
Key Encapsulation Mechanism with Explicit
Rejection in the Quantum Random Oracle

Model

Haodong Jiang1,2,4, Zhenfeng Zhang2,3, and Zhi Ma1,4

1 State Key Laboratory of Mathematical Engineering and Advanced Computing,
Zhengzhou, Henan, China

2 TCA Laboratory, State Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences, Beijing, China

3 University of Chinese Academy of Sciences, Beijing, China
4 Henan Key Laboratory of Network Cryptography Technology, Zhengzhou, Henan,

China
hdjiang13@gmail.com, {zfzhang}@tca.iscas.ac.cn, {ma zhi}@163.com

Abstract. The recent post-quantum cryptography standardization project
launched by NIST increased the interest in generic key encapsulation
mechanism (KEM) constructions in the quantum random oracle (QROM).
Based on a OW-CPA-secure public-key encryption (PKE), Hofheinz,
Hövelmanns and Kiltz (TCC 2017) first presented two generic construc-
tions of an IND-CCA-secure KEM with quartic security loss in the
QROM, one with implicit rejection (a pseudorandom key is return for an
invalid ciphertext) and the other with explicit rejection (an abort sym-
bol is returned for an invalid ciphertext). Both are widely used in the
NIST Round-1 KEM submissions and the ones with explicit rejection ac-
count for 40%. Recently, the security reductions have been improved to
quadratic loss under a standard assumption, and be tight under a non-
standard assumption by Jiang et al. (Crypto 2018) and Saito, Xagawa
and Yamakawa (Eurocrypt 2018). However, these improvements only ap-
ply to the KEM submissions with implicit rejection and the techniques
do not seem to carry over to KEMs with explicit rejection.
In this paper, we provide three generic constructions of an IND-CCA-
secure KEM with explicit rejection, under the same assumptions and
with the same tightness in the security reductions as the aforemen-
tioned KEM constructions with implicit rejection (Crypto 2018, Euro-
crypt 2018). Specifically, we develop a novel approach to verify the validi-
ty of a ciphertext in the QROM and use it to extend the proof techniques
for KEM constructions with implicit rejection (Crypto 2018, Eurocrypt
2018) to our KEM constructions with explicit rejection. Moreover, using
an improved version of one-way to hiding lemma by Ambainis, Hamburg
and Unruh (ePrint 2018/904), for two of our constructions, we present
tighter reductions to the standard IND-CPA assumption. Our results di-
rectly apply to 9 KEM submissions with explicit rejection, and provide
tighter reductions than previously known (TCC 2017).

Keywords: quantum random oracle model · key encapsulation mecha-
nism · explicit rejection · generic construction

1 Introduction

Indistinguishability against chosen-ciphertext attacks (IND-CCA) [1] is consid-
ered to be a standard security notion of a key encapsulation mechanism (KEM).
Efficient IND-CCA-secure KEMs are usually constructed in the random oracle
model (ROM) [2], where a hash function is idealized to be a publicly accessi-
ble random oracle (RO). Generic constructions of an efficient IND-CCA-secure
KEM in the ROM are well studied by Dent [3] and Hofheinz, Hövelmanns and
Kiltz [4].

The constructions of IND-CCA-secure KEMs in [4] are essentially various
KEM variants of the Fujisaki-Okamoto (FO) transformation [5, 6] and the RE-
ACT/GEM transformation [7, 8], which turn a weakly secure public-key encryp-
tion (PKE) into an IND-CCA-secure KEM. These constructions can be classified
into two categories according to the value for an invalid ciphertext during the
decapsulation. One category contains the constructions with explicit rejection
which return a rejection symbol ⊥ when decapsulating an invalid ciphertext, in-
cluding FO⊥, FO⊥m, QFO⊥m, U⊥, U⊥m, QU⊥m, where FO denotes the class of trans-
formations that turn a PKE with standard security (one-wayness against chosen-
plaintext attacks (OW-CPA) or indistinguishability against chosen-plaintext at-
tacks (IND-CPA)) into an IND-CCA KEM, U denotes the class of transfor-
mations that turn a PKE with non-standard security (e.g., OW-PCA, one-way
against plaintext checking attack [7, 8]) or a deterministic PKE (DPKE, where
the encryption algorithm is deterministic) into an IND-CCA-secure KEM, m5

(without m) means K = H(m) (K = H(m, c)), �⊥ (⊥) means implicit (explicit)
rejection and Q means an additional Targhi-Unruh hash [9] (a length-preserving
hash function that has the same domain and range size) is added into the ci-
phertext. The second category contains the KEM constructions with implicit
rejection where a pseudorandom key is returned for an invalid ciphertext, in-

cluding FO�⊥, FO�⊥m, QFO�⊥m, U�⊥, U�⊥m, QU�⊥m.

Recently, the National Institute of Standards and Technology (NIST) launched
a Post-Quantum Cryptography Project and published a call for submission-
s of quantum-resistant public-key cryptographic algorithms including digital-
signature, PKE, and KEM (or key exchange) [10]. Among the 69 Round-1 sub-
missions [10], there are 39 KEM proposals. Specially, 25 NIST submissions fol-
lowed above constructions in [4] to achieve IND-CCA security.

Generic constructions in the ROM have gathered renewed interest in the post-
quantum setting, where adversaries are equipped with a quantum computer. In
the real world, quantum adversary can execute hash functions (the instantiation
of the RO) on an arbitrary superposition of inputs. Therefore, for evaluating
the post-quantum security, one needs to perform the analysis in the quantum
random oracle model (QROM), introduced by [11]. Unfortunately, the QROM is
quite difficult to work with, since many proof techniques in the ROM including
adaptive programmability or extractability, have no analog in the QROM [11].

5 The message m here is picked at random from the message space of underlying PKE.

2

Hofheinz et al. [4] first presented two generic KEM constructions in the

QROM, QFO�⊥m and QFO⊥m, where a Targhi-Unruh hash [9] is used to follow
the technique in [9, 12] to prove the QROM security. However, the security re-
ductions are highly non-tight with quartic loss.

Subsequently, Saito, Xagawa and Yamakawa [13] and Jiang et al. [14] ex-
tended the technique in [11] to remove the Targhi-Unruh hash and tighten above

security reductions. Jiang et al. [14] presented security reductions for FO�⊥m and

FO�⊥ with quadratic loss from standard OW-CPA security of underlying PKE.
Saito et al. [13] proposed a new security notion for DPKE called the disjoint sim-

ulatability (DS) security, and showed that the U�⊥m transformation can convert
a DS-secure DPKE into an IND-CCA-secure KEM with a tight security reduc-
tion. However, above improvements were only achieved for KEM constructions
with implicit rejection due to the obstacle that the simulator needs to verify the
validity of a ciphertext [13, 14].

Among the 25 NIST submissions where the generic constructions in [4] are
used, 10 submissions (40%) use generic KEM constructions with explicit rejection
[10] including EMBLEM and R.EMBLEM, Lepton, NTRU-HRSS-KEM, BIG
QUAKE, DAGS, HQC, LOCKER, QC-MDPC, RQC and ThreeBears. Except
ThreeBears [15] which provides a sketch of a QROM security reduction with
quadratic loss based on their specific scheme, the other 9 submissions that use the
transformation QFO⊥m or QFO⊥6 only have a highly non-tight QROM security
reduction with quartic loss.

In this paper, we focus on generic constructions of an IND-CCA-secure KEM
with explicit rejection, under the same assumptions and with the same tightness
in security reduction as KEMs with implicit rejection [13, 14].

1.1 Our Contributions

We present three generic constructions of an IND-CCA-secure KEM with explicit
rejection, HFO⊥m, HFO⊥ and HU⊥m, from a weakly secure PKE, by revisiting the
plaintext confirmation method in the QROM (refer to Subsection 1.2 for details).
HFO⊥m, HFO⊥ and HU⊥m are identical with the existing generic constructions
with explicit rejection QFO⊥m, QFO⊥ and QU⊥m in [4] except for the hash used in
plaintext confirmation. In HFO⊥m, HFO⊥ and HU⊥m, a conventional hash function
works. In contrast, in QFO⊥m, QFO⊥ and QU⊥m, the hash function is required to
be length-preserving, a Targhi-Unruh hash function. A length-preserving hash
function will lead to a significant increase of encapsulation size in the case that
the message space elements are strictly larger than a single hash value, e.g.,
NTRU-HRSS-KEM [16]. Thus, our constructions can directly help to reduce the
encapsulation size for these KEM schemes.

6 Actually, QFO⊥ was not definitely presented by [4]. But, its construction is the same
as QFO⊥m except that K = H(m, c) and its security can be easily derived from the
security proof of QFO⊥m in [4].

3

Table 1: Generic KEM constructions with explicit rejection in the QROM.

Constructions Underlying security Security bound

QFO⊥m and QFO⊥ [4] OW-CPA q
√
q2δ + q

√
ε

Our HFO⊥m and HFO�⊥ IND-CPA q
√
δ +
√
qε

Our HFO⊥m and HFO�⊥ OW-CPA q
√
δ + q

√
ε

Our HU⊥m DS ε

In terms of QROM security reductions, ours are much tighter than the ones
of QFO⊥m and QFO⊥ in [4], see Table 1. For any correctness error7 δ (0 ≤ δ < 1),
our obtained security bounds for HFO⊥m and HFO⊥ are both ε′ ≈ q

√
δ + q

√
ε

which are much tighter than ε′ ≈ q
√
q2δ + q

√
ε in [4], where ε′ is the success

probability of an adversary against the IND-CCA security of the resulting KEM,
ε is the success probability of another adversary against the OW-CPA security
of the underlying PKE, and q is the total number of B’s queries to various
oracles. For HU⊥m, the IND-CCA security of the resulting KEM is tightly reduced
to the DS security of the underlying DPKE with perfect correctness8. That
is, our generic constructions with explicit rejection achieve the same tightness
in security reductions under identical assumptions as the corresponding KEM

constructions with implicit rejection FO�⊥m, FO�⊥ and U�⊥m in [14, 13]. Moreover,
we also present tighter QROM security reductions, ε′ ≈ q

√
δ +
√
qε, for HFO⊥m

and HFO⊥ based on the IND-CPA security of the underlying PKE.
Accordingly, our tighter QROM security reductions can directly provide more

reliable security guarantee for the IND-CCA-secure KEM submissions with ex-
plicit rejection where QFO⊥m and QFO⊥ are used, e.g., NTRU-HRSS-KEM [16],
see Table 2.

Table 2: IND-CCA-secure KEM submissions for which our tighter security reductions of
HFO⊥m and HFO⊥ can directly provide more reliable security guarantee in the QROM.

Constructions Submission

HFO⊥m NTRU-HRSS-KEM,DAGS,QC-MDPC

HFO⊥ EMBLEM and R.EMBLEM, Lepton, BIG QUAKE,HQC,LOCKER,RQC

1.2 Techniques

The difference between KEM constructions with explicit rejection and implicit
rejection is the behavior of the decapsulation algorithm on an invalid ciphertext.

7 The probability of decryption failure in a legitimate execution of the scheme.
8 Perfect correctness, i.e., δ = 0 is required by [13]. Here, we just follow this assump-

tion.

4

In a KEM construction with implicit rejection, a pseudorandom key is returned
instead of a rejection symbol ⊥, which prevents the adversary from judging
the validity of a ciphertext by querying the decapsulation oracle. Thus, the
simulation of a decapsulation oracle does not need to verify if a given ciphertext
is valid or not, and can use an identical hidden random orale Hq to answer the
decapsulation queries for both valid ciphertexts and invalid ciphertexts [13, 14].

However, in the case of explicit rejection, the simulation of the decapsulation
oracle has to first verify the validity of a given ciphertext, which is the key
obstacle for the techniques in [13, 14] to carry over. Here, before showing how
to overcome this obstacle, we first review two general methods [3, 4] used in the
ROM to achieve an IND-CCA-secure KEM construction with explicit rejection,
the γ-spreadness assumption and plaintext confirmation.

γ-spread. By assuming the underlying PKE to be γ-spread, we can obtain a
KEM construction with explicit rejection. A γ-spread PKE, introduced by Fu-
jisaki and Okamoto [5, 6], roughly speaking, requires that ciphertexts (generated
by the probabilistic encryption algorithm) have sufficiently large entropy. It plays
an important role in the ROM security proofs of the original FO transformation
[5, 6], and FO⊥m and FO⊥ (the KEM variants of FO transformation) in [4]. If the
underlying PKE is γ-spread, we can easily verify the validity of a ciphertext by
checking if the ciphertext is derived by using the randomness produced by the
RO [4–6]. In the ROM, adversarial queries to the RO can be recorded by a list,
which makes the above checking feasible. Unfortunately, as discussed in [14], in
the QROM, it is difficult to learn the actual content of an adversarial RO query.

Plaintext confirmation. Adding an extra hash value of the plaintext to the
ciphertext, called plaintext confirmation9, is another method to achieve a con-
struction with explicit rejection. This method was first introduced by [3, Table
4] in the ROM, in the context of a generic construction of an IND-CCA-secure
KEM with explicit rejection based on a OW-CPA-secure DPKE, which can be
viewed as a simpler version of the REACT construction. Our HU⊥m transforma-
tion is essentially the same as [3, Table 4].

In particular, a valid ciphertext c = (c1, c2) is produced by c1 = Enc(pk,m),
c2 = H ′(m) for some m, where Enc is the encryption algorithm of the underlying
DPKE. In the ROM, the validity of a ciphertext (c = (c1, c2)) can be verified by
testing if (c1, c2) is contained in a list (m,c1,c2), where m is an adversarial query
input to H ′, (c1 = Enc(pk,m), c2 = H ′(m)) is the corresponding ciphertext.
However, this verification method will not work in the QROM due to the same
reason as in the case of the γ-spreadness assumption method that it’s hard to
learn adversarial query inputs.

In [4], Hofheinz et al. follow Targhi and Unruh’s technique [9, 12] and simulate
H ′ using a random polynomial of degree 2qH′ over a finite field F2n , where qH′ is
the number of adversarial queries to H ′ and n is the range size of H ′. For a given

9 This name comes from Bernstein and Persichetti’s paper [17].

5

ciphertext c = (c1, c2), the simulator verifies the validity by checking if c1 lies
within the encryptions of the roots of H ′(X)− c2. To make H ′ invertible, H ′ is
required to be length-preserving. Additionally, the technique in [4, 9] requires two
instances of the one-way to hiding (OW2H) lemma [18, Lemma 6.2], which is a
practical tool to prove the indistinguishability between games where the random
oracles are reprogrammed. Nevertheless, the OW2H lemma will inherently incur

a quadratic security loss. Thus, the security reductions of QFO⊥m and QFO�⊥ in
[4] suffer a quartic security loss.

In this paper, we develop a novel verification method for the KEM con-
struction with explicit rejection based on plaintext confirmation, and circum-
vent the learning of adversarial queries. Specifically, the simulator replaces H ′

by H ′q ◦ Enc(pk, ·)10, where H ′q is a secret random function that is not given
to the adversary. We require Enc(pk, ·) to be indistinguishable from an injec-
tive function for any efficient quantum adversary. Thus, in the adversary’s view,
H ′q ◦ Enc(pk, ·) is a perfect random oracle. Then, we note that if c is a valid
ciphertext, H ′q(c1) = c2, and if c is invalid, then H ′q(c1) = c2 with negligi-
ble probability. Thereby, using H ′q, we can verify the validity of a ciphertext
c = (c1, c2) just by testing if H ′q(c1) = c2 or not.

With this novel verification method for the validity of a ciphertext, we can
extend the techniques in [13, 14] to the constructions with explicit rejection in
this paper. Thus, the OW2H lemma is instantiated only once in the security
reductions for HFO⊥ and HFO⊥m, and never used during the security reduc-
tion for HU⊥m, which lead to the same security loss as the corresponding KEM
constructions with implicit rejection in [13, 14].

Tighter reduction from IND-CPA. Different from the adversary against
the OW-CPA security of PKE, the adversary against the IND-CPA security
of PKE knows the plaintexts m0 and m1 of which one is encrypted to obtain
the challenge ciphertext. Thus, the simulator can make an elaborate analysis of
the RO-query inputs, e.g., testing whether m0 (or m1) has been queried to the
RO [4], and determine which one of the query inputs can be used to break the
IND-CPA security instead of just uniformly choosing at random. Particularly, in
the ROM, [4] presents tight reductions for FO transformations from IND-CPA
security of underlying PKE to IND-CCA security of resulting KEM. However,
the techniques in [4] require the simulator to maintain a RO-query list which is
difficult to implement in the QROM. In our case, we instead use a semi-classical
oracle technique (refer to Lemma 3 for details), recently introduced by Ambainis,
Hamburg and Unruh [19], to test whether m0 (or m1) has been queried. Then,
the security bound q

√
δ + q

√
ε is improved to be q

√
δ +
√
qε.

1.3 Discussion

As in prior works [4, 13, 14], we do not provide a general definition of explic-
it/implicit rejection on the KEM level. Although on first sight it seems these

10 Such a non-adaptive RO programming technique is also used in [11, 13, 14].

6

notions could be clearly defined, it turns out that capturing implicit/explicit
rejection appropriately on the KEM level (rather than on the construction level)
is quite challenging. This seems to be mostly due to the fact that the notion
of an “invalid ciphertext”, on which the definition of explicit/implicit rejection
would likely be based, remains elusive as well. Therefore, we only discuss explic-
it/implicit rejection on the construction level, as was also done in [15, 17].

KEMs either have implicit rejection or explicit rejection, or do not satisfy
either of these two. The advantages and disadvantages of explicit rejection and
implicit rejection for specific KEM constructions have been discussed by [15]
and [17]. The goal of this paper is not to take part in this discussion, but rather
to expand the proof techniques from KEMs with implicit rejection to KEMs
with explicit rejection. In particular, we show security reductions in the QROM
for our generic KEM constructions with explicit rejection that preserve the same
assumptions and tightness as previously known for KEMs with implicit rejection
[13, 14].

1.4 Related Work

In a concurrent and independent work, Zhandry [20] presented a proof in the
QROM for original FO transformation in [5, 6] from OW-CPA security of un-
derlying PKE and one-time security of underlying symmetric key encryption to
quantum CCA security of resulting PKE (quantum CCA security of PKE [21] is
identical to CCA security except that adversaries can make decryption queries
in quantum superpositions). However, the security proofs for KEM variants of
FO transformation in this paper were not presented and the tightness was not
discussed either. Moreover, their proof techniques are quite different from ours,
and require γ-spread assumption of underlying PKE.

1.5 Future work

We note that the Targhi-Unruh hash is removed in generic KEM constructions
with implicit rejection [13, 14]. However, a conventional extra hash (although not
a Targhi-Unruh hash) is still required in our generic KEM constructions with
explicit rejection, just like in the generic construction in the ROM [3, Table 4].
The ThreeBears [15] claims that removing this extra hash will not significantly
impact the IND-CCA security of their KEM scheme even though the explicit
rejection is used. Indeed, it seems possible that if the underlying PKE has some
specific algebraic structure which can be used for the validity verification of the
ciphertext, this extra hash can be removed even in a construction with explicit
rejection.

In our future work, we will research the specific algebraic structure of the un-
derlying PKE, which can help to achieve an IND-CCA-secure KEM construction
with explicit rejection and without this extra hash.

7

2 Preliminaries

Symbol description. A security parameter is denoted by λ. The abbreviation
PPT stands for probabilistic polynomial time. K, M, C and R are denoted as
key space, message space, ciphertext space and randomness space, respectively.
Given a finite set X, we denote the sampling of a uniformly random element

x by x
$← X. Denote the sampling from some distribution D by x←D. x =?y

is denoted as an integer that is 1 if x = y, and otherwise 0. Pr[P : G] is the
probability that the predicate P holds true where free variables in P are assigned
according to the program in G. Denote deterministic (probabilistic) computation
of an algorithm A on input x by y := A(x) (y ← A(x)). Let |X| be the cardinality
of set X. AH means that the algorithm A gets access to the oracle H. f ◦ g(·)
means f(g(·)).

2.1 Quantum Random Oracle Model

We refer the reader to [22] for basic of quantum computation.

Random oracle model (ROM) [2] is an idealized model, where a hash func-
tion is modeled as a publicly accessible random oracle. In quantum setting, an
adversary with quantum computer can off-line evaluate the hash function on an
arbitrary superposition of inputs. As a result, the quantum adversary should be
allowed to query the random orale with quantum state. We call this the quantum
random oracle model (QROM), introduced by Boneh et al. [11]. Particularly, [11]
argued that to prove post-quantum security one needs to prove security in the
QROM.

Tools. Next, we will present several existing lemmas that we will use throughout
the paper.

Lemma 1 (Simulating the random oracle [23, Theorem 6.1]). Let H
be an oracle drawn from the set of 2q-wise independent functions uniformly at
random. Then the advantage any quantum algorithm making at most q queries
to H has in distinguishing H from a truly random function is identically 0.

Lemma 2 (Generic search problem [24, 25, 14]). Let γ ∈ [0, 1]. Let Z be a
finite set. F : Z → {0, 1} is the following random function: For each z, F (z) = 1
with probability pz (pz ≤ γ), and F (z) = 0 else. Let N be the function with
∀z : N(z) = 0. If an oracle algorithm A makes at most q quantum queries to F
(or N), then ∣∣Pr[b = 1 : b← AF]− Pr[b = 1 : b← AN]

∣∣ ≤ 2q
√
γ.

Particularly, the probability of A finding a z such that F (z) = 1 is at most 2q
√
γ,

i.e., Pr[F (z) = 1 : z ← AF] ≤ 2q
√
γ.

8

One way to hiding (OW2H) lemma [18, Lemma 6.2] is a practical tool to ar-
gue the indistinguishability between games where the random oracles are repro-
grammed. Following are improved versions of OW2H lemma, recently introduced
by [19].

Lemma 3 (Semi-classical OW2H [19, Theorem 1]). Let S ⊆ X be random.
Let O1, O2 be oracles with domain X and codomain Y such that O1(x) = O2(x)
for any x /∈ S. Let z be a random bitstring. (O1, O2, S and z may have arbi-
trary joint distribution D.) Let fS be the indicator function, where fS(x) = 1 if
x ∈ S and 0 otherwise. Let OSCS be an oracle that performs the semi-classical
measurements corresponding to the projectors My when queried with |x〉, where
My :=

∑
x∈X:fS(x)=y

|x〉〈x| (y ∈ 0, 1). Let O2\S (“O2 punctured on S”) be an

oracle that first queries OSCS and then O2.
Let AO1(z) be an oracle algorithm with query number d. Denote Find as the

event that in the execution of AO2\S(z), OSCS ever outputs 1 during semi-classical
measurements.

Let

Pleft = Pr[b = 1 : (O1,O2, S, z)←D, b← AO1(z)]
Pright = Pr[b = 1 ∧ ¬Find : (O1,O2, S, z)←D, b← AO2\S(z)]

Pfind := Pr[Find : (O1,O2, S, z)←D,AO2\S(z)].

Then
|Pleft − Pright| ≤

√
(d+ 1)Pfind and

∣∣√Pleft −√Pright∣∣ ≤√(d+ 1)Pfind.

Remark : There are several other definitions of Pright in [19, Theorem 1]. In this
paper, we just need above definition in our security proofs.

Semi-classical oracle. Roughly speaking, semi-classical oracle OSCS only mea-
sures the output |fS(x)〉 but not the input |x〉. Formally, for a query to OSCS
with

∑
x,z ax,z|x〉|z〉, OSCS does the following

1. initialize a single qubit L with |0〉,
2. transform

∑
x,z ax,z|x〉|z〉|0〉 into

∑
x,z ax,z|x〉|z〉|fS(x)〉,

3. measure L.
Then, after performing a semi-classical measurement, the query state will
become

∑
x,z:fS(x)=y

ax,z|x〉|z〉 (non-normalized) if the measurement outputs

y (y ∈ 0, 1).

Lemma 4 (Search in semi-classical oracle [19, Corollary 1]). Suppose
that S and z are independent, and that A is a q-query algorithm. Let Pmax :=
maxx∈X Pr[x ∈ S]. Then

Pr[Find : AO
SC
S (z)] ≤ 4q · Pmax.

Lemma 5 (OW2H, Probabilities [19, Theorem 3]). Let S ⊆ X be random.
Let O1, O2 be oracles with domain X and codomain Y such that O1(x) = O2(x)
for any x /∈ S. Let z be a random bitstring. (O1, O2, S and z may have arbitrary
joint distribution D.)

9

Let AO1(z) be an oracle algorithm with query number d. Let BO1 be an oracle

algorithm that on input z does the following: pick i
$← {1, . . . , d}, run AO1(z)

until (just before) the i-th query, measure all query input registers in the compu-
tational basis, and output the set T of measurement outcomes. (When A makes
less than i queries, B outputs ⊥ /∈ X.)

Let

Pleft = Pr[b = 1 : (O1,O2, S, z)←D, b← AO1(z)]
Pright = Pr[b = 1 : (O1,O2, S, z)←D, b← AO2(z)]

Pguess := Pr[S ∩ T 6= ∅ : (O1,O2, S, z)←D,T ← BO1(z)].

Then
|Pleft − Pright| ≤ 2d

√
Pguess and

∣∣√Pleft −√Pright∣∣ ≤ 2d
√
Pguess.

2.2 Cryptographic Primitives

Definition 1 (Public-key encryption). A public-key encryption scheme PKE =
(Gen,Enc,Dec) consists of a triple of polynomial time (in the security parameter
λ) algorithms and a finite message space M.

– Gen(1λ)→ (pk, sk): the key generation algorithm, is a probabilistic algorith-
m which on input 1λ outputs a public/secret key-pair (pk, sk). Usually, for
brevity, we will omit the input of Gen.

– Enc(pk,m)→ c: the encryption algorithm Enc, on input pk and a message
m ∈ M, outputs a ciphertext c ← Enc(pk,m). If necessary, we make the
used randomness of encryption explicit by writing c := Enc(pk,m; r), where

r
$← R (R is the randomness space).

– Dec(sk, c)→ m: the decryption algorithm Dec, is a deterministic algorithm
which on input sk and a ciphertext c outputs a message m := Dec(sk, c) or
a rejection symbol ⊥/∈M.

A PKE is determined if Enc is deterministic. We denote DPKE to stand for
a determined PKE.

Definition 2 (Correctness [4]). A public-key encryption scheme PKE is δ-
correct if

E[max
m∈M

Pr[Dec(sk, c) 6= m : c← Enc(pk,m)]] ≤ δ,

where the expectation is taken over (pk, sk)← Gen. We say a PKE is perfectly
correct if δ = 0.

Next, we define three security notions, one-wayness against chosen-plaintext
attacks (OW-CPA) of PKE, indistinguishability against chosen-plaintext attacks
(IND-CPA) of PKE, and disjoint simulatability (DS) of DPKE.

Definition 3 (OW-CPA-secure PKE). Let PKE = (Gen,Enc,Dec) be a
public-key encryption scheme with message space M. Define OW − CPA game

10

of PKE as in Fig. 1. Define the OW − CPA advantage function of an adversary
A against PKE as

AdvOW-CPA
PKE (A) := Pr[OW-CPAAPKE = 1].

Game OW-CPA

1 : (pk, sk)← Gen

2 : m∗
$←M

3 : c∗ ← Enc(pk,m∗)

4 : m′ ← A(pk, c∗)

5 : return m′ =?m∗

Game IND-CPA

1 : (pk, sk)← Gen

2 : b← {0, 1}
3 : (m0,m1)←A(pk)

4 : c∗ ← Enc(pk,mb)

5 : b′ ← A(pk, c∗)

6 : return b′ =?b

Fig. 1: Game OW-CPA and game IND-CPA for PKE.

Definition 4 (IND-CPA-secure PKE). Let PKE = (Gen,Enc,Dec) be a
public-key encryption scheme with message spaceM. Define IND− CPA game of
PKE as in Fig. 1, where m0 and m1 have the same length. Define the IND− CPA
advantage function of an adversary A against PKE as

AdvIND-CPA
PKE (A) :=

∣∣Pr[IND-CPAAPKE = 1]− 1/2
∣∣ .

Definition 5 (DS-secure DPKE [13]). Let DM denote an efficiently sam-
pleable distribution on a setM. A DPKE scheme (Gen,Enc,Dec) with plaintext
and ciphertext spaces M and C is DM-disjoint simulatable if there exists a PPT
algorithm S that satisfies the following.

– Statistical disjointness:

DisjPKE,S := max
(pk,sk)∈Gen(1λ;Rgen)

Pr[c ∈ Enc(pk,M) : c← S(pk)]

is negligible, where Rgen denotes a randomness space for Gen.
– Ciphertext indistinguishability: For any PPT adversary A,

AdvDS-IND
PKE,DM,S(A) :=

∣∣∣∣∣∣Pr

[
A(pk, c∗)→ 1 :

(pk, sk)← Gen;m∗ ← DM;
c∗ = Enc(pk,m∗)]

]
−Pr[A(pk, c∗)→ 1 : (pk, sk)← Gen; c∗ ← S(pk)]

∣∣∣∣∣∣
is negligible.

Definition 6 (Key encapsulation). A key encapsulation mechanism KEM
consists of three algorithms Gen, Encaps and Decaps.

– Gen(1λ) → (pk, sk): the key generation algorithm Gen outputs a key pair
(pk, sk). Usually, for brevity, we will omit the input of Gen.

11

– Encaps(pk) → (K, c): the encapsulation algorithm Encaps, on input pk,
outputs a tuple (K, c), where K ∈ K and ciphertext c is said to be an en-
capsulation of the key K. If necessary, we make the used randomness of
encapsulation explicit by writing (K, c) := Encaps(pk; r), where r ∈ R (R
is the randomness space).

– Decaps(sk, c) → K: the deterministic decapsulation algorithm Decaps, on
input sk and an encapsulation c, outputs either a key K := Decaps(sk, c) ∈
K or a rejection symbol ⊥/∈ K.

Next, we now define a security notion for KEM: indistinguishability against
chosen-ciphertext attacks (IND-CCA).

Definition 7 (IND-CCA-secure KEM). We define the IND− CCA game
as in Fig. 2 and the IND− CCA advantage function of an adversary A against
KEM as

AdvIND-CCA
KEM (A) :=

∣∣Pr[IND-CCAAKEM = 1]− 1/2
∣∣ .

Game IND-CCA

1 : (pk, sk)← Gen

2 : b
$← {0, 1}

3 : (K∗0 , c
∗)← Encaps(pk)

4 : K∗1
$← K

5 : b′ ← ADecaps(pk, c∗,K∗b)

6 : return b′ =?b

Decaps(sk, c)

1 : if c = c∗

2 : return ⊥
3 : else return

4 : K := Decaps(sk, c)

Fig. 2: IND-CCA game for KEM.

Following the work [4], we also make the convention that the number qH of
the adversarial queries to H counts the total number of times H is executed in
the experiment. That is, the number of A’s explicit queries to H plus the number
of implicit queries to H made by the experiment.

3 Generic KEM constructions with explicit rejection

Using Targhi-Unruh technique [9], Hofheinz et al. [4] first presented two generic
constructions of an IND-CCA-secure KEM with explicit rejection QFO⊥m and

QFO�⊥m in the QROM, by reducing the OW-CPA security of underlying PKE
scheme to the IND-CCA security of resulting KEM with quartic security loss.
These two constructions are widely used to achieve IND-CCA security in the
NIST Round-1 KEM submissions [10]. Subsequently, Jiang et al. [14] improved

above security loss to be quadratic for FO�⊥m and FO�⊥. For the transformation U�⊥m

12

in [4], Saito et al. [13] gave a tight reduction from the DS security of underlying
perfectly correct DPKE to the IND-CCA security of resulting KEM. However,
the proof techniques in [14, 13] are restricted to the KEM constructions with
implicit rejection.

Encaps(pk)

1 : m
$←M

2 : c1 = Enc(pk,m;G(m))

3 : c2 = H ′(m)

4 : c = (c1, c2)

5 : K := H(m)

6 : return (K, c)

Decaps(sk, c)

1 : Parse c = (c1, c2)

2 : m′ := Dec(sk, c1)

3 : if Enc(pk,m′;G(m′)) = c1 ∧H ′(m′) = c2

4 : return K := H(m′)

5 : else return ⊥

Fig. 3: IND-CCA-secure KEM-I=HFO⊥m[PKE,G,H,H ′]

Encaps(pk)

1 : m
$←M

2 : c1 = Enc(pk,m;G(m))

3 : c2 = H ′(m)

4 : c = (c1, c2)

5 : K := H(m, c)

6 : return (K, c)

Decaps(sk, c)

1 : Parse c = (c1, c2)

2 : m′ := Dec(sk, c1)

3 : if Enc(pk,m′;G(m′)) = c1 ∧H ′(m′) = c2

4 : return K := H(m′, c)

5 : else return ⊥

Fig. 4: IND-CCA-secure KEM-II=HFO⊥[PKE,G,H,H ′]

Encaps(pk)

1 : m
$←M

2 : c1 = Enc(pk,m)

3 : c2 = H ′(m)

4 : c = (c1, c2)

5 : K := H(m)

6 : return (K, c)

Decaps(sk, c)

1 : Parse c = (c1, c2)

2 : m′ := Dec(sk, c1)

3 : if Enc(pk,m′) = c1 ∧H ′(m′) = c2

4 : return K := H(m′)

5 : else return ⊥

Fig. 5: IND-CCA-secure KEM-III=HU⊥m[DPKE,H,H ′]

In this section, first, we will present three generic constructions of an IND-
CCA-secure KEM with explicit rejection, HFO⊥m, HFO⊥ and HU⊥m, correspond-

13

ing the implicit ones, i.e., FO�⊥m, FO�⊥ and U�⊥m in [4, 14, 13]. Then, assuming
OW-CPA security of underlying PKE, we will provide security reductions for
HFO⊥m and HFO⊥ with quadratic security loss. Particularly, we also present
tighter security reductions for HFO⊥m and HFO⊥ with the IND-CPA security
assumption of underlying PKE. Finally, we will give a tight security reduction
for HU⊥m, from the DS security of underlying perfectly correct DPKE to the
IND-CCA security of resulting KEM.

To a public-key encryption scheme PKE = (Gen, Enc, Dec) with message
space M and randomness space R, hash functions G : M→ R, H : {0, 1}∗ →
{0, 1}n and H ′ : M → {0, 1}n′11, we associate KEM-I=HFO⊥m[PKE,G,H,H ′],
KEM-II=HFO⊥[PKE,G,H,H ′], and KEM-III=HU⊥[PKE,H,H ′], shown12 in Fig.
3, Fig. 4 and Fig. 5, respectively. To make the presentation concise, we make the
convention that K = {0, 1}n.

Remark: Explicit (implicit resp.) rejection13 means a rejection symbol ⊥ (pseu-
dorandom key, resp.) is returned for an invalid ciphertext, where we use a
construction-dependent definition of invalid ciphertext. For KEM-I and KEM-II
(KEM-III, resp.), we say a ciphertext c = (c1, c2) is invalid if there is no m′ such
that (c1, c2) 6= (Enc(pk,m′;G(m′)), H ′(m′)) ((c1, c2) 6= (Enc(pk,m′), H ′(m′)),
resp.).

Theorem 1 (PKE IND-CPA
QROM⇒ KEM-I IND-CCA). If PKE is δ-

correct, for any IND-CCA adversary B against KEM-I, issuing at most qD
queries to the decapsulation oracle Decaps, at most qG (qH , qH′) queries to the
random oracle G (H, H ′), there exists an IND-CPA adversary A against PKE

such that AdvIND-CCA
KEM-I (B) ≤ 2

√
2(qG + qH + 1)AdvIND-CPA

PKE (A) + 4 (qG+qH+1)2

|M| +

4qG
√
δ + qD

2n′
and the running time of A is about that of B.

Proof. Let B be an adversary against the IND-CCA security of KEM-I, issuing
at most qD queries to the decapsulation oracle Decaps, at most qG (qH , qH′)
queries to the random oracle G (H, H ′). Denote ΩG, ΩH , ΩH′ , ΩHq and ΩH′q as

the sets of all functions G :M→R, H :M→ {0, 1}n, H ′ :M→ {0, 1}n′ , Hq :

C1 → {0, 1}n and H ′q : C1 → {0, 1}n
′
, respectively, where C1 is the ciphertext

space of underlying PKE scheme. Consider the games in Fig. 6.

Game G0. Since game G0 is exactly the IND-CCA game,∣∣Pr[GB0 ⇒ 1]− 1/2
∣∣ = AdvIND-CCA

KEM-I (B).

Given (pk, sk) and m ∈ M, define “bad” randomness Rbad(pk, sk,m) and
“good” randomnessRgood(pk, sk,m) = R\Rbad(pk, sk,m), whereRbad(pk, sk,m) =

11 We assume that G, H, H ′ are not used in the algorithms of PKE, including Gen,
Enc and Dec.

12 The key generation algorithms Gen in KEM-I, KEM-II and KEM-III are the same
as the ones in corresponding underlying PKEs.

13 There may exist some KEMs with neither explicit nor implicit rejection.

14

{r ∈ R : Dec(sk,Enc(pk,m; r)) 6= m}. Let

δ(pk, sk,m) =
|Rbad(pk, sk,m)|

|R|

as the fraction of bad randomness and δ(pk, sk) = maxm∈M δ(pk, sk,m). Thus,
δ = E[δ(pk, sk)], where the expectation is taken over (pk, sk)←Gen.

GAMES G0 −G8

1 : (pk, sk)← Gen;G
$← ΩG

2 : G′
$← ΩG′ ;G := G′ //G1 −G3

3 : g(·) = Enc(pk, ·;G(·))

4 : H
$← ΩH ;H ′

$← ΩH′ //G0 −G1

5 : Hq
$← ΩHq ;H ′q

$← ΩH′q

6 : m∗
$←M

7 : r∗ := G(m∗)

8 : r∗
$←R //G6 −G8

9 : c∗1 := Enc(pk,m∗; r∗) //G0 −G7

10 : m′∗
$←M //G8

11 : c∗1 := Enc(pk,m′∗; r∗) //G8

12 : c∗2 := H ′(m∗) //G0 −G1

13 : c∗2 := H ′q(c
∗
1) //G2 −G8

14 : c∗ = (c∗1, c
∗
2)

15 : k∗0 := H(m∗)

16 : k∗0
$← K //G6 −G8

17 : k∗1
$← K; b

$← {0, 1}

18 : b′ ← BG,H,H
′,Decaps(pk, c∗, k∗b) //G0 −G4

19 : G̈ := G; G̈(m∗)
$←R //G5 −G6

20 : Ḧ := H; Ḧ(m∗)
$← K //G5 −G6

21 : g(·) = Enc(pk, ·; G̈\m∗(·)) //G5 −G6

22 : b′ ← BG̈\m
∗,Ḧ\m∗,H′,Decaps(pk, c∗, k∗b)//G5 −G6

23 : b′ ← BG\m
∗,H\m∗,H′,Decaps(pk, c∗, k∗b)//G7 −G8

24 : return b′ =?b

H(m) //G2 −G8

1 : return Hq ◦ g(m)

H ′(m) //G2 −G8

1 : return H ′q ◦ g(m)

Decaps (c 6= c∗) //G0 −G2

1 : Parse c = (c1, c2)

2 : m′ := Dec(sk, c1)

3 : if g(m′) = c1 ∧H ′(m′) = c2

4 : return K := H(m′)

5 : else return ⊥

Decaps (c 6= c∗) //G3 −G8

1 : Parse c = (c1, c2)

2 : if H ′q(c1) = c2

3 : return K := Hq(c1)

4 : else return ⊥

Fig. 6: Games G0-G8 for the proof of Theorem 1

15

Let G′ be a random function such that G′(m) is sampled according to the
uniform distribution in Rgood(pk, sk,m). Let ΩG′ be the set of all functions G′.

Game G1. In game G1, we replace G by G′ that uniformly samples from “good”

randomness at random, i.e., G′
$← ΩG′ . First, let’s show that any adversary

distinguishing G0 from G1 can be converted into an adversary distinguishing G
from G′ in the following way.

Construct an adversary BG̃(pk, sk) against the distinguishing problem be-

tween G and G′ by taking the accessible oracle G̃ as G, simulating B’s view and
outputting in the same way as G0 and G1. We note that for any (pk, sk) gen-

erated by Gen, if G̃ = G, BG̃(pk, sk) perfectly simulates G0 and Pr[1 ← BG :

(pk, sk)] = Pr[GB0 ⇒ 1 : (pk, sk)]. If G̃ = G′, BG̃(pk, sk) perfectly simulates G1

and Pr[1← BG
′

: (pk, sk)] = Pr[GB1 ⇒ 1 : (pk, sk)].

Thus, ∣∣Pr[GB0 ⇒ 1 : (pk, sk)]− Pr[GB1 ⇒ 1 : (pk, sk)]
∣∣

=
∣∣∣Pr[1← BG : (pk, sk)]− Pr[1← BG

′
: (pk, sk)]

∣∣∣ .
Next, we will show that any adversary distinguishing G from G′ can be

converted into an adversary distinguishing F1 from F2, where F1 is a function
such that F1(m) is sampled according to Bernoulli distribution Bδ(pk,sk,m), i.e.,
Pr[F1(m) = 1] = δ(pk, sk,m) and Pr[F1(m) = 0] = 1− δ(pk, sk,m), and F2 is a
constant function that always outputs 0 for any input.

AF (pk, sk)

1 : Pick a 2qG-wise function f

2 : b′′ ← BG̃(pk, sk)

3 : return b′′

G̃(m)

1 : if F (m) = 0

2 : G̃(m) = Sample(Rgood(pk, sk,m); f(m))

3 : else

4 : G̃(m) = Sample(Rbad(pk, sk,m); f(m))

5 : return G̃(m)

Fig. 7: AF for the proof of Theorem 1

Given any adversary BG̃(pk, sk), we construct an adversary AF (pk, sk) as in
Fig. 7. Sample(Y) is a probabilistic algorithm that returns a uniformly distribut-

ed y
$← Y. Sample(Y; f(m)) denotes the deterministic execution of Sample(Y)

using explicitly given randomness f(m). Note that G̃ = G if F = F1 and

G̃ = G′ if F = F2. Thus, for any fixed (pk, sk) generated by Gen, Pr[1 ←
AF1 : (pk, sk)] = Pr[1 ← BG : (pk, sk)] and Pr[1 ← AF2 : (pk, sk)] = Pr[1 ←

16

BG
′

: (pk, sk)]. Conditioned on a fixed (pk, sk) we obtain by Lemma 2∣∣∣Pr[1← BG : (pk, sk)]− Pr[1← BG
′

: (pk, sk)]
∣∣∣

=
∣∣Pr[1← AF1 : (pk, sk)]− Pr[1← AF2 : (pk, sk)]

∣∣ ≤ 2qG
√
δ(pk, sk).

As
∣∣Pr[GB0 ⇒ 1 : (pk, sk)]− Pr[GB1 ⇒ 1 : (pk, sk)]

∣∣ can be bounded by the

maximum distinguishing probability between G and G′ for BG̃(pk, sk),∣∣Pr[GB0 ⇒ 1 : (pk, sk)]− Pr[GB1 ⇒ 1 : (pk, sk)]
∣∣ ≤ 2qG

√
δ(pk, sk).

By averaging over (pk, sk)←Gen we finally obtain∣∣Pr[GB0 ⇒ 1]− Pr[GB1 ⇒ 1]
∣∣ ≤ 2qGE[

√
δ(pk, sk)] ≤ 2qG

√
δ.

Game G2. In this game, replace H and H ′ by Hq ◦ g and H ′q ◦ g respectively,
where

g(·) = Enc(pk, ·;G(·)).
Note that g in this game is an injective function since it only samples from

“good” randomness. Thus, the distributions of H in G1 and G2 are identical.
Therefore,

Pr[GB1 ⇒ 1] = Pr[GB2 ⇒ 1].

Game G3. In game G3, the Decaps oracle is changed that it makes no use of the
secret key sk any more. When B queries the Decaps oracle on c = (c1, c2) (c 6=
c∗), K := Hq(c1) is returned if H ′q(c1) = c2, otherwise ⊥. Let m′ := Dec(sk, c1)
and consider the following three cases.

Case 1: Enc(pk,m′;G(m′)) = c1 and H ′(m′) = c2. Since H = Hq ◦ g and
H ′ = H ′q ◦ g, both Decaps oracles in G2 and G3 return the same value
Hq(c1).

Case 2: Enc(pk,m′;G(m′)) = c1 and H ′(m′) 6= c2. In this case, H ′(m′) =
H ′q(c1) 6= c2. Therefore, both Decaps oracles in G2 and G3 return ⊥.

Case 3: Enc(pk,m′;G(m′)) 6= c1. In G2, the Decaps oracle returns ⊥. In G3,
note that if there exists an m′′ such that Enc(pk,m′′;G(m′′)) = c1, m′′ =
m′ since G in this game only samples from “good” randomness. That is,
Enc(pk,m′;G(m′)) = c1 which contradicts the condition Enc(pk,m′;G(m′)) 6=
c1. Therefore, above m′′ does not exist. Meantime, we also note that B’s
queries toH ′ can only help him get access toH ′q at ĉ1 such that Enc(pk, m̂;G(m̂)) =
ĉ1 for some m̂, thus H ′q(c1) is uniformly random in B’s view. As a result, in

this case, Pr[H ′q(c1) = c2] = 1
2n′

and the Decaps oracle in G3 also returns

⊥ with probability 1− 1
2n′

.

By the union bound, we know that G2 and G3 can be distinguished with prob-
ability at most qD

2n . That is,∣∣Pr[GB2 ⇒ 1]− Pr[GB3 ⇒ 1]
∣∣ ≤ qD

2n′
.

17

Game G4. In game G4, we switch the G that only samples from “good” ran-
domness back to an ideal random oracle G. Then, similar to the case of G0 and
G1, the distinguishing problem between G3 and G4 can also be converted to the
distinguishing problem between G and G′. Using the same analysis method in
bounding the difference between G0 and G1, we can have∣∣Pr[GB3 ⇒ 1]− Pr[GB4 ⇒ 1]

∣∣ ≤ 2qG
√
δ.

Let G̈ (Ḧ) be the function that G̈(m∗) = ṙ∗ (Ḧ(m∗) = k̇∗0), and G̈ = G
(Ḧ = H) everywhere else, where ṙ∗ and k̇∗0 are picked uniformly at random from
R and K.

Game G5. In game G5, replace G and H by G̈\m∗ and Ḧ\m∗ respectively. Note
that in this game for B’s query to G (H), G̈\m∗ (Ḧ\m∗) will first query OSCm∗ ,
i.e., perform a semi-classical measurement, and then query G̈ (Ḧ). Let Find be
the event that OSCm∗ ever outputs 1 during semi-classical measurements of B′s
queries to G and H. Note that the state after semi-classical measurements is
exactly the state just before querying G̈ and Ḧ. Thus, if the event ¬Find that
OSCm∗ always outputs 0 happens, there will be no m∗ term for the state just before
querying G̈ and Ḧ (that is, the amplitude corresponding to |m∗〉 will be 0) and
B never learns the values of G(m∗) and H(m∗). Therefore, if ¬Find happens, bit
b is independent of B’s view. Hence,

Pr[GB5 ⇒ 1 ∧ ¬Find] = 1/2 Pr[¬Find : G5] = 1/2(1− Pr[Find : G5]).

Let (G×H)(·) = (G(·), H(·)), (G̈×Ḧ)(·) = (G̈(·), Ḧ(·)), and (G̈×Ḧ)\m∗(·) =
(G̈\m∗(·), Ḧ\m∗(·)). If one wants to make queries to G (or H) by accessing to
G × H, he just needs to prepare a uniform superposition of all states in the
output register responding to H (or G). The number of total queries to G×H
is at most qG + qH . Let H̄q be the function that H̄q(c

∗
1) =⊥ and H̄q = Hq

everywhere else.

AG×H(pk, c∗1, H(m∗), H̄q)

1 : H ′q
$← ΩH′q

2 : g(·) = Enc(pk, ·;G(·))
3 : c∗2 = H ′q(c

∗
1)

4 : c∗ = (c∗1, c
∗
2)

5 : k∗0 = H(m∗)

6 : k∗1
$← K

7 : b
$← {0, 1}

8 : b′ ← BG,H,H
′,Decaps(pk, c∗, k∗b)

9 : return b′ =?b

H ′(m)

1 : return H ′q ◦ g(m)

Decaps (c 6= c∗)

1 : Parse c = (c1, c2)

2 : if H ′q(c1) = c2

3 : return K := H̄q(c1)

4 : else return ⊥

Fig. 8: AG×H for the proof of Theorem 1.

18

Let AG×H be an oracle algorithm on input (pk, c∗1, H(m∗), H̄q)
14 in Fig. 8.

Sample pk, m∗, G, Hq, H and c∗1 in the same way as G4 and G5, i.e., (pk, sk)←
Gen, m∗

$←M, G
$← ΩG, Hq

$← ΩHq , H := Hq◦g and c∗1 = Enc(pk,m∗;G(m∗)).
Then, AG×H on input (pk, c∗1, H(m∗), H̄q) perfectly simulates G4. If we replace

G×H by (G̈× Ḧ)\m∗, A(G̈×Ḧ)\m∗ on input (pk, c∗1, H(m∗), H̄q) perfectly sim-
ulates G5.

Applying Lemma 3 with X = M, Y = (R,K), S = {m∗}, O1 = G×H,
O2 = G̈× Ḧ and z = (pk, c∗1, H(m∗), H̄q), we can have∣∣Pr[GB4 ⇒ 1]− Pr[GB5 ⇒ 1 ∧ ¬Find]

∣∣ ≤√(qG + qH + 1) Pr[Find : G5].

Game G6. In game G6, replace r∗ := G(m∗) and k∗0 := H(m∗) by r∗
$← R and

k∗0
$← K. We do not care about B’s output, but only whether the event Find

happens. Note that in G5 and G6, there is no information of (G(m∗), H(m∗)) in
the oracle (G̈× Ḧ)\m∗. Thus, apparently,

Pr[Find : G5] = Pr[Find : G6].

A(1λ, pk)

1 : m0
$←M

2 : m1
$←M

3 : b′′
$← {0, 1}

4 : r∗
$←R

5 : c∗1 = Enc(pk,mb′′ ; r
∗)

6 : c∗2 = H ′q(c
∗
1)

7 : c∗ = (c∗1, c
∗
2)

8 : k∗
$← K

9 : Pick a 2qG-wise function G

10 : Pick a 2qH -wise function Hq

11 : Pick a 2qH′ -wise function H ′q

12 : g(·) := Enc(pk, ·;G(·))

13 : b′ ← BG\m0,H\m0,H
′,Decaps(pk, c∗, k∗)

14 : return Find

H(m)

1 : return Hq ◦ g(m)

H ′(m)

1 : return H ′q ◦ g(m)

Decaps (c 6= c∗)

1 : Parse c = (c1, c2)

2 : if H ′q(c1) = c2

3 : return K := Hq(c1)

4 : else return ⊥

Fig. 9: Adversary A for the proof of Theorem 1

14 H̄q here in the input of AG×H is the whole truth table of H̄q. One may wonder that
the size of AG×H ’s memory needs to be exponentially large. Don’t worry about this.
H̄q is just taken as an oracle to make queries (with at most qH times) in actual
games. That is, we can also take H̄q as an accessible oracle instead of a whole truth
table.

19

Game G7. In game G7, replace G̈ and Ḧ by G and H. Since G(m∗) and H(m∗)
have never been used for simulating B’s view,

Pr[Find : G6] = Pr[Find : G7].

Game G8. In game G8, use m′∗ instead of m∗ for generating the challenge
ciphertext, but keep using the original m∗ for G\m∗ and H\m∗, where m′∗ is
chosen uniformly and independently of m∗. Note that the information of m∗ in
this game only exists in the oracles G\m∗ and H\m∗. By Lemma 4,

Pr[Find : G8] ≤ 4
qG + qH + 1

|M|
.

Next, we show that any adversary distinguishing G7 from G8 can be convert-
ed into an adversary against the IND-CPA security of underlying PKE scheme.
Construct an adversary A on input (1λ, pk) as in Fig. 9. Then, according to Lem-
ma 1, if b′′ = 0, A perfectly simulates G7 and Pr[Find : G7] = Pr[1← A : b′′ =
0]. If b′′ = 1, A perfectly simulates G8 and Pr[Find : G8] = Pr[1← A : b′′ = 1].
Since AdvIND-CPA

PKE (A) = 1/2 |Pr[1← A : b′′ = 0]− Pr[1← A : b′′ = 1]|,

|Pr[Find : G7]− Pr[Find : G8]| = 2AdvIND-CPA
PKE (A).

Finally, combing this with the bounds derived above, we can conclude that

AdvIND-CCA
KEM-I (B) ≤ 4qG

√
δ+

qD
2n′

+2

√
2(qG + qH + 1)AdvIND-CPA

PKE (A) + 4
(qG + qH + 1)2

|M|
.

ut

Theorem 2 (PKE OW-CPA
QROM⇒ KEM-I IND-CCA). If PKE is δ-

correct, for any IND-CCA adversary B against KEM-I, issuing at most qD
queries to the decapsulation oracle Decaps, at most qG (qH , qH′) queries to
the random oracle G (H, H ′), there exists a OW-CPA adversary A against

PKE such that AdvIND-CCA
KEM-I (B) ≤ 4qG

√
δ + qD

2n′
+2(qG + qH) ·

√
AdvOW-CPA

PKE (A)

and the running time of A is about that of B.

Different from FO⊥m, HFO⊥m adds the plaintext confirmation and adopts explicit
rejection for decapsulation. In [14, Theorem 2], a security proof of FO⊥m is given.
The sole and key obstacle of applying the proof techniques in [14, Theorem 2] to
HFO⊥m is the validity verification of ciphertext when simulating the decapsulation
oracle. Fortunately, this can be overcome with the same verification method used
in the proof of Theorem 1. Thus, combing the proofs of Theorem 1 and [14,
Theorem 2], we can obtain a proof of Theorem 2, see Appendix A.

Different from the one in KEM-I, the hash function H in KEM-II takes both
the plaintext m and the ciphertext c as input. Using the same proof method in
[14, Theorem 1], we can divide the H-inputs (m, c) into two categories, matched
inputs and unmatched inputs, by judging whether c = (Enc(pk,m;G(m)), H ′(m)),
and replace H by Hq ◦ g only for the matched inputs. Then, following the proofs
of Theorem 1 and Theorem 2, we can derive Theorem 3 and Theorem 4.

20

Theorem 3 (PKE IND-CPA
QROM⇒ KEM-II IND-CCA). If PKE is δ-

correct, for any IND-CCA adversary B against KEM-II, issuing at most qD
queries to the decapsulation oracle Decaps, at most qG (qH , qH′) queries to the
random oracle G (H, H ′), there exists an IND-CPA adversary A against PKE

such that AdvIND-CCA
KEM-II (B) ≤ 2

√
2(qG + qH + 1)AdvIND-CPA

PKE (A) + 4 (qG+qH+1)2

|M| +

4qG
√
δ + qD

2n′
and the running time of A is about that of B.

Theorem 4 (PKE OW-CPA
QROM⇒ KEM-II IND-CCA). If PKE is δ-

correct, for any IND-CCA adversary B against KEM-II, issuing at most qD
queries to the decapsulation oracle Decaps, at most qG (qH , qH′) queries to the
random oracle G (H, H ′), there exists a OW-CPA adversary A against PKE

such that AdvIND-CCA
KEM-II (B) ≤ 4qG

√
δ+ qD

2n′
+ 2(qG+ qH) ·

√
AdvOW-CPA

PKE (A) and the

running time of A is about that of B.

Theorem 5 (PKE DS
QROM⇒ KEM-III IND-CCA). If PKE is determinis-

tic and perfectly correct, for any IND-CCA adversary B against KEM-III, issuing
at most qD queries to the decapsulation oracle Decaps, at most qH (qH′) queries
to the random oracle H (H ′), there exists an adversary A against the DS secu-
rity with an algorithm S such that AdvIND-CCA

KEM-III (B) ≤ qD
2n′

+ AdvDS-IND
PKE,UM,S(A) +

DisjPKE,S, where UM is the uniform distribution in M, and the running time
of A is about that of B.

Proof. Let B be an adversary against the IND-CCA security of KEM-III, issuing
at most qD queries to Decaps, at most qH (qH′) queries to H (H ′). We follow
the notations ΩH , ΩH′ , ΩHq and ΩH′q in Theorem 1. Consider the games in Fig.
10.

Game G0. Since game G0 is exactly the IND-CCA game,∣∣Pr[GB0 ⇒ 1]− 1/2
∣∣ = AdvIND-CCA

KEM-III (B).

Game G1. Replace H and H ′ by Hq ◦ g and H ′q ◦ g respectively, where

g(·) = Enc(pk, ·).

As PKE is perfectly correct, g is an injective functions. Thus, Hq ◦ g (H ′q ◦ g) is
also a uniformly random function as H (H ′) in G0. Therefore, we can have

Pr[GB0 ⇒ 1] = Pr[GB1 ⇒ 1].

Game G2. In game G2, the Decaps oracle is changed that it makes no use of
the secret key sk any more. When B queries the Decaps oracle on c = (c1, c2)
(c 6= c∗), K := Hq(c1) is returned if H ′q(c1) = c2, otherwise ⊥.

Let m′ := Dec(sk, c1). Consider the following three cases.

21

GAMES G0 −G3

1 : (pk, sk)← Gen

2 : H
$← ΩH ;H ′

$← ΩH′ //G0

3 : Hq
$← ΩHq ;H ′q

$← ΩH′q

4 : m∗
$←M

5 : c∗1 := Enc(pk,m∗) //G0 −G2

6 : c∗1←S(pk) //G3

7 : c∗2 := H ′(m∗) //G0

8 : c∗2 := H ′q(c
∗
1) //G1 −G3

9 : c∗ = (c∗1, c
∗
2)

10 : k∗0 := H(m∗) //G0

11 : k∗0 := Hq(c
∗
1) //G1 −G3

12 : k∗1
$← K

13 : b
$← {0, 1}

14 : b′ ← BH,H
′,Decaps(pk, c∗, k∗b)

15 : return b′ =?b

H(m) //G1 −G3

1 : return Hq(Enc(pk,m))

H ′(m) //G1 −G3

1 : return H ′q(Enc(pk,m))

Decaps (c 6= c∗) //G0 −G1

1 : Parse c = (c1, c2)

2 : m′ := Dec(sk, c1)

3 : if Enc(pk,m′) = c1 ∧H ′(m′) = c2

4 : return K := H(m′)

5 : else return ⊥

Decaps (c 6= c∗) //G2 −G3

1 : Parse c = (c1, c2)

2 : if H ′q(c1) = c2

3 : return K := Hq(c1)

4 : else return ⊥

Fig. 10: Games G0-G3 for the proof of Theorem 3

Case 1: If Enc(pk,m′) 6= c1. In this case, the Decaps oracle in G1 returns ⊥.
We note that B’s queries to H ′ can only help him get access to H ′q at ĉ1
such that Enc(pk, m̂) = ĉ1 for some m̂. Such a m̂ that Enc(pk, m̂) = c1 does
not exist due to the perfect correctness of underlying DPKE. Thus, H ′q(c1)

is uniformly random in B’s view and H ′q(c1) 6= c2 with probability 1 − 1
2n′

.

Therefore, the Decaps oracle in G2 returns ⊥ with probability 1− 1
2n′

.
Case 2: Enc(pk,m′) = c1∧H ′(m′) = c2. In this case,H ′(m′) = H ′q(Enc(pk,m

′)) =
H ′q(c1) = c2. Thus, both Decaps oracles in G1 and G2 return the same value
H(m′) = Hq ◦ g(m′) = Hq(c1).

Case 3: Enc(pk,m′) = c1∧H ′(m′) 6= c2. In this case,H ′(m′) = H ′q(Enc(pk,m
′)) =

H ′q(c1) 6= c2, both Decaps oracles in G1 and G2 return ⊥.

Therefore, the Decaps oracles in G1 and G2 output different values with prob-
ability at most 1

2n′
. By the union bound we obtain∣∣Pr[GB1 ⇒ 1]− Pr[GB2 ⇒ 1]

∣∣ ≤ qD
2n′

.

Game G3. In game G3, c∗1 is given by c∗1 ← S(pk). Then, we can bound∣∣Pr[GB2 ⇒ 1]− Pr[GB3 ⇒ 1]
∣∣ and

∣∣Pr[GB3 ⇒ 1]− 1/2
∣∣ as in the proof of U�⊥m [13,

Theorem 4.2].

22

Construct an adversary A on input (1λ, pk, c∗1) that does the following:

1. Pick a 2qH -wise (2qH′ -wise) independent function uniformly at random and
use it to simulate the random oracle Hq (H ′q). The random oracle H (H ′) is
simulated by Hq ◦ g (H ′q ◦ g), where g(·) = Enc(pk, ·).

2. Let c∗2 = H ′q(c
∗
1), c∗ = (c∗1, c

∗
2), k∗0 = Hq(c

∗
1), k∗1

$← K and b
$← {0, 1}.

3. Answer the decapsulation queries by using the Decaps oracle as in G2 and
G3.

4. Invoke b′ ← BH,H′,Decaps(pk, c∗, k∗b).
5. Return b′ =?b.

Obviously, A perfectly simulates G2 if c∗1 = Enc(pk,m∗) (m∗
$←M) and G3 if

c∗1←S(pk). Therefore,∣∣Pr[GB2 ⇒ 1]− Pr[GB3 ⇒ 1]
∣∣ ≤ AdvDS-IND

PKE,UM,S(A),

Let Bad be the event that c∗1 ∈ Enc(pk,M) inG3. Then, Pr[Bad] ≤ DisjPKE,S .
We note that if ¬Bad happens, Hq(c

∗
1) is uniformly random in B’s view since

queries to H can only reveal Hq(c) for c ∈ Enc(pk,M). Therefore, Pr[GB3 ⇒ 1 :
¬Bad] = 1/2. We also note that

∣∣Pr[GB3 ⇒ 1]− 1/2
∣∣ ≤ Pr[Bad]+

∣∣Pr[GB3 ⇒ 1 : ¬Bad]− 1/2
∣∣.

Thus, ∣∣Pr[GB3 ⇒ 1]− 1/2
∣∣ ≤ DisjPKE,S .

Combing the above bounds, Theorem 5 is proven. ut

Acknowledgements. We would like to thank anonymous reviews of PKC 2019
for their insightful comments. In particular, we are also grateful to Chris Brzuska
for his kind suggestions which are helpful in improving our paper. This work is
supported by the National Key Research and Development Program of China
(No. 2017YFB0802000), the National Natural Science Foundation of China (No.
U1536205, 61472446, 61701539), and the National Cryptography Development
Fund (mmjj20180107, mmjj20180212).

References

1. Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In Feigenbaum, J., ed.: Advances in Cryptology – CRYP-
TO 1991. Volume 576 of LNCS., Springer (1992) 433–444

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V., eds.: Proceedings of the 1st ACM Conference on Computer and Communica-
tions Security – CCS 1993, ACM (1993) 62–73

3. Dent, A.W.: A designer’s guide to KEMs. In Paterson, K.G., ed.: Cryptography
and Coding: 9th IMA International Conference. Volume 2898 of LNCS., Springer-
Verlag (2003) 133–151

4. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In Kalai, Y., Reyzin, L., eds.: Theory of Cryptography
- 15th International Conference – TCC 2017. Volume 10677 of LNCS., Springer
(2017) 341–371

23

5. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In Wiener, M.J., ed.: Advances in Cryptology – CRYPTO 1999.
Volume 99 of LNCS., Springer (1999) 537–554

6. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. Journal of cryptology 26(1) (2013) 1–22

7. Okamoto, T., Pointcheval, D.: REACT: Rapid enhanced-security asymmetric cryp-
tosystem transform. In Naccache, D., ed.: Topics in Cryptology – CT-RSA 2001.
Volume 2020 of LNCS., Springer (2001) 159–174

8. Jean-Sébastien, C., Handschuh, H., Joye, M., Paillier, P., Pointcheval, D., Tymen,
C.: GEM: A generic chosen-ciphertext secure encryption method. In Preneel, B.,
ed.: Topics in Cryptology – CT-RSA 2002. Volume 2271 of LNCS., Springer (2002)
263–276

9. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In Hirt, M., Smith, A.D., eds.: Theory of Cryptography Con-
ference – TCC 2016-B. Volume 9986 of LNCS., Springer (2016) 192–216

10. NIST: National institute for standards and technology. Post quantum crypto
project (2017) https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions.

11. Boneh, D., Dagdelen, O., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In Lee, D.H., Wang, X., eds.: Advances in
Cryptology – ASIACRYPT 2011. Volume 7073 of LNCS., Springer (2011) 41–69

12. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In Oswald, E., Fischlin, M., eds.: Advances in Cryptology – EUROCRYPT
2015. Volume 9057 of LNCS., Springer (2015) 755–784

13. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. In Nielsen, J.B., Rijmen, V., eds.: Advances
in Cryptology – EUROCRYPT 2018. Volume 10822 of LNCS. (2018) 520–551

14. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsu-
lation mechanism in the quantum random oracle model, revisited. In Shacham,
H., Boldyreva, A., eds.: Advances in Cryptology – CRYPTO 2018. Volume 10993
of LNCS. (2018) 96–125

15. Hamburg, M.: Module-LWE: The three bears. Technical report, http-
s://www.shiftleft.org/papers/threebears/

16. Hülsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: High-speed key encapsula-
tion from NTRU. In Fischer, W., Homma, N., eds.: Cryptographic Hardware and
Embedded Systems – CHES 2017. Volume 10529 of LNCS., Springer-Verlag (2017)
232–252

17. Bernstein, D.J., Persichetti, E.: Towards KEM unification. Cryptology ePrint
Archive, Report 2018/526 (2018) https://eprint.iacr.org/2018/526.

18. Unruh, D.: Revocable quantum timed-release encryption. Journal of the ACM
62(6) (2015) 49:1–49:76

19. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. Cryptology ePrint Archive, Report 2018/904 (2018) https://

eprint.iacr.org/2018/904.
20. Zhandry, M.: How to record quantum queries, and applications to quantum

indifferentiability. Cryptology ePrint Archive, Report 2018/276 (2018) https:

//eprint.iacr.org/2018/276.
21. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a

quantum computing world. In Canetti, R., Garay, J.A., eds.: Advances in Cryp-
tology – CRYPTO 2013. Volume 8043 of LNCS., Springer (2013) 361–379

24

22. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Number 2. Cambridge University Press (2000)

23. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In Safavi-Naini, R., Canetti, R., eds.: Advances in Cryptology – CRYPTO
2012. Volume 7417 of LNCS., Springer (2012) 758–775

24. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems: The hardness of quantum rewinding. In: 55th IEEE Annual Symposium on
Foundations of Computer Science – FOCS 2014, IEEE (2014) 474–483

25. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In Cheng, C., Chung, K., Persiano, G., Yang, B., eds.: Public-Key
Cryptography – PKC 2016. Volume 9614 of LNCS., Springer (2016) 387–416

A Proof of Theorem 2

Proof. Let B be an adversary against the IND-CCA security of KEM-I, issuing
at most qD queries to the decapsulation oracle Decaps, at most qG (qH , qH′)
queries to the random oracle G (H, H ′). Follow the same notations ΩG, ΩH ,
ΩH′ , ΩHq , ΩH′q , ΩG′ and C1 as in the proof of Theorem 1. Consider the games
in Fig. 11 and Fig. 13.

Game G0. Since game G0 is exactly the IND-CCA game,∣∣Pr[GB0 ⇒ 1]− 1/2
∣∣ = AdvIND-CCA

KEM-I (B).

Game G1. In game G1, we replace G by G′ that uniformly samples from “good”

randomness at random, i.e., G′
$← ΩG′ .

Game G2. In this game, replace H and H ′ by Hq ◦ g and H ′q ◦ g respectively,
where

g(·) = Enc(pk, ·;G(·)).

Game G3. In game G3, the Decaps oracle is changed that it makes no use of
the secret key sk any more. When B queries the Decaps oracle on c = (c1, c2)
(c 6= c∗), K := Hq(c1) is returned if H ′q(c1) = c2, otherwise ⊥.

Game G4. In game G4, we switch the G that only samples from “good” ran-
domness back to an ideal random oracle G.

Using the same analysis as in the proof of Theorem 1, we can have∣∣Pr[GB0 ⇒ 1]− Pr[GB4 ⇒ 1]
∣∣ ≤ 4qG

√
δ +

qD
2n′

.

Let G̈ (Ḧ) be the function that G̈(m∗) = ṙ∗ (Ḧ(m∗) = k̇∗0), and G̈ = G
(Ḧ = H) everywhere else, where ṙ∗ and k̇∗0 are picked uniformly at random from
R and K.

25

GAMES G0 −G5

1 : (pk, sk)← Gen;G
$← ΩG

2 : Hq
$← ΩHq ;H ′q

$← ΩH′q

3 : G′
$← ΩG′ ;G := G′ //G1 −G3

4 : g(·) = Enc(pk, ·;G(·))

5 : H
$← ΩH ;H ′

$← ΩH′ //G0 −G1

6 : m∗
$←M

7 : c∗1 := Enc(pk,m∗;G(m∗))

8 : c∗2 := H ′(m∗) //G0 −G1

9 : c∗2 := H ′q(c
∗
1) //G2 −G5

10 : c∗ = (c∗1, c
∗
2)

11 : k∗0 := H(m∗)

12 : k∗1
$← K

13 : b
$← {0, 1}

14 : b′ ← BG,H,H
′,Decaps(pk, c∗, k∗b)//G0 −G4

15 : G̈ := G; G̈(m∗)
$←R //G5

16 : Ḧ := H; Ḧ(m∗)
$← K //G5

17 : g(·) = Enc(pk, ·; G̈(·) //G5

18 : b′ ← BG̈,Ḧ,H
′,Decaps(pk, c∗, k∗b)//G5

19 : return b′ =?b

H(m) //G2 −G5

1 : return Hq(g(m))

H ′(m) //G2 −G5

1 : return H ′q(g(m))

Decaps (c 6= c∗) //G0 −G2

1 : Parse c = (c1, c2)

2 : m′ := Dec(sk, c1)

3 : if g(m′) = c1 ∧H ′(m′) = c2

4 : return K := H(m′)

5 : else return ⊥

Decaps (c 6= c∗) //G3 −G5

1 : Parse c = (c1, c2)

2 : if H ′q(c1) = c2

3 : return K := Hq(c1)

4 : else return ⊥

Fig. 11: Games G0-G5 for the proof of Theorem 2

AG×H(pk, c∗1, H(m∗), H̄q)

1 : H ′q
$← ΩH′q

2 : g(·) = Enc(pk, ·;G(·))
3 : c∗2 = H ′q(c

∗
1)

4 : c∗ = (c∗1, c
∗
2)

5 : k∗0 = H(m∗)

6 : k∗1
$← K

7 : b
$← {0, 1}

8 : b′ ← BG,H,H
′,Decaps(pk, c∗, k∗b)

9 : return b′ =?b

H ′(m)

1 : return H ′q ◦ g(m)

Decaps (c 6= c∗)

1 : Parse c = (c1, c2)

2 : if H ′q(c1) = c2

3 : return K := H̄q(c1)

4 : else return ⊥

Fig. 12: AG×H for the proof of Theorem 2.

26

GAMES G6

1 : i
$← {1, . . . , qG + qH}

2 : (pk, sk)← Gen;G
$← ΩG

3 : Hq
$← ΩHq ;H ′q

$← ΩH′q

4 : H(·) = Hq(Enc(pk, ·;G(·)))

5 : m∗
$←M

6 : r∗
$←R

7 : G̈ := G; G̈(m∗) = r∗

8 : g(·) := Enc(pk, ·; G̈(·))
9 : c∗1 = Enc(pk,m∗;G(m∗))

10 : c∗2 = H ′q(c
∗
1)

11 : c∗ = (c∗1, c
∗
2)

12 : k∗
$← K

13 : Ḧ := H; Ḧ(m∗) = k∗

14 : run BG̈,Ḧ,H
′,Decaps(pk, c∗, H(m∗))

15 : until the i−th query to G̈× Ḧ
16 : measure the argument m̂

17 : return m̂ =?m∗

Decaps (c 6= c∗)

1 : Parse c = (c1, c2)

2 : if H ′q(c1) = c2

3 : return K := Hq(c1)

4 : else return ⊥

GAMES G7

1 : i
$← {1, . . . , qG + qH}

2 : (pk, sk)← Gen;G
$← ΩG

3 : Hq
$← ΩHq ;H ′q

$← ΩHq

4 : H(·) = Hq(Enc(pk, ·;G(·)))

5 : m∗
$←M

6 : r∗
$←R

7 : g(·) := Enc(pk, ·;G(·))
8 : c∗1 = Enc(pk,m∗; r∗)

9 : c∗2 = H ′q(c
∗
1)

10 : c∗ = (c∗1, c
∗
2)

11 : k∗
$← K

12 : run BG,H,H
′,Decaps(pk, c∗, k∗)

13 : until the i−th query to G×H
14 : measure the argument m̂

15 : return m̂ =?m∗

H ′(m)

1 : return H ′q ◦ g(m)

Fig. 13: Game G6 and game G7 for the proof of Theorem 2

Game G5. In game G5, replace G and H by G̈ and Ḧ respectively. In this game,
bit b is independent of B’s view. Hence,

Pr[GB5 ⇒ 1] = 1/2.

Let (G × H)(·) = (G(·), H(·)) and (G̈ × Ḧ)(·) = (G̈(·), Ḧ(·)). Let H̄q be
the function that H̄q(c

∗
1) =⊥ and H̄q = Hq everywhere else. Define AG×H as

in Fig. 12. Sample pk, m∗, G, Hq, H and c∗1 in the same way as G4 and G5,

i.e., (pk, sk) ← Gen, m∗
$← M, G

$← ΩG, Hq
$← ΩHq , H := Hq ◦ g and

c∗1 = Enc(pk,m∗;G(m∗)), where g(·) = Enc(pk, ·;G(·)).
Then, AG×H on input (pk, c∗1, H(m∗), H̄q) perfectly simulates G4. If we re-

place G×H by G̈× Ḧ, AG̈×Ḧ on input (pk, c∗1, H(m∗), H̄q) perfectly simulates
G5.

27

Let BG̈×Ḧ be an oracle algorithm that on input (pk, c∗1, H(m∗), H̄q) does the

following: pick i
$← {1, . . . , qG+qH}, run AG̈×Ḧ(pk, c∗1, H(m∗), H̄q) until the i-th

query, measure the argument of the query in the computational basis, output
the measurement outcome. Define game G6 as in Fig. 13.

Applying Lemma 5 with X = M, Y = (R,K), S = {m∗}, O1 = G̈ × Ḧ,
O2 = G×H and z = (pk, c∗1, H(m∗), H̄q), we can have∣∣Pr[GB4 ⇒ 1]− Pr[GB5 ⇒ 1]

∣∣ ≤ 2(qG + qH)
√

Pr[GB6 ⇒ 1].

Rearrange game G6 into game G7, see Fig. 13. Clearly, Pr[GB6 ⇒ 1] =
Pr[GB7 ⇒ 1]. Then, we construct an adversary A against the OW-CPA secu-
rity of PKE such that AdvOW-CPA

PKE (A) = Pr[GB7 ⇒ 1]. The adversary A on input
(1λ, pk, c∗1) does the following:

1. Run the adversary B in game G7.
2. Pick a 2qG (2qH , 2qH′)-wise independent function uniformly at random and

use it to simulate the random oracle G (Hq, H
′
q). The random oracle H (H ′)

is simulated by Hq ◦ g (H ′q ◦ g). Use G×H to answer B’s queries to both G
and H.

3. Let c∗2 = H ′q(c
∗
1) and c∗ = (c∗1, c

∗
2).

4. Answer the decapsulation queries by using the Decaps oracle as in Fig. 13.

5. Select k∗
$← K and respond to B’s challenge query with (c∗, k∗).

6. Select i
$← {1, . . . , qG + qH}, measure the argument m̂ of the i-th query to

G×H and output m̂.

It is obvious that AdvOW-CPA
PKE (A) = Pr[GB7 ⇒ 1]. Combing this with the

bounds derived above, we can conclude that

AdvIND-CCA
KEM-I (B) ≤ 4qG ·

√
δ +

qD
2n′

+ 2(qH + qG) ·
√
AdvOW-CPA

PKE (A).

ut

28

