
Efficient Attribute-Based Signatures for
Unbounded Arithmetic Branching Programs

Pratish Datta1, Tatsuaki Okamoto1, and Katsuyuki Takashima2

1 NTT Secure Platform Laboratories
3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan

pratish.datta.yg@hco.ntt.co.jp, tatsuaki.okamoto@gmail.com
2 Mitsubishi Electric

5-1-1 Ofuna, Kamakura, Kanagawa, 247-8501 Japan
Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

Abstract. This paper presents the first attribute-based signature (ABS)
scheme in which the correspondence between signers and signatures is
captured in an arithmetic model of computation. Specifically, we design a
fully secure, i.e., adaptively unforgeable and perfectly signer-private ABS
scheme for signing policies realizable by arithmetic branching programs
(ABP), which are a quite expressive model of arithmetic computations.
On a more positive note, the proposed scheme places no bound on the size
and input length of the supported signing policy ABP’s, and at the same
time, supports the use of an input attribute for an arbitrary number of
times inside a signing policy ABP, i.e., the so called unbounded multi-use
of attributes. The size of our public parameters is constant with respect
to the sizes of the signing attribute vectors and signing policies available
in the system. The construction is built in (asymmetric) bilinear groups
of prime order, and its unforgeability is derived in the standard model
under (asymmetric version of) the well-studied decisional linear (DLIN)
assumption coupled with the existence of standard collision resistant
hash functions. Due to the use of the arithmetic model as opposed to
the boolean one, our ABS scheme not only excels significantly over the
existing state-of-the-art constructions in terms of concrete efficiency, but
also achieves improved applicability in various practical scenarios. Our
principal technical contributions are (a) extending and refining the classic
techniques of Okamoto and Takashima [PKC 2011, PKC 2013], which
were originally developed in the context of boolean span programs, to
the arithmetic setting; and (b) innovating new ideas to allow unbounded
multi-use of attributes inside ABP’s, which themselves are of unbounded
size and input length.

Keywords: attribute-based signatures, arithmetic branching programs,
arithmetic span programs, concrete efficiency, unbounded multi-use of
attributes, bilinear groups

1 Introduction
Attribute-based signatures (ABS), introduced in the seminal work of Maji et
al. [19], is an ambitious variant of digital signatures that simultaneously enforce

2 Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima

fine-grained control over authentication rights and conceal the identity of signers.
An ABS scheme is associated with a predicate family ℛ = {𝑅(𝑌, ·) : 𝒳 →
{0, 1} | 𝑌 ∈ 𝒴}, where 𝒳 is a universe of possible signing attributes and 𝒴 is
a collection of admissible signing policies over the attributes of 𝒳 . A central
authority holds a master signing key and publishes system public parameters.
Using its master signing key, the authority can issue restricted signing keys to
individual signers corresponding to the attributes 𝑋 ∈ 𝒳 possessed by them.
Such a constrained signing key associated with some attribute 𝑋 ∈ 𝒳 allows
a signer to sign messages under only those signing policies 𝑌 ∈ 𝒴 which are
satisfied by 𝑋, i.e., for which 𝑅(𝑌,𝑋) = 1. The signatures can be verified by
any one using solely the public parameters.

In an ABS scheme, by verifying a signature on some message with respect
to some claimed signing policy, a verifier gets convinced that the signature is
indeed generated by someone holding some attributes satisfying the policy. In
particular, generating a valid signature on any message under any signing policy
is (computationally) infeasible for any group of colluding signers, none of whom
individually possesses a signing attribute that satisfies the signing policy, by
pooling their attributes together. This is the so called unforgeability property of
an ABS scheme. The second property of an ABS scheme, which ensures that given
a signature, it is impossible to trace the exact signer or signing attributes used
to create it, is known as signer privacy. This notion of ABS is sometimes referred
to as a message-policy ABS. Another flavor of this notion that interchanges the
roles of signing attributes and signing policies is called a key-policy ABS. In
addition to being an exciting cryptographic primitive in its own right, ABS has
found countless important practical applications ranging from attribute-based
messaging and attribute-based authentication to anonymous credential systems,
trust negotiations, and leaking secrets (see [19–21, 31] for more details). In this
paper, we will deal with the message-policy variant since this variant is more
natural and better suited in most of the aforementioned real-life applications of
ABS.

Since their inception, ABS have been intensively studied in a long sequence
of interesting works, and just like any other access-control primitive, a central
theme of research in those works has been to expand the expressiveness of the
allowable class of signing policies in view of implementing this delicate signature
paradigm in scenarios where the relationship between the signing attributes and
policies is more and more sophisticated. Starting with the early works [19, 31,
18, 17, 10], which can handle threshold signing policies, the class of admissible
signing policies has been progressively enlarged to boolean formulas or span
programs by Maji et al. [20], Okamoto and Takashima [23, 22] as well as El
Kaafarani et al. [6,5], and further to general circuits by Tang et al. [33], Sakai et
al. [29], Tsabary [34], as well as El Kaafarani and Katsumata [7], based on various
computational assumptions on bilinear groups and lattices, as well as in different
security models such as random oracle model, generic group model, and standard
model. Very recently, Datta et al. [4] and Sakai et al. [30] have constructed ABS
schemes which can even realize Turing machines as signing policies. On the

Efficient ABS for Unbounded Arithmetic Branching Programs 3

other hand, Bellare and Fuchsbauer [3] have put forward a versatile signature
primitive termed as policy-based signatures (PBS) and have presented a generic
construction of an ABS scheme from a PBS scheme. This generic construction,
when instantiated with their proposed PBS scheme for general NP languages,
results in an ABS scheme which can realize any NP relation as signing policy.

Two other important parameters determining the quality and applicability of
ABS schemes are (a) supporting signing policies of unbounded polynomial size
and input length, and (b) allowing the use of a signing attribute for a unbounded
polynomial number of times inside a signing policy, i.e., the so called unbounded
multi-use of attributes. Here, the term “unbounded" means not fixed by the
public parameters. Out of the existing ABS schemes mentioned above, the only
schemes which achieves both these parameters simultaneously and are somewhat
practicable are the constructions due to Sakai et al. [29,30]. While Okamoto and
Takashima were able to realize unbounded multi-use of attributes in an updated
version of their ABS scheme [23], namely, [24], their scheme cannot handle signing
policies of unbounded size and input length. On the other hand, the ABS scheme
of Datta et al. [4] features both the above properties, but are based on heavy-
duty cryptographic tools such as indistinguishability obfuscation.

From the above review of the available ABS schemes, it is evident that re-
search in the field of ABS has already reached the pinnacle in terms of expressive-
ness and unboundedness of the supported signing policies, as well as in terms
of accommodating unbounded multi-use of attributes. Despite of this massive
progress, one significant limitation that still persist in the current state of the
art in this area is that all the existing ABS constructions consider the relation-
ship between the signing attributes and policies only in some boolean model
of computation, i.e., in those schemes the signing attributes are treated as bit
strings and the policies are defined by sets of boolean operations. This raises the
following natural question:
Can we construct an ABS scheme which captures the relationship between the
signing attributes and policies in some arithmetic model of computation, while at
the same time, supports signing policies having unbounded size and input length,
as well as unbounded multi-use of attributes?
In an arithmetic-model-based ABS scheme, signing attributes are considered to
be elements of some finite field 𝔽𝑞, and signing policies are represented by collec-
tions of field operations, i.e., additions and multiplications over the field 𝔽𝑞. The
above question is not only intriguing from a theoretical perspective as the arith-
metic model is a more structured one compared to its boolean counterpart, it is
also of a high significance from several practical view points. Most importantly,
since arithmetic computations arise in many real-life scenarios, this question has
a natural motivation when the concrete efficiency of most of the applications
of ABS discussed above is considered. For instance, note that it is possible to
capture any arithmetic relationships between the signing attributes and policies
by employing the state-of-the-art ABS schemes of Sakai et al. for general circuits
and Turing machines [29, 30] by representing an arithmetic computation by an
equivalent boolean computation that replaces each field operation by a corre-

4 Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima

sponding boolean sub-computation. Given the bit representation of the signing
attributes, this approach can be used to simulate any arithmetic relation with
an overhead which depends on the boolean complexity of the field operations.
While providing reasonable asymptotic efficiency in theory (e.g., via fast integer
multiplication techniques [8]), the concrete overhead of this approach is enor-
mous. Moreover, scenarios may arise where one does not have access to the bits
of the signing attributes and must treat them as atomic field elements. Note that
in view of similar efficiency and applicability issues with boolean computations,
arithmetic variants of various important cryptographic primitives have already
been considered in the last few years. Examples include arithmetic garbled cir-
cuits [2], arithmetic multi-party computations [15], verifiable arithmetic compu-
tations [28], and so on. An even more fascinating aspect of the above question is
to simultaneously support unbounded signing policies and unbounded multi-use
of attributes in the arithmetic setting. These properties are especially significant
for making the scheme resilient to potential usage situations which may arise
after the scheme is setup. It can be readily inferred from the scarcity of existing
ABS schemes supporting unbounded signing policies and unbounded multi-use of
attributes simultaneously, even in the boolean setting, that achieving both these
properties at the same time is a rather challenging task in any computational
model.

Our Contribution

In this paper, we provide an affirmative answer to the above important question.
For the first time in the literature, we design an ABS scheme where the relation-
ship between the signing attributes and policies are considered in an arithmetic
model of computation. More specifically, we construct an ABS scheme in which
signing attributes are represented as elements of a finite field 𝔽𝑞 and the sign-
ing policies are expressed as arithmetic branching programs (ABP) [12, 11] of
unbounded polynomial size and input length over 𝔽𝑞. While not capable of cap-
turing most general relations like arbitrary circuits or Turing machines, ABP’s
are a quite powerful model for realizing a wide range of relations that arise in
practice, namely, the relations which can be expressed as polynomials over some
finite field. In particular, note that there is a linear-time algorithm that can con-
vert any Boolean formula, Boolean branching program, or arithmetic formula to
an ABP only with a constant blow-up in the representation size. Thus, in terms
of expressiveness of supported signing policies, our ABS scheme subsumes all the
existing ABS schemes except those for general circuits or Turing machines. On a
more positive note, we place no restriction on the number of times an attribute
can be used inside the description of a signing policy ABP.

The proposed scheme enjoys perfect signer privacy and unforgeability against
adversaries which are allowed to make an arbitrary polynomial number of signing
key and signature queries adaptively. Our scheme is built in asymmetric bilinear
groups of prime order, and its unforgeability is derived under the simultaneous
external decisional linear (SXDLIN) assumption [1], which is the asymmetric ver-
sion of and in fact equivalent to the well-studied decisional linear (DLIN) assump-
tion, coupled with the existence of standard collision resistant hash functions.

Efficient ABS for Unbounded Arithmetic Branching Programs 5

Observe that asymmetric bilinear groups of prime order are now considered to
be both faster and more secure in the cryptographic community following the
recent progress of analysing bilinear groups of composite order and symmetric
bilinear groups instantiated with elliptic curves of small characteristics.

While our ABS construction is less expressive compared to the state-of-the-
art schemes of Sakai et al. [29, 30], due to the use of the arithmetic model as
opposed to the boolean one, our scheme outperforms those constructions by
a large margin in terms of concrete efficiency. In fact, as we demonstrate in
Table 1 and explain in Remark 3.1, even for a very simple signing policy such as
an equality test over some finite field 𝔽𝑞, where 𝑞 is a 128-bit prime integer, our
scheme can give more than 136 times better results compared to the one of [29],
which is also built in asymmetric prime-order bilinear group setting under the
symmetric external Diffie-Hellman (SXDH) assumption. Hence, it is evident that
our scheme is a far more advantageous choice in most real-life applications of
ABS, which often do not require the most general forms of signing policies but
do require high performance.

Our ABS construction is developed directly from the scratch. On the techni-
cal side, our contribution is two fold: Firstly, we extend and refine the elegant
ABS construction techniques devised by Okamoto and Takashima [23,22] in the
context of boolean formulas to the arithmetic setting. Secondly and more in-
terestingly, we develop new ideas to support unbounded multi-use of attributes
inside arithmetic signing policies, which themselves can be of an arbitrary size
and input length.

Table 1. Comparison of Concrete Efficiency for 128-Bit Prime 𝑞

Schemes Computational
Assumptions Signature Size Pairings Needed

in Verification

[29] SXDH At least 4102 |𝑔| At least 4102

Ours SXDLIN 26 |𝑔| 30

The values presented in this table is for the signing policy ABP 𝑓 : 𝔽𝑞 → 𝔽𝑞
defined by 𝑓(𝑥1) = 𝑥1 − 𝑎1, where 𝑎1 is a constant belonging to 𝔽𝑞.
In this table, |𝑔| represents the size of a group element.

Overview of Our Techniques

In order to design our ABS scheme for ABP’s, we start with the high level ap-
proach adopted by Okamoto and Takashima [23,22]. At the top level of strategy,
this approach considers an extension of the Naor’s paradigm, which was origi-
nally proposed for converting an identity-based encryption (IBE) scheme to a dig-
ital signature scheme. The idea is to build a message-policy ABS scheme by aug-
menting a ciphertext-policy attribute-based encryption (ABE) scheme [25,35].

Just like a message-policy ABS scheme, a ciphertext-policy ABE scheme has
an associated predicate family ℛ = {𝑅(𝑌, ·) : 𝒳 → {0, 1} | 𝑌 ∈ 𝒴}, where 𝒳 and

6 Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima

𝒴 comprise respectively of the admissible decryption attributes and policies. A
central authority holds a master secret key and publishes public system parame-
ters. Anyone can encrypt a message, which is also referred to as a payload, with
respect to any decryption policy 𝑌 ∈ 𝒴 using solely the public parameters. A
decrypter may obtain a restricted decryption key from the authority correspond-
ing to the attributes 𝑋 ∈ 𝒳 it possesses. Using such a restricted decryption key
for 𝑋 ∈ 𝒳 the decrypter can recover the payload from only those ciphertexts
which are generated with respect to a policy 𝑌 ∈ 𝒴 such that 𝑅(𝑌,𝑋) = 1. In
particular, it is (computationally) infeasible to decrypt a ciphertext generated
with respect to some decryption policy 𝑌 ∈ 𝒴 for any collection of colluding
decrypters, none of whom individually possesses an attribute that satisfies 𝑌 , by
pooling their attributes together. An ABE ciphertext contains the associated de-
cryption policy in the clear, and hence this security property of an ABE scheme
is referred to as payload hiding.

Roughly speaking, in the approach of Okamoto and Takashima [23, 22], a
signing key for some signing attribute 𝑋 ∈ 𝒳 in the ABS scheme corresponds to
a decryption key for 𝑋 in the underlying ABE scheme. On the other hand, a sig-
nature on some message msg under some claimed signing policy 𝑌 ∈ 𝒴 is verified
by generating a verification-text that corresponds to a ciphertext of msg under
𝑌 in the underlying ABE scheme. The most challenging part of this approach
is that no straightforward counterpart of a signature in ABS exists in ABE, and
moreover, the privacy property of signatures, which is a vital requirement of an
ABS scheme has no corresponding notion in ABE. In order to tackle these issues,
Okamoto and Takashima [23, 22] devised a noble technique, which they termed
as “rerandomization with specialized delegation", where a signature in the ABS
scheme generated with respect to some signing policy 𝑌 using a signing key for
some attribute 𝑋 can be interpreted to be a random ABE decryption key spe-
cialized to decrypt only those ABE ciphertexts which have 𝑌 as the associated
decryption policy. As for the security of the resulting ABS scheme, the idea is
to reduce the unforgeability of the ABS scheme to the payload-hiding security
of the underlying ABE scheme. On the other hand, the signer privacy is ensured
by the careful rerandomized delegation procedure employed in the generation of
signatures. While this high level description of the approach may sound quite
simple, the actual realization, however, is quite delicate and involves many sub-
tle aspects. Okamoto and Takashima [23, 22] addressed those technical huddles
in the context of boolean span programs by innovating various nice ideas.

We first explain how we adopt the above high level construction method-
ology to the context of ABP’s, which is a rather non-trivial task. In order
to design our scheme, we utilize the machineries of the dual pairing vector
spaces (DPVS) [27, 25]. A highly powerful feature of DPVS is that one can
completely or partially hide a linear subspace of the whole vector space by
concealing the basis of that subspace or the basis of its dual subspace respec-
tively from the public parameters. In DPVS-based constructions, a collection of
pairs of mutually dual vector spaces {𝕍𝚤,𝕍*

𝚤 }𝚤∈[𝑁] along with a bilinear pairing
𝑒 : 𝕍𝚤 × 𝕍*

𝚤 → 𝔾𝑇 for all 𝚤 ∈ [𝑁], constructed from a standard bilinear group

Efficient ABS for Unbounded Arithmetic Branching Programs 7

params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) of prime order 𝑞 is used. Typically, for all
𝚤 ∈ [𝑁], a pair of dual orthonormal bases (𝔹𝚤,𝔹*

𝚤) of (𝕍𝚤,𝕍*
𝚤) is generated using

a secret random invertible linear transformation 𝑩(𝚤) over 𝔽𝑞 during setup, and
portions of (𝔹𝚤,𝔹*

𝚤), say (̂︀𝔹𝚤, ̂︀𝔹*
𝚤) for 𝚤 ∈ [𝑁] is used as the public parameters.

Thus, the remaining portions of the bases (𝔹𝚤∖̂︀𝔹𝚤,𝔹*
𝚤 ∖̂︀𝔹*

𝚤) for 𝚤 ∈ [𝑁] remain hid-
den from the outside world. This provides a strong framework for various kinds
of information-theoretic tricks in the public-key setting by exploiting various
nice properties of linear transformations.

In order to extend the techniques of Okamoto and Takashima [23, 22] to
the setting of ABP’s, we first look for a representation of ABP’s using some
span program like structure, which supports “linear reconstruction". The linear
reconstruction property is important for our scheme since we need to reconstruct
some secrets in the exponents of group elements. We observe that Ishai and
Wee [13] have devised a polynomial-time algorithm that given an ABP 𝑓 , outputs
an arithmetic span program (ASP) 𝕊 = (𝕌, 𝜌) such that for any �⃗� ∈ 𝔽𝑛

𝑞 , 𝑓(�⃗�) =
0 ⇐⇒ 𝕊 accepts �⃗�. ASP’s are the arithmetic counterpart of boolean span
programs. An ASP 𝕊 is described as a pair 𝕊 = (𝕌, 𝜌), where 𝕌 is a set of pairs
of vectors 𝕌 = {(�⃗�(𝑗), �⃗�(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ

𝑞)
2 for some ℓ,𝑚 ∈ ℕ and 𝜌 is a mapping

𝜌 : [𝑚] → [𝑛]. 𝕊 accepts �⃗� ∈ 𝔽𝑛
𝑞 ⇐⇒ �⃗�(ℓ,ℓ) ∈ span⟨𝑥𝜌(𝑗)�⃗�

(𝑗) + �⃗�(𝑗) | 𝑗 ∈ [𝑚]⟩,

where �⃗�(ℓ,ℓ) = (

ℓ−1⏞ ⏟
0, . . . , 0, 1) and span refers to the standard linear span of vectors.

With this representation at hand, we proceed to extending the ABS scheme of
Okamoto and Takashima [23,22] to the ABP setting.

The most important difficulty we face here is with the application of the
rerandomization with special delegation technique to generate the signatures
due to a fundamental difference in the structures of the boolean and arithmetic
span programs. Recall that a boolean span program over 𝑛 boolean variables is
represented as ℙ = (𝑷 ∈ 𝔽𝑚×ℓ

𝑞 , 𝜌 : [𝑚] → [𝑛]), and ℙ accepts a boolean string
�⃗� ∈ 𝔽𝑛

2 ⇐⇒ �⃗�(ℓ,ℓ) ∈ span⟨𝑝(𝑗) | 𝑗 ∈ [𝑚] ∧ 𝑥𝜌(𝑗) = 1⟩, where 𝑝(𝑗) ∈ 𝔽ℓ
𝑞 is the 𝑗th

row vector of 𝑷 . This means while evaluating a boolean span program on some
input, the input only determines which vectors are to be included in the linear
span and does not affect the description of the included vectors as such. Roughly
speaking, in the ABS construction of [23,22], the randomized special delegation
is applied by masking the actual coefficients (𝛺𝑗)𝑗∈[𝑚] ∈ 𝔽𝑚

𝑞 of the linear span
of the vectors {𝑝(𝑗)}𝑗∈[𝑚] of a signing policy ℙ = (𝑷 ∈ 𝔽𝑚×ℓ

𝑞 , 𝜌) resulting in the
vector �⃗�(ℓ,ℓ) when ℙ accepts some boolean signing attribute string �⃗� ∈ 𝔽𝑛

2 , with
the coefficients (𝛺′

𝑗)𝑗∈[𝑚] ∈ 𝔽𝑚
𝑞 of some random linear combination of the vectors

{𝑝(𝑗)}𝑗∈[𝑚] that results in the zero vector 0⃗ℓ. More precisely, while generating
a signature under ℙ = (𝑷 , 𝜌) using a secret key for �⃗� ∈ 𝔽𝑛

2 , one computes
𝛺𝑗 +𝛺′

𝑗 for all 𝑗 ∈ [𝑚]. This rerandomization works for ensuring signer privacy,
i.e., for erasing the information of the specific signing attribute string �⃗� ∈ 𝔽𝑛

2

from the signature for boolean span programs because seeing the rerandomized
coefficients (𝛺𝑗+𝛺′

𝑗)𝑗∈[𝑚], one cannot decide which 𝛺𝑗 ’s were 0 in the real linear

8 Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima

span, and hence the information of the actual boolean attribute string �⃗� ∈ 𝔽𝑛
2 is

completely erased via this rerandomization.
This rerandomization technique is, however, no longer sufficient in case of

ASP’s. This is because, while evaluating an ASP 𝕊 = (𝕌 = {(�⃗�(𝑗), �⃗�(𝑗))}𝑗∈[𝑚] ⊂
(𝔽ℓ

𝑞)
2, 𝜌 : [𝑚] → [𝑛]) on some input vector �⃗� ∈ 𝔽𝑛

𝑞 , the description of the vec-
tors, whose linear span needs to be considered, namely, the vectors {𝑥𝜌(𝑗)�⃗�

(𝑗) +

�⃗�(𝑗)}𝑗∈[𝑚] itself depends on the specific input vector �⃗� ∈ 𝔽𝑛
𝑞 used. Therefore,

even if the above randomized masking is applied, the result would still leak
information of the specific vector �⃗� used.

In order to overcome this issue, we apply a more clever rerandomization.
Roughly speaking, we randomize not only the linear-combination-coefficients,
but also the input values {𝑥𝜌(𝑗)}𝑗∈[𝑚]. We consider a random linear combina-
tion of the vectors {�⃗�(𝑗), �⃗�(𝑗)}𝑗∈[𝑚] that leads to the zero vector 0⃗ℓ, i.e., we
compute random ((𝛺′

𝑗)𝑗∈[𝑚], (𝛺
′′
𝑗)𝑗∈[𝑚]) such that

∑︀
𝑗∈[𝑚]

(𝛺′
𝑗 �⃗�

(𝑗) + 𝛺′′
𝑗 �⃗�

(𝑗)) = 0⃗ℓ.

Then, we use the scalars (𝛺′
𝑗)𝑗∈[𝑚] to mask (𝛺𝑗𝑥𝜌(𝑗))𝑗∈[𝑚] and (𝛺′′

𝑗)𝑗∈[𝑚] to
mask (𝛺𝑗)𝑗∈[𝑚], where (𝛺𝑗)𝑗∈[𝑚] are the coefficients of the vectors {𝑥𝜌(𝑗)�⃗�

(𝑗) +

�⃗�(𝑗)}𝑗∈[𝑚] in the linear combination resulting in �⃗�(ℓ,ℓ). More precisely, while gen-
erating a signature under some ASP 𝕊 using a signing key for �⃗� ∈ 𝔽𝑛

𝑞 , we compute
𝛺𝑗𝑥𝜌(𝑗) + 𝛺′

𝑗 and 𝛺𝑗 + 𝛺′′
𝑗 for all 𝑗 ∈ [𝑚]. Observe that this rerandomization

not only erases the actual values of the linear combination coefficients (𝛺𝑗)𝑗∈[𝑚]

but also the information of the actual input �⃗� for which the linear combination
is evaluated.

Now, note that unlike the schemes of [23, 22], in which the size and input
length of the supported span programs are bounded by the public parame-
ters, our goal is to support ABP’s, and hence ASP’s by the above discussion,
of unbounded size and input length. For this, we start by extending the tech-
niques called “indexing" and “consistent randomness amplification", developed
by Okamoto and Takashima in [26] in the context of ABE for boolean span
programs, to our setting of ASP’s. Roughly speaking, in the ABS constructions
of [23,22], once parts of a set of pairs of dual orthonormal bases {̂︀𝔹𝚤, ̂︀𝔹*

𝚤 }𝚤∈[𝑛] are
published as the public parameters, the input length of the signing policy span
programs becomes fixed to 𝑛. The proof of adaptive unforgeability of the scheme
follows the so called “dual system encryption" methodology [36], and crucially
makes use of certain information-theoretic arguments. The randomness of the
secret linear transformations {𝑩(𝚤)}𝚤∈[𝑛] used to generate the bases {𝔹𝚤,𝔹*

𝚤 }𝚤∈[𝑛],
whose parts are included in the public parameters, acts as the source of entropy
for those information-theoretic arguments.

In contrast, in the unbounded setting, the input length of the signing policy
span programs are not fixed by the public parameters. In particular, in our un-
bounded ABS scheme, the public parameters would only consist of a constant
number of pairs of dual orthonormal bases. Thus, the randomness of the public
parameters, which is just a constant with respect to the length of the input at-
tribute vectors 𝑛, is clearly insufficient for the dual system encryption arguments
on adaptive security. To supply the additional randomness required for the se-

Efficient ABS for Unbounded Arithmetic Branching Programs 9

curity reduction, we adopt the indexing technique of [26], and for all 𝜄 ∈ [𝑛],
embed two dimensional prefix vectors 𝜎𝜄(1, 𝜄) and 𝜇𝑗(𝜄,−1) within the compo-
nents corresponding to the 𝜄th attribute in signing keys and verification-texts
respectively, where 𝜎𝜄 and 𝜇𝑗 are freshly sampled random elements of 𝔽𝑞. How-
ever, this method of supplying linear in 𝑛 amount of additional randomness is
still not sufficient. This is because, for the application of the dual system encryp-
tion methodology, such randomness introduced by the indexing technique needs
to be expanded to the hidden subspaces of signing keys and verification-texts,
and the distribution of the expanded randomness should also be adjusted to the
conditions imposed on the queries of the adversary in the unforgeability experi-
ment. To resolve the problem, we attempt to employ the consistent randomness
amplification technique similar to [26].

However, recall that our objective is not limited to only supporting sign-
ing policies of unbounded size and input length. We additionally want to al-
low unbounded multi-use of attributes inside the signing policies. As we ex-
plain below, the consistent randomness amplification technique of Okamoto and
Takashima [26] does not suffice for achieving both these goals simultaneously.
Therefore, we need to innovate new technical ideas to accomplish our target.
In terms of technicality, this is the most sophisticated part of this paper. In
fact, the techniques we devise in this segment are pretty much general, and we
strongly believe they will find more applications in various other DPVS-based
construction in the future.

Roughly speaking, the single use restriction in DPVS-based adaptively se-
cure constructions of attribute-based primitives arise from the use of a cru-
cial information-theoretic lemma, the so called “pairwise independence lemma"
(Lemma 3 in [25]), while employing the dual system encryption paradigm in the
security proofs. This technique requires a one-to-one correspondence between a
pair of a key part and a verification-text or ciphertext part through the map 𝜌 of
the policy span program considered. However, in the multi-use scenario, one key
part corresponds to multiple verification-text or ciphertext parts. Even when a
generalized version of the pairwise independence lemma [25] is used, the max-
imum number of times an attribute can be used inside a policy span program
remains bounded by the public parameters. While some attempts were made
to mitigate the issue in the context of ABE [32, 16], those were only partially
successful.

On the other hand, Okamoto and Takashima successfully resolved the multi-
use issue in the context of ABS in an updated version of [23], namely, [24] by
introducing a new technique, which they termed as “one-dimensional localization
of inner product values". The main idea of this technique is to embed a specific
inner product value for an unbounded (with respect to the public parameters)
number of times in a certain one-dimension of the hidden subspace of a signing
key or verification-text, while erasing all informations of the inner product value
from all the remaining dimensions of the hidden subspace. This technique is ap-
plied in two steps. First a “special linear transformation" step is applied over the
hidden segments of a signing key and a verification-text. This step localizes the

10 Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima

inner product values in certain one-dimension of the hidden subspace. But, some
informations of the inner product values still remain in the other dimensions of
the hidden subspace. To completely remove those informations, random values
are “injected" into those dimensions of the hidden subspace. This second step is
executed via a computational transition based on the underlying computational
assumption, and thus is not problematic to directly extend to the unbounded
setting. However, the first step, i.e., the special linear transformation step is infor-
mation theoretic, and crucially relies on the secret randomness used to generate
the public parameters. Since the public parameters only uses a constant amount
of secret randomness in the unbounded setting, such an information-theoretic
transition cannot be applied.

The most intuitive way-out to the above issue is to use the indexing and
consistent randomness amplification techniques of [26] to supply the additional
randomness required for the transition just as it is used to resolve similar issues
in extending the dual system encryption proof technique to the unbounded set-
ting. Unfortunately, the consistent randomness amplification technique of [26] is
only capable of computationally simulating the application of a random linear
transformation to the hidden segment of a key component and the corresponding
segment of a verification-text component. Such a random linear transformation
suffices for the application of the pairwise independence lemma to complete a
security proof based on the dual system encryption paradigm. However, the
one-dimensional localization technique requires the application of certain spe-
cific linear transformations over the hidden segments of a signing key and a
verification-text that crucially depend on the associated signing attribute vector
of the signing key being considered.

To resolve this issue, we devise a more sophisticated technique. Very roughly,
we first computationally simulate the effect of random linear transformations
over the hidden subspaces on the verification-text side. This step corresponds to
the transition between the hybrid experiments Hyb0′ and Hyb1 in the proof of
unforgeability of our ABS construction (proof of Theorem 4.2). Next, we com-
putationally amplify the randomness provided by the two-dimensional prefix
vectors to the hidden subspaces on the signing key side. This is the transi-
tion from Hyb2-(𝜒−1)-9 to Hyb2-𝜒-1 in the unforgeability proof. After this step,
we computationally alter the random linear transformations to specific ones on
the verification-text side. This step is executed while moving from Hyb2-𝜒-1 to
Hyb2-𝜒-2 in the proof of unforgeability. Finally, we computationally adjust the
randomness expanded to the hidden segments on the signing key side to match
the specific linear transformations to be applied on that side. This transformation
is achieved via the transition between Hyb2-𝜒-2 and Hyb2-𝜒-3 in our unforgeability
proof. We stress that the above explanation of our highly involved techniques is
merely a bird’s eye-view. For a comprehensive understanding of our techniques
please refer to our detail security proof presented in Section 4.

2 Preliminaries
In this section we present the backgrounds required for the rest of this paper.

Efficient ABS for Unbounded Arithmetic Branching Programs 11

2.1 Notations
Let 𝜆 ∈ ℕ denotes the security parameter and 1𝜆 be its unary encoding. Let 𝔽𝑞

for any prime 𝑞 ∈ ℕ denotes the finite field of integers modulo 𝑞. For 𝑑 ∈ ℕ and
𝑐 ∈ ℕ ∪ {0} (with 𝑐 < 𝑑), we let [𝑑] = {1, . . . , 𝑑} and [𝑐, 𝑑] = {𝑐, . . . , 𝑑}. For any
set 𝑍, 𝑧 U←− 𝑍 represents the process of uniformly sampling an element 𝑧 from
the set 𝑍, and ♯𝑍 signifies the size or cardinality of the set 𝑍. For a probabilistic
algorithm 𝒫, we denote by 𝛱

R←− 𝒫(𝛩) the process of sampling 𝛱 from the
output distribution of 𝒫 with a uniform random tape on input 𝛩. Similarly, for
any deterministic algorithm 𝒟, we write 𝛱 = 𝒟(𝛩) to denote the output of 𝒟 on
input 𝛩. We use the abbreviation 𝖯𝖯𝖳 to mean probabilistic polynomial-time.
We assume that all the algorithms are given the unary representation 1𝜆 of the
security parameter 𝜆 as input, and will not write 1𝜆 explicitly as input of the
algorithms when it is clear from the context. For any finite field 𝔽𝑞 and 𝑑 ∈ ℕ,
let �⃗� denote the (row) vector (𝑣1, . . . , 𝑣𝑑) ∈ 𝔽𝑑

𝑞 , where 𝑣𝑖 ∈ 𝔽𝑞 for all 𝑖 ∈ [𝑑].
The all zero vector in 𝔽𝑑

𝑞 will be denoted by 0⃗𝑑, while the canonical basis vectors

in 𝔽𝑑
𝑞 will be represented by �⃗�(𝑑,𝑖) = (

𝑖−1⏞ ⏟
0, . . . , 0, 1,

𝑑−𝑖⏞ ⏟
0, . . . , 0) for 𝑖 ∈ [𝑑]. For any

two vectors �⃗�, �⃗� ∈ 𝔽𝑑
𝑞 , �⃗� · �⃗� stands for the inner product of the vectors �⃗� and

�⃗�, i.e., �⃗� · �⃗� =
∑︀
𝑖∈[𝑑]

𝑣𝑖𝑤𝑖 ∈ 𝔽𝑞. For any 𝑠 ∈ ℕ and any collection of 𝑠 vectors

{�⃗�(𝑖)}𝑖∈[𝑠] ⊂ 𝔽𝑑
𝑞 , we denote by span⟨�⃗�(𝑖) | 𝑖 ∈ [𝑠]⟩ the subspace of 𝔽𝑑

𝑞 spanned
by {�⃗�(𝑖)}𝑖∈[𝑠]. For any multiplicative group 𝔾, let 𝒗 represents a 𝑑-dimensional
(row) vector of group elements, i.e., 𝒗 = (𝑔𝑣1 , . . . , 𝑔𝑣𝑑) ∈ 𝔾𝑑 for some 𝑑 ∈ ℕ,
where �⃗� = (𝑣1, . . . , 𝑣𝑑) ∈ 𝔽𝑑

𝑞 . We use 𝑴 =
(︀
𝑚𝑘,𝑖

)︀
to represent a 𝑑× 𝑟 matrix for

some 𝑑, 𝑟 ∈ ℕ with entries 𝑚𝑘,𝑖 ∈ 𝔽𝑞. By 𝑴⊤ we will signify the transpose of
the matrix 𝑴 and by det(𝑴) the determinant of the matrix 𝑴 . Let GL(𝑑,𝔽𝑞)
denote the set of all 𝑑× 𝑑 invertible matrices over 𝔽𝑞. A function 𝗇𝖾𝗀𝗅 : ℕ→ ℝ+

is said to be negligible if for every 𝑐 ∈ ℕ, there exists 𝑇 ∈ ℕ such that for all
𝜆 ∈ ℕ with 𝜆 > 𝑇 , |𝗇𝖾𝗀𝗅(𝜆)| < 1/𝜆𝑐.

2.2 Arithmetic Branching Programs and Arithmetic Span
Programs

Here we formally define the notions of arithmetic branching programs (ABP)
and arithmetic span programs (ASP), and explain the connection between them.
These computational models will be used to represent the signing policies in our
ABS construction.

Definition 2.1 (Arithmetic Branching Programs: ABP [12,11]): A branch-
ing program (BP) 𝛤 is defined by a 5-tuple 𝛤 = (𝑉,𝐸,v0,v1, 𝜑), where (𝑉,𝐸)
is a directed acyclic graph, v0,v1 ∈ 𝑉 are two special vertices called the source
and the sink respectively, and 𝜑 is a labeling function for the edges in 𝐸. An
arithmetic branching program (ABP) 𝛤 over a finite field 𝔽𝑞 computes a func-
tion 𝑓 : 𝔽𝑛

𝑞 → 𝔽𝑞 for some 𝑛 ∈ ℕ. In this case, the labeling function 𝜑 assigns
to each edge in 𝐸 either a degree one polynomial function in one of the input
variables with coefficients in 𝔽𝑞 or a constant in 𝔽𝑞. Let ℘ be the set of all v0-v1

12 Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima

paths in 𝛤 . The output of the function 𝑓 computed by the ABP 𝛤 on some

input �⃗� = (𝑥1, . . . , 𝑥𝑛) ∈ 𝔽𝑛
𝑞 is defined as 𝑓(�⃗�) =

∑︀
𝑃∈℘

[︂ ∏︀
e∈𝑃

𝜑(e)|�⃗�
]︂
, where for

any e ∈ 𝐸, 𝜑(e)|�⃗� represents the evaluation of the function 𝜑(e) at �⃗�. We refer
to ♯𝑉 + ♯𝐸 as the size of the ABP 𝛤 .

Ishai and Kushilevitz [12, 11] showed how to relate the computation performed
by an ABP to the computation of the determinant of a matrix.

Lemma 2.1 ([11]): Given an ABP 𝛤 = (𝑉,𝐸,v0,v1, 𝜑) computing a function
𝑓 : 𝔽𝑛

𝑞 → 𝔽𝑞, we can efficiently and deterministically compute a function 𝑳
mapping an input �⃗� ∈ 𝔽𝑛

𝑞 to a (♯𝑉 −1)× (♯𝑉 −1) matrix 𝑳(�⃗�) over 𝔽𝑞 such that
the following holds:

– det(𝑳(�⃗�)) = 𝑓(�⃗�).
– Each entry of 𝑳(�⃗�) is either a degree one polynomial in a single input variable

𝑥𝑖 (𝑖 ∈ [𝑛]) with coefficients in 𝔽𝑞 or a constant in 𝔽𝑞.
– 𝑳(�⃗�) contains only −1’s in the subdiagonal, i.e., the diagonal just below the

main diagonal, and 0’s below the subdiagonal.

Specifically, 𝑳 is obtained by removing the column corresponding to v0 and the
row corresponding to v1 in the matrix 𝑨𝛤 −𝑰, where 𝑨𝛤 is the adjacency matrix
for 𝛤 and 𝑰 is the identity matrix of the same size as 𝑨𝛤 .

Note that there is a linear-time algorithm that converts any Boolean formula,
Boolean branching program, or arithmetic formula to an ABP with a constant
blow-up in the representation size. Thus, ABP’s can be viewed as a stronger
computational model than all the others mentioned above.

Definition 2.2 (Arithmetic Span Programs: ASP [14,13]): An arithmetic
span program (ASP) 𝕊 = (𝕌, 𝜌) over 𝑛 variables is a collection of pairs of vectors
𝕌 = {(�⃗�(𝑗), �⃗�(𝑗))}𝑗∈[𝑚] for some 𝑚 ∈ ℕ, where for all 𝑗 ∈ [𝑚], (�⃗�(𝑗), �⃗�(𝑗)) ∈ (𝔽ℓ

𝑞)
2

for some ℓ ∈ ℕ, and a function 𝜌 : [𝑚] → [𝑛]. We say that �⃗� ∈ 𝔽𝑛
𝑞 satisfies 𝕊 if

and only if �⃗�(ℓ,ℓ) ∈ span⟨𝑥𝜌(𝑗)�⃗�
(𝑗) + �⃗�(𝑗) | 𝑗 ∈ [𝑚]⟩.

The following lemma shows a connection between the two arithmetic com-
putational models defined above.

Lemma 2.2 ([13]): There exists an efficient algorithm that given an ABP 𝛤 =
(𝑉,𝐸,v0,v1, 𝜑) of size 𝑚 + 1 computing some function 𝑓 : 𝔽𝑛

𝑞 → 𝔽𝑞 for some
𝑛,𝑚 ∈ ℕ, constructs an ASP 𝕊 = (𝕌 = {(�⃗�(𝑗), �⃗�(𝑗))}𝑗∈[𝑚] ⊂ (𝔽(𝑚+1)

𝑞)2, 𝜌 : [𝑚]→
[𝑛]) such that for all �⃗� ∈ 𝔽𝑛

𝑞 , 𝑓(�⃗�) = 0 ⇐⇒ 𝕊 accepts �⃗�.

Proof: The algorithm starts with constructing a modified ABP 𝛤 ′ for 𝑓 from
the input ABP 𝛤 , by first replacing each edge e ∈ 𝐸 with a pair of edges labeled
𝜑(e) and 1, and then adding an edge labeled 1 connecting the sink in 𝛤 to a
newly created sink node. Clearly, the modified ABP 𝛤 ′ has 𝑚+2 vertices, where
every vertex has at most one incoming edge having a label of degree 1. Next, it

Efficient ABS for Unbounded Arithmetic Branching Programs 13

applies the transformation of Lemma 2.1 to 𝛤 ′ to obtain the (𝑚+ 1)× (𝑚+ 1)
matrix representation 𝑳 of 𝛤 ′. By Lemma 2.1, we clearly have det(𝑳(�⃗�)) = 𝑓(�⃗�)
for all �⃗� ∈ 𝔽𝑛

𝑞 , and 𝑳 is of the following form:

𝑳 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

★ ★ ★ . . . ★ ★ 0
−1 ★ ★ . . . ★ ★ 0
0 −1 ★ . . . ★ ★ 0
...

...
...

. . .
...

...
...

0 0 0 . . . −1 ★ 0
0 0 0 . . . 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where the ★’s indicates polynomial functions of degree at most 1 in some input
variable 𝑥𝑖 (𝑖 ∈ [𝑛]). Also, observe that since each vertex in 𝛤 ′ has at most
one incoming edge having a label of degree one, for all 𝑗 ∈ [𝑚], each entry of
the 𝑗th column of the matrix 𝑳 depends on one and the same input variable 𝑥𝑖

(𝑖 ∈ [𝑛]) and hence can be expressed as 𝑥𝑖�⃗�
(𝑗) + �⃗�(𝑗) for some pair of vectors

(�⃗�(𝑗), �⃗�(𝑗)) ∈ (𝔽(𝑚+1)
𝑞)2. Further, it is immediate from the structure of 𝑳 that the

first 𝑚 columns of 𝑳 are linearly independent. Now, observe that 𝑓(�⃗�) = 0 ⇐⇒
det(𝑳(�⃗�)) = 0 ⇐⇒ �⃗�(𝑚+1,𝑚+1), which is the (𝑚+ 1)th column of 𝑳, lies in the
linear span of the first 𝑚 columns of 𝑳, i.e., �⃗�(𝑚+1,𝑚+1) ∈ span⟨𝑥𝑖�⃗�

(𝑗)+ �⃗�(𝑗) | 𝑗 ∈
[𝑚] ∧ the 𝑗th column of 𝑳 depends on 𝑥𝑖 (𝑖 ∈ [𝑛])⟩. The algorithm outputs the
ASP 𝕊 = (𝕌 = {(�⃗�(𝑗), �⃗�(𝑗))}𝑗∈[𝑚] ⊂ (𝔽(𝑚+1)

𝑞)2, 𝜌 : [𝑚]→ [𝑛]), where 𝜌 : [𝑚]→ [𝑛]

is defined by 𝜌(𝑗) = 𝑖 if the 𝑗th column of 𝑳 depends on 𝑥𝑖. This ASP 𝕊 is clearly
the desired one by the above explanation. Hence Lemma 2.2 follows. ⊓⊔

2.3 Bilinear Groups and Dual Pairing Vector Spaces
In this section, we will provide the necessary backgrounds on bilinear groups and
dual pairing vector spaces, which are the primary building blocks of our ABS
construction.

Definition 2.3 (Bilinear Group): A bilinear group params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 ,
𝑔1, 𝑔2, 𝑒) is a tuple of a prime 𝑞 ∈ ℕ; cyclic multiplicative groups 𝔾1,𝔾2,𝔾𝑇

of order 𝑞 each with polynomial-time computable group operations; generators
𝑔1 ∈ 𝔾1, 𝑔2 ∈ 𝔾2; and a polynomial-time computable non-degenerate bilinear
map 𝑒 : 𝔾1 ×𝔾2 → 𝔾𝑇 , i.e., 𝑒 satisfies the following two properties:

– Bilinearity : 𝑒(𝑔𝛶1 , 𝑔𝛶2) = 𝑒(𝑔1, 𝑔2)
𝛶𝛶 for all 𝛶, 𝛶 ∈ 𝔽𝑞.

– Non-degeneracy : 𝑒(𝑔1, 𝑔2) ̸= 1𝔾𝑇
, where 1𝔾𝑇

denotes the identity element of
the group 𝔾𝑇 .

A bilinear group is said to be asymmetric if no efficiently computable isomor-
phism exists between 𝔾1 and 𝔾2. Let 𝒢bpg be an algorithm that on input
the unary encoded security parameter 1𝜆, outputs a description params𝔾 =
(𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) of a bilinear group.

Definition 2.4 (Dual Pairing Vector Spaces: DPVS [27, 25]): A dual
pairing vector space (DPVS) params𝕍 = (𝑞,𝕍,𝕍*,𝔾𝑇 ,𝔸,𝔸*, 𝑒) formed by the di-
rect product of a bilinear group params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) is a tuple of a

14 Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima

prime 𝑞 ∈ ℕ; 𝑑-dimensional vector spaces 𝕍 = 𝔾𝑑
1, 𝕍* = 𝔾𝑑

2 over 𝔽𝑞 for some 𝑑 ∈
ℕ, under vector addition and scalar multiplication defined componentwise in the

usual manner; canonical bases 𝔸 = {𝒂(𝑖) = (

𝑖−1⏞ ⏟
1𝔾1 , . . . , 1𝔾1 , 𝑔1,

𝑑−𝑖⏞ ⏟
1𝔾1 , . . . , 1𝔾1)}𝑖∈[𝑑]

and 𝔸* = {𝒂*(𝑖) = (

𝑖−1⏞ ⏟
1𝔾2

, . . . , 1𝔾2
, 𝑔2,

𝑑−𝑖⏞ ⏟
1𝔾2

, . . . , 1𝔾2
)}𝑖∈[𝑑] of 𝕍 and 𝕍* respectively,

where 1𝔾1
and 1𝔾2

are the identity elements of the groups 𝔾1 and 𝔾2 respec-
tively; and a pairing 𝑒 : 𝕍×𝕍* → 𝔾𝑇 defined by 𝑒(𝒗,𝒘) =

∏︀
𝑖∈[𝑑]

𝑒(𝑔𝑣𝑖1 , 𝑔𝑤𝑖
2) ∈ 𝔾𝑇

for all 𝒗 = (𝑔𝑣11 , . . . , 𝑔𝑣𝑑1) ∈ 𝕍, 𝒘 = (𝑔𝑤1
2 , . . . , 𝑔𝑤𝑑

2) ∈ 𝕍*. Observe that the newly
defined map 𝑒 is also non-degenerate bilinear, i.e., 𝑒 also satisfies the following
two properties:

– Bilinearity : 𝑒(𝛶𝒗, ̂︀𝛶𝒘) = 𝑒(𝒗,𝒘)𝛶𝛶 for all 𝛶, ̂︀𝛶 ∈ 𝔽𝑞, 𝒗 ∈ 𝕍, and 𝒘 ∈ 𝕍*.

– Non-degeneracy : If 𝑒(𝒗,𝒘) = 1𝔾𝑇
for all 𝒘 ∈ 𝕍*, then 𝒗 = (

𝑑⏞ ⏟
1𝔾1 , . . . , 1𝔾1).

Similar statement also holds with the vectors 𝒗 and 𝒘 interchanged.

For any ordered basis 𝕎 = {𝒘(1), . . . ,𝒘(𝑑)} of 𝕍 (or 𝕍*), and any vector �⃗� ∈ 𝔽𝑑
𝑞 ,

let (�⃗�)𝕎 represent the vector in 𝕍 (or 𝕍* accordingly) formed by the linear
combination of the members of 𝕎 with the components of �⃗� as the coeffi-
cients, i.e., (�⃗�)𝕎 =

∑︀
𝑖∈[𝑑]

𝑣𝑖𝒘
(𝑖) ∈ 𝕍 (or 𝕍* accordingly). Also, for any 𝑠 ∈ ℕ

and any collection of 𝑠 vectors {𝒗(𝑖)}𝑖∈[𝑠] of 𝕍 (or 𝕍*), we will denote by
span⟨𝒗(𝑖) | 𝑖 ∈ [𝑠]⟩ the subspace of 𝕍 (or 𝕍* accordingly) spanned by the set
of vectors {𝒗(𝑖)}𝑖∈[𝑠]. The DPVS generation algorithm 𝒢dpvs takes in the unary
encoded security parameter 1𝜆, a dimension value 𝑑 ∈ ℕ, along with a bilinear
group params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)

R←− 𝒢bpg(), and outputs a description
params𝕍 = (𝑞,𝕍,𝕍*, 𝔾𝑇 ,𝔸,𝔸*, 𝑒) of DPVS with 𝑑-dimensional 𝕍 and 𝕍*.

We now describe random dual orthonormal basis generator 𝒢ob [27,25] in Fig. 2.1.
This algorithm will be utilized as a sub-routine in our ABS construction.

2.4 Collision-Resistant Hash Functions
Here we will formally describe the notion of collision-resistant hash functions
which will be used as an ingredient of our ABS construction.

� Syntax: A hash function family ℍ associated with a bilinear group genera-
tor 𝒢bpg and a polynomial 𝗉𝗈𝗅𝗒(·) consists of the following two polynomial-time
algorithms:

𝖪𝖦𝖾𝗇(): The hashing key generation algorithm is a probabilistic algorithm that
takes as input the unary encoded security parameter 1𝜆, and samples a hash-
ing key 𝗁𝗄 from the key space ℍ𝕂𝜆, which is a probability space over bit
strings parameterized by 𝜆.

𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 : 𝔻 = {0, 1}𝗉𝗈𝗅𝗒(𝜆) → 𝔽𝑞∖{0}: A deterministic function that maps an
element of 𝔻 = {0, 1}𝗉𝗈𝗅𝗒(𝜆) to an element of 𝔽𝑞∖{0} with 𝑞 being the first
element of the output params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) of 𝒢bpg on input
1𝜆.

Efficient ABS for Unbounded Arithmetic Branching Programs 15

𝒢ob(𝑁, (𝑑0, . . . , 𝑑𝑁)): This algorithm takes as input the unary encoded security pa-
rameter 1𝜆, a number 𝑁 ∈ ℕ, and the respective dimensions 𝑑0, . . . , 𝑑𝑁 ∈ ℕ of the
𝑁 + 1 pairs of bases to be generated. It executes the following operations:

1. It first generates params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)
R←− 𝒢bpg().

2. Next, it samples 𝜓 U←− 𝔽𝑞∖{0} and computes 𝑔𝑇 = 𝑒(𝑔1, 𝑔2)
𝜓.

3. Then, for 𝚤 ∈ [0, 𝑁], it performs the following:
(a) It constructs params𝕍𝚤

= (𝑞,𝕍𝚤,𝕍*
𝚤 ,𝔾𝑇 ,𝔸𝚤,𝔸*

𝚤 , 𝑒)
R←− 𝒢dpvs(𝑑𝚤, params𝔾).

(b) It samples 𝑩(𝚤) =
(︁
𝑏
(𝚤)
𝑘,𝑖

)︁
U←− GL(𝑑𝚤,𝔽𝑞).

(c) It computes 𝑩*(𝚤) =
(︁
𝑏
*(𝚤)
𝑘,𝑖

)︁
= 𝜓((𝑩(𝚤))−1)⊤.

(d) For all 𝑘 ∈ [𝑑𝚤], let �⃗�(𝚤,𝑘) and �⃗�*(𝚤,𝑘) represent the 𝑘th rows of 𝑩(𝚤) and 𝑩*(𝚤)

respectively. It computes 𝒃(𝚤,𝑘) = (⃗𝑏(𝚤,𝑘))𝔸𝚤 , 𝒃
(𝚤,𝑘) = (⃗𝑏(𝚤,𝑘))𝔸*

𝚤
for 𝑘 ∈ [𝑑𝚤],

and sets
𝔹𝚤 = {𝒃(𝚤,1), . . . , 𝒃(𝚤,𝑑𝚤)},𝔹*

𝚤 = {𝒃*(𝚤,1), . . . , 𝒃*(𝚤,𝑑𝚤)}.
Clearly 𝔹𝚤 and 𝔹*

𝚤 form bases of the vector spaces 𝕍𝚤 and 𝕍*
𝚤 respectively. Also,

note that 𝔹𝚤 and 𝔹*
𝚤 are dual orthonormal in the sense that for all 𝑘, 𝑘′ ∈ [𝑑𝚤],

𝑒(𝒃(𝚤,𝑘), 𝒃*(𝚤,𝑘
′)) =

{︂
𝑔𝑇 if 𝑘 = 𝑘′,
1𝔾𝑇 otherwise.

4. Next, it sets params = ({params𝕍𝚤
}𝚤∈[0,𝑁], 𝑔𝑇).

5. It returns (params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,𝑁]).

Fig. 2.1: Dual Orthonormal Basis Generator 𝒢ob

� Collision Resistance: A hash function family ℍ associated with 𝒢bpg and
𝗉𝗈𝗅𝗒 (·) is said to be collision resistant if for any 𝖯𝖯𝖳 adversary ℳ, for any
security parameter 𝜆 and any 𝗁𝗄

R←− 𝖪𝖦𝖾𝗇(), the advantage of ℳ in finding a
collision, defined as

𝖠𝖽𝗏𝖧,CR
ℳ (𝜆) = 𝖯𝗋[𝛶1, 𝛶2 ∈ 𝔻 = {0, 1}𝗉𝗈𝗅𝗒(𝜆) ∧ 𝛶1 ̸= 𝛶2∧

𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (𝛶1) = 𝖧

(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (𝛶2) | (𝛶1, 𝛶2)

R←−ℳ(𝗁𝗄,𝔻)]
is negligible, i.e., 𝖠𝖽𝗏𝖧,CR

ℳ (𝜆) ≤ 𝗇𝖾𝗀𝗅(𝜆), where 𝗇𝖾𝗀𝗅 is some negligible function.

2.5 The Notion of Attribute-Based Signatures for Arith-
metic Branching Programs

Let for some prime 𝑞 ∈ ℕ, ℱ (𝑞)
abp denote the class of all functions 𝑓 : 𝔽𝑛

𝑞 → 𝔽𝑞 for
any 𝑛 = 𝗉(𝜆) ∈ ℕ, where 𝗉 is an arbitrary polynomial, realizable by some ABP
of polynomial size over 𝔽𝑞. In this section, we will formally define the notion
of an attribute-based signature (ABS) scheme for the predicate family ℛ(𝑞)

z-abp

defined as ℛ(𝑞)
z-abp = {𝑅(𝑞)

z-abp(𝑓, ·) : 𝔽𝑛
𝑞 → {0, 1} | 𝑓 : 𝔽𝑛

𝑞 → 𝔽𝑞 ∈ ℱ (𝑞)
abp}, where

𝑅
(𝑞)
z-abp(𝑓, �⃗�) = 1 if 𝑓(�⃗�) = 0, and 𝑅

(𝑞)
z-abp(𝑓, �⃗�) = 0 otherwise for all 𝑓 : 𝔽𝑛

𝑞 →
𝔽𝑞 ∈ ℱ (𝑞)

abp and �⃗� ∈ 𝔽𝑛
𝑞 . As stated in Lemma 2.2, there exists a polynomial-time

16 Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima

algorithm that on input any 𝑓 : 𝔽𝑛
𝑞 → 𝔽𝑞 ∈ ℱ (𝑞)

abp, constructs an ASP 𝕊 = (𝕌, 𝜌)
such that for any �⃗� ∈ 𝔽𝑛

𝑞 , it holds that 𝑅
(𝑞)
z-abp(𝑓, �⃗�) = 1 ⇐⇒ 𝑓(�⃗�) = 0 ⇐⇒

𝕊 accepts �⃗�. Therefore, for the rest of this paper, we will identify predicates
𝑅

(𝑞)
z-abp(𝑓, ·) ∈ ℛ(𝑞)

z-abp by their corresponding ASP-representations 𝕊 = (𝕌, 𝜌)
computed using the algorithm of Lemma 2.2.

� Syntax: An attribute-based signature (ABS) scheme for some predicate fam-
ily ℛ(𝑞)

z-abp consists of an associated message space 𝕄 ⊆ {0, 1}*, a signature space
𝛴, along with the following 𝖯𝖯𝖳 algorithms:

ABS.Setup(): The setup algorithm takes as input the unary encoded security
parameter 1𝜆. It outputs the public parameters mpk and the master signing
key msk.

ABS.KeyGen(mpk,msk, �⃗�): The signing key generation algorithm takes as input
the public parameters mpk, the master signing key msk, along with a signing
attribute vector �⃗� ∈ 𝔽𝑛

𝑞 for some 𝑛 = 𝗉(𝜆) ∈ ℕ. It outputs a signing key
sk(�⃗�).

ABS.Sign(mpk, �⃗�, sk(�⃗�),𝕊,msg): The signing algorithm takes as input the pub-
lic parameters mpk, a signing attribute string �⃗� ∈ 𝔽𝑛

𝑞 for some 𝑛 = 𝗉(𝜆) ∈ ℕ,
a signing key sk(�⃗�) for �⃗�, a signing policy 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp

represented as an ASP 𝕊 = (𝕌, 𝜌), and a message msg ∈𝕄. It outputs either
a signature sig ∈ 𝛴 or the distinguished symbol ⊥ indicating failure.

ABS.Verify(mpk,𝕊, (msg, sig)): The verification algorithm takes as input the
public parameters mpk, a signing policy 𝑅

(𝑞)
z-abp(𝑓, ·) ∈ ℛ(𝑞)

z-abp represented as
an ASP 𝕊 = (𝕌, 𝜌), and a message-signature pair (msg, sig) ∈ 𝕄 × 𝛴. It
outputs either 1 or 0.

� Correctness: An ABS scheme for some predicate family ℛ(𝑞)
z-abp is said to

be correct if for any security parameter 𝜆, any 𝑛 = 𝗉(𝜆) ∈ ℕ, any signing policy
predicate 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp represented as an ASP 𝕊 = (𝕌, 𝜌),

any signing attribute vector �⃗� ∈ 𝔽𝑛
𝑞 , any (mpk,msk) R←− ABS.Setup(), and any

sk(�⃗�) R←− ABS.KeyGen(mpk, msk, �⃗�), if 𝕊 accepts �⃗�, then
𝖯𝗋[1

R←− ABS.Verify(mpk,𝕊, (msg, sig)) | sig R←− ABS.Sign(mpk, �⃗�, sk(�⃗�),𝕊,msg)]

≥ 1− 𝗇𝖾𝗀𝗅(𝜆) ,
where 𝗇𝖾𝗀𝗅 is some negligible function, and the probability is taken over the
random coins of ABS.Sign and ABS.Verify.

� Signer Privacy: An ABS scheme for some predicate familyℛ(𝑞)
z-abp is said to

achieve perfect signer privacy if for any security parameter 𝜆, any 𝑛 = 𝗉(𝜆) ∈ ℕ,
any message msg ∈ 𝕄, any (mpk,msk) R←− ABS.Setup(), any signing policy
𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp having ASP representation 𝕊 = (𝕌, 𝜌), any

two signing attribute vectors �⃗�, �⃗�′ ∈ 𝔽𝑛
𝑞 such that 𝕊 accepts both �⃗� and �⃗�′, any

signing keys sk(�⃗�) R←− ABS.KeyGen(mpk,msk, �⃗�), sk(�⃗�′)
R←− ABS.KeyGen(mpk,

msk, �⃗�′), the distributions of the signatures outputted by ABS.Sign(mpk, �⃗�, sk(�⃗�),
𝕊,msg) and ABS.Sign(mpk, �⃗�′, sk(�⃗�′),𝕊,msg) are equivalent.

Efficient ABS for Unbounded Arithmetic Branching Programs 17

� Existential unforgeability: Existential unforgeability of an ABS scheme
for some predicate class ℛ(𝑞)

z-abp against adaptive-predicate-adaptive-message at-
tack is defined through the following experiment between a stateful probabilistic
adversary 𝒜 and a stateful probabilistic challenger ℬ:

∙ ℬ generates (mpk,msk) R←− ABS.Setup() and sends mpk to 𝒜.
∙ 𝒜 may adaptively make any polynomial number of queries of the following

types to ℬ:
– Signing Key Generation Query : When 𝒜 requests the generation of a sign-

ing key for some signing attribute vector �⃗� ∈ 𝔽𝑛
𝑞 for some 𝑛 = 𝗉(𝜆) ∈ ℕ,

ℬ generates a signing key sk(�⃗�) R←− ABS.KeyGen(mpk,msk, �⃗�) and stores
the signing key sk(�⃗�).

– Signature Generation Query : When 𝒜 specifies a signing key for some
signing attribute vector �⃗� ∈ 𝔽𝑛

𝑞 for some 𝑛 = 𝗉(𝜆) ∈ ℕ that it has
already requested ℬ to generate, and requests the generation of a sig-
nature using that signing key on some message msg ∈ 𝕄 under some
signing policy 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp represented as an

ASP 𝕊 = (𝕌, 𝜌) such that 𝕊 accepts �⃗�, ℬ creates a signature sig R←−
ABS.Sign(mpk, �⃗�, sk(�⃗�),𝕊,msg) and stores it.

– Signing key/Signature Reveal Query : When 𝒜 requests ℬ to reveal an
already created signing key corresponding to some signing attribute vector
�⃗� ∈ 𝔽𝑛

𝑞 for some 𝑛 = 𝗉(𝜆) ∈ ℕ or an already created signature on some
message msg ∈ 𝕄 under some signing policy 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈
ℛ(𝑞)

z-abp for some 𝑛 = 𝗉(𝜆) ∈ ℕ represented by an ASP 𝕊 = (𝕌, 𝜌), ℬ
provides 𝒜 with the respective queried item.

We would like to emphasize that when a signing key or signature generation
query is made,𝒜 does not receives the signing key or signature that ℬ creates.
𝒜 receives it only when it makes a reveal query for that signing key or
signature.

∙ At the end of interaction 𝒜 outputs a triplet (𝕊,msg, sig), where 𝕊 is the
ASP-representation of a signing policy 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp

for some 𝑛 = 𝗉(𝜆) ∈ ℕ, msg ∈ 𝕄, and sig ∈ 𝛴. 𝒜 wins if the following
conditions hold simultaneously:

(a) 1 = ABS.Verify(mpk,𝕊, (msg, sig)).
(b) 𝒜 has not made a signature reveal query on msg under 𝕊.
(c) 𝕊 does not accept any signing attribute string �⃗� ∈ 𝔽𝑛

𝑞 for which 𝒜 has
requested to reveal a signing key.

An ABS scheme for some predicate family ℛ(𝑞)
z-abp is said to be existentially

unforgeable against adaptive-predicate-adaptive-message attack if for any 𝖯𝖯𝖳
adversary 𝒜, for any security parameter 𝜆, the advantage of 𝒜 in the above
experiment, defined as

𝖠𝖽𝗏ABS,UF
𝒜 (𝜆) = 𝖯𝗋 [𝒜 wins in the unforgeability experiment]

is negligible in 𝜆, i.e., 𝖠𝖽𝗏ABS,UF
𝒜 (𝜆) ≤ 𝗇𝖾𝗀𝗅(𝜆), where 𝗇𝖾𝗀𝗅 is some negligible

function.

18 Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima

3 The Proposed ABS Scheme
In this section, we will present our ABS scheme for a predicate family ℛ(𝑞)

z-abp
parameterized by some prime 𝑞 ∈ ℕ as defined in Section 2.5. Let 𝕄 ⊂ {0, 1}*
be the message space associated with our ABS scheme. We emphasize that in
our construction the functions 𝜌 included within the description of ASP’s are not
necessarily injective, and thus our ABS scheme supports unbounded multi-use of
attributes within the signing policies. In our scheme description and in the proof
of security 𝑛 = 𝗉(𝜆) ∈ ℕ for an arbitrary polynomial 𝗉.

ABS.Setup(): The setup algorithm takes as input the unary encoded security
parameter 1𝜆. It proceeds as follows:

1. It first generates (params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,2])

R←− 𝒢ob(2, (4, 14, 8)).
2. Then, it sets the following:̂︀𝔹0 = {𝒃(0,1), 𝒃(0,4)},̂︀𝔹*

0 = {𝒃*(0,3)},̂︀𝔹1 = {𝒃(1,1), . . . , 𝒃(1,4), 𝒃(1,13), 𝒃(1,14)},̂︀𝔹*
1 = {𝒃*(1,1), . . . , 𝒃*(1,4), 𝒃*(1,11), 𝒃*(1,12)},̂︀𝔹2 = {𝒃(2,1), 𝒃(2,2), 𝒃(2,7), 𝒃(2,8)},̂︀𝔹*
2 = {𝒃*(2,1), 𝒃*(2,2), 𝒃*(2,5), 𝒃*(2,6)}.

3. Next, it samples a hashing key 𝗁𝗄
R←− 𝖪𝖦𝖾𝗇() for a hash function family

ℍ associated with the bilinear group generator 𝒢bpg used as a subroutine
of 𝒢ob and a polynomial 𝗉𝗈𝗅𝗒(·), where 𝗉𝗈𝗅𝗒(𝜆) represents the length of
the bit string formed by concatenating a message belonging to 𝕄 and the
binary representation of an ASP representing a signing policy predicate in
ℛ(𝑞)

z-abp.
4. It outputs the public parameters mpk = (𝗁𝗄, params, {̂︀𝔹𝚤, ̂︀𝔹*

𝚤 }𝚤∈[0,2]) and
the master signing key msk = 𝒃*(0,1).

ABS.KeyGen(mpk,msk, �⃗�): The signing key generation algorithm takes as in-
put the public parameters mpk, the master signing key msk, and a signing
attribute vector �⃗� ∈ 𝔽𝑛

𝑞 . It executes the following steps:

1. First, it samples 𝜔
U←− 𝔽𝑞∖{0}, 𝜙0

U←− 𝔽𝑞, and computes
𝒌*(0) = (𝜔, 0, 𝜙0, 0)𝔹*

0
.

2. Next, for 𝜄 ∈ [𝑛], it samples 𝜎𝜄
U←− 𝔽𝑞, �⃗�(𝜄) U←− 𝔽2

𝑞, and computes
𝒌*(𝜄) = (𝜎𝜄(1, 𝜄), 𝜔(1, 𝑥𝜄), 0⃗

6, �⃗�(𝜄), 0⃗2)𝔹*
1
.

3. Then, it samples �⃗�(𝑛+1,1), �⃗�(𝑛+1,2) U←− 𝔽2
𝑞, and computes

𝒌*(𝑛+1,1) = (𝜔(1, 0), 0⃗2, �⃗�(𝑛+1,1), 0⃗2)𝔹*
2
,

𝒌*(𝑛+1,2) = (𝜔(0, 1), 0⃗2, �⃗�(𝑛+1,2), 0⃗2)𝔹*
2
.

4. It outputs the signing key sk(�⃗�) = (𝒌*(0), . . . ,𝒌*(𝑛),𝒌*(𝑛+1,1),𝒌*(𝑛+1,2)).

Efficient ABS for Unbounded Arithmetic Branching Programs 19

ABS.Sign(mpk, �⃗�, sk(�⃗�),𝕊,msg): The signing algorithm takes in the public pa-
rameters mpk, a signing attribute string �⃗� ∈ 𝔽𝑛

𝑞 , a signing key sk(�⃗�) = (𝒌*(0),

. . . ,𝒌*(𝑛),𝒌*(𝑛+1,1),𝒌*(𝑛+1,2)) for �⃗�, a signing policy predicate 𝑅
(𝑞)
z-abp(𝑓, ·) :

𝔽𝑛
𝑞 → {0, 1} ∈ ℛ(𝑞)

z-abp with ASP representation 𝕊 = (𝕌 = {(�⃗�(𝑗), �⃗�(𝑗))}𝑗∈[𝑚] ⊂
(𝔽ℓ

𝑞)
2, 𝜌 : [𝑚]→ [𝑛]), along with a message msg ∈𝕄. If 𝕊 does not accept �⃗�,

it outputs ⊥. Otherwise, i.e., if 𝕊 accepts �⃗�, it operates as follows:
1. It first computes (𝛺𝑗)𝑗∈[𝑚] ∈ 𝔽𝑚

𝑞 such that �⃗�(ℓ,ℓ) =
∑︀

𝑗∈[𝑚]

𝛺𝑗(𝑥𝜌(𝑗)�⃗�
(𝑗) +

�⃗�(𝑗)).
2. Next, it samples 𝜉

U←− 𝔽𝑞∖{0}, and ((𝛺′
𝑗)𝑗∈[𝑚], (𝛺

′′
𝑗)𝑗∈[𝑚])

U←− (𝔽𝑚
𝑞)2 such

that
∑︀

𝑗∈[𝑚]

(𝛺′
𝑗 �⃗�

(𝑗) +𝛺′′
𝑗 �⃗�

(𝑗)) = 0⃗ℓ.

3. After that, it samples 𝒓*(0)
U←− span⟨𝒃*(0,3)⟩ and computes

𝒔*(0) = 𝜉𝒌*(0) + 𝒓*(0).

4. Then, for 𝑗 ∈ [𝑚], it samples 𝜎′
𝑗

U←− 𝔽𝑞, 𝒓*(𝑗)
U←− span⟨𝒃*(1,11), 𝒃*(1,12)⟩,

and computes
𝒔*(𝑗) = 𝜉𝛺𝑗𝒌

*(𝜌(𝑗))+𝜎′
𝑗(𝒃

(1,1)+𝜌(𝑗)𝒃(1,2))+𝛺′′
𝑗 𝒃

*(1,3)+𝛺′
𝑗𝒃

(1,4)+𝒓(𝑗).

5. Next, it samples 𝒓*(𝑚+1) U←− span⟨𝒃*(2,5), 𝒃*(2,6)⟩ and computes
𝒔*(𝑚+1) = 𝜉(𝒌*(𝑛+1,1) + 𝖧

(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊)𝒌*(𝑛+1,2)) + 𝒓*(𝑚+1).

6. It outputs the signature sig = (𝒔*(0), . . . , 𝒔*(𝑚+1)).

ABS.Verify(mpk,𝕊, (msg, sig)): The verification algorithm takes as input the
public parameters mpk, a signing policy predicate 𝑅(𝑞)

z-abp(𝑓, ·) : 𝔽𝑛
𝑞 → {0, 1} ∈

ℛ(𝑞)
z-abp having ASP-representation 𝕊 = (𝕌 = {(�⃗�(𝑗), �⃗�(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ

𝑞)
2, 𝜌 :

[𝑚] → [𝑛]), a message-signature pair (msg ∈ 𝕄, sig = (𝒔*(0), . . . , 𝒔*(𝑚+1))).
It proceeds as follows:
1. It generates a verification-text (𝒄(0), . . . , 𝒄(𝑚+1)) as follows:

(a) It first samples �⃗� = (𝑢1, . . . , 𝑢ℓ)
U←− 𝔽ℓ

𝑞, and computes 𝑠𝑗 = �⃗� · �⃗�(𝑗),
𝑠′𝑗 = �⃗� · �⃗�(𝑗) for 𝑗 ∈ [𝑚].

(b) Next, it samples 𝑢, 𝜂0
U←− 𝔽𝑞, and computes

𝒄(0) = (−𝑢− 𝑢ℓ, 0, 0, 𝜂0)𝔹0
.

(c) Then, for 𝑗 ∈ [𝑚], if 𝒔*(𝑗) /∈ 𝕍*
1, then it outputs 0. Otherwise, it

samples 𝜇𝑗
U←− 𝔽𝑞, �⃗�(𝑗)

U←− 𝔽2
𝑞, and computes

𝒄(𝑗) = (𝜇𝑗(𝜌(𝑗),−1), (𝑠′𝑗 , 𝑠𝑗), 0⃗6, 0⃗2, �⃗�(𝑗))𝔹1
.

(d) Then, it samples 𝜅
U←− 𝔽𝑞, �⃗�(𝑚+1) U←− 𝔽2

𝑞, and computes
𝒄(𝑚+1) = ((𝑢− 𝜅𝖧

(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊), 𝜅), 0⃗2, 0⃗2, �⃗�(𝑚+1))𝔹2

.
2. It outputs 0 if 𝑒(𝒃(0,1), 𝒔*(0)) = 1𝔾𝑇

.
3. It outputs 1 if

∏︀
𝑗∈[0,𝑚+1]

𝑒(𝒄(𝑗), 𝒔*(𝑗)) = 1𝔾𝑇
. It outputs 0 otherwise. Here,

1𝔾𝑇
is the identity element of the group 𝔾𝑇 .

� Correctness: The correctness of the proposed ABS construction can be
verified as follows: For any signature sig = (𝒔*(0), . . . , 𝒔*(𝑚+1)) on a message

20 Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima

msg ∈ 𝕄 under a signing policy predicate 𝑅
(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp

having ASP representation 𝕊 = (𝕌 = {(�⃗�(𝑗), �⃗�(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛])

generated using a signing key sk(�⃗�) = (𝒌*(0), . . . ,𝒌*(𝑛),𝒌*(𝑛+1,1),𝒌*(𝑛+1,2)) for
a signing attribute vector �⃗� ∈ 𝔽𝑛

𝑞 such that 𝕊 accepts �⃗�, and any verification-text
(𝒄(0), . . . , 𝒄(𝑚+1)) generated while executing ABS.Verify, we have∏︁
𝑗∈[0,𝑚+1]

𝑒(𝒄(𝑗), 𝒔*(𝑗))

= 𝑒(𝒄(0),𝒌*(0))𝜉
∏︁

𝑗∈[𝑚]

𝑒(𝒄(𝑗),𝒌*(𝜌(𝑗)))𝜉𝛺𝑗

∏︁
𝑗∈[𝑚]

[𝑒(𝒄(𝑗), 𝒃*(1,3))𝛺
′′
𝑗 𝑒(𝒄(𝑗), 𝒃*(1,4))𝛺

′
𝑗]·

[𝑒(𝒄(𝑚+1),𝒌*(𝑛+1,1))𝑒(𝒄(𝑚+1),𝒌*(𝑛+1,2))𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊)]𝜉

= 𝑔
𝜉𝜔(−𝑢−𝑢ℓ)
𝑇

∏︁
𝑗∈[𝑚]

𝑔
𝜉𝜔𝛺𝑗(𝑥𝜌(𝑗)𝑠𝑗+𝑠′𝑗)
𝑇

∏︁
𝑗∈[𝑚]

𝑔
(𝛺′

𝑗𝑠𝑗+𝛺′′
𝑗 𝑠′𝑗)

𝑇 𝑔𝜉𝜔𝑢
𝑇

= 𝑔
𝜉𝜔(−𝑢−𝑢ℓ)
𝑇 𝑔

𝜉𝜔(�⃗�·∑︀𝑗∈[𝑚] 𝛺𝑗(𝑥𝜌(𝑗)�⃗�
(𝑗)+�⃗�(𝑗)))

𝑇 𝑔
�⃗�·∑︀𝑗∈[𝑚](𝛺

′
𝑗 �⃗�

(𝑗)+𝛺′′
𝑗 �⃗�(𝑗))

𝑇 𝑔𝜉𝜔𝑢
𝑇

= 𝑔
𝜉𝜔(−𝑢−𝑢ℓ)
𝑇 𝑔

𝜉𝜔(�⃗�·�⃗�(ℓ,ℓ))
𝑇 𝑔�⃗�·⃗0

ℓ

𝑇 𝑔𝜉𝜔𝑢
𝑇 = 𝑔

𝜉𝜔(−𝑢−𝑢ℓ)
𝑇 𝑔𝜉𝜔𝑢ℓ

𝑇 1𝔾𝑇
𝑔𝜉𝜔𝑢
𝑇 = 1𝔾𝑇

.

The above follows from the expressions of (𝒄(0), . . . , 𝒄(𝑚+1)), (𝒔*(0), . . . , 𝒔*(𝑚+1)),
(𝒌*(0), . . . ,𝒌*(𝑛),𝒌*(𝑛+1,1),𝒌*(𝑛+1,2)), and the dual orthonormality property of
{𝔹𝚤,𝔹*

𝚤 }𝚤∈[0,2]; in conjunction with the facts that
∑︀

𝑗∈[𝑚]

𝛺𝑗(𝑥𝜌(𝑗)�⃗�
(𝑗)+�⃗�(𝑗)) = �⃗�(ℓ,ℓ)

(since 𝕊 accepts �⃗�), and
∑︀

𝑗∈[𝑚]

(𝛺′
𝑗 �⃗�

(𝑗) +𝛺′′
𝑗 �⃗�

(𝑗)) = 0⃗ℓ (by selection).

Remark 3.1 (Discussion on the Concrete Efficiency of the Proposed
ABS Scheme): In order to understand the concrete efficiency gains of our
ABS scheme over the state-of-the-art scheme of [29], let us consider the per-
formance of both the schemes for a simple signing policy ABP 𝑓 : 𝔽𝑞 → 𝔽𝑞

defined by 𝑓(𝑥1) = 𝑥1 − 𝑎1 for all 𝑥1 ∈ 𝔽𝑞, where 𝑞 is a 128-bit prime integer
and 𝑎1 is a constant belonging to 𝔽𝑞. We have already presented the summary
of this efficiency analysis in Table 1 in the Introduction section. For the con-
sidered ABP, we have 𝑅

(𝑞)
z-abp(𝑓, 𝑥1) = 1 ⇐⇒ 𝑓(𝑥1) = 0 ⇐⇒ 𝑥1 = 𝑎1.

By applying the algorithm of [13], we can represent the ABP 𝑓 by the ASP
𝕊 = (𝕌 = {(�⃗�(1) = (1, 0), �⃗�(1) = (−𝑎,−1))}, 𝜌 | 1 ↦→ 1). Hence, it can be readily
verified from the description of the proposed ABS scheme above that in this
scheme, a signature sig = (𝒔*(0), 𝒔*(1), 𝒔*(2)) on some message msg ∈ 𝕄 under
𝑅

(𝑞)
z-abp(𝑓, ·) would consist of only 26 group elements, namely, 4 group elements

for 𝒔*(0), 14 group elements for 𝒔*(1), while 8 group elements for 𝒔*(2). On the
other hand, to verify the signature, a verifier would have to compute 30 pairing
operations, namely, 4 pairing operations to verify whether 𝑒(𝒃(0,1), 𝒔*(0)) = 1𝔾𝑇

and 26 pairing operations to verify whether
∏︀

𝑗∈[0,2]

𝑒(𝒄(𝑗), 𝒔*(𝑗)) = 1𝔾𝑇
, where

(𝒄(0), 𝒄(1), 𝒄(2)) is the verification-text computed during the verification proce-
dure.

Now, let us look into the size of a signature computed for the same signing
policy using the ABS scheme of Sakai et al. [29]. Observe that in this scheme, sign-

Efficient ABS for Unbounded Arithmetic Branching Programs 21

ing policies are considered as boolean circuits. So, we must express 𝑅(𝑞)
z-abp(𝑓, ·) as

a boolean circuit. Clearly, the boolean circuit that simulates 𝑅
(𝑞)
z-abp(𝑓, ·) would

have 128 input gates to take as input the bit representation of 𝑥1. Moreover, in
order to simulate the equality test 𝑥1 = 𝑎1 over 𝔽𝑞 using boolean operations,
the circuit would need to implement 127 boolean AND gates, where the first
boolean AND gate would connect the first and second bits of 𝑥1, the second one
would connect the earlier AND gate with the third bit of 𝑥1, and so on. Also,
for all 𝑖 ∈ [128], the wire connecting the 𝑖th bit of 𝑥1 to an AND gate must
pass through a NOT gate if the 𝑖th bit of 𝑎1 is 0. For instance, if we represent
the 𝑖th bit of an element 𝑏 ∈ 𝔽𝑞 by 𝑏[𝑖] for all 𝑖 ∈ [128], and some 𝑎1 ∈ 𝔽𝑞 has
binary representation 110 . . . 01, then the boolean circuit simulating 𝑅

(𝑞)
z-abp(𝑓, ·)

with this 𝑎1 would be
(((. . . ((𝑥1[1] AND𝑥1[2]) AND (NOT𝑥1[3])) . . .)

AND (NOT𝑥1[127]))AND𝑥1[128]).

Hence, it follows that the boolean circuit that realizes 𝑅
(𝑞)
z-abp(𝑓, ·) would have

128 input gates, 127 AND gates along with some additional NOT gates. Further,
note that the ABS scheme of [29] considers representing signing policies using
boolean circuits consisting of 𝖭𝖠𝖭𝖣 gates only. Since 3 𝖭𝖠𝖭𝖣 gates are required
to simulate each AND gate, and 1 𝖭𝖠𝖭𝖣 gate is needed to simulate each NOT

gate, it follows that the boolean circuit simulating 𝑅
(𝑞)
z-abp(𝑓, ·) using only 𝖭𝖠𝖭𝖣

gates would consist of at least 128 input gates and at least 127 𝖭𝖠𝖭𝖣 gates.
Now, notice that a signature in the scheme of [29] consists of Groth-Sahai com-
mitments and proofs [9] for each wire of the signing policy circuit for which it is
being generated, and verification requires checking all those proofs. Therefore,
it is immediate from the performance figures presented in Tables 1 and 2 of [29]
that a signature on some message with respect to the boolean circuit simulat-
ing 𝑅

(𝑞)
z-abp(𝑓, ·) in this scheme would include at least 4102 group elements, and

verification of the signature would require at least 4102 pairing operations.
Thus, it is clear that in terms of concrete efficiency, even for a very simple

signing policy such as an equality test over 𝔽𝑞, our ABS scheme gives more than
136 times better results compared to the one of [29].

4 Security
Theorem 4.1 (Signer Privacy): The proposed ABS scheme achieves perfect
signer privacy (as per the security model described in Section 2.5).

Proof: In order to prove Theorem 4.1, we introduce the following signing al-
gorithm, we call ABS.AltSign, that generates signatures on messages using the
master signing key msk and do not use any attribute-specific signing key sk(�⃗�).

ABS.AltSign(mpk,msk,𝕊,msg): This algorithm takes in the public parameters
mpk, the master signing key msk, a signing policy predicate 𝑅

(𝑞)
z-abp(𝑓, ·) :

𝔽𝑛
𝑞 → {0, 1} ∈ ℛ(𝑞)

z-abp having ASP-representation 𝕊 = (𝕌 = {(�⃗�(𝑗), �⃗�(𝑗))}𝑗∈[𝑚]

⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚]→ [𝑛]), and a message msg ∈𝕄. It proceeds as follows:

22 Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima

1. If 𝑆 = {((̂︀𝛺𝑗)𝑗∈[𝑚], (̂︀𝛺′
𝑗)𝑗∈[𝑚]) ∈ (𝔽𝑚

𝑞)2 | ∑︀
𝑗∈[𝑚]

(̂︀𝛺𝑗 �⃗�
(𝑗) + ̂︀𝛺′

𝑗 �⃗�
(𝑗)) = �⃗�(ℓ,ℓ)} =

∅, then it outputs ⊥ indicating failure. Otherwise, it samples ((̂︀𝛺𝑗)𝑗∈[𝑚],

(̂︀𝛺′
𝑗)𝑗∈[𝑚])

U←− 𝑆.

2. Next, it samples ̂︀𝜔 U←− 𝔽𝑞∖{0}, ̂︀𝜐0 U←− 𝔽𝑞, and computes
𝒔*(0) = (̂︀𝜔, 0, ̂︀𝜐0, 0)𝔹*

0
.

3. For 𝑗 ∈ [𝑚], it samples ̂︀𝜎𝑗
U←− 𝔽𝑞, ̂⃗︀𝜐𝑗

U←− 𝔽2
𝑞, and computes

𝒔*(𝑗) = (̂︀𝜎𝑗(1, 𝜌(𝑗)), (̂︀𝛺′
𝑗 , ̂︀𝛺𝑗), 0⃗

6, ̂⃗︀𝜐(𝑗)
, 0⃗2)𝔹*

1
.

4. Then, it samples ̂⃗︀𝜐(𝑚+1) U←− 𝔽2
𝑞 and computes

𝒔*(𝑚+1) = (̂︀𝜔(1,𝖧(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊)), 0⃗2, ̂⃗︀𝜐(𝑚+1)

, 0⃗2)𝔹*
2
.

5. It outputs the signature sig = (𝒔*(0), . . . , 𝒔*(𝑚+1)).

Remark 4.1: Note that using the ABS.AltSign algorithm, one can generate
a correctly verifiable signature on any message msg ∈ 𝕄 under any signing
policy predicate 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp having ASP-representation

𝕊 = (𝕌 = {(�⃗�(𝑗), �⃗�(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]) even without knowing any
signing attribute string �⃗� ∈ 𝔽𝑛

𝑞 accepted by 𝕊. However, in order to execute this
algorithm, one should have access to the master signing key msk – something
which a signer does not have access to in the real world (and an adversary in the
unforgeability experiment). Hence, the above algorithm should only be viewed
as a virtual one used in the security proof. Also, note that if the set 𝑆 defined in
the ABS.AltSign algorithm above is empty, then it is impossible that there exists
some signing attribute string �⃗� ∈ 𝔽𝑛

𝑞 accepted by 𝕊, and hence no signature can
ever be generated under 𝕊, even in the real world.

Clearly, in order to prove Theorem 4.1 it is enough to show that the following
statement is true:
For any security parameter 𝜆 ∈ ℕ, any message msg ∈𝕄, any signing attribute
string �⃗� ∈ 𝔽𝑛

𝑞 , any signing policy predicate 𝑅
(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp

having ASP-representation 𝕊 = (𝕌 = {(�⃗�(𝑗), �⃗�(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛])

such that 𝕊 accepts �⃗�, any (mpk,msk) R←− ABS.Setup(𝟣𝑛), and any sk(�⃗�) R←−
ABS.KeyGen(mpk,msk, �⃗�), the distributions of the signatures outputted by
ABS.Sign(mpk, �⃗�, sk(�⃗�),𝕊,msg) and those outputted by ABS.AltSign(mpk,msk,
𝕊,msg) are equivalent.
In the proposed ABS scheme, sig = (𝒔*(0), . . . , 𝒔*(𝑚+1))

R←− ABS.Sig(mpk, �⃗�,
sk(�⃗�),𝕊,msg) is computed as

𝒔*(0) = (𝑝0, 0, 0, 𝜐0)𝔹*
0
,

𝒔*(𝑗) = (�̄�𝑗(1, 𝜌(𝑗)), 𝑝
(𝑗), 0⃗6, �⃗�(𝑗), 0⃗2)𝔹*

1
for 𝑗 ∈ [𝑚],

𝒔*(𝑚+1) = (𝑝(𝑚+1), 0⃗2, �⃗�(𝑚+1), 0⃗2)𝔹*
2
,

such that 𝑝0 = 𝜉𝜔, �̄�𝑗 = 𝜉𝜎𝜌(𝑗)𝛺𝑗 + 𝜎′
𝑗 , 𝑝(𝑗) = (𝜉𝜔𝛺𝑗 + 𝛺′′

𝑗 , 𝜉𝜔𝑥𝜌(𝑗)𝛺𝑗 + 𝛺′
𝑗)

for 𝑗 ∈ [𝑚], and 𝑝(𝑚+1) = 𝜉𝜔(1,𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊)), where 𝜔, 𝜉

U←− 𝔽𝑞∖{0},

Efficient ABS for Unbounded Arithmetic Branching Programs 23

{𝜎𝜄}𝜄∈[𝑛], {𝜎′
𝑗}𝑗∈[𝑚], 𝜐0

U←− 𝔽𝑞, {�⃗�(𝑗)}𝑗∈[𝑚+1]
U←− 𝔽2

𝑞, (𝛺𝑗)𝑗∈[𝑚] ∈ 𝔽ℓ
𝑞 with∑︀

𝑗∈[𝑚]

𝛺𝑗(𝑥𝜌(𝑗)�⃗�
(𝑗) + �⃗�(𝑗)) = �⃗�(ℓ,ℓ), and ((𝛺′

𝑗)𝑗∈[𝑚], (𝛺
′′
𝑗)𝑗∈[𝑚])

U←− (𝔽𝑚
𝑞)2 with∑︀

𝑗∈[𝑚]

(𝛺′
𝑗 �⃗�

(𝑗) +𝛺′′
𝑗 �⃗�

(𝑗)) = 0⃗ℓ.

On the other hand sig = (𝒔*(0), . . . , 𝒔*(𝑚+1))
R←− ABS.AltSign(mpk,msk,𝕊,

msg) is computed as
𝒔*(0) = (̂︀𝑝0, 0, ̂︀𝜐0, 0)𝔹*

0
,

𝒔*(𝑗) = (̂︀𝜎𝑗(1, 𝜌(𝑗)), ̂⃗︀𝑝(𝑗), 0⃗6, ̂⃗︀𝜐(𝑗)
, 0⃗2)𝔹*

1
for 𝑗 ∈ [𝑚],

𝒔*(𝑚+1) = (⃗̂︀𝑝(𝑚+1)
, 0⃗2, ̂⃗︀𝜐(𝑚+1)

, 0⃗2)𝔹*
2
,

such that ̂︀𝑝0 = ̂︀𝜔, ̂⃗︀𝑝(𝑗) = (̂︀𝛺′
𝑗 ,

̂︀𝛺𝑗) for 𝑗 ∈ [𝑚], and ̂⃗︀𝑝(𝑚+1)
= ̂︀𝜔(1,𝖧(𝜆,𝗉𝗈𝗅𝗒)

𝗁𝗄 (msg‖𝕊)),
where ̂︀𝜔 U←− 𝔽𝑞∖{0}, {̂︀𝜎𝑗}𝑗∈[𝑚], ̂︀𝜐0 U←− 𝔽𝑞, {̂⃗︀𝜐(𝑗)}𝑗∈[𝑚+1]

U←− 𝔽2
𝑞, and ((̂︀𝛺𝑗)𝑗∈[𝑚],

(̂︀𝛺′
𝑗)𝑗∈[𝑚])

U←− 𝑆 = {((̂︀𝛺𝑗)𝑗∈[𝑚], (̂︀𝛺′
𝑗)𝑗∈[𝑚]) ∈ (𝔽𝑚

𝑞)2 | ∑︀
𝑗∈[𝑚]

(̂︀𝛺𝑗 �⃗�
(𝑗) + ̂︀𝛺′

𝑗 �⃗�
(𝑗)) =

�⃗�(ℓ,ℓ)}.
Observe that the distributions {(𝜉𝜔, (𝜉𝜔𝑥𝜌(𝑗)𝛺𝑗+𝛺′

𝑗)𝑗∈[𝑚], (𝜉𝜔𝛺𝑗+𝛺′′
𝑗)𝑗∈[𝑚]) |

𝜔, 𝜉
U←− 𝔽𝑞∖{0}, ((𝛺′

𝑗)𝑗∈[𝑚], (𝛺
′′
𝑗)𝑗∈[𝑚])

U←− (𝔽𝑚
𝑞)2 with

∑︀
𝑗∈[𝑚]

(𝛺′
𝑗 �⃗�

(𝑗) + 𝛺′′
𝑗 �⃗�

(𝑗)) =

0⃗ℓ, (𝛺𝑗)𝑗∈[𝑚] ∈ 𝔽𝑚
𝑞 with

∑︀
𝑗∈[𝑚]

𝛺𝑗(𝑥𝜌(𝑗)�⃗�
(𝑗) + �⃗�(𝑗)) = �⃗�(ℓ,ℓ)} and {(̂︀𝜔, (̂︀𝛺𝑗)𝑗∈[𝑚],

(̂︀𝛺′
𝑗)𝑗∈[𝑚]) | ̂︀𝜔 U←− 𝔽𝑞∖{0}, ((̂︀𝛺𝑗)𝑗∈[𝑚], (̂︀𝛺′

𝑗)𝑗∈[𝑚])
U←− 𝑆} are equivalent. Also, the

distributions {(�̄�𝑗 = 𝜉𝛺𝑗𝜎𝜌(𝑗) + 𝜎′
𝑗)𝑗∈[𝑚] | 𝜉 U←− 𝔽𝑞∖{0}, {𝜎𝜄}𝜄∈[𝑛], {𝜎′

𝑗}𝑗∈[𝑚]
U←−

𝔽𝑞, (𝛺𝑗)𝑗∈[𝑚] ∈ 𝔽𝑚
𝑞 with

∑︀
𝑗∈[𝑚]

𝛺𝑗(𝑥𝜌(𝑗)�⃗�
(𝑗) + �⃗�(𝑗)) = �⃗�(ℓ,ℓ)} and {(̂︀𝜎𝑗)𝑗∈[𝑚] |

{̂︀𝜎𝑗}𝑗∈[𝑚]
U←− 𝔽𝑞} are equivalent. Thus, the distributions of sig R←− ABS.Sign(mpk,

�⃗�, sk(�⃗�),𝕊,msg) and that of sig R←− ABS.AltSign(mpk,msk,𝕊,msg) are equiva-
lent. This completes the proof of Theorem 4.1. ⊓⊔

Theorem 4.2 (Existential Unforgeability): The proposed ABS scheme is
existentially unforgeable against adaptive-predicate-adaptive-message attack (as
per the security model described in Section 2.5) under the SXDLIN assump-
tion [1].

Proof: In order to prove Theorem 4.2, we consider a sequence of hybrid ex-
periments which differ from one another in the construction of the signing
keys/signatures queried by the adversary 𝒜 and/or the verification-text used
by the challenger ℬ to verify the validity of the forged signature outputted by 𝒜
at the end of the experiment. The first hybrid corresponds to the real unforge-
ability experiment described in Section 2.5, while the last hybrid corresponds to
one in which the probability that a forged signature outputted by 𝒜 passes the
verification is negligible. We argue that 𝒜’s winning probability changes only by
a negligible amount in each successive hybrid experiment, thereby establishing

24 Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima

Theorem 4.2. The overall structure of our reduction is demonstrated in Fig. 4.1.
The intermediate computational problems, e.g., Problem 1, Problem 2 etc. used
in the reduction (as can be seen in Fig. 4.1) are presented in the full version of
the paper. Let 𝑞key and 𝑞sig be the total number of signing keys and signatures 𝒜
requests ℬ to reveal during the experiment. The sequence of hybrid experiments
are described below. In the description of the hybrids a part framed by a box
indicates coefficients which are altered in a transition from its previous hybrid.

Hyb0 Hyb0′ Hyb1 Hyb2-1-1
b b b Hyb2-(χ−1)-9

= c≈ c≈

Hyb2-χ-1 Hyb2-χ-2 Hyb2-χ-3 Hyb2-χ-4 Hyb2-χ-5 Hyb2-χ-6 Hyb2-χ-7 Hyb2-χ-8 Hyb2-χ-9

=c≈ c≈ c≈ c≈ c≈
c≈ c≈ c≈

Problem 3 Problem 7

Problem 1 Problem 2

SXDLIN

Hyb2-0-9
≡

SXDLIN

Hyb2-(χ+1)-1 Hyb2-qkey-9 Hyb3

Hyb4-0
≡

b b b Hyb4-1
b b b Hyb4-π

b b b Hyb4-qsig Hyb5

c≈ c≈ = c≈ c≈ c≈ =

Problem 2 Problem 8

SXDLIN

b bb b bb b b b

c≈

{Problem 4-α, 5-α, 6-α}α∈[n]

Fig. 4.1: Structure of the Hybrid Reduction for the Proof of Theorem 4.2

■ Sequence of Hybrid Experiments

Hyb0: This is the real unforgeability experiment described in Section 2.5.

Hyb0′ : This experiment is the same as Hyb0 except the following:

1. When 𝒜 makes a signing key generation query for some signing attribute
string �⃗� ∈ 𝔽𝑛

𝑞 , ℬ only records �⃗�, but creates no actual signing key.
2. When a signature query is made by 𝒜 on some message msg ∈ 𝕄 under

some signing policy predicate 𝑅
(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp having

ASP-representation 𝕊 = (𝕌, 𝜌) to be created using a signing key for some
signing attribute string �⃗� ∈ 𝔽𝑛

𝑞 for which it has already made a signing

Efficient ABS for Unbounded Arithmetic Branching Programs 25

key generation query, ℬ simply records the triple (msg,𝕊, �⃗�), but creates no
actual signature.

3. When 𝒜 issues a signing key reveal query for some signing attribute string
�⃗� ∈ 𝔽𝑛

𝑞 which has been already recorded, ℬ creates the queried signing key

as sk(�⃗�) R←− ABS.KeyGen(mpk,msk, �⃗�), and returns it to 𝒜. On the other
hand, when 𝒜 issues a signature reveal query for some triple (msg,𝕊, �⃗�) ∈
𝕄 × ℛ(𝑞)

z-abp × 𝔽𝑛
𝑞 which has been already recorded, ℬ creates the queried

signature as sig R←− ABS.AltSign(mpk,msk,𝕊,msg), where the ABS.AltSign
algorithm is described in the proof of Theorem 4.1, and hands sig to 𝒜.

Thus, in this experiment for ∈ [𝑞key], the th signing key for signing at-
tribute string �⃗�() ∈ 𝔽𝑛

𝑞 requested by 𝒜 to reveal is generated as sk(�⃗�()) =

(𝒌*(,0), . . . ,𝒌*(,𝑛),𝒌*(,𝑛+1,1),𝒌*(,𝑛+1,2)) such that
𝒌*(,0) = (𝜔, 0, 𝜙,0, 0)𝔹*

0
,

𝒌*(,𝜄) = (𝜎,𝜄(1, 𝜄), 𝜔(1, 𝑥
()
𝜄), 0⃗6, �⃗�(,𝜄), 0⃗2)𝔹*

1
for 𝜄 ∈ [𝑛],

𝒌*(,𝑛+1,1) = (𝜔(1, 0), 0⃗
2, �⃗�(,𝑛+1,1), 0⃗2)𝔹*

2
,

𝒌*(,𝑛+1,2) = (𝜔(0, 1), 0⃗
2, �⃗�(,𝑛+1,2), 0⃗2)𝔹*

2
,

(4.1)

where 𝜔
U←− 𝔽𝑞∖{0}, {𝜎,𝜄}𝜄∈[𝑛], 𝜙,0

U←− 𝔽𝑞, {�⃗�(,𝜄)}𝜄∈[𝑛], �⃗�
(,𝑛+1,1), �⃗�(,𝑛+1,2) U←−

𝔽2
𝑞.

On the other hand, for 𝑡 ∈ [𝑞sig], the 𝑡th signature associated with the
triple (msg𝑡,𝕊𝑡, �⃗�(𝑡)) ∈ 𝕄 × ℛ(𝑞)

z-abp × 𝔽𝑛
𝑞 that 𝒜 requests to reveal, where

𝕊𝑡 = (𝕌𝑡 = {(�⃗�(𝑡,𝑗), �⃗�(𝑡,𝑗))}𝑗∈[𝑚𝑡] ⊂ (𝔽ℓ𝑡
𝑞)2, 𝜌𝑡 : [𝑚𝑡] → [𝑛]), is created as

sig𝑡 = (𝒔*(𝑡,0), . . . , 𝒔*(𝑡,𝑚𝑡+1)) such that
𝒔*(𝑡,0) = (̂︀𝜔𝑡, 0, ̂︀𝜐𝑡,0, 0)𝔹*

0
,

𝒔*(𝑡,𝑗) = (̂︀𝜎𝑡,𝑗(1, 𝜌𝑡(𝑗)), (̂︀𝛺′
𝑡,𝑗 ,

̂︀𝛺𝑡,𝑗), 0⃗
6, ̂⃗︀𝜐(𝑡,𝑗)

, 0⃗2)𝔹*
1

for 𝑗 ∈ [𝑚𝑡],

𝒔*(𝑡,𝑚𝑡+1) = (̂︀𝜔(1,𝖧(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg𝑡‖𝕊𝑡)), 0⃗2, ̂⃗︀𝜐(𝑡,𝑚𝑡+1)

, 0⃗2)𝔹*
2
,

(4.2)

where ̂︀𝜔𝑡
U←− 𝔽𝑞∖{0}, {̂︀𝜎𝑡,𝑗}𝑗∈[𝑚𝑡], ̂︀𝜐𝑡,0 U←− 𝔽𝑞, {̂⃗︀𝜐(𝑡,𝑗)}𝑗∈[𝑚𝑡+1]

U←− 𝔽2
𝑞, and

((̂︀𝛺𝑡,𝑗)𝑗∈[𝑚𝑡], (
̂︀𝛺′
𝑡,𝑗)𝑗∈[𝑚𝑡])

U←− 𝑆𝑡 = {((̂︀𝛺𝑡,𝑗)𝑗∈[𝑚𝑡], (
̂︀𝛺′
𝑡,𝑗)𝑗∈[𝑚𝑡]) ∈ (𝔽𝑚𝑡

𝑞)2 |∑︀
𝑗∈[𝑚𝑡]

(̂︀𝛺𝑡,𝑗 �⃗�
(𝑡,𝑗) + ̂︀𝛺′

𝑡,𝑗 �⃗�
(𝑡,𝑗)) = �⃗�(ℓ𝑡,ℓ𝑡)}.

Finally, in this experiment, the verification-text used to verify the forged
signature outputted by 𝒜 on some message msg ∈𝕄 under some signing policy
predicate 𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp having ASP-representation 𝕊 =

(𝕌 = {(�⃗�(𝑗), �⃗�(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]) is generated as (𝒄(0), . . . , 𝒄(𝑚+1))
such that

𝒄(0) = (−𝑢− 𝑢ℓ, 0, 0, 𝜂0)𝔹0
,

𝒄(𝑗) = (𝜇𝑗(𝜌(𝑗),−1), (𝑠′𝑗 , 𝑠𝑗), 0⃗6, 0⃗2, �⃗�(𝑗))𝔹1 for 𝑗 ∈ [𝑚],

𝒄(𝑚+1) = ((𝑢− 𝜅𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊), 𝜅), 0⃗2, 0⃗2, �⃗�(𝑚+1))𝔹2

,

(4.3)

26 Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima

where �⃗� = (𝑢1, . . . , 𝑢ℓ)
U←− 𝔽ℓ

𝑞, 𝑠𝑗 = �⃗� · �⃗�(𝑗), 𝑠′𝑗 = �⃗� · �⃗�(𝑗) for 𝑗 ∈ [𝑚], 𝑢, {𝜇𝑗}𝑗∈[𝑚],

𝜅, 𝜂0
U←− 𝔽𝑞, and {�⃗�(𝑗)}𝑗∈[𝑚+1]

U←− 𝔽2
𝑞.

Here {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,2] is the collection of dual orthonormal bases generated by

ℬ during the setup phase of the experiment.

Hyb1: This experiment is analogous to Hyb0′ except that in this experiment,
the verification-text used to verify the forged signature outputted by 𝒜 on
some message msg ∈ 𝕄 under some signing policy predicate 𝑅

(𝑞)
z-abp(𝑓, ·) :

𝔽𝑛
𝑞 → {0, 1} ∈ ℛ(𝑞)

z-abp having ASP-representation 𝕊 = (𝕌 = {(�⃗�(𝑗), �⃗�(𝑗))}𝑗∈[𝑚] ⊂
(𝔽ℓ

𝑞)
2, 𝜌 : [𝑚]→ [𝑛]) is generated as (𝒄(0), . . . , 𝒄(𝑚+1)) such that

𝒄(0) = (−𝑢− 𝑢ℓ, −̃︀𝑢ℓ , 0, 𝜂0)𝔹0 ,

𝒄(𝑗) = (𝜇𝑗(𝜌(𝑗),−1), (𝑠′𝑗 , 𝑠𝑗), (̃︀𝑠′𝑗 , ̃︀𝑠𝑗) , 0⃗2, �⃗�(𝑗) , 0⃗2, �⃗�(𝑗))𝔹1 for 𝑗 ∈ [𝑚],

𝒄(𝑚+1) = ((𝑢− 𝜅𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg‖𝕊), 𝜅), �⃗�(𝑚+1) , 0⃗2, �⃗�(𝑚+1))𝔹2

,

(4.4)

where ̃⃗︀𝑢 = (̃︀𝑢1, . . . , ̃︀𝑢ℓ)
U←− 𝔽ℓ

𝑞, ̃︀𝑠𝑗 = ̃⃗︀𝑢·�⃗�(𝑗), ̃︀𝑠′𝑗 = ̃⃗︀𝑢·�⃗�(𝑗) for 𝑗 ∈ [𝑚], {�⃗�(𝑗)}𝑗∈[𝑚+1]
U←−

𝔽2
𝑞, and all the other variables are generated as in Hyb0′ .

Hyb2-𝝌-1 (𝝌 ∈ [𝒒key]): Hyb2-0-9 coincides with Hyb1. This experiment is the
same as Hyb2-(𝜒−1)-9 with the only exception that in this experiment, the 𝜒th

signing key for signing attribute string �⃗�(𝜒) ∈ 𝔽𝑛
𝑞 requested by 𝒜 to reveal is

generated as sk(�⃗�(𝜒)) = (𝒌*(𝜒,0), . . . ,𝒌*(𝜒,𝑛),𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2)) such that
𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2) are given by Eq. (4.1), and
𝒌*(𝜒,0) = (𝜔𝜒, ̃︀𝜔𝜒 , 𝜙𝜒,0, 0)𝔹*

0
,

𝒌*(𝜒,𝜄) = (𝜎𝜒,𝜄(1, 𝜄), 𝜔𝜒(1, 𝑥
(𝜒)
𝜄), ̃︀𝜔𝜒(1, 𝑥

(𝜒)
𝜄) , 0⃗4, �⃗�(𝜒,𝜄), 0⃗2)𝔹*

1
for 𝜄 ∈ [𝑛],

(4.5)

where ̃︀𝜔𝜒
U←− 𝔽𝑞∖{0} and all the other variables are generated as in Hyb2-(𝜒−1)-9.

Hyb2-𝝌-2 (𝝌 ∈ [𝒒key]): This experiment is analogous to Hyb2-𝜒-1 except that
in this experiment, the verification-text used to verify the forged signature out-
putted by 𝒜 on some message msg ∈ 𝕄 under some signing policy predicate
𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp having ASP-representation 𝕊 = (𝕌 =

{(�⃗�(𝑗), �⃗�(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]) is generated as (𝒄(0), . . . , 𝒄(𝑚+1)) such
that 𝒄(0), 𝒄(𝑚+1) have the same form as in Eq. (4.4) and

𝒄(𝑗) = (𝜇𝑗(𝜌(𝑗),−1), (𝑠′𝑗 , 𝑠𝑗), (̃︀𝑠′𝑗 , ̃︀𝑠𝑗), 0⃗2, (̃︀𝑠′𝑗 , ̃︀𝑠𝑗)𝒁(𝜌(𝑗)) , 0⃗2, �⃗�(𝑗))𝔹1 for 𝑗 ∈ [𝑚],

(4.6)
where 𝒁(𝜄) ∈ {𝒁 ∈ GL(2,𝔽𝑞) | �⃗�(2,2) = (1, 𝑥

(𝜒)
𝜄)(𝒁−1)⊤} for 𝜄 ∈ [𝑛], and all the

other variables are generated as in Hyb2-𝜒-1.

Hyb2-𝝌-3 (𝝌 ∈ [𝒒key]): This experiment is the same as Hyb2-𝜒-2 with the
only exception that in this experiment, the 𝜒th signing key for signing at-
tribute string �⃗�(𝜒) ∈ 𝔽𝑛

𝑞 requested by 𝒜 to reveal is generated as sk(�⃗�(𝜒)) =

(𝒌*(𝜒,0), . . . ,𝒌*(𝜒,𝑛),𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2)) such that 𝒌*(𝜒,0) is given by Eq. (4.5),

Efficient ABS for Unbounded Arithmetic Branching Programs 27

𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2) are given by Eq. (4.1), and

𝒌*(𝜒,𝜄) = (𝜎𝜒,𝜄(1, 𝜄), 𝜔𝜒(1, 𝑥
(𝜒)
𝜄), 0⃗2 , 0⃗2, (0, ̃︀𝜔𝜒) , �⃗�

(𝜒,𝜄), 0⃗2)𝔹*
1

for 𝜄 ∈ [𝑛], (4.7)
where all the variables are generated as in Hyb2-𝜒-2.

Hyb2-𝝌-4 (𝝌 ∈ [𝒒key]): This experiment is identical to Hyb2-𝜒-3 except that
in this experiment, the verification-text used to verify the forged signature out-
putted by 𝒜 on some message msg ∈ 𝕄 under some signing policy predicate
𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp having ASP-representation 𝕊 = (𝕌 =

{(�⃗�(𝑗), �⃗�(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]) is generated as (𝒄(0), . . . , 𝒄(𝑚+1)) such
that 𝒄(0), 𝒄(𝑚+1) have the same form as in Eq. (4.4) and

𝒄(𝑗) = (𝜇𝑗(𝜌(𝑗),−1), (𝑠′𝑗 , 𝑠𝑗), �⃗�(𝑗) , 0⃗2, (̃︀𝑎𝑗 , ̃⃗︀𝑢 · (𝑥(𝜒)
𝜌(𝑗)�⃗�

(𝑗) + �⃗�(𝑗))),

0⃗2, �⃗�(𝑗))𝔹1
for 𝑗 ∈ [𝑚],

(4.8)

where {̃︀𝑎𝑗}𝑗∈[𝑚]
U←− 𝔽𝑞, {�⃗�(𝑗)}𝑗∈[𝑚]

U←− 𝔽2
𝑞, and all the other variables are gener-

ated as in Hyb2-𝜒-3.

Hyb2-𝝌-5 (𝝌 ∈ [𝒒key]): This experiment is the same as Hyb2-𝜒-4 with the
only exception that in this experiment, the 𝜒th signing key for signing at-
tribute string �⃗�(𝜒) ∈ 𝔽𝑛

𝑞 requested by 𝒜 to reveal is generated as sk(�⃗�(𝜒)) =

(𝒌*(𝜒,0), . . . ,𝒌*(𝜒,𝑛),𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2)) such that {𝒌*(𝜒,𝜄)}𝜄∈[𝑛] are given by
Eq. (4.7), 𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2) are given by Eq. (4.1), and

𝒌*(𝜒,0) = (𝜔𝜒, ℑ𝜒 , 𝜙𝜒,0, 0)𝔹*
0
, (4.9)

where ℑ𝜒
U←− 𝔽𝑞, and all the other variables are generated as in Hyb2-𝜒-4.

Hyb2-𝝌-6 (𝝌 ∈ [𝒒key]): This experiment is analogous to Hyb2-𝜒-5 except that
in this experiment, the verification-text used to verify the forged signature out-
putted by 𝒜 on some message msg ∈ 𝕄 under some signing policy predicate
𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp having ASP-representation 𝕊 = (𝕌 =

{(�⃗�(𝑗), �⃗�(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]) is generated as (𝒄(0), . . . , 𝒄(𝑚+1)) such
that 𝒄(0), 𝒄(𝑚+1) have the same form as in Eq. (4.4) and {𝒄(𝑗)}𝑗∈[𝑚] are given
by Eq. (4.6) where ̃︀𝑠𝑗 = ̃⃗︀𝑢 · �⃗�(𝑗), ̃︀𝑠′𝑗 = ̃⃗︀𝑢 · �⃗�(𝑗) for 𝑗 ∈ [𝑚], 𝒁(𝜄) ∈ {𝒁 ∈ GL(2,𝔽𝑞) |
�⃗�(2,2) = (1, 𝑥

(𝜒)
𝜄)(𝒁−1)⊤} for 𝜄 ∈ [𝑛], and all the other variables are generated as

in Hyb2-𝜒-5.

Hyb2-𝝌-7 (𝝌 ∈ [𝒒key]): This experiment is analogous to Hyb2-𝜒-6 with the
only exception that in this experiment, the 𝜒th signing key for signing at-
tribute string �⃗�(𝜒) ∈ 𝔽𝑛

𝑞 requested by 𝒜 to reveal is generated as sk(�⃗�(𝜒)) =

(𝒌*(𝜒,0), . . . ,𝒌*(𝜒,𝑛),𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2)) such that 𝒌*(0) is given by Eq. (4.9),
{𝒌*(𝜒,𝜄)}𝜄∈[𝑛] are given by Eq. (4.5), and 𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2) are given by
Eq. (4.1), where all the variables are generated as in Hyb2-𝜒-6.

Hyb2-𝝌-8 (𝝌 ∈ [𝒒key]): This experiment is analogous to Hyb2-𝜒-7 except that
in this experiment, the verification-text used to verify the forged signature out-
putted by 𝒜 on some message msg ∈ 𝕄 under some signing policy predicate
𝑅

(𝑞)
z-abp(𝑓, ·) : 𝔽𝑛

𝑞 → {0, 1} ∈ ℛ(𝑞)
z-abp having ASP-representation 𝕊 = (𝕌 =

28 Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima

{(�⃗�(𝑗), �⃗�(𝑗))}𝑗∈[𝑚] ⊂ (𝔽ℓ
𝑞)

2, 𝜌 : [𝑚] → [𝑛]) is generated as (𝒄(0), . . . , 𝒄(𝑚+1)) such

that {𝒄(𝑗)}𝑗∈[0,𝑚+1] have the same form as in Eq. (4.4), where {�⃗�(𝑗)}𝑗∈[𝑚]
U←− 𝔽2

𝑞,
and all the other variables are generated as in Hyb2-𝜒-7.

Hyb2-𝝌-9 (𝝌 ∈ [𝒒key]): This experiment is analogous to Hyb2-𝜒-8 with the
only exception that in this experiment, the 𝜒th signing key for signing at-
tribute string �⃗�(𝜒) ∈ 𝔽𝑛

𝑞 requested by 𝒜 to reveal is generated as sk(�⃗�(𝜒)) =

(𝒌*(𝜒,0), . . . ,𝒌*(𝜒,𝑛),𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2)) such that 𝒌*(0) is given by Eq. (4.9),
and {𝒌*(𝜒,𝜄)}𝜄∈[𝑛], 𝒌*(𝜒,𝑛+1,1),𝒌*(𝜒,𝑛+1,2) are given by Eq. (4.1), where all the
variables are generated as in Hyb2-𝜒-8.

Hyb3: This experiment is identical to Hyb2-𝑞key-9 except that in this experi-
ment, the verification-text used to verify the forged signature outputted by 𝒜
on some message msg ∈ 𝕄 under some signing policy predicate 𝑅

(𝑞)
z-abp(𝑓, ·) :

𝔽𝑛
𝑞 → {0, 1} ∈ ℛ(𝑞)

z-abp having ASP-representation 𝕊 = (𝕌 = {(�⃗�(𝑗), �⃗�(𝑗))}𝑗∈[𝑚] ⊂
(𝔽ℓ

𝑞)
2, 𝜌 : [𝑚] → [𝑛]) is generated as (𝒄(0), . . . , 𝒄(𝑚+1)) such that {𝒄(𝑗)}𝑗∈[𝑚+1]

have the same form as in Eq. (4.4), and
𝒄(0) = (−𝑢− 𝑢ℓ, 𝑣 , 0, 𝜂0)𝔹0

, (4.10)

where 𝑣
U←− 𝔽𝑞, and all the other variables are generated as in Hyb2-𝑞key-9.

Hyb4-𝝅 (𝝅 ∈ [𝒒sig]): Hyb4-0 coincides with Hyb3. This experiment is the same
as Hyb4-(𝜋−1) except that in this experiment, the 𝜋th signature associated with
the triple (msg𝜋,𝕊𝜋, �⃗�(𝜋)) ∈ 𝕄×ℛ(𝑞,𝑛)

z- abp × 𝔽𝑛
𝑞 that 𝒜 requests to reveal, where

𝕊𝜋 = (𝕌𝜋 = {(�⃗�(𝜋,𝑗), �⃗�(𝜋,𝑗))}𝑗∈[𝑚𝜋] ⊂ (𝔽ℓ𝜋
𝑞)2, 𝜌𝜋 : [𝑚𝜋] → [𝑛]), is created as

sig𝜋 = (𝒔*(𝜋,0), . . . , 𝒔*(𝜋,𝑚𝜋+1)) such that {𝒔*(𝜋,𝑗)}𝑗∈[𝑚𝜋] have the same form as
in Eq. (4.2), and

𝒔*(𝜋,0) = (̂︀𝜔𝜋, 𝜁𝜋,0 , ̂︀𝜐𝜋,0, 0)𝔹*
0
,

𝒔*(𝜋,𝑚𝜋+1) = (̂︀𝜔𝜋(1,𝖧
(𝜆,𝗉𝗈𝗅𝗒)
𝗁𝗄 (msg𝜋‖𝕊𝜋)), 𝜁(𝜋,𝑚𝜋+1) , ̂⃗︀𝜐(𝜋,𝑚𝜋+1)

, 0⃗2)𝔹*
2
,

(4.11)

where 𝜁𝜋,0
U←− 𝔽𝑞, 𝜁(𝜋,𝑚𝜋+1) U←− 𝔽2

𝑞, and all the other variables are generated as
in Hyb4-(𝜋−1).

Hyb5: This experiment is identical to Hyb4-𝑞sig except that in this experi-
ment, the verification-text used to verify the forged signature outputted by 𝒜
on some message msg ∈ 𝕄 under some signing policy predicate 𝑅

(𝑞)
z-abp(𝑓, ·) :

𝔽𝑛
𝑞 → {0, 1} ∈ ℛ(𝑞)

z-abp having ASP-representation 𝕊 = (𝕌 = {(�⃗�(𝑗), �⃗�(𝑗))}𝑗∈[𝑚] ⊂
(𝔽ℓ

𝑞)
2, 𝜌 : [𝑚] → [𝑛]) is generated as (𝒄(0), . . . , 𝒄(𝑚+1)) such that {𝒄(𝑗)}𝑗∈[𝑚+1]

have the same form as in Eq. (4.4), and
𝒄(0) = (𝑤 , 𝑣, 0, 𝜂0)𝔹0 , (4.12)

where 𝑤
U←− 𝔽𝑞, and all the other variables are generated as in Hyb5-𝑞sig .

■ Analysis

Let us now denote by 𝖠𝖽𝗏
(𝑖)
𝒜 (𝜆) the probability that 𝒜 wins in Hyb𝑖 for

𝑖 ∈ {0, 0′, 1, {2-𝜒-𝑘}𝜒∈[𝑞key],𝑘∈[9], 3, {4-𝜋}𝜋∈[𝑞sig], 5}. By definition, we clearly

Efficient ABS for Unbounded Arithmetic Branching Programs 29

have 𝖠𝖽𝗏ABS,UF
𝒜 (𝜆) ≡ 𝖠𝖽𝗏

(0)
𝒜 (𝜆), 𝖠𝖽𝗏

(1)
𝒜 (𝜆) ≡ 𝖠𝖽𝗏

(2-0-9)
𝒜 (𝜆), and 𝖠𝖽𝗏

(3)
𝒜 (𝜆) ≡

𝖠𝖽𝗏
(4-0)
𝒜 (𝜆). Hence, we have

𝖠𝖽𝗏ABS,UF
𝒜 (𝜆) ≤

⃒⃒⃒
𝖠𝖽𝗏

(0)
𝒜 (𝜆)− 𝖠𝖽𝗏

(0′)
𝒜 (𝜆)

⃒⃒⃒
+
⃒⃒⃒
𝖠𝖽𝗏

(0′)
𝒜 (𝜆)− 𝖠𝖽𝗏

(1)
𝒜 (𝜆)

⃒⃒⃒
+∑︁

𝜒∈[𝑞key]

[︁ ⃒⃒⃒
𝖠𝖽𝗏

(2-(𝜒−1)-9)
𝒜 (𝜆)− 𝖠𝖽𝗏

(2-𝜒-1)
𝒜 (𝜆)

⃒⃒⃒
+

∑︁
𝑘∈[8]

⃒⃒⃒
𝖠𝖽𝗏

(2-𝜒-𝑘)
𝒜 (𝜆)− 𝖠𝖽𝗏

(2-𝜒-(𝑘+1))
𝒜 (𝜆)

⃒⃒⃒]︁
+

⃒⃒⃒
𝖠𝖽𝗏

(2-𝑞key-9)
𝒜 (𝜆)− 𝖠𝖽𝗏

(3)
𝒜 (𝜆)

⃒⃒⃒
+∑︁

𝜋∈[𝑞sig]

⃒⃒⃒
𝖠𝖽𝗏

(4-(𝜋−1)
𝒜 (𝜆)− 𝖠𝖽𝗏

(4,𝜋)
𝒜 (𝜆)

⃒⃒⃒
+

⃒⃒⃒
𝖠𝖽𝗏

(4-𝑞sig)
𝒜 (𝜆)− 𝖠𝖽𝗏

(5)
𝒜 (𝜆)

⃒⃒⃒
+ 𝖠𝖽𝗏

(5)
𝒜 (𝜆).

(4.13)

We prove that each term on the RHS of Eq. (4.13) is negligible under the SXDLIN
assumption. See the full version for details. Hence Theorem 4.2 follows. ⊓⊔

References
1. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:

Constant-size structure-preserving signatures: Generic constructions and simple
assumptions. In: ASIACRYPT 2012. pp. 4–24. Springer

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. SIAM
Journal on Computing 43(2), 905–929 (2014)

3. Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: PKC 2014. pp. 520–537.
Springer

4. Datta, P., Dutta, R., Mukhopadhyay, S.: Attribute-based signatures for turing
machines. Cryptology ePrint Archive, Report 2017/801

5. El Kaafarani, A., El Bansarkhani, R.: Post-quantum attribute-based signatures
from lattice assumptions. Cryptology ePrint Archive, Report 2016/823

6. El Kaafarani, A., Ghadafi, E., Khader, D.: Decentralized traceable attribute-based
signatures. In: CT-RSA 2014. pp. 327–348. Springer

7. El Kaafarani, A., Katsumata, S.: Attribute-based signatures for unbounded circuits
in the rom and efficient instantiations from lattices. In: PKC 2018. pp. 89–119.
Springer

8. Fürer, M.: Faster integer multiplication. SIAM Journal on Computing 39(3), 979–
1005 (2009)

9. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
EUROCRYPT 2008. pp. 415–432. Springer

10. Herranz, J., Laguillaumie, F., Libert, B., Ràfols, C.: Short attribute-based signa-
tures for threshold predicates. In: CT-RSA 2012. pp. 51–67. Springer

11. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: ICALP 2002. pp. 244–256. Springer

12. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applica-
tions. In: ITCS 1997. pp. 174–183. IEEE

13. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: ICALP
2014. pp. 650–662. Springer

30 Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima

14. Karchmer, M., Wigderson, A.: On span programs. In: Structure in Complexity
Theory Conference 1993. pp. 102–111. IEEE

15. Keller, M., Orsini, E., Scholl, P.: Mascot: faster malicious arithmetic secure com-
putation with oblivious transfer. In: ACM-CCS 2016. pp. 830–842. ACM

16. Kowalczyk, L., Liu, J., Malkin, T., Meiyappan, K.: Mitigating the one-use restric-
tion in attribute-based encryption. Cryptology ePrint Archive, Report 2018/645

17. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its
applications. In: ASIACCS 2010. pp. 60–69. ACM

18. Li, J., Kim, K.: Attribute-based ring signatures. Cryptology ePrint Archive, Report
2008/394

19. Maji, H., Prabhakaran, M., Rosulek, M.: Attribute-based signatures: Achiev-
ing attribute-privacy and collusion-resistance. Cryptology ePrint Archive, Report
2008/328

20. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: CT-
RSA 2011. pp. 376–392. Springer

21. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. Cryptology
ePrint Archive, Report 2010/595

22. Okamoto, T., Takashima, K.: Decentralized attribute-based signatures. In: PKC
2013. pp. 125–142. Springer

23. Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone
predicates in the standard model. In: PKC-2011. pp. 35–52. Springer

24. Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone
predicates in the standard model. Cryptology ePrint Archive, Report 2011/700

25. Okamoto, T., Takashima, K.: Fully secure functional encryption with general re-
lations from the decisional linear assumption. In: CRYPTO 2010. pp. 191–208.
Springer

26. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: ASIACRYPT 2012. pp. 349–366. Springer

27. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: ASIACRYPT 2009. pp. 214–231. Springer

28. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. Communications of the ACM 59(2), 103–112 (2016)

29. Sakai, Y., Attrapadung, N., Hanaoka, G.: Attribute-based signatures for circuits
from bilinear map. In: PKC 2016, pp. 283–300. Springer

30. Sakai, Y., Katsumata, S., Attrapadung, N., Hanaoka, G.: Attribute-based sig-
natures for unbounded languages from standard assumptions. Cryptology ePrint
Archive, Report 2018/842

31. Shahandashti, S.F., Safavi-Naini, R.: Threshold attribute-based signatures and
their application to anonymous credential systems. In: AFRICACRYPT 2009. pp.
198–216. Springer

32. Takashima, K.: New proof techniques for dlin-based adaptively secure attribute-
based encryption. In: ACISP 2017. pp. 85–105. Springer

33. Tang, F., Li, H., Liang, B.: Attribute-based signatures for circuits from multilinear
maps. In: ISC 2014. pp. 54–71. Springer

34. Tsabary, R.: An equivalence between attribute-based signatures and homomorphic
signatures, and new constructions for both. In: TCC 2017. pp. 489–518. Springer

35. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: PKC 2011. pp. 53–70. Springer

36. Waters, B.: Dual system encryption: Realizing fully secure ibe and hibe under
simple assumptions. In: CRYPTO 2009, pp. 619–636. Springer

	Efficient ABS for Unbounded Arithmetic Branching Programs
	Introduction
	Preliminaries
	Notations
	Arithmetic Branching Programs and Arithmetic Span Programs
	Bilinear Groups and Dual Pairing Vector Spaces
	Collision-Resistant Hash Functions
	The Notion of Attribute-Based Signatures for Arithmetic Branching Programs

	The Proposed ABS Scheme
	Security

