queries, subject
to the aforementioned restrictions. The challenger responds as above.

5. Eventually, the adversary A outputs a bit b′.

Fig. 1. The Attribute Privacy Experiment for Predicate Encryption

Attribute Privacy. Define the experiment Expt
(b)
AP,Π,A(λ) as in Fig. 1 for a PE

Π = (Setup,KeyGen,Enc,Dec), a security parameter λ ∈ N and a bit b ∈ {0, 1}.
Let AdvAP

Π,A(λ) denote the advantage of the adversary A in the aforementioned
experiment, defined as

AdvAP
Π,A(λ) :=

∣∣∣∣Pr
[
Expt

(0)
AP,Π,A(λ) = 1

]
− Pr

[
Expt

(1)
AP,Π,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ).

Definition 2. (Attribute Private PE.) A PE scheme Π is said to be attribute
private if for all security parameters λ ∈ N and for all PPT adversaries A, it
holds that AdvAP

Π,A(λ) ≤ negl(λ).

2.3 Sub-Classes of Predicate Encryption

In this subsection, we recall definitions of certain sub-classes of predicate en-
cryption that are used in the rest of the paper.

Inner Product Encryption. An inner product encryption (IPE) scheme [30,
33] is a PE over an attribute space Σ = Fnq (q being a λ-bit prime) and a set of
Boolean predicates fy : Fnq −→ {0, 1} such that for each y ∈ Fnq and x ∈ Fnq , we
have

fy(x) =

{
1 if 〈y,x〉 = 0

0 otherwise.
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where 〈·, ·〉 denotes the inner product (equivalently, scalar product) of two vectors
over Zq.

Subspace Membership Encryption. Subspace membership encryption
(SME) [13] is a generalization of IPE to accommodate general linear subspaces
as opposed to only vector spaces. Formally, an SME scheme is is a PE over an
attribute space Σ = Fnq (q being a λ-bit prime) and a set of Boolean predicates
fW : Fnq −→ {0, 1} such that for each W ∈ Fm×nq and x ∈ Fnq , we have

fW(x) =

{
1 if W · x = 0

0 otherwise.

Non-Zero IPE. Non-zero IPE (NIPE) [7, 16] is the dual of IPE in the sense
that it is a PE over an attribute space Σ = Fnq (q being a λ-bit prime) and a set
of Boolean predicates fy : Fnq −→ {0, 1} such that for each y ∈ Fnq and x ∈ Fnq ,
we have

fy(x) =

{
1 if 〈y,x〉 6= 0

0 otherwise.

Subspace Non-Membership Encryption. Subspace non-membership en-
cryption (SNME) is a generalization of NIPE and the dual of SME in the sense
that it is a PE over an attribute space Σ = Fnq (q being a λ-bit prime) and a
set of Boolean predicates fW : Fnq −→ {0, 1} such that for each W ∈ Fm×nq and
x ∈ Fnq , we have

fW(x) =

{
1 if W · x 6= 0

0 otherwise.

2.4 Bilinear Maps and Matrix Diffie-Hellman Assumptions

Let GroupGen(1λ) be a PPT algorithm that takes as input a security parameter
λ, and outputs a tuple of the form (G1,G2,GT , q, g1, g2, e), where G1, G2 and
GT are distinct cyclic groups of order q (q being a λ-bit prime), g1 is a generator
for G1, g2 is a generator for G2, and e : G1 × G2 −→ GT is an efficiently
computable non-degenerate asymmetric bilinear map. Also, let W ∈ Zm×nq be
an m×n matrix with entries {wi,j}i∈[1,m],j∈[1,n]. Throughout the paper, we use
the following notations:

• gW1 : set of group elements {gwi,j

1 }i∈[1,m],j∈[1,n] ∈ Gm×n1

• gW2 : set of group elements {gwi,j

2 }i∈[1,m],j∈[1,n] ∈ Gm×n2

• e(g1, g2)W: set of group elements {e(g1, g2)wi,j}i∈[1,m],j∈[1,n] ∈ Gm×nT

We now review the matrix Diffie-Hellman (MDDH) assumption over the
source groups G1 and G2 of a bilinear map.
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The Dm,n-MDDH Assumption. Let m,n ∈ N such that m > n, and let Dm,n
denote a matrix distribution over Zm×nq such that a matrix W

R←− Dm,n has full
rank n with overwhelmingly large probability. The Dm,n-MDDH assumption [21]
holds over the group Gi (for i = 1, 2) if the distribution ensembles:

{(
gWi , gW·yi

)}
W

R←−Dm,n, y
R←−Zn

q

and
{(
gWi , gui

)}
W

R←−Dm,n, u
R←−Zm

q

are computationally indistinguishable.

The Um,n-MDDH Assumption. The Um,n-MDDH assumption is a special
instance of the Dm,n-MDDH assumption where the matrix distribution Dm,n is
the uniform distribution over Zm×nq .

2.5 A “Min-Entropy” Variant of the MDDH Assumption

In this subsection, we introduce another special instance of the Dk1,k2-MDDH
assumption where the matrix distribution Dk1,k2 is not uniform, but an ordered
collection of m×n independent ω(log λ)-sources over Zq. We first state and prove
the following lemma.

Lemma 2.1 Let Wk1,k2 =
[
Wi,j

]
i∈[1,k1],j∈[1,k2]

be a matrix of independently

distributed random variables such that each random variable Wi,j for i ∈ [1, k1]

and j ∈ [1, k2] is an ω (log λ)-source over Zq. Then, any matrix W
R←− Wk1,k2

has full rank n with overwhelmingly large probability.

Proof. Let Wk1,k2 =
[
Wi,j

]
i∈[1,k1],j∈[1,k2]

be a tuple of (k1 × k2) independently

distributed random variables such that each random variable Wi,j for i ∈ [1, k1]

and j ∈ [1, k2] is a t-source over Zq. Let W
R←− Wk1,k2 , and let W̃ be any

arbitrary k2 × k2 sub-matrix of W. Then, the probability of the event that W̃
has a zero determinant may be quantified as:

Pr
[
Det(W̃) = 0

]
= 1−

( k2−1∏
j=1

(
1− 2−j·t

))
≤ 1−

(
1− 2−t

)(k2−1) ≤ (k2 − 1) · 2−t,

which is negligible for t = ω(log λ). This completes the proof of Lemma 2.1.

The Min-Entropy-MDDH Assumption. Let k1, k2 ∈ N with k1 > k2, and
letWk1,k2 =

[
Wi,j

]
i∈[1,k1],j∈[1,k2]

be a tuple of independently distributed random

variables such that each random variable Wi,j for i ∈ [1, k1] and j ∈ [1, k2] is
an ω (log λ)-source over Zq. The (k1, k2)-min-entropy-MDDH assumption holds
over the group Gi (for i = 1, 2) if the distribution ensembles:

13



{(
gWi , gW·yi

)}
W

R←−Wk1,k2
, y

R←−Zn
q

and
{(
gWi , gui

)}
W

R←−Wk1,k2
, u

R←−Zm
q

are computationally indistinguishable.
All proofs of function privacy for the schemes presented in this paper are based
on the Wm,n-MDDH assumption over the group G2.

2.6 Dual Bases

We briefly recall the concept of “dual bases” [16], along with some useful lemmas
that are used in the rest of the proof. Fix some integers k0, k1, k2 ≥ 1, and let
k = k0 + k1 + k2. We denote by “basis” a uniformly sampled tuple of matrices

(B0,B1,B2)
R←− Zk×k0q × Zk×k1q × Zk×k2q .

The corresponding “dual basis” is the tuple of matrices

(B∗0,B
∗
1,B

∗
2) ∈ Zk×k0q × Zk×k1q × Zk×k2q ,

such that the following “non-degeneracy” conditions hold:

BT
0 ·B∗0 = I0 mod q, BT

1 ·B∗1 = I1 mod q, BT
2 ·B∗2 = I2 mod q,

where I0, I1 and I2 are identity matrices of appropriate dimensions, and the
following “orthogonality” conditions hold:

BT
i ·B∗j = 0 mod q for i, j ∈ {0, 1, 2}, i 6= j.

We also recall some useful lemmas related to dual bases. These lemmas have
been used in many prior works, notably [23, 26, 17].

Lemma 2.2 Let (B0,B1,B2) be a uniformly sampled basis as described above
with corresponding dual basis (B∗0,B

∗
1,B

∗
2). Any arbitrary vector u ∈ Zkq may be

uniquely decomposed as u = u0 + u1 + u2 such that

u0 = B∗0 · s0, u1 = B∗1 · s1, u2 = B∗2 · s2,

for (s0, s1, s2) ∈ Zk0q × Zk1q × Zk2q . Additionally, the following holds for each
i ∈ {0, 1, 2}:

uT ·Bi = uT
i ·Bi.

Lemma 2.3 Let (B0,B1,B2) be a uniformly sampled basis as described above

with corresponding dual basis (B∗0,B
∗
1,B

∗
2). Let a uniform vector u

R←− Zkq be
decomposed as u = u0 + u1 + u2 such that

u0 = B∗0 · s0, u1 = B∗1 · s1, u2 = B∗2 · s2,

for (s0, s1, s2) ∈ Zk0q × Zk1q × Zk2q . Then, for each i ∈ {0, 1, 2} and for uniform

s′i
R←− Zkiq , it holds that the distributions of the tuples

(ui, {uj}j 6=i) and ((ui + B∗i · s′i), {uj}j 6=i)

are statistically indistinguishable.
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To see that the aforementioned lemma holds, fix an arbitrary i ∈ {0, 1, 2},
set u′ = u + B∗i · s′i for uniform s′i

R←− Zkiq , decompose u′ = u′0 + u′1 + u′2 and
observe that:

• For each j ∈ {0, 1, 2} \ {i}, we have u′j = uj by the orthogonality property.
• The distributions of ui and (ui + B∗i · s′i) are statistically indistinguishable

whenever the vectors u and s′i are uniformly random.

Lemma 2.4 Let (B0,B1,B2) be a uniformly sampled basis as described above
with corresponding dual basis (B∗0,B

∗
1,B

∗
2). Let (i0, i1, i2) be a fixed but arbitrary

permutation of the set {0, 1, 2}. Let B̂i0,i1 be a basis for the span of the matrices[
B∗i0 | B

∗
i1

]
and let B̂i2 be a basis for the span of the matrix B∗i2 . Let

t0 = (Bi0 · s0)
T
, t1 = (Bi0 · s1,0 + Bi1 · s1,1)

T
,

where s0, s1,0, s1,1 are uniformly sampled vectors of appropriate dimensions. If
the U(ki0+ki1 ),ki0

-MDDH assumption holds over the bilinear group G2, then for
all PPT adversaries A, we have∣∣Pr

[
A
(
D, gt02

)
= 1
]
− Pr

[
A
(
D, gt12

)
= 1
]∣∣ ≤ negl(λ),

where D :=
(
g
B∗0
2 , g

B∗1
2 , g

B∗2
2 , B̂i0,i1 , B̂i2

)
.

Note that Lemma 2.4 is essentially the prime-order analog of the well-known
subgroup decision assumption over composite order groups, which has classically
been used for dual system encryption [32]. The reader may refer to [17] for the
proof of this lemma.

3 Function Privacy of SME and SNME

In this section, we define the indistinguishability-based framework for the func-
tion privacy of subspace membership encryption (SME) and subspace non-
membership encryption (SNME). Let Π = (Setup,KeyGen,Enc,Dec) be an

SME (equivalently, SNME) scheme. Define the experiment Expt
(b)
FP,Π,A(λ) as in

Fig. 2 for a security parameter λ ∈ N and a bit b ∈ {0, 1}. Let AdvFP
Π,A(λ) denote

the advantage of the adversary A in the aforementioned experiment, defined as

AdvFP
Π,A(λ) :=

∣∣∣∣Pr
[
Expt

(0)
FP,Π,A(λ) = 1

]
− Pr

[
Expt

(1)
FP,Π,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ).

Definition 3. (Function Private SME.) An SME scheme Π is said to be
function private if for all security parameters λ ∈ N and for all PPT adversaries
A, it holds that AdvFP

Π,A(λ) ≤ negl(λ).

Definition 4. (Function Private SNME.) An SNME scheme Π is said to be
function private if for all security parameters λ ∈ N and for all PPT adversaries
A, it holds that AdvFP

Π,A(λ) ≤ negl(λ).
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Experiment Expt
(b)
FP,Π,A(λ):

1. The challenger samples (pp,msk)← Setup(1λ) and provides pp to A.
2. The adversary A adaptively issues key-generation queries. For each queried

predicate matrix W, the challenger responds with

skW ← KeyGen (pp,msk,W) .

3. The adversary A outputs circuits of the form

W0 =
[
W

(0)
i,j

]
i∈[1,m],j∈[1,n]

, W1 =
[
W

(1)
i,j

]
i∈[1,m],j∈[1,n]

,

representing joint distributions over Fm×nq , with the following restrictions:

(a) For each i ∈ [1,m], j ∈ [1, n] and b̃ ∈ {0, 1}, W
(b̃)
i,j represents an ω(log λ)-

source over Fq.
(b) For each i, i′ ∈ [1,m], j, j′ ∈ [1, n] and b̃ ∈ {0, 1}, W

(b̃)
i,j and W

(b̃)

i′,j′ represent
mutually independent distributions.

The challenger samples W
R←− Wb and responds to the adversary A with the

secret-key
skW = KeyGen(msk,W).

4. The adversary A continues to adaptively issue key-generation queries. The
challenger responds as above.

5. Eventually, the adversary A outputs a bit b′.

Fig. 2. The Function Privacy Experiment for SME and SNME

The Mutual Independence Condition. Observe that the function privacy
experiment requires the adversarially chosen distributions W0 and W1 to be
constructed such that the individual component distributions are both “mutually
independent” and “sufficiently unpredictable”. A stronger notion of function
privacy could allow these components to be “arbitrarily correlated”, so long as
they are “individually” sufficiently unpredictable. As shown in [13], such a notion
is impossible to satisfy. In other words, if arbitrary correlations were allowed,
the adversary A in the function privacy experiment can always create challenge
distributions that satisfy the unpredictability requirement, but secret keys for
matrices from these distributions are easily distinguishable. We present a brief
illustration here for the sake of completeness.

Consider an IPE scheme (equivalently, an SME scheme of dimension m = 1)
and an adversaryA in the function privacy experiment that chooses the challenge
distributions as:

W0 =
[
W

(0)
1 , 2W

(0)
1 ,W

(0)
2 , . . . ,W

(0)
n−1

]
, W1 =

[
W

(1)
1 ,W

(1)
2 , . . . ,W

(1)
n−1, 2W

(1)
n−1

]
,
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where for each j ∈ [1, n−1] and b̃ ∈ {0, 1}, W
(b̃)
j represents a uniform source over

Fq. Clearly, each individual distribution has min-entropy log q = ω(log λ); yet,
secret keys for vectors sampled from W0 can be distinguished from secret keys
for vectors sampled from W1 with non-negligible advantage as follows: encrypt
a message M under two attribute vectors x0 and x1 defined as:

x0 = (2,−1, 0, . . . , 0) , x1 = (0, . . . , 0, 2,−1) ,

and see which of the two ciphertexts decrypts correctly under the challenge secret
key. This justifies the mutual independence criteria imposed in the function
privacy experiment.

Multi-Challenge vs. Single-Challenge. Observe that the aforementioned
function privacy definition for SME/SNME is “single-challenge” in the sense that
the function privacy experiment allows the adversary a single challenge query.
In fact, as the adversary is also given access to the key-generation oracle, the
“single-challenge” definition is polynomially equivalent to a “multi-challenge”
variant where the adversary is allowed polynomially many challenge queries. This
equivalence may be proved by a hybrid argument (originally proposed in [13]),
where the hybrids are constructed such that only one query is forwarded to
the function privacy oracle, and all other queries are answered using the key-
generation oracle.

4 Function Private SME

In this section, we present the construction of an SME scheme that achieves
computational function privacy whenever the predicate matrices are sampled
from distributions with min-entropy ω(log λ). In contrast, the SME scheme of
Boneh et al. [13] is statistically function private, albeit for predicate matrices
sampled from distributions with min-entropy slightly larger than λ.

Attribute and function privacy guarantees of our scheme follow from variants
of the general D-MDDH assumption in the standard model. More specifically,
attribute privacy can be based on the Uk+1,k-MDDH assumption in G1 and
U2k,k-MDDH assumption in G2, while function privacy follows from the Wm,n-
MDDH assumption described in Section 2.4. The scheme is described below,
while the proofs of attribute and function privacy are presented subsequently.

4.1 The Construction

Let GroupGen(1λ) be a PPT algorithm that takes as input a security parameter
λ ∈ N, and outputs the tuple (G1,G2,GT , q, g1, g2, e), where G1, G2 and GT are
cyclic groups of prime order q (q being a λ-bit prime), g1 is a generator for G1,
g2 is a generator for G2, and e : G1 × G2 −→ GT is an efficiently computable
non-degenerate asymmetric bilinear map. Our scheme ΠSME is parameterized
by m,n = poly(λ) in the sense that it supports predicate matrices of the form
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W ∈ Zm×nq , and attribute vectors of the form x ∈ Znq . Finally, the payload
message space M is assumed to a “super-polynomially smaller” subset of GT ,
namely |M| < |GT |1/2. Our scheme works as follows. 2

• Setup(1λ): Uniformly sample (G1,G2,GT , q, g1, g2, e) ← GroupGen(1λ). Also,
uniformly sample

A
R←− Z(k+1)×k

q , S0,S1, . . . ,Sn
R←− Z(2k+1)×(k+1)

q ,

K
R←− Z1×(k+1)

q , B0
R←− Z(2k+1)×k

q

for some constant k > 0. Output

pp =

(
g1, g

A
1 , g

S0·A
1 , gS1·A

1 , . . . , gSn·A
1 , e(g1, g2)K·A

)
,

msk = (g2,S0,S1, . . . ,Sn,K,B0) .

• KeyGen(pp,msk,W): Parse the predicate matrix W ∈ Zm×nq as

W =
[
wi,j

]
i∈[1,m],j∈[1,n]

.

Uniformly sample s
R←− Zkq and set t = (B0 · s)

T
. Finally, pick uniform

y1, . . . , ym
R←− Zq and output skW =

(
{hj}j∈[0,n]

)
where

h0 = g
(K+

∑m
i=1 yi·(

∑n
j=1 wi,j ·t·Sj))

T

2 ,

hj = g
(
∑m

i=1 yi·wi,j ·t)
T

2 for j ∈ [1, n].

• Enc(pp,x,M): Given an attribute vector x =
[
x1 . . . xn

]T ∈ Znq and a message

M ∈ M ⊂ GT , uniformly sample r
R←− Zkq and output ct =

(
{cj}j∈[0,n+1]

)
where

c0 = g
(A·r)T

1

cj = g
((xj ·S0+Sj)·A·r)T

1 for j ∈ [1, n]

cn+1 = M · e(g1, g2)(K·A·r)T

• Dec(pp, skW, ct): Parse the ciphertext as ct =
(
{cj}j∈[0,n+1]

)
and the secret

key as skW =
(
{hj}j∈[0,n]

)
. Compute

M =

(
cn+1 ·

n∏
j=1

e (cj , hj)

)/
e (c0, h0) .

If M ∈M, output M . Otherwise, output ⊥.
2 The restriction on the size of the message space M is necessary for correctness as

explained subsequently. Note that this restriction does not prevent M from being
exponentially large.
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Correctness. To see that the aforementioned scheme is functionally correct,
observe the following.

n∏
j=1

e (cj , hj) =

n∏
j=1

e(g1, g2)(
∑m

i=1 yi·wi,j ·t·(xj ·S0+Sj)·A·r)
T

= e(g1, g2)((
∑n

j=1

∑m
i=1 yi·wi,j ·xj ·t·S0+

∑n
j=1

∑m
i=1 yi·wi,j ·t·Sj)·A·r)

T

= e(g1, g2)(
∑m

i=1 yi·
∑n

j=1 wi,j ·xj ·t·S0·A·r)
T

· e(g1, g2)(
∑m

i=1 yi·(
∑n

j=1 wi,j ·t·Sj)·A·r)
T

= e(g1, g2)(
∑m

i=1 yi·
∑n

j=1 wi,j ·xj ·t·S0·A·r)
T

· e
(
g

(A·r)T

1 , g
(
∑m

i=1 yi·(
∑n

j=1 wi,j ·t·Sj))
T

2

)
= M · (cn+1)

−1 · e (c0, h0) · e(g1, g2)((y·W·x)·t·S0·A·r)T

where y =
[
y1 . . . ym

]
. Hence, when W ·x = 0 mod q, the decryption algorithm

recovers M correctly. On the other hand, when W·x 6= 0 mod q the distribution
of M such that M satisfies the decryption equation is uniformly random over
GT , and hence, with overwhelmingly large probability over the randomness of
KeyGen and Enc, the decryption algorithm returns ⊥. 3

4.2 Attribute Privacy

We state and prove the following theorem.

Theorem 4.1 If the Uk+1,k-MDDH assumption holds over the group G1 and the
U2k,k-MDDH assumption holds over the group G2, then for all PPT adversaries

A, we have AdvAP
ΠSME,A(λ) ≤ negl(λ).

Proof. The proof proceeds through a sequence of experiments, beginning with
the “real” attribute privacy experiment and ending with an experiment where
the adversary has no advantage. We consider a variant of the “real” attribute
privacy experiment where the challenge messages M0 and M1 are chosen to be
equal by the adversary. One can reduce the case for M0 6= M1 to this case by
arguing that an encryption of Mb for b ∈ {0, 1} is indistinguishable from an
encryption of M0 [16, 37]. Hence, it is sufficient to assume that M0 = M1 in the
hybrid experiments presented next. 4

Expt-0. This is the “real” experiment. In this experiment, the adversary A
is given the public parameter pp. The adversary chooses two (distinct) vector-
message pairs (x0,M0), (x1,M1) ∈ Znq ×M, such that

xb =
[
x1,b x2,b . . . xn,b

]T
for each b ∈ {0, 1}.

3 The argument follows from the fact that both y and r are uniformly random vectors
in Zmq and Zkq , respectively, and |M| < |GT |1/2.

4 Due to paucity of space, we only provide brief proof sketches in several cases. We
refer the reader to the full version of the paper [?] for the detailed proofs.
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and M0 = M1. In addition, the adversary (adaptively) issues a maximum of
Q key generation queries (for some fixed polynomial Q = Q(λ)) corresponding
to predicate matrices the form W1, . . . ,WQ ∈ Zm×nq , subject to the restriction
that

(W` · x0 6= 0 mod q) ∧ (W` · x1 6= 0 mod q) for each ` ∈ [1, Q].

It receives in response
(
ct∗, skW1

, . . . , skWQ

)
, where

ct∗ ← Enc(pp,xb,M0) for some random b
R←− {0, 1},

skW`
← KeyGen(pp,msk,W`) for each ` ∈ [1, Q].

Finally, it outputs a bit b′. Let PA,0 denote the probability that b = b′.

Expt-1. This experiment is identical to Expt-0 except for the manner in which
the challenge ciphertext ct∗ is generated. Namely, the challenger B uniformly

samples r
R←− Zkq and uses the master secret key components S0,S1, . . . ,Sn,K

to generate the ciphertext ct∗ =
(
{cj}j∈[0,n+1]

)
as

c0 = g
(A·r)T

1 ,

{
cj = (c0)

(xj,b·S0+Sj)T
}
j∈[1,n]

, cn+1 = M0 · e (c0, g2)
KT

.

Note that for each j ∈ [1, n], we essentially have cj = g

(
v
(1)
j

)T

1 , where

v
(1)
j = (xj,b · S0 + Sj) ·A · r.

Let PA,1 denote the probability that b = b′, where b′ is the bit output by the
adversary A at the end of Expt-1. Observe that the challenge ciphertext ct∗ in
Expt-1 has the same distribution as in Expt-0. Hence, we have PA,1 = PA,0.

Expt-2. This experiment is identical to Expt-1 except for the manner in which
the challenge ciphertext ct∗ is generated. Namely, the challenger B uniformly

samples u
R←− Zk+1

q , and generates the ciphertext ct∗ =
(
{cj}j∈[0,n+1]

)
as

c0 = gu
T

1 ,

{
cj = (c0)

(xj,b·S0+Sj)T
}
j∈[1,n]

, cn+1 = M0 · e (c0, g2)
KT

.

Note that for each j ∈ [1, n], we essentially have cj = g

(
v
(2)
j

)T

1 , where

v
(2)
j = (xj,b · S0 + Sj) · u .

Let PA,2 denote the probability that b = b′, where b′ is the bit output by the
adversary A at the end of Expt-2. We state the following lemma.
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Lemma 4.1 For all PPT adversaries A, |PA,2 − PA,1| ≤ negl(λ).

The proof of this lemma follows directly from the Uk+1,k-MDDH assumption over
the group G1. More specifically, given a PPT adversary A that can distinguish
between between its views in Expt-1 and Expt-2 with non-negligible probability,
one can construct a PPT algorithm that can distinguish between the ensembles{(

gA1 , g
A·r
1

)}
A

R←−Z(k+1)×k
q ,r

R←−Zk
q

and
{(
gA1 , g

u
1

)}
A

R←−Z(k+1)×k
q , u

R←−Zk+1
q

with non-negligible probability. Quite evidently, the existence of such a PPT
algorithm violates the Uk+1,k-MDDH assumption over the group G1.

Expt-3. This experiment is identical to Expt-2 except for the manner in which
the challenge ciphertext ct∗ is generated. Namely, the challenger B uniformly
samples a basis

(B0,B1,B2) ∈ Z(2k+1)×k
q × Z(2k+1)×1

q × Z(2k+1)×k
q ,

with corresponding dual basis (B∗0,B
∗
1,B

∗
2), and uses B0 as part of the master

secret key msk. It samples u
R←− Zk+1

q and decomposes S0 · u ∈ Z2k+1
q as

S0 · u = u0 + u1 + u2,

such that

u0 = B∗0 · s0, u1 = B∗1 · s1, u2 = B∗2 · s2 for some s0, s2 ∈ Zkq , s1 ∈ Zq.

Note that such a decomposition always exists by Lemma 2.2. The challenger B
then generates the ciphertext ct∗ =

(
{cj}j∈[0,n+1]

)
as

c0 = gu
T

1 ,

{
cj = g

(
v
(3)
j

)T

1

}
j∈[1,n]

, cn+1 = M0 · e (c0, g2)
KT

,

where for each j ∈ [1, n], we have

v
(3)
j = xj,b · u0 + xj,1−b · u1 + xj,b · u2 + Sj · u.

Let PA,3 denote the probability that b = b′, where b′ is the bit output by the
adversary A at the end of Expt-3. We state the following lemma.

Lemma 4.2 For all unbounded adversaries A, |PA,3 − PA,2| ≤ negl(λ).

Proof Sketch. To prove Lemma 4.2, it is sufficient to prove that for each j ∈
[1, n] and for all x0,x1 ∈ Znq , the distributions of v

(2)
j and v

(3)
j are statistically

close. Informally, the proof is based on the following observations and a simple
application of Lemma 2.3.
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1. If one were to decompose Sj · u for j ∈ [1, n] as

Sj · u = uj,0 + uj,1 + uj,2,

such that

uj,0 = B∗0 · sj,0, uj,1 = B∗1 · sj,1, uj,2 = B∗2 · sj,2,

for some sj,0, sj,2 ∈ Zkq , sj,1 ∈ Zq, then the public parameter pp and the
secret keys skW1

, . . . , skWQ
statistically hide uj,1 for j ∈ [1, n]. In other

words, in the view of an unbounded adversary, the distribution of uj,1 is
statistically indistinguishable from that of a uniformly random vector in
the span of B∗1. The reasoning behind this observation is detailed in the full
version [?].

2. For each j ∈ [1, n], for all x0,x1 ∈ Znq and for all u1 in the span of B∗1, the
distributions of

(xj,b · u1 + uj,1) and (xj,1−b · u1 + uj,1)

are statistically indistinguishable whenever uj,1 is uniform in the span of B∗1.

Expt-4-`. For each ` ∈ [0, Q], the experiment Expt-4-` is identical to Expt-3
except for the manner in which the first ` secret key queries are answered by the
challenger B. More specifically, B uniformly samples a basis (B0,B1,B2) with
corresponding dual basis (B∗0,B

∗
1,B

∗
2), and uses B0 as part of the master secret

key msk. For each `′ ∈ [1, `], B uniformly samples s`′,0
R←− Zkq and s`′,1

R←− Zq,
and sets

t`′ = (B0 · s`′,0 + B1 · s`′,1)
T
.

In other words, the vector (t`′)
T now lies in the span of

[
B0 | B1

]
and not in

the span of B0, as in the real experiment. The challenger B then generates the

secret key corresponding to the predicate matrix W`′ as skW`′ =
(
{hj,`′}j∈[0,n]

)
where

h0,`′ = g
(K+

∑m
i=1 y`′,i·(

∑n
j=1 wi,j ·t`′ ·Sj))

T

2 ,

hj,`′ = g
(
∑m

i=1 y`′,i·wi,j ·t`′)
T

2 for j ∈ [1, n].

where y`′,1, . . . , y`′,m
R←− Zq.

Let PA,4,` denote the probability that b = b′, where b′ is the bit output by the
adversary A at the end of Expt-4-`. We state the following lemma.

Lemma 4.3 For all PPT adversaries A,
∣∣PA,4,` − PA,4,(`−1)

∣∣ ≤ negl(λ) for each
` ∈ [1, Q].
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Proof. The proof proceeds through another sequence of hybrid experiments,
beginning with an experiment identical to Expt-4-(` − 1) and ending with an
experiment identical to Expt-4-`. Each experiment in this sequence differs from
its predecessor in one of two ways: either the `th secret key sk` is generated
in a different manner, or the challenge ciphertext ct∗ is generated in a differ-
ent manner. The corresponding indistinguishability arguments between pairs of
successive experiments rely heavily on Lemmas 2.2, 2.3 and 2.4.

Expt-5. This experiment is identical to Expt-4-Q except for the manner in
which the challenge ciphertext ct∗ is generated. More specifically, the challenger

B samples u,u′,u′′
R←− Zk+1

q and uses the dual basis to decompose these as

S0 · u = (u0 + u1 + u2)

S0 · u′ = (u′0 + u′1 + u′2)

S0 · u′′ = (u′′0 + u′′1 + u′′2)

It then generates the ciphertext ct∗ =
(
{cj}j∈[0,n+1]

)
as

c0 = gu
T

1 ,

{
cj = g

(
v
(5)
j

)T

1

}
j∈[1,n]

, cn+1 = M0 · e (c0, g2)
KT

,

where for each j ∈ [1, n], we have

v
(5)
j = xj,0 · (u′0 + u′1) + xj,1 · (u′′0 + u′′1) + xj,b · u2 + Sj · u.

Let PA,5 denote the probability that b = b′, where b′ is the bit output by the
adversary A at the end of Expt-5. We state and prove the following lemma.

Lemma 4.4 For all unbounded adversaries A, |PA,5 − PA,4−Q| ≤ negl(λ).

Proof Sketch. To prove this lemma, we employ the standard “change of basis”
technique used in dual pairing vector spaces [31, 33, 34]. More specifically, we
argue that the distributions of

(u1,u2) and ((u′0 + u′1), (u′′0 + u′′1))

are statistically indistinguishable whenever the vectors u,u′,u′′ and the basis
matrices B0,B1 are uniformly random. Informally, the argument follows from
the following observations:

• The randomness ti in each secret key skWi
for i ∈ [1, Q] statistically hides

the span of
[
B0 | B1

]
. This allows for an alternative simulation of Expt-4,

where the basis matrices B0,B1 are “changed”, i.e., replaced by two other
specially constructed basis matrices, such that the replacement matrices are
also distributed uniformly.
• The alternative simulation of Expt-4 is statistically indistinguishable from

the original simulation of Expt-4.
• The alternative simulation of Expt-4 with respect to the changed basis ma-

trices is statistically indistinguishable from the simulation of Expt-5 with
respect to the original basis matrices.
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Expt-6. This experiment is identical to Expt-5 except for the manner in which
the challenge ciphertext ct∗ is generated. Namely, the challenger B uniformly

samples u,u′,u′′
R←− Zk+1

q and generates the ciphertext ct∗ =
(
{cj}j∈[0,n+1]

)
as

c0 = gu
T

1 ,

{
cj = g

(
v
(6)
j

)T

1

}
j∈[1,n]

, cn+1 = M0 · e (c0, g2)
KT

,

where for each j ∈ [1, n], we have

v
(6)
j = xj,0 · S0 · u′ + xj,1 · S0 · u′′ + Sj · u.

Let PA,6 denote the probability that b = b′, where b′ is the bit output by the
adversary A at the end of Expt-6. We state and prove the following lemma.

Lemma 4.5 For all unbounded adversaries A, |PA,6 − PA,5| ≤ negl(λ).

Proof. The proof is similar to the proof of indistinguishability of Expt 2 and
Expt 3.

Finally, observe that in Expt-6, the adversary A has no advantage in guessing
b, since the ciphertext ct∗ is entirely independent of b. In other words, for all
PPT adversaries A, we must have PA,6 = 1/2. This completes the proof of
Theorem 4.1. ut

4.3 Function Privacy

We state and prove the following theorem.

Theorem 4.2 If the (n,m)-min-entropy-MDDH assumption holds over the
group G2, then for all PPT adversaries A, we have AdvFP

ΠSME,A(λ) ≤ negl(λ).

Proof. The proof proceeds through a sequence of experiments, beginning with
the “real” function privacy experiment and ending with an experiment where
the adversary has no advantage.

Expt-0. This is the “real” function privacy experiment. In this experiment, the
adversary A is given the public parameter pp. The adversary chooses two circuits
corresponding to matrix distributions of the form

W0 =
[
W

(0)
i,j

]
i∈[1,m],j∈[1,n]

, W1 =
[
W

(1)
i,j

]
i∈[1,m],j∈[1,n]

,

representing joint distributions over Zm×nq , subject to the following restrictions:

1. For each i ∈ [1,m], j ∈ [1, n] and b̃ ∈ {0, 1}, W
(b̃)
i,j represents an ω(log λ)-

source over Fq.
2. For each i, i′ ∈ [1,m], j, j′ ∈ [1, n] and b̃ ∈ {0, 1}, W

(b̃)
i,j and W

(b̃)
i′,j′ represent

mutually independent distributions.
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The adversary A also (adaptively) issues key generation queries corresponding
to predicate matrices the form W1, . . . ,WQ ∈ Zm×nq for some Q = poly(λ). The

challenger samples W∗ R←−Wb for some random b
R←− {0, 1}, where

W∗ =
[
w∗i,j

]
i∈[1,m],j∈[1,n]

,

and uses the master secret key msk = (g2,S0,S1, . . . ,Sn,K,B0) to set the chal-

lenge secret key skW∗ =
(
{hj}j∈[0,n]

)
where

h0 = g
(K+

∑m
i=1 yi·(

∑n
j=1 w

∗
i,j ·t·Sj))

T

2 ,

hj = g
(
∑m

i=1 yi·w
∗
i,j ·t)

T

2 for j ∈ [1, n],

where y1, . . . , ym
R←− Zq and t = (B · s)

T
for some s

R←− Zkq . The adversary A
receives

(
skW∗ , skW1

, . . . , skWQ

)
, where

skW`
← KeyGen(pp,msk,W`) for each ` ∈ [1, Q].

Finally, it outputs a bit b′. Let PA,0 denote the probability that b = b′.

Expt-1. This experiment is identical to Expt-0 except for the manner in which
the challenge secret key skW∗ is generated. Namely, the challenger B uniformly

samples u1, . . . , un
R←− Zq and sets the challenge secret key skW∗ =

(
{hj}j∈[0,n]

)
as follows:

h0 = g
(K+

∑n
j=1 uj ·t·Sj)

T

2 ,

hj = g
(ujt)

T

2 for j ∈ [1, n],

where t = (B · s)
T

for some s
R←− Zkq . Let PA,1 denote the probability that b = b′,

where b′ is the bit output by the adversary A at the end of Expt-1. By the (n,m)-
min-entropy-MDDH assumption, we must have |PA,2 − PA,1| ≤ negl(λ).

Finally, observe that the challenge secret key skW∗ in Expt-1 is independent
of the bit b chosen by the challenger. Hence, for all PPT adversaries A, we must
have PA,1 = 1/2. This completes the proof of Theorem 4.2. ut

5 Function Private SNME

In this section, we present an SNME scheme that is (computationally) function
private whenever the predicate matrices are sampled from distributions with
super-logarithmic min-entropy. Similar to the SME scheme, attribute privacy of
our SNME scheme can be based on the Uk+1,k-MDDH assumption, albeit in the
bounded collusion setting, while function privacy follows from the min-entropy-
MDDH assumption described in Section 2.4.
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5.1 The Construction

Let GroupGen(1λ) be a PPT algorithm that takes as input a security parameter
λ ∈ N, and outputs the tuple (G1,G2,GT , q, g1, g2, e), where G1, G2 and GT are
cyclic groups of prime order q (q being a λ-bit prime), g1 is a generator for G1,
g2 is a generator for G2, and e : G1 × G2 −→ GT is an efficiently computable
non-degenerate asymmetric bilinear map. Our scheme ΠSNME is parameterized
by m,n = poly(λ) in the sense that it supports predicate matrices of the form
W ∈ Zm×nq , and attribute vectors of the form x ∈ Znq . The payload message
space M for this scheme is assumed to be a “small” subset of Zq such that
|M| ≤ poly(λ).

• Setup(1λ): Uniformly sample (G1,G2,GT , q, g1, g2, e) ← GroupGen(1λ). Also,

uniformly sample A
R←− Z(k+1)×k

q and S1,S2
R←− Zn×(k+1)

q for some constant
k > 0. Output

pp =

(
g1, g

A
1 , g

S1·A
1 , gS2·A

1

)
, msk =

(
g2,S1,S2

)
.

• KeyGen(pp,msk,W): Given a predicate matrix W ∈ Zm×nq , sample y
R←− Zmq

and output skW = (h0, h1, h2), where

h0 = gW
T·y

2 , h1 = g
(W·S1)T·y
2 , h2 = g

(W·S2)T·y
2 .

• Enc(pp,x,M): Given an attribute vector x ∈ Znq and a message M ∈M ⊂ Zq,
uniformly sample r1, r2

R←− Zkq and output ct = (c1,0, c1,1, c2,0, c2,1) where

c1,0 = g
(A·r1)T

1 , c1,1 = g
(x+S1·A·r1)T

1 ,

c2,0 = g
(A·r2)T

1 , c2,1 = g
(M ·x+S2·A·r2)T

1 .

• Dec(pp, skW, ct): Parse the ciphertext as ct = (c1,0, c1,1, c2,0, c2,1) and the
secret key as skW = (h0, h1, h2). Check if there exists a unique M ∈ M such
that

e (c2,1, h0) · e (c2,0, h2)
−1

=

(
e (c1,1, h0) · e (c1,0, h1)

−1

)M
.

If yes, return M . Else return ⊥.

Correctness. To see that the aforementioned scheme is functionally correct,
observe the following.

e (c1,1, h0) · e (c1,0, h1)
−1

= e (g1, g2)(
yT·W·(x+S1·A·r1)−yT·W·S1·A·r1)

T

= e (g1, g2)(
yT·W·x)

T

e (c2,1, h0) · e (c2,0, h2)
−1

= e (g1, g2)(
yT·W·(M ·x+S2·A·r2)−yT·W·S2·A·r2)

T

= e (g1, g2)
M ·(yT·W·x)

T
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When W · x 6= 0 mod q, we have yT ·W · x 6= 0 mod q with overwhelmingly
large probability over the randomness of KeyGen, and the decryption algorithm
correctly recovers the message M . But when W · x = 0 mod q, the message M
cannot be uniquely recovered and the decryption algorithm returns ⊥.

5.2 Attribute Privacy

We state the following theorem.

Theorem 5.1 If the Uk+1,k-MDDH assumption holds over the group G1, then
for all PPT adversaries A that issue as most (n − 1) secret key queries during
the attribute privacy experiment, we have AdvAP

ΠSNME,A(λ) ≤ negl(λ).

Proof Sketch. Due to lack of space, we only provide a brief proof sketch. We
refer the reader to the full version of the paper [?] for the detailed proof.

The proof essentially relies on hash proof systems [18, 19], and uses argu-
ments similar to those used by Agrawal et al. in proving the security of their
linear FE scheme [6]. The analysis exploits the following fact: given the public
parameter pp and no more than (n− 1) secret keys, the master secret key com-
ponents S0,S1 . . . ,Sn retain sufficient entropy from an (unbounded) adversary’s
point of view. This in turn ensures that at some stage, if the challenge cipher-
text is generated using the master-secret-key instead of the public parameter, it
will perfectly hide which attribute-message pair among (x0,M0) and (x1,M1) is
encrypted.

Finally, the scheme is adaptively secure because the reduction knows the
master secret key at any time, which allows it to answer all secret key queries
without knowing the challenge attributes beforehand. This feature is common
to nearly all security proofs relying on hash proof systems [18, 19].

5.3 Function Privacy

We state and prove the following theorem.

Theorem 5.2 If the (n,m)-min-entropy-MDDH assumption holds over the
group G2, then for all PPT adversaries A, we have AdvFP

ΠSNME,A(λ) ≤ negl(λ).

Proof. The proof proceeds through a sequence of experiments, beginning with
the “real” function privacy experiment and ending with an experiment where
the adversary has no advantage.

Expt-0. This is the “real” function privacy experiment. In this experiment, the
adversary A is given the public parameter pp. The adversary chooses two circuits
corresponding to matrix distributions of the form

W0 =
[
W

(0)
i,j

]
i∈[1,m],j∈[1,n]

, W1 =
[
W

(1)
i,j

]
i∈[1,m],j∈[1,n]

,

representing joint distributions over Zm×nq , subject to the following restrictions:
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1. For each i ∈ [1,m], j ∈ [1, n] and b̃ ∈ {0, 1}, W
(b̃)
i,j represents an ω(log λ)-

source over Fq.
2. For each i, i′ ∈ [1,m], j, j′ ∈ [1, n] and b̃ ∈ {0, 1}, W

(b̃)
i,j and W

(b̃)
i′,j′ represent

mutually independent distributions.

The adversary A also (adaptively) issues key generation queries corresponding
to predicate matrices the form W1, . . . ,WQ ∈ Zm×nq for some Q = poly(λ). The

challenger samples W∗ R←− Wb for some random b
R←− {0, 1}, and and uses the

master secret key msk =

(
S1,S2

)
to set skW∗ = (h0, h1, h2), where

h0 = g
(W∗)T·y
2 , h1 = g

(W·S∗1)T·y
2 , h2 = g

(W·S∗2)T·y
2 ,

where y
R←− Zmq . The adversary A receives

(
skW∗ , skW1

, . . . , skWQ

)
, where

skW`
← KeyGen(pp,msk,W`) for each ` ∈ [1, Q].

Finally, it outputs a bit b′. Let PA,0 denote the probability that b = b′.

Expt-1. This experiment is identical to Expt-0 except for the manner in which
the challenge secret key skW∗ is generated. Namely, the challenger B uniformly

samples u
R←− Znq and uses the master secret key msk = (g2,S1,S2) to output

skW∗ = (h0, h1, h2) where

h0 = gu2 , h1 = g
(S1)T·u
2 , h2 = g

(S2)T·u
2 .

Let PA,1 denote the probability that b = b′, where b′ is the bit output by the ad-
versary A at the end of Expt-1. By the (n,m)-min-entropy-MDDH assumption,
we must have |PA,2 − PA,1| ≤ negl(λ).

Finally, observe that the challenge secret key skW∗ in Expt-1 is independent
of the bit b chosen by the challenger. Hence, for all PPT adversaries A, we must
have PA,1 = 1/2. This completes the proof of Theorem 5.2. ut
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