
Lattice-based Revocable (Hierarchical) IBE with
Decryption Key Exposure Resistance

Shuichi Katsumata1,2, Takahiro Matsuda2, and Atsushi Takayasu1,2

1 The University of Tokyo, Tokyo, Japan,
2 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

takayasu@mist.i.u-tokyo.ac.jp

Abstract. Revocable identity-based encryption (RIBE) is an extension
of IBE that supports a key revocation mechanism, which is an indispens-
able feature for practical cryptographic schemes. Due to this extra fea-
ture, RIBE is often required to satisfy a strong security notion unique to
the revocation setting called decryption key exposure resistance (DKER).
Additionally, hierarchal IBE (HIBE) is another orthogonal extension of
IBE that supports key delegation functionalities allowing for scalable
deployments of cryptographic schemes. So far, R(H)IBE constructions
with DKER are only known from bilinear maps, where all constructions
rely heavily on the so-called key re-randomization property to achieve the
DKER and/or hierarchal feature. Since lattice-based schemes seem to be
inherently ill-fit with the key re-randomization property, no construction
of lattice-based R(H)IBE schemes with DKER are known.
In this paper, we propose the first lattice-based RHIBE scheme with
DKER without relying on the key re-randomization property, departing
from all the previously known methods. We start our work by provid-
ing a generic construction of RIBE schemes with DKER, which uses as
building blocks any two-level standard HIBE scheme and (weak) RIBE
scheme without DKER. Based on previous lattice-based RIBE construc-
tions without DKER, our result implies the first lattice-based RIBE
scheme with DKER. Then, building on top of our generic construction,
we construct the first lattice-based RHIBE scheme with DKER, by fur-
ther exploiting the algebraic structure of lattices. To this end, we prepare
a new tool called the level conversion keys, which enables us to achieve
the hierarchal feature without relying on the key re-randomization prop-
erty.

1 Introduction

Identity-based encryption (IBE) is an advanced form of public key encryption,
where an arbitrary string can be used as user’s public keys. One extension of
IBE is hierarchical IBE (HIBE), which further supports a key delegation func-
tionality; an attractive feature for scalable deployments of IBE. However, as
opposed to ordinary public key encryption, (H)IBE does not support a key/user
revocation mechanism due to the absence of the public key infrastructures and
there are no trivial ways to drive malicious users out from an ordinary (H)IBE

2

system. Therefore, adding a key revocation mechanism to (H)IBE is considered
to be one of the important research themes when considering practical deploy-
ments of (H)IBE. For instance, Boneh and Franklin [7] proposed a method for
adding a simple revocation mechanism to any IBE system. However, the bottle-
neck of their proposal was its efficiency. The number of keys generated for every
time period was proportional to the number of all users in the IBE system and
the scheme did not scale if the number of users became too large. Since then,
constructing an (H)IBE scheme with a scalable revocation mechanism has been
a sought-after goal. Below, we refer to (H)IBE that allows for such a scalable
revocation mechanism as revocable (H)IBE.

The first revocable IBE (RIBE) scheme was proposed by Boldyreva et al. [6].
RIBE requires three types of keys: a secret key, a key update, and a decryp-
tion key. As in IBE, each user is issued a secret key that is associated with his
identity. However, in order to achieve the key revocation mechanism, each user’s
secret key itself does not allow them to decrypt ciphertexts. To allow the users to
decrypt, the key generation center (KGC) broadcasts key updates for every time
period through a public channel. Roughly, the key update incorporates public
information of the users that are currently allowed in the system. Specifically,
although the key update is meaningless information to revoked users, it allows
non-revoked users to combine with their secret keys to derive a decryption key,
which effectively enables them to properly decrypt ciphertexts. To achieve a
scalable revocation mechanism, Boldyreva et al. utilized a subset cover frame-
work called the complete subtree (CS) method [25], so that the size of the key
update sent by the KGC in each time period will be logarithmic in the number
of system users. The work of Boldyreva et al. [6] attracted numerous followup
works [15,18,20,33,37] and their RIBE construction was also extended to re-
vocable hierarchical IBE (RHIBE) which simultaneously support scalable key
revocation and key delegation functionalities [13,17,19,32,34,35].

Considering that RIBE and RHIBE were introduced by envisioning the real-
world use of (H)IBE systems, their security definitions should take into account
as many realistic threats and attack scenarios as possible. For example, leak-
age of decryption keys due to social/cyber attacks or unexpected human errors
are common incidents in practice. Motivated by this, Seo and Emura [33,35]
introduced a security notion unique to R(H)IBE called decryption key exposure
resistance (DKER). Roughly speaking, this security notion guarantees that an
exposure of a user’s decryption key at some time period will not compromise the
confidentiality of ciphertexts that are encrypted for different time periods — a
clearly desirable security guarantee in practice. After the introduction of the new
security notion DKER, it has quickly become one of the default security require-
ments for R(H)IBE and attracted many followup works concerning R(H)IBE
schemes with DKER [13,15,17,18,19,23,28,29,32,35,37]. So far constructions of
R(H)IBE schemes with DKER are all based on bilinear or multilinear maps.

State of affairs of Lattice-based R(H)IBE. Lattice-based cryptography has
been paid much attention in the last decade, however, construction of R(H)IBE
schemes with DKER has been rather elusive. In 2012, Chen et al. [10] proposed

3

the first lattice-based RIBE scheme without DKER; a work before the now de-
fault security notion of DKER was formalized by Seo and Emura [33], building
on top of the standard IBE constructions of [1,8]. The only followup work was
done recently by Takayasu and Watanabe [36] who partially solved the problem
of achieving RIBE with DKER by proposing a variant of [10]. Unfortunately,
their scheme only satisfies bounded DKER, a strictly weaker notion than DKER,
which only allows a bounded number of decryption keys to be leaked. Therefore,
constructing an RIBE scheme with (unbounded) DKER based on lattices still
remains an unsolved problem. This is in sharp contrast with the bilinear map
setting where many constructions are known [13,15,17,18,19,32,33,35,37]. More-
over, extending the RIBE scheme of Chen et al. [10] to the hierarchal setting
seems to be highly non-trivial since no construction of lattice-based RHIBEs are
known regardless of the scheme being DKER or not.

One of the main reasons why constructing R(H)IBE schemes with DKER
in the lattice-setting has been difficult is because the algebraic structure
of lattices seems to be ill-fit with the so-called key re-randomization prop-
erty. So far, all RIBE schemes [15,18,23,29,33,37] and RHIBE schemes with
DKER [13,17,19,28,32,35] are based on number theoretical assumptions, e.g.,
bilinear maps and multilinear maps, which all rely heavily on this key re-
randomization property. At a high level, this is the property with which each
user can re-randomize their key so that the re-randomized key is distributed
identically to (or at least statistically close to) a key generated using a fresh
randomness. In essence, this is the central property that enables DKER. Fur-
thermore, this property is also heavily utilized when generating the children’s
secret keys for fixed randomness without using any secret information, hence,
achieving the hierarchal feature. However, unfortunately, due to the difference
in the algebraic structure of bilinear, multilinear maps and lattices, we are cur-
rently unaware of any way of achieving the key re-randomization property from
lattices.3 Therefore, to construct lattice-based R(H)IBE schemes with DKER,
it seems that we must deviate from prior methodologies and develop new tech-
niques.

Our Contributions. In this paper, we propose the first lattice-based R(H)IBE
scheme with DKER secure under the learning with errors (LWE) assumption.
The techniques used in this work highly depart from previous works that rely on
the key re-randomization property for achieving DKER and the key delegation
functionality. Specifically, we show a generic construction of an RIBE scheme
with DKER from any two-level standard HIBE scheme and RIBE scheme with-
out DKER, thus bypassing the necessity of the key re-randomization property.
Then, building on top of the idea of our generic construction, we further exploit
the algebraic structure of lattices to construct an RHIBE scheme with DKER.

3 A knowledgeable reader familiar with lattice-based cryptography may wonder why
the existing RIBE schemes [10,36] cannot be easily modified to support the property
by using short trapdoor bases. We provide detailed discussions on why this simple
modification is insufficient in Section 2.

4

We provide a brief summary of our work below and refer the detailed technical
overview to Section 2.

Our first contribution is a generic construction of RIBE with DKER from
any RIBE without DKER and two-level HIBE. The new tools we introduce to
circumvent the necessity of the key re-randomization property are called leveled
ciphertexts and leveled decryption keys. At a high level, each “level” for the
leveled ciphertexts and decryption keys is associated to the RIBE scheme without
DKER and the two-level HIBE scheme, respectively; one level is responsible for
achieving the revocation mechanism and the other is responsible for the key
re-randomization mechanism. Therefore, informally, our leveled structure allows
for a partial key re-randomization mechanism. Using the lattice-based RIBE
scheme without DKER of Chen et al. [10] and any lattice-based HIBE scheme,
e.g., [1,8], our result implies the first lattice-based RIBE scheme with DKER.
Furthermore, since any IBE schemes can be converted to an HIBE scheme [12]
(in the selective-identity model) and any RIBE scheme without DKER implies
an IBE scheme, our result also implies a generic conversion of any RIBE scheme
without DKER into an RIBE scheme with DKER.

Our second contribution is the construction of the first lattice-based RHIBE
scheme with DKER. It is built on top of the idea of our generic construction and
further exploits the algebraic structure unique to lattices. Namely, to achieve
the key delegation functionality, i.e., hierarchal feature, we additionally intro-
duce a tool called level conversion keys. In essence, this tool enables a user to
convert his (secret) decryption key to a (public) key update for users of different
hierarchal levels. In other words, the level conversion key allows one to delegate
his key to its children without re-randomizing his key. Although the idea is sim-
ple, the concrete machinery to blend the level conversion keys securely into the
construction is rather contrived and we refer the details to Section 2.

Finally, we state some side contributions worth highlighting in our paper.
Firstly, we re-formalize the syntax and security definitions for R(H)IBE. For in-
stance, since previous security definitions [6,33,34,35] had some ambiguity (e.g.
in some cases it is not clear when the values such as secret keys and key updates
are generated during the security game), it was up to the readers to interpret the
definitions and the proofs. Therefore, in our work we provide a refined security
definition for R(H)IBE which in particular is a more rigorous and explicit treat-
ment than the previous definitions. Secondly, we provide a formal treatment on
an implicit argument that has been frequently adopted in the R(H)IBE litera-
ture. In particular, we introduce a simple yet handy “strategy-dividing lemma”,
which helps us simplify the security proofs for R(H)IBE schemes in general. For
the details, see Section 4.

Related Works. Boldyreva et al. [6] proposed the first RIBE scheme
that achieved selective-identity security from bilinear maps and Libert and
Vergnaud [20] extended their results to the adaptive setting. The first lattice-
based RIBE scheme was proposed by Chen et al. [10] and the first RHIBE scheme
was proposed by Seo and Emura [34] based on bilinear maps. Recently, Chang

5

et al. [9] proposed an RIBE scheme from codes with rank metric in the random
oracle model.

After Seo and Emura [33] introduced the security notion of DKER
and proposed the first RIBE scheme with DKER, several improvements
and variants have been proposed. These works consist of RIBE [15,18,37]
and RHIBE [13,17,19,35] from bilinear maps, and those from multilinear
maps [23,28,29]. From lattices, Takayasu and Watanabe [36] proposed an RIBE
scheme with bounded DKER; a strictly weaker notion then DKER.

Server-aided RIBE [11,26,30] is a variant of RIBE where most of the computa-
tion of the users are delegated to an untrusted server. The revocation mechanism
we study in this paper is sometimes referred to as indirect revocation. A direct
revocation mechanism does not require key updates and has been discussed for
attribute-based encryption [4,5] and predicate encryption [27]. Recently, Ling
et al. proposed the first lattice-based directly revocable predicate encryption
scheme [21] and its server-aided variant [22].

Roadmap. In Section 2, we provide an overview of our constructions. In Sec-
tion 3, we recall basic tools for lattice-based cryptography. In Section 4, we
introduce formal definitions for RHIBE. In Section 5, we show a generic con-
struction of RIBE with DKER. Finally, in Section 6, we show our main result
concerning the first lattice-based RHIBE scheme with DKER.

Notations. Before diving into the technical details, we prepare some notations.
Let N be the set of all natural numbers. For non-negative integers n, n′ ∈ N
with n ≤ n′, we define [n, n′] := {n, n+ 1, . . . , n′}, and we extend the definition
for n > n′ by [n, n′] = ∅. For notational convenience, for n ∈ N, we define
[n] := [1, n]. Throughout the paper, λ ∈ N denotes the security parameter.

As usual in the literature of (R)HIBE, an identity ID of a user at level
ℓ in the hierarchy in an RHIBE scheme is expressed as a length-ℓ vector
ID = (id1, · · · , idℓ). In order not to mix up with an identity ID = (id1, id2, . . .)
treated in an RHIBE scheme and its element idi, we sometimes call the former a
hierarchical identity and the latter an element identity. We refer to the set of all
element identities as the element identity space and denote it by ID. We assume
the element identity space is determined only by the security parameter λ. Thus,
for example, the space to which level-ℓ identities belong is expressed as (ID)ℓ.
For notational convenience, for ℓ ∈ N we define (ID)≤ℓ :=

∪
i∈[ℓ](ID)i, and

the hierarchal identity space IDh := (ID)≤L. We denote by “kgc” the special
hierarchical identity for the level-0 user, i.e., the key generation center (KGC).

Like an ordinary vector, we consider a prefix of hierarchical identities. For
example, for a level-ℓ hierarchical identity ID = (id1, . . . , idℓ) and t ≤ ℓ, ID[t]

represents the length-t prefix of ID, i.e., ID[t] = (id1, . . . , idt). We denote by

“pa(ID)” the identity of its parent (i.e. the direct ancestor), namely, if ID ∈ (ID)ℓ,
then pa(ID) := ID[ℓ−1] = (id1, . . . , idℓ−1), and pa(ID) for a level-1 identity ID ∈
ID is defined to be kgc. Furthermore, we denote by “prefix(ID)” the set consisting
of itself and all of its ancestors, namely, prefix(ID) := {ID[1], ID[2], . . . , ID[|ID|] =

ID}. Also, for ID ∈ (ID)ℓ, we denote by “ID∥ID” as the subset of (ID)ℓ+1 that
contains all the members who have ID as its parent.

6

2 Technical Overview

In this section, we provide the technical overview of our results. In order to
make the lattice-based RHIBE overview easier to follow, we present the details
of our generic construction of RIBE with DKER using lattice terminologies. The
general idea presented below translates naturally to our generic construction.
To this end, we first prepare two standard hash functions used in lattice-based
cryptography: one for the users ID ∈ IDh = ID≤L, where each element identity
space is defined by ID = Zn

q \ {0n}, and another for the time period4 t ∈ T ⊂
Zn
q \ {0n}. In particular, for a user ID = (id1, . . . , idℓ) ∈ (Zn

q \ {0n})≤L and time
period t ∈ Zn

q \ {0n} we use the following hash functions E(·) and F(·):

E(ID) := [B1 +H(id1)G| · · · |Bℓ +H(idℓ)G] ∈ Zn×ℓm
q ,

F(t) := BL+1 +H(t)G ∈ Zn×m
q ,

(1)

where (Bj)j∈[L+1] are random matrices in Zn×m
q chosen at setup of the scheme

and G is the gadget matrix [24]. Here, H : Zn
q → Zn×n

q is a specific hash
function used to encode an identity to a matrix, and its definition is provided in
Section 3. Notice that for any ID ∈ (Zn

q \ {0n})ℓ and idℓ+1 ∈ Zn
q \ {0n}, we have

E(ID∥idℓ+1) = [E(ID)|Bℓ+1 +H(idℓ+1)G]. Finally, we define E(kgc) := ∅.

Review of RIBE without DKER. We first recall Chen et al.’s lattice-based
RIBE scheme without DKER [10] in Figure 1. Here,A and u in the master public
key PP are a matrix in Zn×m

q and a vector in Zn
q , respectively, and TA is the

trapdoor associated with A. Other terms will be explained as we proceed with
our technical overview. Below, we see why the scheme realizes the revocation

PP := (A,u,hash functions E(·),F(·)), skkgc := TA

ct := (c0 := u⊤s+ noise+M
⌊
q
2

⌋
, c1 := [A|E(ID)|F(t)]⊤s+ noise)

skID := (eID,θ)θ s.t. [A|E(ID)]eID,θ = uθ

kut := (et,θ)θ s.t. [A|F(t)]et,θ = u− uθ

dkID,t := dID,t s.t. [A|E(ID)|F(t)]dID,t = u

Fig. 1: Chen et al.’s RIBE Scheme

mechanism while it does not satisfy DKER. One feature of RIBE construction is
that the KGC maintains a binary tree where each user is assigned to a randomly
selected leaf. Furthermore, a random vector uθ ∈ Zn

q is uniquely assigned to
each node θ of the binary tree. Below, we explain the three types of keys which
are core tools to realize the revocation mechanism: A secret key for a user ID is

4 As we will show in Section 4, the time period space is a set of natural numbers
{1, 2, . . .}. Here, we assume that there is an efficient hash function that maps each
natural number to a distinct vector in Zn

q \ {0n}.

7

a tuple of short vectors skID = (eID,θ)θ, where each short vector eID,θ ∈ Z2m is
associated to a random vector uθ such that

[A|E(ID)]eID,θ = uθ.

Since uθ is an independent random vector and the ciphertext c0 only depends on
u, the vector eID,θ in skID itself is useless for decrypting a ciphertext ct. Hence,
in each time period the KGC broadcasts a key update which is also a tuple of
short vectors kut = (et,θ)θ, where each short vector et,θ is associated to a random
vector uθ such that

[A|F(t)]et,θ = u− uθ.

Similarly to above, et,θ in kut itself is useless for decrypting a ciphertext ct.
Now, we explain how the revocation mechanism works. By utilizing the complete
subtree (CS) method [25], the KGC is able to broadcast key updates so that there
is no common node θ in kut and skID of revoked IDs, while there is at least one
common node θ in kut and skID of non-revoked IDs. Then, eID,θ in skID and et,θ
in kut of the common node θ enable a non-revoked ID to derive a well-formed
decryption key dID,t ∈ Z3m which is a short vector satisfying

[A|E(ID)|F(t)]dID,t = u.

It can be easily checked that dID,t can be obtained by simply adding eID,θ and et,θ
in a component-wise fashion. Note that if eID,θ and et,θ are short vectors, then
so is dID,t. Then, the vector enables us to recover the plaintext by computing

c0 − c⊤1 dID,t ≈ M
⌊q
2

⌋
.

The main insight of this construction is that only non-revoked users can use the
key updates to eliminate the random factor uθ to obtain a short vector dID,t

that is bound to the the public matrix [A|E(ID)|F(t)] and public vector u with
which a ciphertexts ct is created.

Although the scheme is proven to be a secure RIBE scheme without DKER,
it clearly does not satisfy DKER. Indeed, there is a concrete attack even with a
single decryption key query (i.e., decryption key exposure) on the target ID∗. The
attack is as follows: assume that the adversary obtains a decryption key dkID∗,t

for the target ID∗ and a time period t ̸= t∗. Since key updates are publicly
broadcast, the adversary also obtains kut and kut∗ . Since user ID∗ will not be
revoked unless skID∗ was revealed to the adversary, the key updates kut and kut∗
will share a common node θ∗ with the secret key.5 Therefore, recalling that dkID∗,t

was a simple component-wise addition of eID∗,θ∗ in skID∗ and et,θ∗ in kut, A can
first recover the secret key component eID∗,θ∗ from (dkID∗,t, et,θ∗), which he can
then combine it with et∗,θ∗ in kut∗ to create the decryption key dID∗,t∗ for the

5 To be more precise, there are cases kut and kut∗ might not share a common node,
however, A can always adaptively revoke other users so that this holds.

8

challenge time period t∗. Specifically, this decryption key allows the adversary
to completely break the scheme. In reality, this corresponds to the fact that once
a decryption key for a certain time period is exposed to an adversary, then all
the messages of distinct time periods may also be compromised. In essence, this
attack relies on the fact that the decryption key leaks partial information on the
secret key, which can then be used to construct decryption keys of all distinct
time periods.

In all the previous bilinear map-based constructions, the above problem was
circumvented by relying on the so-called key re-randomization property. Infor-
mally, this property allows one to re-randomize the decryption key, hence even
if the decryption key is leaked, it would be impossible to restore the original
secret key. In the above construction, this idea would correspond to re-sampling
a short random vector d̄ID,t such that

[A|E(ID)|F(t)]d̄ID,t = u

using his original decryption key dID,t. Indeed, if the distribution of d̄ID,t is
independent of the original decryption key dID,t, this modification would prevent
the above attack, since the adversary will not be able to recover the secret
key component eID∗,θ∗ anymore using the above strategy. However, such a re-
sampling procedure is computationally infeasible, since otherwise we would be
able to trivially solve the small integer solution (SIS) problem.

Readers familiar with lattice-based constructions of (non-revocable) HIBE
may think that we could achieve the key re-randomization property by simply
using a short trapdoor basis as the secret key instead of a vector. Indeed, if
we add a short trapdoor basis T[A|E(ID)] as a part of the secret key skID, the
user ID will be able to sample a short vector d̄ID,t ̸= dID,t, since anybody can
efficiently extend the trapdoor basis T[A|E(ID)] to T[A|E(ID)|F(t)] and thus sample
a random vector d̄ID,t such that [A|E(ID)|F(t)]d̄ID,t = u. However, this approach
does not mesh well with the above revocation mechanism, since now the user
ID can derive decryption keys dID,t for every time period without requiring the
key updates kut. Therefore, adding a short trapdoor basis to the secret key
provides too much flexibility to the users and we completely lose the mechanism
for supporting revocation.

Constructing RIBE with DKER. To summarize so far, the main bottleneck
of Chen et al.’s RIBE scheme without DKER is that it satisfies the key revocation
mechanism, but seems challenging to extend it to satisfy DKER. On the other
hand, adding a short trapdoor basis would definitely be useful for achieving
DKER, however, it seems to contradict with the revocation mechanism. In the
following, we show that we can carefully combine these two seemingly conflicting
ideas together. The concrete construction of our lattice-based RIBE scheme with
DKER is illustrated in Figure 2. The boxed items denote the changes made from
the previous figure.

Our construction relies on a tool we call leveled ciphertexts and leveled de-
cryption keys; the terminology should become more intuitive and helpful in the
hierarchical setting that we explaine later. Here, we call an element associated

9

PP := (A, Ā ,u, hash functions E(·),F(·)), skkgc := (TA, TĀ)

ct :=

 c0 := u⊤(s+ s̄) + noise+M
⌊
q
2

⌋
,

c1 := [A|E(ID)|F(t)]⊤s+ noise, c̄1 := [Ā|E(ID)|F(t)]⊤s̄+ noise


skID :=

(
(eID,θ)θ, T[Ā|E(ID)]

)
s.t. [A|E(ID)]eID,θ = uθ

kut := (et,θ)θ s.t. [A|F(t)]et,θ = u− uθ

dkID,t :=
(
dID,t, d̄ID,t

)
s.t. [A|E(ID)|F(t)]dID,t = u, [Ā|E(ID)|F(t)]d̄ID,t = u

Fig. 2: Our RIBE Scheme with DKER

with a matrix A and Ā level-1 and level-2, respectively. In particular, c1, c̄1 and
dID,t, d̄ID,t in Figure 2 are the level-1, level-2 ciphertexts and decryption keys,
respectively. Here, the level-1 components c1 and dID,t correspond to Chen et
al.’s RIBE scheme without DKER and are responsible for achieving the revo-
cation mechanism. On the other hand, the level-2 components c̄1 and d̄ID,t are
the newly introduced elements that will help us achieve DKER. Since the two
decryption keys for levels-1 and 2 are in one-to-one correspondence with the
ciphertexts (c1, c̄1) for levels-1 and 2, both of the decryption keys are required
to recover the underlying message as follows:

c0 − c⊤1 dID,t︸ ︷︷ ︸
level-1 component

− c̄⊤1 d̄ID,t︸ ︷︷ ︸
level-2 component

≈ M
⌊q
2

⌋
.

In particular, if either level of the decryption key is missing, the message cannot
be recovered. Separating the role of the decryption keys is the main idea that
allows us to associate the two seemingly conflicting properties of revocation and
key re-randomization to each level of the decryption keys.

First, we observe that the above RIBE scheme achieves the revocation mech-
anism since it simply inherits this property from the underlying Chen et al.’s
RIBE scheme without DKER. Furthermore, we achieve DKER by incorporating
the aforementioned trapdoor idea; we add a trapdoor T[Ā|E(ID)] to the secret
key skID. Using this short trapdoor basis T[Ā|E(ID)], we can now sample a level-2

decryption key d̄ID,t for each time period independently from the previous time
periods. Namely, using T[Ā|E(ID)], we can sample a short vector d̄ID,t such that

[Ā|E(ID)|F(t)]d̄ID,t = u,

where d̄ID,t leaks no information of the secret key skID. Hence, although we are not
able to completely re-randomize the decryption key dkID,t = (dID,t, d̄ID,t), we can
partially re-randomize the decryption key by sampling a new level-2 decryption
key d̄ID,t for each time period; even if dkID,t is compromised, this alone will not
be sufficient for constructing decryption keys for other time periods. Indeed, we
show that this partial key re-randomization property is sufficient to prove the
DKER security.

10

In Section 5, we formalize and prove the above idea by providing a generic
construction of RIBE with DKER, using as building blocks any RIBE without
DKER and 2-level HIBE. At a high level, the 2-level HIBE scheme is responsible
for the key re-randomization property and is the core component that allows us
to convert non-DKER secure RIBE schemes into DKER secure RIBE schemes.

Constructing RHIBE from Lattices. Next, we show an overview of our
lattice-based RHIBE construction. For simplicity of presentation and since we
can add DKER via the above idea, we do not take into account DKER in the fol-
lowing RHIBE construction. Specifically, we explain how to construct an RHIBE
scheme without DKER by modifying Chen et al.’s RIBE scheme.

Before getting into detail, we prepare some notations used for the hierarchal
setting. In the following, let L be the maximum depth of the hierarchy, where
we treat the KGC as level-0. In RHIBE, all level-i users ID for i ∈ [0, L − 1],
including the KGC, maintain a binary tree BTID to manage their children users
in ID∥ID. Furthermore, a random vector uID,θ ∈ Zn

q is uniquely assigned to each
node θ of the binary tree BTID. The level-(ℓ − 1) user pa(ID) creates the secret
key skID of the level-ℓ user ID, and the user ID derives his own decryption key
dkID,t by combining his own secret key skID and the key updates kupa(ID),t that
are broadcast by the parent user pa(ID). Throughout the overview, we assume
ID represents an level-ℓ user.

Introducing Leveled Secret Keys: Due to the complex nature of our scheme, we
believe it to be helpful to provide the intuition of our scheme following a series
of modifications, where our final scheme without DKER is depicted in Figure 6.
Our starting point is illustrated in Figure 3, where as before, the box indicates
the changes made from the prior scheme.

PP := ((Ai)i∈[L] ,u, hash functions E(·),F(·)), skkgc := (TAi)i∈[L]

ct :=
(
c0 := u⊤s+ noise+M

⌊
q
2

⌋
, c1 := [Aℓ |E(ID)|F(t)]⊤s+ noise

)
skID :=

(
(eID,θ)θ, (T[Ai|E(ID)])i∈[ℓ+1,L]

)
s.t. [Aℓ |E(ID)]eID,θ = upa(ID),θ

kupa(ID),t := (epa(ID),t,θ)θ s.t. [Aℓ |E(pa(ID))|F(t)]epa(ID),t,θ = u− upa(ID),θ

dkID,t := dID,t s.t. [Aℓ |E(ID)|F(t)]dID,t = u

Fig. 3: Leveled Secret Key and i-Leveled Ciphertext

Toward resolving the incompatibility of the key delegation property and the
key revocation mechanism, the scheme in Figure 3 utilizes leveled ciphertexts as
done in the prior non-hierarchal scheme in Figure 2. Furthermore, we introduce
a new tool called leveled secret keys in this scheme. Here, we call an element
associated with a matrix Ai level-i, respectively. In particular, the ciphertext ct
of a level-ℓ user ID is a level-ℓ ciphertext since c1 is associated with Aℓ. The
main trick of the scheme in Figure 3 is that a secret key skID for a level-ℓ user
consists of level-i secret keys for i ∈ [ℓ, L], where the level-ℓ secret key (eID,θ)θ

11

and the other level-i secret keys T[Ai|E(ID)] for i ∈ [ℓ + 1, L] serve a different
purpose. The level-ℓ secret key in skID is a tuple of short vectors of the form
(eID,θ)θ each of which satisfies

[Aℓ|E(ID)]eID,θ = [Aℓ|E(pa(ID))|Bℓ +H(idℓ)G]eID,θ = upa(ID),θ, (2)

and serves the same purpose as the original Chen et al.’s RIBE scheme. Namely,
the level-ℓ secret key of a level-ℓ user is used for decrypting its own level-ℓ
ciphertext, where the detailed procedure will be explained later. The remaining
level-i secret keys in skID for i ∈ [ℓ + 1, L] are trapdoors of the form T[Ai|E(ID)]

in skID and serves the purpose of delegation. Concretely, using the trapdoor
T[Ai|E(ID)] for i ∈ [ℓ + 1, L], the level-ℓ user ID can sample all level-i secret
keys for his children ID∥idℓ+1 ∈ ID∥ID; a set of short vectors (eID∥idℓ+1,θ)θ such
that [Ai|E(ID∥idℓ+1)]eID∥idℓ+1,θ = uID,θ and trapdoors T[Ai|E(ID∥idℓ+1)] for i ∈
[ℓ+ 2, L]. In addition, the level-ℓ user ID can also use the level-(ℓ+ 1) trapdoor
T[Aℓ+1|E(ID)] in skID to derive key updates kuID,t. Here, a level-(ℓ−1) user pa(ID)’s
key update kupa(ID),t is a tuple of short vectors (epa(ID),t,θ)θ such that

[Aℓ|E(pa(ID))|F(t)]epa(ID),t,θ = u− upa(ID),θ. (3)

Then, from Eq. (2) and (3), the level-ℓ user ID can derive a well-formed decryp-
tion key dkID,t which is a short vector of the form dID,t satisfying

[A|E(ID)|F(t)]dID,t = [A|E(pa(ID))|Bℓ +H(idℓ)G|F(t)]dID,t = u.

Hence, the scheme in Figure 3 properly supports the key delegation functionality.
Furthermore, at first glance, the scheme also supports the key revocation

mechanism. Since the level-ℓ secret key (eID,θ)θ of the level-ℓ user ID is exactly
the same as the secret key used by user ID in Chen et al.’s RIBE scheme, it
simply inherits the revocation mechanism. In particular, user ID will not be able
to decrypt his level-ℓ ciphertext without his parent’s key update kupa(ID),t, which
will no longer be provided once user ID is revoked. However, unfortunately, this
scheme is trivially flawed and does not meet the security notion of RHIBE. In
RHIBE, we require the user ID to be revoked once any of his ancestors ID[i] ∈
prefix(ID) for i ∈ [ℓ − 1] is revoked. In other words, once a user is revoked from
the system, then all of its descendants must also be revoked. It can be easily
checked that this requirement is not met by our above RHIBE scheme. Since the
level-ℓ user ID has the full trapdoor T[Ai|E(ID)] for i ∈ [ℓ + 1, L] as part of its
secret key, nothing is preventing user ID from continuing on generating secret
keys and key updates for his children.

Introducing Leveled Decryption Keys: To fix the above issue concerning key re-
vocation, we further modify the scheme as in Figure 4. From now on, we further
modify the definition of level-i ciphertext, and call a tuple

(u⊤si + noise, ci = [Ai|E(ID[i])|F(t)]⊤si + noise)

a level-i ciphertext since ci is associated with the public matrix Ai and both
components are associated with the same secret vector si. In this scheme, we

12

PP := ((Ai)i∈[L],u, hash functions E(·),F(·)), skkgc := (TAi)i∈[L]

ct :=

 c0 := u⊤ (s1 + · · ·+ sℓ) + noise+M
⌊
q
2

⌋
,

(ci := [Ai|E(ID[i])|F(t)]⊤si + noise)i∈[ℓ]


skID := ((eID,θ), (T[Ai|E(ID)])i∈[ℓ+1,L]) s.t. [Aℓ|E(ID)]eID,θ = uθ

kupa(ID),t := ((epa(ID),t,θ), (fID[i],t)i∈[ℓ−1]) s.t. [Aℓ|E(pa(ID))|F(t)]epa(ID),t,θ = u− uθ,

[Ai|E(ID[i])|F(t)]fID[i],t = u

dkID,t :=
(
dID,t, (fID[i],t)i∈[ℓ−1]

)
s.t. [Aℓ|E(ID)|F(t)]dID,t = u

Fig. 4: Multiple Leveled Ciphertext and Key Update

modify the ciphertext for a level-ℓ user ID to contain all the level-i ciphertexts
for i ∈ [ℓ], where each level-i ciphertext is associated with the public matrix Ai

and an identity ID[i]. The idea behind this modification is to revoke any user
ID whose ancestors were revoked by including some information specific to the
ancestors in the ciphertext. In particular, if some ancestor at level i ∈ [ℓ − 1]
were to be revoked, then the level-i ciphertext ci should become undecryptable,
hence maintaining the secrecy of the plaintext M. To make this idea work, we
must now provide user ID with new components to allow decryption of the level-
i ciphertexts for i ∈ [ℓ − 1]. We achieve this by introducing a new tool called
leveled decryption keys. A leveled decryption key for a level-ℓ user ID consists
of level-i decryption keys for i ∈ [ℓ]. Similarly to leveled secret keys, the level-ℓ
decryption key dID,t and the other level-i decryption keys fID[i],t for i ∈ [ℓ − 1]
serve a different purpose. The level-ℓ decryption key denoted as dID,t in dkID,t

serves the same purpose as in the previous schemes. The level-i decryption key
for i ∈ [ℓ− 1] denoted as fID[i],t in dkID,t is the actual decryption key used by its
ancestor at level-i. Although we use a different notation, fID[i],t is equivalent to
dID[i],t such that

[Ai|E(ID[i])|F(t)]fID[i],t = [Ai|E(ID[i])|F(t)]dID[i],t = u. (4)

In particular, each ancestor at level-i for i ∈ [ℓ − 1] broadcasts their own de-
cryption key fID[i],t (See kupa(ID),t in Figure 4) and the user ID sets the level-i
decryption key for i ∈ [ℓ− 1] as fID[i],t. It can be easily verified that user ID can
correctly decrypt his ciphertext as follows:

c0 − c⊤ℓ dID,t︸ ︷︷ ︸
level-ℓ component

−
ℓ−1∑
i=1

c⊤i fID[i],t︸ ︷︷ ︸
level-i component

≈ M
⌊q
2

⌋
.

However, this scheme is obviously insecure, since the level-i ancestors are re-
quired to publicly broadcast their level-i decryption key fID[i],t(= dID[i],t), which
can in turn be used by anybody to decrypt the level-i ciphertexts of that par-
ticular ancestor.

13

Making the Levels Two-Dimensional: For the scheme in Figure 4 to be secure,
decryption keys of the ancestors should not be made public via the key updates.
Specifically, a ciphertext aimed for a user should not contain the same level as of
his ancestors, since otherwise the decryption keys of the ancestors must be made
public. For the purpose, we further modify the scheme as in Figure 5. To this

PP := ((Ai)i∈[L], (uk)k∈[L] , hash functions E(·),F(·)), skkgc := (TAi)i∈[L]

ct :=

(
c0 := uℓ

⊤
(s1 + · · · sℓ) + noise+M

⌊
q
2

⌋
,

(ci := [Ai|E(ID[i])|F(t)]⊤si + noise)i∈[ℓ]

)
skID := ((eID,θ), (T[Ai|E(ID)])i∈[ℓ+1,L]) s.t. [Aℓ|E(ID)]eID,θ = uθ,

kupa(ID),t := ((epa(ID),t,θ), (fID[i],t,k)i∈[ℓ−1],k∈[ℓ,L])

s.t. [Aℓ|E(pa(ID))|F(t)]epa(ID),t,θ = uℓ − uθ, [Ai|E(ID[i])|F(t)]fID[i],t,k = uk

dkID,t := (dID,t, (fID[i],t,ℓ)i∈[ℓ−1]) s.t. [Aℓ|E(ID)|F(t)]dID,t = uℓ

Fig. 5: (k, i)-Leveled Ciphertext and Decryption Key

end, we incorporate multiple public vectors (uk)k∈[L], and redefine the notion of
leveled ciphertexts and leveled decryption keys to be two-dimensional. Here, we
refer to an element associated with a vector uk and a matrix Ai as level-(k, i),
respectively. For example, we call a tuple

(u⊤
k si + noise, ci = [Ai|E(ID[i])|F(t)]⊤si + noise)

a level-(k, i) ciphertext since the first component is associated with the public
vector uk, and the latter component ci is associated with the public matrix
Ai, and both components are associated with the same secret vector si. In
particular, a ciphertext for a level-ℓ user ID consists of level-(ℓ, i) ciphertexts for
i ∈ [ℓ]. Accordingly, we must provide user ID with a redefined leveled decryption
key to allow decryption of the two-dimensional leveled ciphertexts. Specifically,
we provide a level-ℓ user ID with level-(ℓ, i) decryption keys for i ∈ [ℓ], where
again the level-(ℓ, ℓ) decryption key dID,t and the other level-(ℓ, i) decryption
keys fID[i],t,ℓ for i ∈ [ℓ − 1] serve a different purpose. The level-(ℓ, ℓ) decryption
key denoted as dID,t is constructed and serves the exact same purpose as in
the previous scheme. The level-(ℓ, i) decryption keys for i ∈ [ℓ− 1] are denoted
as fID[i],t,ℓ. As before, these decryption keys fID[i],t,ℓ are broadcast as part of
the parent’s key updates kupa(ID),t, however, the way they are defined is slightly
different from the previous scheme. Namely, the level-(ℓ, i) decryption key fID[i],t,ℓ

satisfies

[Ai|E(ID[i])|F(t)]fID[i],t,ℓ = uℓ,

14

Note that it is uℓ and not u as in Eq. (4). Using this, a level-ℓ user ID can
decrypt its ciphertext as follows:

c0 − c⊤ℓ dID,t︸ ︷︷ ︸
level-(ℓ, ℓ) component

−
ℓ−1∑
i=1

c⊤i fID[i],t,ℓ︸ ︷︷ ︸
level-(ℓ, i) component

≈ M
⌊q
2

⌋
,

where each level of the ciphertext and decryption keys are in one-to-one corre-
spondence with each other. Note that the level-ℓ user ID uses only level-(ℓ, i)
decryption keys fID[i],t,ℓ for i ∈ [ℓ − 1] provided in the key update kupa(ID),t to
decrypt his own ciphertext. He simply forwards the remaining level-(k, i) de-
cryption keys fID[i],t,k for (k, i) ∈ [ℓ + 1, L] × [ℓ − 1] as part of his key update
kuID,t.

One can see that the problem in the previous scheme of Figure 4 is now
resolved, since the public term fID[i],t,ℓ can only be used in combination with the
level-(ℓ, i) ciphertext. In other words, due to the two-dimensional level, fID[i],t,ℓ

is only useful for decrypting ciphertexts of level-ℓ users. Furthermore, since the
level-(ℓ, ℓ) decryption key dID,t still remains secret, the publicly broadcast de-
cryption keys fID[i],t,ℓ for i ∈ [ℓ − 1] alone are insufficient for decrypting the
ciphertexts sent to user ID. The remaining problem with this approach is that
there is currently no way for the level-(ℓ−1) ancestors pa(ID) to create the level-
(k, ℓ − 1) decryption keys (fID[ℓ−1],t,k)k∈[ℓ,L] which they must broadcast as part
of the key updates kupa(ID),t. Specifically, since they do not have the trapdoor
T[Aℓ−1|E(ID[ℓ−1])], they cannot simply sample the level-(k, ℓ− 1) decryption keys
(fID[ℓ−1],t,k)k∈[ℓ,L] for every time period.

Introducing Level Conversion Keys: Finally, we arrive at our proposed RHIBE
scheme (without DKER) illustrated in Figure 6. We overcome our final obstacle
by introducing a tool called level conversion keys. In the scheme of Figure 5, a
level-ℓ parent user ID is able to create his level-(ℓ, ℓ) decryption key dID,t by him-
self although he cannot compute the level-(k, ℓ) decryption keys (fID,t,k)k∈[ℓ+1,L]

in the key updates kuID,t (which corresponds to (fID[ℓ−1],t,k)k∈[ℓ,L] in kupa(ID),t of
level-(ℓ − 1) users in the figure). To overcome the issue, we define a level-[ℓ, k]

PP := ((Ai)i∈[L], (uk)k∈[L], hash functions E(·),F(·)), skkgc := (TAi)i∈[L]

ct :=

(
c0 := u⊤

ℓ (s1 + · · · sℓ) + noise+M
⌊
q
2

⌋
,

(ci := [Ai|E(ID[i])|F(t)]⊤si + noise)i∈[ℓ]

)
skID := ((eID,θ), (fID,k)k∈[ℓ+1,L] , (T[Ai|E(ID)])i∈[ℓ+1,L]) s.t. [Aℓ|E(ID)]eID,θ = uθ,

[Aℓ|E(ID)]fID,k = uk − uℓ

kupa(ID),t := ((epa(ID),t,θ), (fID[i],t,k)i∈[ℓ−1],k∈[ℓ,L])

s.t. [Aℓ|E(pa(ID))|F(t)]epa(ID),t,θ = uℓ − uθ, [Ai|E(ID[i])|F(t)]fID[i],t,k = uk

dkID,t := (dID,t, (fID[i],t,ℓ)i∈[ℓ−1]) s.t. [Aℓ|E(ID)|F(t)]dID,t = uℓ

Fig. 6: Level Conversion Key

15

conversion key (fID,k)k∈[ℓ+1,L] of a level-ℓ user ID satisfying

[Aℓ|E(ID)]fID,k = uk − uℓ.

To compute level-(k, ℓ) decryption keys (fID,t,k)k∈[ℓ+1,L] in key updates kuID,t,
the level-[ℓ, k] conversion key allows the user ID to convert his secret level-(ℓ, ℓ)
decryption key dID,t which satisfies

[Aℓ|E(ID)|F(t)]dID,t = uℓ

into a public level-(k, ℓ) decryption key fID,t,k which satisfies

[Aℓ|E(ID)|F(t)]fID,t,k = uk,

where the conversion is a simple component-wise addition. Since the scheme sup-
ports both the key delegation functionality and the key revocation mechanism,
it can be shown to be a secure RHIBE scheme without DKER.

Adding DKER to the Construction: To make the above lattice-based RHIBE
scheme in Figure 6 satisfy DKER, we will use the same idea incorporated in our
generic construction of RIBE with DKER. Specifically, we add one more level
to the above scheme and wrap a standard HIBE scheme around it to manage
the partial key re-randomization property. The concrete construction appears in
Section 6.

3 Preliminaries

In this section, we briefly summarize the basic tools used in lattice-based cryp-
tography. We treat vectors in their column form. For a vector v ∈ Rn, denote
∥v∥ as the standard Euclidean norm. For a matrix R ∈ Rn×n, denote ∥R∥GS

as the longest column of the Gram-Schmidt orthogonalization of R and denote
∥R∥2 as the largest singular value. We denote Im as the m×m identity matrix
and 0n×m as the n ×m zero matrix. We sometimes simply write 0n to denote
(column) zero vectors.

Lattices. A (full-rank-integer) m-dimensional lattice Λ in Zm is a set of the
form {

∑
i∈[m] xibi|xi ∈ Z}, where B = {b1, · · · ,bm} are m linearly independent

vectors in Zm. We call B the basis of the lattice Λ. For any positive integers
n,m and q ≥ 2, a matrix A ∈ Zn×m

q and a vector u ∈ Zn
q , we define Λ⊥

q (A) =
{z ∈ Zm|Az = 0n mod q} and Λu

q (A) = {z ∈ Zm|Az = u mod q}.
Gaussian Measures. Let DΛ,σ denote the standard discrete Gaussian distribu-
tion over Λ with a Gaussian parameter σ. We summarize some basic properties
of discrete Gaussian distributions.

Lemma 1 ([14]). Let Λ be an m-dimensional lattice. Let T be a basis for Λ, and
suppose σ ≥ ∥T∥GS · ω(

√
logm). Then Pr[∥x∥2 > σ

√
m : x← DΛ,σ] ≤ negl(m).

16

Lemma 2 ([14]). Let n,m, q be positive integers such that m ≥ 2n log q and q a
prime. Let σ be any positive real such that σ ≥ ω(

√
log n). Then for A← Zn×m

q

and e ← DZm,σ, the distribution of u = Ae mod q is statistically close to
uniform over Zn

q . Furthermore, for a fixed u ∈ Zn
q , the conditional distribution

of e ← DZm,σ, given Ae = u mod q for a uniformly random A in Zn×m
q is

DΛu
q (A),σ with all but negligible probability.

Sampling Algorithms. We review some of the algorithms for sampling short
vectors from a given lattice.

Lemma 3. Let n,m, m̄, q > 0 be positive integers with m ≥ 2n⌈log q⌉ and q a
prime. Then, we have the following polynomial time algorithms:
TrapGen(1n, 1m, q)→ (A,TA)([2,3,24]): a randomized algorithm that outputs a

full rank matrix A ∈ Zn×m
q and a basis TA ∈ Zm×m for Λ⊥

q (A) such that A

is statistically close to uniform and ∥TA∥GS = O
(√

n log q
)
with overwhelm-

ing probability in n.
SampleLeft(A,F,u,TA, σ)→ e([1,24]): a randomized algorithm that, given as

input a full rank matrix A ∈ Zn×m
q , a matrix F ∈ Zn×m̄

q , a vector

u ∈ Zn
q , a basis TA ∈ Zm×m of Λ⊥

q (A), and a Gaussian parameter

σ ≥ ∥TA∥GS ·ω
(√

logm
)
, outputs a vector e ∈ Zm+m̄ sampled from a distri-

bution statistically close to DΛu
q ([A|F]),σ.

([24]): There exists a fixed full rank matrix G ∈ Zn×m
q such that the lattice

Λ⊥
q (G) has a publicly known basis TG ∈ Zm×m with ∥TG∥GS ≤

√
5.

For simplicity, we omit the SamplePre algorithm of [1], since in our paper it
will be used as a public algorithm to sample from the lattice Zm. The following
algorithms allow one to securely delegate a trapdoor of a lattice to an arbitrary
higher-dimensional extension, with a slight loss in quality. It can be obtained by
combining the works of [8] and [1] in a straightforward manner.

Lemma 4. Let n,m, m̄, q > 0 be positive integers with m > n and q a prime.
Then, we have the following polynomial time algorithms:
ExtRndLeft(A,F,TA, σ)→ T[A|F] : a randomized algorithm that, given as input

matrices A ∈ Zn×m
q ,F ∈ Zn×m̄

q , a basis TA of Λ⊥
q (A), and a Gaussian

parameter σ ≥ ∥TA∥GS·ω(
√
log n), outputs a matrix T[A|F] ∈ Z(m+m̄)×(m+m̄)

distributed statistically close to (DΛ⊥
q ([A|F]),σ)

m+m̄.

ExtRndRight(A,G,R,TG, σ)→ T[A|AR+G] : a randomized algorithm that,
given as input full rank matrices A,G ∈ Zn×m

q , a matrix R ∈ Zm×m, a basis

TG of Λ⊥
q (G), and a Gaussian parameter σ ≥ ∥R∥2 · ∥TG∥2 · ω(

√
log n)

outputs a matrix T[A|AR+G] ∈ Z2m×2m distributed statistically close to
(DΛ⊥

q ([A|AR+G]),σ)
2m.

We use the standard map to encode identities as matrices in Zn×n
q .

Definition 1 ([1]). Let n, q be positive integers with q a prime. We say that a
function H : Zn

q → Zn×n
q is a full-rank difference (FRD) map if: for all distinct

ID, ID′ ∈ Zn
q , the matrix H(ID)−H(ID′) ∈ Zn×n

q is full rank, and H is computable
in polynomial time in n log q.

17

Hardness Assumption. The security of our RIBE scheme is reduced to the
learning with errors (LWE) assumption introduced by Regev [31].

Assumption 1 (Learning with Errors) For integers n,m, a prime q, a real
α ∈ (0, 1) such that αq > 2

√
n, and a PPT algorithm A, the advan-

tage for the learning with errors problem LWEn,m,q,DZm,αq
of A is defined as∣∣Pr [A(A,A⊤s+ x) = 1

]
− Pr [A(A,v + x) = 1]

∣∣, where A ← Zn×m, s ← Zn,
x ← DZm,αq, v ← Zm. We say that the LWE assumption holds if the above
advantage is negligible for all PPT A.

4 Formal Definitions for Revocable Hierarchical
Identity-Based Encryption and a Supporting Lemma

In this section, we give formal definitions for RHIBE in Section 4.1. Then, in
Section 4.2, we explain a simple and yet handy lemma that we call the “strategy-
dividing lemma”, which helps us simplify security proofs of R(H)IBE schemes
in general.

4.1 Revocable Hierarchical Identity-Based Encryption

As mentioned in the introduction, we re-formalize the syntax of RHIBE. Com-
pared to the existing works on RHIBE, our syntax of RHIBE treats each user’s
secret key, state information, and revocation list in a simplified manner. Thus,
we first explain our treatments of them, and then proceed to introducing the
formal syntax and security definitions.

On the Role of a Secret Key. In the literature of R(H)IBE, typically, the
entity who has the power to derive a secret key for lower-level users (i.e., the
KGC in RIBE, and non-leaf users in RHIBE), is modeled as a stateful entity,
and is supposed to maintain a so-called “state”, in addition to its own secret
key. The state information typically contains the information with which the
revocation mechanism is realized, and needs to be treated confidentially. Since
it is after all another type of secret information, in our syntax, we merge the
roles of the state information and a secret key. Hence, in our model, each user is
supposed to maintain its own secret key that is generated by its parent, and it
could be updated after performing the key generation algorithm (for generating
a secret key for its child) and the key update information generation algorithm.

On the Treatment of Revocation Lists. Note that unlike in standard revo-
cable (non-hierarchical) IBE, the key update information and revocation lists of
users are maintained individually by their corresponding parent users in RHIBE.
In our syntax of R(H)IBE, we treat a revocation list just as a subset of (the
corresponding children’s) identity space. More specifically, the revocation list
of a user with identity ID ∈ (ID)ℓ contains identities that belong to the set
ID∥ID ⊆ (ID)ℓ+1.

In the literature, for R(H)IBE, it is typical to consider the “revoke” algorithm
whose role is to add an identity of a user to be revoked into the revocation list.

18

We do not explicitly introduce such an algorithm as part of our syntax, since it
is a simple operation of appending revoked users to a list.

Syntax. An RHIBE scheme Π consists of the six algorithms (Setup,Encrypt,
GenSK,KeyUp,GenDK,Decrypt) with the following interface:

Setup(1λ, L)→ (PP, skkgc) : This is the setup algorithm that takes the security
parameter 1λ and the maximum depth of the hierarchy L ∈ N as input, and
outputs a public parameter PP and the KGC’s secret key skkgc (also called
a master secret key).
We assume that the plaintext space M, the time period space T :=
{1, 2, . . . , tmax}, where tmax is polynomial in λ, the element identity space
ID, and the hierarchical identity space IDh := (ID)≤L are determined only
by the security parameter λ, and their descriptions are contained in PP.

Encrypt(PP, ID, t,M)→ ct : This is the encryption algorithm that takes a public
parameter PP, an identity ID, a time period t, and a plaintext M as input,
and outputs a ciphertext ct.

GenSK(PP, skpa(ID), ID)→ (skID, sk
′
pa(ID)) : This is the secret key generation algo-

rithm that takes a public parameter PP, a parent’s secret key skpa(ID), and an
identity ID ∈ IDh as input, and may update the parent’s secret key skpa(ID).
Then, it outputs a secret key skID for the identity ID and also the parent’s
“updated” secret key sk′pa(ID).

KeyUp(PP, t, skID,RLID,t, kupa(ID),t)→ (kuID,t, sk
′
ID) : This is the key update infor-

mation generation algorithm that takes a public parameter PP, a time period
t, a secret key skID (of a user with ID ∈ (ID)≤L−1 ∪ {kgc}), a revocation
list RLID,t ⊆ ID∥ID, and a parent’s key update kupa(ID),t as input, and may
update the secret key skID. Then, it outputs a key update kuID,t and also the
“updated” secret key sk′ID.
In the special case ID = kgc, we define kupa(kgc),t := ⊥ for all t ∈ T , i.e., a
key update is not needed for generating the KGC’s key update kukgc,t.

GenDK(PP, skID, kupa(ID),t)→ dkID,t or ⊥ : This is the decryption key generation
algorithm that takes a public parameter PP, a secret key skID (of a user with
ID ∈ (ID)≤L), and a parent’s key update kupa(ID),t as input, and outputs
a decryption key dkID,t for time period t or the special “invalid” symbol ⊥
indicating that ID or some of its ancestor has been revoked.

Decrypt(PP, dkID,t, ct)→ M : This is the decryption algorithm that takes a public
parameter PP, a decryption key dkID,t, and a ciphertext ct as input, and
outputs the decryption result M.

Correctness. We require the following to hold for an RHIBE scheme. Infor-
mally, we require a ciphertext corresponding to a user ID for time t to be
properly decrypted by user ID if the user or any of its ancestor is not re-
voked on time t. To fully capture this, we consider all the possible scenar-
ios of creating the secret key for user ID. Namely, for all λ ∈ N, L ∈ N,
(PP, skkgc) ← Setup(1λ, L), ℓ ∈ [L], ID ∈ (ID)ℓ, t ∈ T , M ∈ M, RLkgc,t ⊆ ID,
RLID[1],t ⊆ ID[1]∥ID, . . . ,RLID[ℓ−1],t ⊆ ID[ℓ−1]∥ID, if ID′ ̸∈ RLpa(ID′),t holds for all

19

ID′ ∈ prefix(ID), then we require M′ = M to hold after executing the following
procedures:

(1) (kukgc,t, skkgc)← KeyUp(PP, t, skkgc,RLkgc,t,⊥).
(2) For all ID′ ∈ prefix(ID) (in the short-to-long order), execute (2.1) and (2.2):

(2.1) (skID′ , sk′pa(ID′))← GenSK(PP, skpa(ID′), ID
′).

(2.2) (kuID′,t, sk
′
ID′)← KeyUp(PP, t, skID′ ,RLID′,t, kupa(ID′),t).

6

(3) dkID,t ← GenDK(PP, skID, kupa(ID),t).
7

(4) ct← Encrypt(PP, ID, t,M).
(5) M′ ← Decrypt(PP, dkID,t, ct).

We note that, the most stringent way to define correctness would be to also
capture the fact that the secret keys skID can be further updated after executing
GenSK. In particular, the output of KeyUp, which takes as input the secret key
skID, may differ in general before and after GenSK is run. Therefore, to be more
precise, we should also allow an arbitrary (polynomial) number of executions
of GenSK in between steps (2.1) and (2.2). However, we defined correctness as
above for the sake of simplicity and readability. We note that our scheme satisfies
the more stringent correctness (which will be obvious from the construction).

Security Definition. Here, we give a formal security definition for RHIBE.
It seems to us that since the previous security definitions [6,33,34,35] have

some ambiguous treatment in the security game, it was up to the readers to
interpret the definitions and the proofs. Therefore, in our work, we provide a
refined security definition for RHIBE which in particular is a more rigorous and
explicit treatment than the previous definitions.

Specifically, we explicitly separate the secret key generation and secret key
reveal queries, so that we can capture a situation where some skID has been gen-
erated but not revealed to an adversary. Furthermore, we combine the “revoke”
and “key update” queries in the previous definitions into the single “revoke & key
update” query, and introduce the notion of the “current time period” tcu ∈ T
which is coordinated with the adversary’s revoke & key update query. These
make all the key updates of non-revoked users to be well-defined throughout the
security game.

Formally, let Π = (Setup,Encrypt,GenSK,KeyUp,GenDK,Decrypt) be an
RHIBE scheme. We will only consider selective-identity security, which is de-
fined via a game between an adversary A and the challenger C. The game is
parameterized by the security parameter λ and a polynomial L = L(λ) repre-
senting the maximum depth of the identity hierarchy. Moreover, the game has
the global counter tcu, initialized with 1, that denotes the “current time period”
with which C’s responses to A’s queries are controlled. The game proceeds as
follows:

At the beginning, A sends the challenge identity/time period pair (ID∗, t∗) ∈
(ID)≤L × T to C. Next, C runs (PP, skkgc) ← Setup(1λ, L), and prepares a list

6 If |ID′| = L, then this step is skipped.
7 Here, skID is the latest secret key that is the result of the step (2).

20

SKList that initially contains (kgc, skkgc), and into which identity/secret key
pairs (ID, skID) generated during the game will be stored. From this point on,
whenever a new secret key is generated or an existing secret key is updated for an
identity ID ∈ (ID)≤L∪{kgc} due to the execution of GenSK or KeyUp, C will store
(ID, skID) or update the corresponding entry (ID, skID) in SKList, and we will
not explicitly mention this addition/update. Then, C executes (kukgc,1, sk

′
kgc)←

KeyUp(PP, tcu = 1, skkgc,RLkgc,1 = ∅,⊥) for generating a key update for the
initial time period tcu = 1. After that, C gives PP and kukgc,1 to A.

From this point on, A may adaptively make the following five types of queries
to C:

Secret Key Generation Query: Upon a query ID ∈ (ID)≤L from A, C
checks if (ID, ∗) /∈ SKList and (pa(ID), skpa(ID)) ∈ SKList for some
skpa(ID), and returns ⊥ to A if this is not the case. Otherwise, C executes
(skID, sk

′
pa(ID)) ← GenSK(PP, skpa(ID), ID). If ID ∈ (ID)≤L−1, then C further-

more executes (kuID,tcu , sk
′
ID) ← KeyUp(PP, tcu, skID,RLID,tcu = ∅, kupa(ID),tcu).

Then, C returns kuID,tcu to A if ID ∈ (ID)≤L−1, or returns nothing to A if
ID ∈ (ID)L.8
We require that all identities ID appearing in the following queries (except
the challenge query) be “activated”, in the sense that skID is generated via
this query and hence (ID, skID) ∈ SKList.

Secret Key Reveal Query: Upon a query ID ∈ (ID)≤L from A, C checks if
the following condition is satisfied:

• If tcu ≥ t∗ and ID′ /∈ RLpa(ID′),t∗ for all ID′ ∈ prefix(ID∗), then ID /∈
prefix(ID∗).9

If this condition is not satisfied, then C returns ⊥ to A. Otherwise, C finds
skID from SKList, and returns it to A.

Revoke & Key Update Query: Upon a query RL ⊆ (ID)≤L (which denotes
the set of identities that are going to be revoked in the next time period)
from A, C checks if the following conditions are satisfied simultaneously:

• RLID,tcu ⊆ RL for all ID ∈ ID≤L−1 ∪ {kgc} that appear in SKList.10

• For all identities ID such that (ID, ∗) ∈ SKList and ID′ ∈ prefix(ID), if
ID′ ∈ RL then ID ∈ RL.11

8 We stress that just making this query does not give the secret key skID to A. It
is captured by the “Secret Key Reveal Query” explained next. Furthermore, we
provide the key updates to A unconditionally, since they are typically broadcast via
an insecure channel and are not meant to be secret.

9 In other words, this check ensures that if ID∗ or any of its ancestors was not revoked
before the challenge time period t∗, then skID will not be revealed for any ID ∈
prefix(ID∗). Without this condition, there is a trivial attack on any RHIBE scheme.

10 This check ensures that the identities that have already been revoked will remain
revoked in the next time period.

11 In other words, this check ensures that if some ID is revoked, then all of its descen-
dants are also revoked.

21

• If tcu = t∗ − 1 and skID′ for some ID′ ∈ prefix(ID∗) has already been
revealed by the secret key reveal query ID′, then ID′ ∈ RL. 12

If these conditions are not satisfied, then C returns ⊥ to A.
Otherwise C increments the current time period by tcu ← tcu + 1. Then, C
executes the following operations (1) and (2) for all “activated” and non-
revoked identities ID, i.e., ID ∈ (ID)≤L−1 ∪ {kgc}, (ID, ∗) ∈ SKList, and
ID /∈ RL, in the breadth-first order in the identity hierarchy:

(1) Set RLID,tcu ← RL ∩ (ID∥ID), where we define kgc∥ID := ID.
(2) Run (kuID,tcu , sk

′
ID) ← KeyUp(PP, tcu, skID,RLID,tcu , kupa(ID),tcu), where

kupa(kgc),tcu := ⊥.

Finally, C returns all the generated key updates {kuID,tcu}(ID,∗)∈SKList to A.
Decryption Key Reveal Query: Upon a query (ID, t) ∈ (ID)≤L × T from
A, C checks if the following conditions are simultaneously satisfied:

• t ≤ tcu.
• ID ̸∈ RLpa(ID),t

• (ID, t) ̸= (ID∗, t∗).13

If these conditions are not satisfied, then C returns ⊥ to A. Otherwise, C
finds skID from SKList, runs dkID,t ← GenDK(PP, skID, kupa(ID),t), and returns
dkID,t to A.14

Challenge Query: A is allowed to make this query only once. Upon a query
(M0,M1) from A, where it is required that |M0| = |M1|, C picks the challenge
bit b ∈ {0, 1} uniformly at random, runs ct∗ ← Encrypt(PP, ID∗, t∗,Mb), and
returns the challenge ciphertext ct∗ to A.

At some point, A outputs b′ ∈ {0, 1} as its guess for b and terminates.

The above completes the description of the game. In this game, A’s selective-
identity security advantage AdvRHIBE-selΠ,L,A (λ) is defined by AdvRHIBE-selΠ,L,A (λ) := 2 ·
|Pr[b′ = b]− 1/2|.

Definition 2. We say that an RHIBE scheme Π with depth L satisfies selective-
identity security, if the advantage AdvRHIBE-selΠ,L,A (λ) is negligible for all PPT ad-
versaries A.

12 In other words, this check is to ensure that if the secret key skID′ of some ancestor
ID′ of ID∗ (or ID∗ itself) has been revealed to A, then ID′ is revoked in the next time
period.

13 In previous works [33,35], A is disallowed to obtain not only dkID∗,t∗ (which is clearly
necessary to avoid a trivial attack), but also decryption keys dkID′,t∗ for all ID′ ∈
prefix(ID∗). Our relaxed condition here makes the defined security stronger since A
is able to obtain additional information without any restrictions.

14 Note that kupa(ID),t must have been already generated at this point due to the con-
dition t ≤ tcu.

22

4.2 Strategy-Dividing Lemma

In the literature of R(H)IBE, a typical security proof for an R(H)IBE scheme
goes as follows:

(1) classify an adversary’s strategies into multiple pre-determined types, say
Type-1 to Type-n for some n ∈ N that cover all possible strategies, and

(2) for each i ∈ [n], prove that any adversary that is promised to follow the
Type-i strategy (and never break the promise) has negligible advantage in
attacking the considered scheme.

Here, it is implicitly assumed that the above mentioned “type-classification-
based” security proof is sufficient for proving security against arbitrary adver-
saries that may decide their attack strategies adaptively during the game.

For completeness, we formalize the above implicit argument as a simple yet
handy “strategy-dividing lemma”, which helps us simplify security proofs for
R(H)IBE schemes in general. Since this is an implicit argument that has been
frequently adopted in the R(H)IBE literatures, we provide it in the full version.

5 Generic Construction of RIBE with DKER

In this section, we show a “security-enhancing” generic construction for RIBE.
Namely, we show how to construct an RIBE scheme with DKER by combining
an RIBE scheme without DKER and a 2-level (non-revocable) HIBE scheme.

Let r.Π = (r.Setup, r.Encrypt, r.GenSK, r.KeyUp, r.GenDK, r.Decrypt) be an
RIBE scheme (without DKER) with identity space r.ID, plaintext space r.M,
and time period space r.T . Let h.Π = (h.Setup, h.Encrypt, h.GenSK, h.Delegate,
h.Decrypt) be a 2-level HIBE scheme with element identity space h.ID and plain-
text space h.M. We assume r.ID = h.ID, r.M = h.M, and r.T ⊆ h.ID. Fur-
thermore, we assume that the plaintext space is finite and forms an abelian group
with the addition “+” as the group operation.

Using these ingredients, we construct an RIBE scheme Π = (Setup,Encrypt,
GenSK,KeyUp,GenDK,Decrypt) with DKER as follows. The identity space ID,
the plaintext space M, and the time period space T of the constructed RIBE
scheme Π are, respectively, ID = r.ID = h.ID, M = r.M = h.M, and T =
r.T ⊆ h.ID.

Setup(1λ)→ (PP, skkgc) : It takes the security parameter 1λ as input, and runs
(r.PP, r.skkgc) ← r.Setup(1λ) and (h.PP, h.skkgc) ← h.Setup(1λ). Then, it
outputs a public parameter PP := (r.PP, h.PP) and the KGC’s secret key
skkgc := (r.skkgc, h.skkgc).

Encrypt(PP, ID, t,M)→ ct : It takes a public parameter PP = (r.PP, h.PP), an
identity ID ∈ ID, a time period t ∈ T , and a plaintext M ∈ M as
input, and samples a pair (r.M, h.M) ∈ M2 uniformly at random, sub-
ject to r.M + h.M = M. Then, it runs r.ct ← r.Encrypt(r.PP, ID, t, r.M)
and h.ct ← h.Encrypt(h.PP, (ID, t), h.M). Finally, it outputs a ciphertext
ct := (r.ct, h.ct).

23

GenSK(PP, skkgc, ID)→ (skID, sk
′
kgc) : It takes a public parameter PP =

(r.PP, h.PP), the KGC’s secret key skkgc = (r.skkgc, h.skkgc), and an iden-
tity ID ∈ ID as input, and runs (r.skID, r.sk

′
kgc) ← r.GenSK(r.PP, r.skkgc, ID)

and h.skID ← h.GenSK(h.PP, h.skkgc, ID). Then, it outputs a secret key
skID := (r.skID, h.skID) for the identity ID and also the KGC’s updated se-
cret key sk′kgc := (r.sk′kgc, h.skkgc).

KeyUp(PP, t, skkgc,RLt)→ (kut, sk
′
kgc) : It takes a public parameter PP =

(r.PP, h.PP), a time period t ∈ T , the KGC’s secret key skkgc =
(r.skkgc, h.skkgc), and a revocation list RLt ⊆ ID as input, and, runs
(r.kut, r.sk

′
kgc)← r.KeyUp(r.PP, t, r.skkgc,RLt). Then, it outputs a key update

kut := r.kut and also the KGC’s updated secret key sk′kgc := (r.sk′kgc, h.skkgc).
GenDK(PP, skID, kut)→ dkID,t or ⊥ : It takes a public parameter PP =

(r.PP, h.PP), a secret key skID = (r.skID, h.skID), and a key update kut = r.kut
as input, and runs r.dkID,t ← r.GenDK(r.PP, r.skID, r.kut) and h.skID,t ←
h.Delegate(h.PP, h.skID, t). Then, it outputs a decryption key dkID,t :=
(r.dkID,t, h.skID,t) for time period t, except that if r.dkID,t = ⊥, then it re-
turns the special “invalid” symbol ⊥ indicating that ID has been revoked.

Decrypt(PP, dkID,t, ct)→ M : It takes a public parameter PP = (r.PP, h.PP), a
decryption key dkID,t = (r.dkID,t, h.skID,t), and a ciphertext ct = (r.ct, h.ct)
as input, and then runs r.M ← r.Decrypt(r.PP, r.dkID,t, r.ct) and h.M ←
h.Decrypt(h.PP, h.skID,t, h.ct). If r.M = ⊥ or h.M = ⊥, then it returns ⊥.
Otherwise, it outputs the decryption result M := r.M+ h.M.

It is immediate to see that the correctness of the constructed RIBE scheme
Π follows from that of the building blocks. The security of Π is guaranteed by
the following theorem.

Theorem 1. If the underlying RIBE scheme r.Π satisfies weak selective-identity
(resp. weak adaptive-identity) security and the underlying 2-level HIBE scheme
h.Π satisfies selective-identity (resp. adaptive-identity) security, then the result-
ing RIBE scheme Π satisfies selective-identity (resp. adaptive-identity) security.

Proof Overview. Here, we explain an overview of the proof. In the actual proof,
we consider the following two attack strategies of an adversary against the RIBE
scheme Π that are mutually exclusive and cover all possibilities:

– Type-I: The adversary issues a valid secret key reveal query on ID∗.
– Type-II: The adversary does not issue a valid secret key reveal query on ID∗.

Whether an adversary has deviated from one strategy is easy to detect. Due to
the strategy-dividing lemma, it suffices to show that for each type of adversary
(that is promised to follow the attack strategy), its advantage is negligible. In
particular, we show that the security of the RIBE scheme Π against Type-I
(resp. Type-II) adversary is guaranteed by the security of the underlying RIBE
scheme r.Π (resp. 2-level HIBE scheme h.Π).

24

6 RHIBE from Lattices

In this section, we first explain our treatment on binary trees, the CS method,
and the parameters used in the scheme. Then, we show our proposed scheme in
Section 6.1 and discuss the security in Section 6.2.

On the Treatment of Binary Trees and the CS Method. Every user ID
such that |ID| ≤ L− 1 (including KGC) maintains a binary tree BTID as part of
his secret key skID. We assume that auxiliary information such as user identities
ID and vectors in Zn

q can be stored in the nodes of binary trees. The binary tree
along with the CS method is the mechanism used by the parent to manage its
children, i.e., keep track whether a child is revoked or not. We use θ to denote
a node in a binary tree. We use η when we emphasize that the node θ is a leaf
node. Let Path(BTpa(ID), ηID) denote the set of nodes which are on the path along
the root of BTpa(ID) to the leaf ηID. Note that the size of Path(BTpa(ID), ηID) is
O(logN). We define the CS method by the following four algorithms:

CS.SetUp(N)→ BTpa(ID): It takes the number of users N as input, and outputs
a binary tree BTpa(ID) with at least N and at most 2N leaves.

CS.Assign(BTpa(ID), ID)→ (ηID, BTpa(ID)): It takes a binary tree BTpa(ID) and an
identity ID as inputs, and randomly assigns the user identity ID to a leaf
node ηID, to which no other IDs have been assigned yet. Then, it outputs a
leaf ηID and an “updated” binary tree BTpa(ID).

CS.Cover(BTpa(ID),RLpa(ID),t)→ KUNode(BTpa(ID),RLpa(ID),t): It takes a binary
tree BTpa(ID) and a revocation list RLpa(ID),t as inputs, and outputs a set
of nodes KUNode(BTpa(ID),RLpa(ID),t). Here, the subtrees with root θ ∈
KUNode(BTpa(ID),RLpa(ID),t) cover all leaves ηID in BTpa(ID) for ID ̸∈ RLpa(ID),t

and do not cover any leaves ηID for ID ∈ RLpa(ID),t.
CS.Match(Path(BTpa(ID), ηID),KUNode(BTpa(ID),RLpa(ID),t))→ θ or ∅: It takes

Path(BTpa(ID), ηID) and KUNode(BTpa(ID),RLpa(ID),t) as inputs, and outputs
an arbitrary node θ ∈ Path(BTpa(ID), ηID) ∩ KUNode(BTpa(ID),RLpa(ID),t) if it
exists. Otherwise, it outputs ∅.

Looking ahead, at a high level, all parents maintain the children to whom
it has generated secret keys by the binary tree BTpa(ID). The secret keys
skID will include some (partial) secret information that are associated with
a node in Path(BTpa(ID), ηID). To revoke a set of users RLpa(ID),t, the parent
constructs the key update kupa(ID),t by running CS.Cover and generates a set
of nodes KUNode(BTpa(ID),RLpa(ID),t), which represents the set of users that
are not revoked. Similarly to above, each node in KUNode(BTpa(ID),RLpa(ID),t)
will include some (partial) secret information. We note that the size of
KUNode(BTpa(ID),RLpa(ID),t) is O(R log(N/R)), where R =

∣∣RLpa(ID),t

∣∣. Notably,
the size of the key update kupa(ID),t will be logarithmic in N . Then, any user ID
who is not revoked can run the CS.Match algorithm to obtain a node θ which is
included both in Path(BTpa(ID), ηID) and KUNode(BTpa(ID),RLpa(ID),t). Combining
the two partial secret information embedded in the nodes, user ID will be able to
construct the decryption key dkID,t which allows him to decrypt the ciphertext.

25

Parameters. Let L denote the maximum depth of the hierarchy and N de-
note the maximum number of children each parent manages. Furthermore, let
n,m, q be positive integers such that q is a prime and α, α′, (σi)

L
i=0 be posi-

tive reals denoting the Gaussian parameters. Finally, we set the plaintext space
as M = {0, 1}, the element identity space as ID = Zn

q \ {0n}, and the hi-

erarchal identity space as IDh := (Zn
q \ {0n})≤L. We also encode the time

period space T = {1, 2, · · · , tmax} into a polynomial sized subset of Zn
q . In

the following, for readability, we may simply address each space ID, IDh, T
as T = ID = Zn

q \ {0n}, IDh = (Zn
q \ {0n})≤L, unless stated otherwise.

6.1 Construction

We provide our RHIBE scheme below. The intuition of the construction follows
the explanation given in Section 2. Due to the complex nature of our scheme,
we encourage readers to go back to Section 2 whenever needed.

Setup(1n, L)→ (PP, skkgc) : The setup algorithm is run by the KGC. It takes
the security parameter 1n and the maximum depth of the hierarchy L as
input, and runs (Ai,TAi

) ← TrapGen(1n, 1m, q) for i ∈ [L + 1]. It also
samples uniformly random matrices (Bj)j∈[L+1] ← (Zn×m

q)(L+1) and vectors

(uk)k∈[L] ← (Zn
q)

L. Finally, it creates a binary tree by running BTkgc ←
CS.SetUp(N) and outputs

PP :=
(
(Ai)i∈[L+1], (Bj)j∈[L+1], (uk)k∈[L]

)
, skkgc :=

(
BTkgc, (TAi

)i∈[L+1]

)
.

Recall here that the matrices Bj define the hash functions E(·) and F(·)
stated in Eq. (1) in Section 2.

Encrypt(PP, ID = (id1, . . . , idℓ), t,M)→ ct : On input an identity ID ∈ (Zn
q)

ℓ at
depth ℓ ∈ [L] and time period t ∈ Zn

q , it first samples ℓ+1 uniformly random
vectors (si)i∈[ℓ], sL+1 ∈ Zn

q . Then it samples x ← DZ,αq,xi ← DZ(i+2)m,α′q

for i ∈ [ℓ] and xL+1 ← DZ(ℓ+2)m,α′q, and sets
c0 = u⊤

ℓ (s1 + · · ·+ sℓ + sL+1) + x+M
⌊q
2

⌋
,

ci = [Ai|E(ID[i])|F(t)]⊤si + xi for i ∈ [ℓ],

cL+1 = [AL+1|E(ID)|F(t)]⊤sL+1 + xL+1.

Finally, it outputs a ciphertext ct := (c0, c1, . . . , cℓ, cL+1) ∈ Zq×Z3m
q ×· · ·×

Z(ℓ+2)m
q × Z(ℓ+2)m

q .

GenSK(PP, skpa(ID), ID)→ (skID, sk
′
pa(ID)) : The secret key generation algorithm is

run by a parent user pa(ID) at level ℓ−1, where 1 ≤ ℓ ≤ L, to create a secret
key for its child ID.15 It first runs (BTpa(ID), ηID) ← CS.Assign(BTpa(ID), ID).
Then, for each node θ ∈ Path(BTpa(ID), ηID), it checks whether a vector

15 Recall that a user at level 0 corresponds to the kgc, i.e., for any level-1 user ID ∈
Zn
q \ {0n}, pa(ID) = kgc.

26

upa(ID),θ ∈ Zn
q has already been assigned. If not, pick a uniformly random vec-

tor upa(ID),θ ∈ Zn
q and update skpa(ID) by storing upa(ID),θ in node θ ∈ BTpa(ID).

Next, it samples vectors eID,θ, fID,k ∈ Z(ℓ+1)m for θ ∈ Path(BTpa(ID), ηID), k ∈
[ℓ+1, L], respectively, such that [Aℓ|E(ID)]eID,θ = upa(ID),θ, [Aℓ|E(ID)]fID,k =
uk − uℓby running SampleLeft(·) with trapdoor T[Aℓ|E(pa(ID))]

16 and Gaus-
sian parameter σℓ. Then, it extends its bases by running the following algo-
rithm for i ∈ [ℓ + 1, L + 1]: T[Ai|E(ID)] ← ExtRndLeft([Ai|E(pa(ID))], Bℓ +

H(idℓ)G, T[Ai|E(pa(ID))], σℓ−1),where T[Ai|E(ID)] ∈ Z(ℓ+1)m×(ℓ+1)m. Here,
recall that E(ID) = [E(pa(ID))|Bℓ + H(idℓ)G]. Finally, it runs BTID ←
CS.SetUp(N) and outputs,

skID =

(
BTID,Path(BTpa(ID), ηID), (eID,θ)θ∈Path(BTpa(ID),ηID),

(fID,k)k∈[ℓ+1,L], (T[Ai|E(ID)])i∈[ℓ+1,L+1]

)
along with its updated secret key sk′pa(ID).

KeyUp(PP, t, skID,RLID,t, kupa(ID),t)→ (kuID,t, sk
′
ID) : The key update information

generation algorithm is run by user ID at level ℓ, where 0 ≤ ℓ ≤ L − 1, to
create a key update kuID,t for time period t for its children. It first runs
KUNode(BTID,RLID,t) ← CS.Cover(BTID,RLID,t), and checks whether uID,θ is
defined for each node θ ∈ KUNode(BTID,RLID,t). If not, it picks a random
uID,θ ∈ Zn

q and updates skID by storing uID,θ in the node θ ∈ BTID. Then, for

each node θ, it samples eID,t,θ ∈ Z(ℓ+2)m such that [Aℓ+1|E(ID)|F(t)]eID,t,θ =
uℓ+1−uID,θ by running SampleLeft(·) with trapdoor T[Aℓ+1|E(ID)] and Gaus-
sian parameter σℓ+1.
At this point, the algorithm behaves differently depending on ℓ ≥ 1 or ℓ = 0
(i.e., ID = kgc). In case ℓ ≥ 1, it computes its own decryption key dkID,t,
which includes a vector dID,t ∈ Z(ℓ+2)m, using the decryption key generation
algorithm GenDK(PP, skID, kupa(ID,t)) defined below, and computes the fol-

lowing vectors for k ∈ [ℓ+ 1, L]: fID,t,k = dID,t + [fID,k∥0m] ∈ Z(ℓ+2)m. Here,
[·∥·] denotes vertical concatenation of vectors.
Finally, it extracts (fID[i],t,k ∈ Z(i+2)m)(i,k)∈[ℓ−1]×[ℓ+1,L] from its ancestor’s
key update information kupa(ID),t and outputs

kuID,t =

(
KUNode(BTID,RLID,t), (eID,t,θ)θ∈KUNode(BTID,RLID,t),

(fID[i],t,k)(i,k)∈[ℓ]×[ℓ+1,L]

)
and the possibly updated sk′ID.
In case ℓ = 0, it skips all the above procedures and simply outputs

kuID,t = (KUNode(BTID,RLID,t), (eID,t,θ)θ∈KUNode(BTID,RLID))

and the possibly updated sk′ID.
17

16 There are two exceptions for this algorithm. In the special case ID = kgc, recall
that we set T[A1|E(kgc)] as TA1 , which is included in the skkgc. In the other special
case when ℓ = L, we no longer sample fID,k, since this vector is only required for
delegating key updates to its children, which users at level L do not have.

17 The branch in the algorithm is due to the fact that for the special case ℓ = 0, i.e.,
ID = kgc, we have kupa(ID),t = ⊥ for all T and there exists no decryption key dkID,t.

27

GenDK(PP, skID, kupa(ID),t)→ dkID,t or ⊥ : The decryption key generation al-
gorithm is run by user ID at level ℓ, where 1 ≤ ℓ ≤ L. It extracts
Path(BTpa(ID), ηID) in skID and KUNode(BTpa(ID),RLpa(ID),t) in kupa(ID),t, and
runs θ/∅ ← CS.Match(Path(BTpa(ID), ηID),KUNode(BTpa(ID),RLpa(ID),t)). If the

output is ∅, it outputs ⊥. Otherwise, it extracts eID,θ, epa(ID),t,θ ∈ Z(ℓ+1)m in
skID, kupa(ID),t, respectively, and parses it as

eID,θ = [eLID,θ∥eRID,θ], epa(ID),t,θ = [eLpa(ID),t,θ∥e
R
pa(ID),t,θ],

where eLID,θ, e
L
pa(ID),t,θ ∈ Zℓm and eRID,θ, e

R
pa(ID),t,θ ∈ Zm. Then, it computes

dID,t = [eLID,θ + eLpa(ID),t,θ∥e
R
ID,θ∥eRpa(ID),t,θ] ∈ Z(ℓ+2)m.

It further samples gID,t ∈ Z(ℓ+2)m such that [AL+1|E(ID)|F(t)]gID,t = uℓ by
running SampleLeft(·) with trapdoor T[AL+1|E(ID)] and Gaussian parameter
σℓ.
Finally, in case ℓ ≥ 2, it extracts (fID[i],t,ℓ)i∈[ℓ−1] from kupa(ID),t and outputs
dkID,t = (dID,t, (fID[i],t,ℓ)i∈[ℓ−1],gID,t). Otherwise, in case ℓ = 1, it simply
outputs dkID,t = (dID,t,gID,t).

Decrypt(PP, dkID,t, ct)→ M : The decryption algorithm is run by user ID
at level ℓ, where 1 ≤ ℓ ≤ L. It first parses the ciphertext ct as
(c0, c1, · · · , cℓ, cL+1). Then, in case ℓ ≥ 2, it uses its decryption key
dkID,t = (dID,t, (fID[i],t,ℓ)i∈[ℓ−1],gID,t) and computes

c′ = c0 −
ℓ−1∑
i=1

f⊤ID[i],t,ℓ
ci − d⊤

ID,tcℓ − g⊤
ID,tcL+1 ∈ Zq. (5)

Otherwise, in case ℓ = 1, it uses its decryption key dkID,t = (dID,t,gID,t) and
computes

c′ = c0 − d⊤
ID,tc1 − g⊤

ID,tcL+1 ∈ Zq.

Finally, it compares c′ and ⌊ q2⌋ treating them as integers in Z, and outputs
1 in case |c′ − ⌊ q2⌋| < ⌊

q
4⌋ and 0 otherwise.

Correctness. Let a ciphertext be aimed for user ID and time period t. To check
correctness, we only need to consider the case where all the ancestors of ID are
not revoked. In other words, we check that user ID will be able to obtain all the
required components to construct the decryption key dID,t when provided with
all the key updates kuID′,t from ID′ ∈ prefix(ID)\{ID}.

Lemma 5. Assume O((α+mL2σLα
′)q) ≤ q/5 holds with overwhelming proba-

bility. Then the above scheme has negligible decryption error.

Remarks. Note that for simplicity we defined correctness of RHIBE to hold with
probability one in Section 4. Therefore, to be consistent with our definition, we
can use standard techniques to modify our lattice-based construction to have no
decryption error by considering a bound on the secret/noise vectors.

28

6.2 Security

Theorem 2. The above RHIBE scheme Π is selective-identity secure assuming
the hardness of the LWEn,m+1,q,χ problem, where χ = DZm+1,αq.

Proof Overview. Here, we provide an overview of the proof. Let A be a PPT ad-
versary that attacks the selective-identity security of the RHIBE scheme Π with
non-negligible advantage. In addition, let (ID∗ = (id∗1, . . . , id

∗
ℓ∗), t

∗) be the chal-
lenge identity/time period pair that A sends to the challenger at the beginning
of the game. Similarly to the RIBE adversary in Section 5, the strategy taken
by A can be divided into the following two types that are mutually exclusive,
where the first type can be further divided into ℓ types of strategies that are
mutually exclusive:

– Type-I: A issues secret key reveal queries on at least one ID ∈ prefix(ID∗).
- Type-I-i∗: A issues a secret key reveal query on ID∗

[i∗] but not on any
ID ∈ prefix(ID∗

[i∗−1]).
– Type-II: A does not issue secret key reveal queries on any ID ∈ prefix(ID∗).

Due to the strategy-dividing lemma, it suffices to prove security against each
type of adversary independently. In our proof we provide two types of security
reduction: one for when A follows the Type-I-i∗ (1 ≤ i∗ ≤ ℓ∗) strategy and
another for when A follows the Type-II strategy. Let us provide a brief overview
of the reduction when we are against a Type-I-i∗ adversary A. The general idea
holds for Type-II adversaries as well.

Our goal is to modify the challenger through a sequence of games so that in
the end he would be able to simulate the game against the Type-I-i∗ adversary
A using only the trapdoors {TA}i∈[L+1]\{i∗}. At a high level, this allows the
challenger to embed his LWE challenge into the matrix Ai∗ included in the
public parameter PP. The following Table 1 depicts all the possible scenarios
where the challenger requires the trapdoor TAi∗ , either implicitly or explicitly,
in the real game to respond to A’s queries. For readers familiar with the RIBE

ID ∈ (ID)i
∗

ID ∈ (ID)i
∗−1

(In case i∗ ≥ 3)

ID ∈ (ID)≤i∗−2

Secret Key
Generation

(skID)
(eID,θ)θ∈Path(BTpa(ID),ηID

)

(fID,k)k∈[i∗+1,L]

T[Ai∗ |E(ID)] T[Ai∗ |E(ID)]

Revoke &
Key Update

(kuID,t) (fID,t,k)k∈[i∗+1,L] (eID,t,θ)θ∈KUNode(BTID,RLID,t) −

Decryption
Key Reveal

(dkID,t) dID,t − −

Table 1: Items for which the challenger requires TAi∗ to construct.

scheme without DKER of Chen et al. [10], it may be helpful to point out that the
way we modify the challenger so that he no longer requires TAi∗ to construct
(eID,θ)θ in the secret key generation query and (eID,t,θ)θ in the revoke & key

29

update query is very similar to the technique used in [10]. This is mainly because
these components are those responsible for achieving the revocation mechanism.
Our proof deviates from prior works when we modify the challenger so that he
no longer requires TAi∗ to construct (fID,k)k in the secret key generation query
and (fID,t,k)k in the revoke & key update query, since these are the newly added
components for achieving DKER.

Acknowledgement. The first author was partially supported by JST CREST
Grant Number JPMJCR1302 and JSPS KAKENHI Grant Number 17J05603.
The second author was partially supported by JST CREST Grant Number JP-
MJCR1688. The third author was partially supported by JST CREST Grant
Number JPMJCR14D6.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
EUROCRYPT 2010. LNCS 6110, pp. 553–572. Springer (2010)

2. Ajtai, M.: Generating hard instances of the short basis problem. ICALP’99. LNCS
1644, pp. 1–9. Springer (1999)

3. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory
Comput. Syst. 48(3), 535–553 (2011)

4. Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect
revocation modes. Cryptography and Coding 2009. LNCS 5921, pp. 278–300.
Springer (2009)

5. Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption.
Pairing 2009. LNCS 5671, pp. 248–265. Springer (2009)

6. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient re-
vocation. CCS 2008. pp. 417–426. ACM (2008)

7. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

8. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptology 25(4), 601–639 (2012)

9. Chang, D., Chauhan, A.K., Kumar, S., Sanadhya, S.K.: Revocable identity-based
encryption from codes with rank metric. CT-RSA 2018. LNCS 10808, pp. 435–451.
Springer (2018)

10. Chen, J., Lim, H.W., Ling, S., Wang, H., Nguyen, K.: Revocable identity-based
encryption from lattices. ACISP 2012. LNCS 7372, pp. 390–403. Springer (2012)

11. Cui, H., Deng, R.H., Li, Y., Qin, B.: Server-aided revocable attribute-based en-
cryption. ESORICS 2016. LNCS 9879, pp. 570–587. Springer (2016)

12. Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. TCC
2017. LNCS 10677, pp. 372–408. Springer (2017)

13. Emura, K., Seo, J.H., Youn, T.: Semi-generic transformation of revocable hierar-
chical identity-based encryption and its DBDH instantiation. IEICE Transactions
99-A(1), 83–91 (2016)

14. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. STOC 2008. pp. 197–206. ACM (2008)

15. Ishida, Y., Shikata, J., Watanabe, Y.: CCA-secure revocable identity-based en-
cryption schemes with decryption key exposure resistance. IJACT 3(3), 288–311
(2017)

30

16. Katsumata, S., Yamada, S.: Partitioning via non-linear polynomial functions: More
compact ibes from ideal lattices and bilinear maps. ASIACRYPT 2016. LNCS
10032, pp. 682–712 (2016)

17. Lee, K.: Revocable hierarchical identity-based encryption with adaptive security.
IACR Cryptology ePrint Archive 2016, 749 (2016)

18. Lee, K., Lee, D.H., Park, J.H.: Efficient revocable identity-based encryption via
subset difference methods. Des. Codes Cryptography 85(1), 39–76 (2017)

19. Lee, K., Park, S.: Revocable hierarchical identity-based encryption with shorter
private keys and update keys. IACR Cryptology ePrint Archive 2016, 460 (2016)

20. Libert, B., Vergnaud, D.: Adaptive-id secure revocable identity-based encryption.
CT-RSA 2009. LNCS 5473, pp. 1–15. Springer (2009)

21. Ling, S., Nguyen, K., Wang, H., Zhang, J.: Revocable predicate encryption from
lattices. ProvSec 2017. LNCS 10592, pp. 305–326. Springer (2017)

22. Ling, S., Nguyen, K., Wang, H., Zhang, J.: Server-aided revocable predicate encryp-
tion: Formalization and lattice-based instantiation. CoRR abs/1801.07844 (2018)

23. Mao, X., Lai, J., Chen, K., Weng, J., Mei, Q.: Efficient revocable identity-based
encryption from multilinear maps. Security and Communication Networks 8(18),
3511–3522 (2015)

24. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
EUROCRYPT 2012. LNCS 7237, pp. 700–718. Springer (2012)

25. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. CRYPTO 2001. LNCS 2139, pp. 41–62. Springer (2001)

26. Nguyen, K., Wang, H., Zhang, J.: Server-aided revocable identity-based encryption
from lattices. CANS 2016. LNCS 10052, pp. 107–123 (2016)

27. Nieto, J.M.G., Manulis, M., Sun, D.: Fully private revocable predicate encryption.
ACISP 2012. LNCS 7372, pp. 350–363. Springer (2012)

28. Park, S., Lee, D.H., Lee, K.: Revocable hierarchical identity-based encryption from
multilinear maps. CoRR abs/1610.07948 (2016)

29. Park, S., Lee, K., Lee, D.H.: New constructions of revocable identity-based en-
cryption from multilinear maps. IEEE Trans. Information Forensics and Security
10(8), 1564–1577 (2015)

30. Qin, B., Deng, R.H., Li, Y., Liu, S.: Server-aided revocable identity-based encryp-
tion. ESORICS 2015. LNCS 9326, pp. 286–304. Springer (2015)

31. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. STOC 2005. pp. 84–93. ACM (2005)

32. Ryu, G., Lee, K., Park, S., Lee, D.H.: Unbounded hierarchical identity-based en-
cryption with efficient revocation.WISA 2015. LNCS 9503, pp. 122–133. Springer
(2015)

33. Seo, J.H., Emura, K.: Revocable identity-based encryption revisited: Security
model and construction. PKC 2013. LNCS 7778, pp. 216–234. Springer (2013)

34. Seo, J.H., Emura, K.: Revocable hierarchical identity-based encryption. Theor.
Comput. Sci. 542, 44–62 (2014)

35. Seo, J.H., Emura, K.: Revocable hierarchical identity-based encryption via history-
free approach. Theor. Comput. Sci. 615, 45–60 (2016)

36. Takayasu, A., Watanabe, Y.: Lattice-based revocable identity-based encryption
with bounded decryption key exposure resistance. ACISP 2017. LNCS 10342, pp.
184–204. Springer (2017)

37. Watanabe, Y., Emura, K., Seo, J.H.: New revocable IBE in prime-order groups:
Adaptively secure, decryption key exposure resistant, and with short public pa-
rameters. CT-RSA 2017. LNCS 10159, pp. 432–449. Springer (2017)

	Lattice-based Revocable (Hierarchical) IBE with Decryption Key Exposure Resistance
	Introduction
	Technical Overview
	Preliminaries
	Formal Definitions for Revocable Hierarchical Identity-Based Encryption and a Supporting Lemma
	Revocable Hierarchical Identity-Based Encryption
	Strategy-Dividing Lemma

	Generic Construction of RIBE with DKER
	RHIBE from Lattices
	Construction
	Security

