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Abstract. We present a construction of an adaptively single-key secure
constrained PRF (CPRF) for NC1 assuming the existence of indistin-
guishability obfuscation (IO) and the subgroup hiding assumption over
a (pairing-free) composite order group. This is the first construction of
such a CPRF in the standard model without relying on a complexity
leveraging argument.
To achieve this, we first introduce the notion of partitionable CPRF, which
is a CPRF accommodated with partitioning techniques and combine it
with shadow copy techniques often used in the dual system encryption
methodology. We present a construction of partitionable CPRF for NC1

based on IO and the subgroup hiding assumption over a (pairing-free)
group. We finally prove that an adaptively single-key secure CPRF for
NC1 can be obtained from a partitionable CPRF for NC1 and IO.

1 Introduction

1.1 Background

Constrained pseudorandom function (CPRF) [11]1 is a PRF with an additional
functionality to “constrain” the ability of a secret key. A constrained key associated
with a boolean function f enables us to compute a PRF value on inputs x such
that f(x) = 0.2 Security of CPRF roughly requires that for a “challenge input”
x∗ such that f(x∗) = 1, the PRF value on x∗ remains pseudorandom given
skf . There are many applications of CPRFs including broadcast encryption
[11], attribute-based encryption (ABE) [3], identity-based non-interactive key
exchange [11], and policy-based key distribution [11].
1 It is also known as delegatable PRF [38] and functional PRF [13].
2 We note that the role of the constraining function f is “reversed” from the definition
by Boneh and Waters [11], in the sense that the evaluation by a constrained key
skf is possible for inputs x with f(x) = 1 in their definition, while it is possible for
inputs x for f(x) = 0 in our paper. Our treatment is the same as Brakerski and
Vaikuntanathan [15].



Since the proposal of the concept of CPRF, there have been significant pro-
gresses in constructing CPRFs [11,38,13,12,4,15,24,1,7,31,10,9,17,14,42,3]. How-
ever, most known collusion-resistant3 CPRFs (e.g., [11]) only satisfy weaker
security called “selective-challenge” security, where an adversary must declare a
challenge input at the beginning of the security game. In the single-key setting
where an adversary is given only one constrained key (e.g., [15]), we often consider
“selective-constraint” security where an adversary must declare a constraint for
which it obtains a constrained key at the beginning of the security game whereas
it is allowed to choose a challenge input later.4 In a realistic scenario, adversaries
should be able to choose a constraint and a challenge input in an arbitrary order.
We call such security “adaptive security”.

An easy way to obtain an adaptively secure CPRF is converting selective-
challenge secure one into adaptively secure one by guessing a challenge input
with a standard technique typically called complexity leveraging. However, this
incurs an exponential security loss, and thus we have to rely on sub-exponential
assumptions. We would like to avoid this to achieve better security. In the
random oracle model, Hofheinz, Kamath, Koppula, and Waters [33] constructed
an adaptively secure collusion-resistant CPRF for all circuits without relying
on complexity leveraging based on indistinguishability obfuscation (IO) [5,28],
and Attrapadung et al. [3] constructed an adaptively single-key secure CPRF
for NC1 on pairing-free groups. However, the random oracle model has been
recognized to be problematic [18].

There are a few number of adaptively secure CPRFs in the standard model.
Hohenberger, Koppula, and Waters [35] constructed an adaptively secure punc-
turable PRF based on IO and the subgroup hiding assumption on a composite
order group.5 Very recently, Davidson et al. [23] constructed an adaptively secure
CPRF for bit-fixing functions secure against a constant number of collusion
based on one-way functions. However, these schemes only support puncturing
functions or bit-fixing functions which are very limited functionalities, and there
is no known construction of adaptively secure CPRF for a sufficiently expressive
function class (e.g., NC1 or all polynomial-size circuits) even in the single-key
setting and even with IO.

1.2 Our Contribution

In this study, we achieve an adaptively single-key secure CPRF for NC1 assuming
the existence of IO and the subgroup hiding assumption over a (pairing-free)
composite order group. This is the first construction of such a CPRF in the
standard model without relying on the complexity leveraging technique.
3 A CPRF is called collusion-resistant if it remains secure even if adversaries are given
polynomially many constrained keys.

4 In previous works, both selective-challenge and selective-constraint security are simply
called selective security. We use different names for them for clarity.

5 More precisely, they also generalized their construction to obtain a CPRF for t-
puncturing functions, which puncture the input space on t points for a polynomial t
(rather than a single point).
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We emphasize that using IO is not an easy solution to achieve adaptive
security even in the single-key setting, although IO is a strong cryptographic tool
(a.k.a. “heavy hammer”). All CPRFs for a sufficiently expressive class based on
IO in the standard model do not achieve adaptive security if we do not rely on
complexity leveraging [12,10,1,24,22].

1.3 Design Idea and Technical Overview

In this section, we give an overview of our design idea and technique.

Toward adaptive security: partitioning technique. Our construction is based on
a technique called the partitioning technique, which has been widely used to
achieve adaptive security in the context of signature, identity-based encryption,
verifiable random function etc. [8,46,20,36,48]. Roughly speaking, in the partition-
ing technique, a reduction algorithm partitions the input space into two disjoint
spaces, the challenge space and the simulation space, so that it can compute PRF
values on all inputs in the simulation space whereas it cannot compute it on any
input in the challenge space. More specifically, the input space is partitioned via
an admissible hash function denoted by h : {0, 1}n → {0, 1}m and a partitioning
policy u ∈ {0, 1,⊥}m where {0, 1}n is the input space.6 We partition the input
space {0, 1}n so that x ∈ {0, 1}n is in the challenge space if Pu(h(x)) = 0 and it
is in the simulation space if Pu(h(x)) = 1, where Pu is defined by

Pu(y) =
{

0 If for all i ∈ [m], ui = ⊥ ∨ yi = ui

1 Otherwise
,

where yi and ui are the i-th bit of y and u, respectively. If we choose u according
to an appropriate distribution (depending on the number of evaluation queries),
the probability that all evaluation queries fall in the simulation space and a
challenge query falls in the challenge space is noticeable, in which case, a reduction
algorithm works well. The crucial feature of this technique is that a reduction
algorithm need not know a challenge query at the beginning of its simulation.

Though it may seem easy to construct adaptively secure CPRFs based on
the above idea, it is not the case because we also have to simulate constrained
keys in security proofs of CPRFs. Indeed, Hofheinz et al. [33] observed that the
partitioning technique does not seem to work for constructing collusion-resistant
CPRFs. Nonetheless, we show that it works in the case of single-key secure CPRFs
by using a partitionable CPRF which we introduce in this study.

Partitionable CPRF. Intuitively, a partitionable CPRF is a CPRF with an
additional functionality that enables us to generate a “merged” key from two
independent master keys and a partitioning policy u. The behavior of a merged
key depends on whether an input is in the challenge space or in the simulation
6 Actually, we use an extended notion called a balanced admissible hash function. (See
Section 2.2.)
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space. Namely, if we merge msk0 and msk1 with a partitioning policy u to generate
a merged key k[msk0,msk1, u], then it works similarly to msk0 for inputs x in
the challenge space, and msk1 for inputs x in the simulation space. We often call
msk0 a real master key, and msk1 a “shadow” master key because the former
is the real master secret key used in actual constructions and the latter is an
artificial key that only appears in security proofs.

For a partitionable CPRF, we require two properties. First, we require that
it satisfy selective-constraint no-evaluation security as a CPRF, where an adver-
sary must declare its unique constraining query at the beginning of the security
game and does not make any evaluation queries. Here, it is important that
in this security notion, an adversary is allowed to adaptively choose a chal-
lenge query. Second, we require a property called the partition-hiding, which
means that k[msk0,msk1, u] does not reveal u. In particular, k[msk0,msk1,⊥m],
which works exactly the same as msk0, is computationally indistinguishable from
k[msk0,msk1, u].

Adaptively secure CPRF from partitionable CPRF. Now, we take a closer look at
how we construct an adaptively single-key secure CPRF based on a partitionable
CPRF and IO. Mmaster secret keys and PRF values of the CPRF is defined
to be exactly the same as those of the underlying partitionable CPRF. The
only difference between them is the way of generating constrained keys. In the
proposed CPRF, a constrained key for a function f is an obfuscated program
that computes PRF values on all inputs x such that f(x) = 0 with a real master
secret key.

The security proof proceeds as follows. First, we remark that if a challenge
query is made before the constraining query, then the proof is easy by the standard
puncturing technique [43,12]. Thus, in the following, we assume that a challenge
query is made after the constraining query. First, we modify the security game so
that we use k[msk0,msk1,⊥m] instead of msk0 where msk1 is a “shadow” master
secret key that is independent from msk0. This modification causes a negligible
difference by the security of IO because k[msk0,msk1,⊥m] works exactly the
same as msk0. Then we replace k[msk0,msk1,⊥m] with k[msk0,msk1, u] for a
partitioning policy u chosen from an appropriate distribution. This modification
causes a negligible difference by the partition-hiding of the underlying parti-
tionable CPRF. Here, suppose that all evaluation queries are in the simulation
space, and the challenge query x∗ is in the challenge space. Such an event occurs
with noticeable probability by the way we choose u. In this case, all evaluation
queries can be simulated by using the shadow master secret key msk1 whereas a
challenge value is computed by using the real secret key msk0. Then we modify a
constrained key skf associated with a function f so that we hardwire skreal

f , which
is a constrained key associated with the function f derived from msk0 by the
constraining algorithm of the underlying partitionable CPRF, instead of msk0.
This modification causes a negligible difference by the security of IO since skreal

f

and msk0 works similarly on inputs x such that f(x) = 0. At this point, a PRF
value on x∗ such that f(x∗) = 1 is pseudorandom by the selective-constraint
no-evaluation security of the underlying partitionable CPRF (Recall that msk0
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is not used for simulating the evaluation oracle now). This completes the proof
of the adaptive single-key security of the CPRF.

Partitionable CPRF for puncturing [35]. What is left is a construction of a
partitionable CPRF. First, we observe that the construction of adaptively secure
puncturable PRF by Hohenberger et al. [35] can be seen as a construction of a
partitionable CPRF for puncturing functions. Their construction is a variant of
the Naor-Reingold PRF [41] on a composite order group G = Gp×Gq of an order
N = pq. Namely, a master secret key mskhkw consists of si,b ∈ ZN for i ∈ [m]
and b ∈ {0, 1}, and their PRF Fhkw is defined as

Fhkw(mskhkw, x) := g
∏m

i=1
si,yi .

Here, g is a generator of G and yi is the i-th bit of y := h(x), where h is an
admissible hash function. A punctured key on the challenge input x∗ is an obfus-
cated program that computes Fhkw(msk, x) on all inputs x 6= x∗. They implicitly
proved that the above construction is a partitionable CPRF for puncturing if
we define k[msk0,msk1, u] to be an obfuscation of a program that computes
Fhkw(mskPu(x), x) on an input x.

We remark that we cannot directly reduce the partition-hiding property to the
security of IO because the functionality of k[msk0,msk1,⊥m] and k[msk0,msk1, u]
differ on exponentially many inputs. They overcome this problem by sophisticated
use of the subgroup hiding assumption on a composite order group. Namely, we
can prove that this construction satisfies the partition-hiding under the security
of IO and the subgroup hiding assumption, which claims that random elements
of Gp and G are computationally indistinguishable. Then if we can prove the
above construction is a selective-constraint no-evaluation secure CPRF for a
function class F , then we obtain an adaptively single-key secure CPRF for
the function class F as discussed in the previous paragraph. One may think
that it is easy to prove that the above construction is selective-constraint no-
evaluation secure for all circuits by using the standard puncturing technique
with IO [43,12]. However, it is not the case because the selective-constraint
security requires security against an adversary that makes a challenge query
after making a constraining query. Though IO is quite powerful when considering
selective-challenge security where an adversary declares a challenge query at the
beginning, it is almost useless for selective-constraint security where an adversary
may adaptively choose a challenge query. For the case of puncturable PRF, a
challenge input is automatically determined when a constraining query is made,
and thus selective-constraint security is equivalent to selective-challenge security.
This is why they achieved adaptive security only for a puncturable PRF.

Partitionable CPRF for NC1. Finally, we explain how to construct a parti-
tionable CPRF for NC1. Our idea is to combine Hohenberger et al.’s con-
struction as described above and the selective-constraint no-evaluation secure
CPRF for NC1 recently proposed by Attrapadung et al. [3]. The construction
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of Attrapadung et al.’s CPRF Famnyy (instantiated on a composite order group
G = Gp ×Gq) is described as follows.

Famnyy(mskamnyy, x) = gU(b,x)/α

where mskamnyy = (b ∈ ZzN , α ∈ ZN ) is a master secret key and U(·) is a
polynomial that works as a universal circuit for NC1. We omit a description
of constrained keys for this CPRF since this is not important in this overview
(See Section 3.2 for details). They proved that Famnyy satisfies selective-constraint
no-evaluation security under the L-DDHI assumption7, which can be reduced
to the subgroup hiding assumption (See Lemma 2.1). An important fact is that
their CPRF is secure against adversaries that adaptively make a challenge query
as long as a constraining query is declared at the beginning and they do not
make any evaluation queries.

Then we combine Famnyy and Fhkw to define Fours as follows:

Fours(mskours, x) = g(
∏m

i=1
si,yi

)·U(b,x)/α,

where x is an input, yi is the i-th bit of h(x), h is an admissible hash function,
and mskours = (b, α, {si,b}i∈[m],b∈{0,1}) is a master secret key. A constrained key
for a predicate f consists of that of Famnyy and {si,b}i∈[m],b∈{0,1}. It is easy to
see that this constrained key can be used to evaluate Fours(mskours, x) for all x
such that f(x) = 0 since we have

Fours(mskours, x) = Famnyy(mskamnyy, x)
∏m

i=1
si,yi

where mskamnyy := (b, α). By this equation, it is also easy to see that the selective-
constraint no-evaluation security of Fours can be reduced to that of Famnyy. A
merged key is an obfuscated circuit that computes Eval(mskPu(h(x)), x) where
msk0 = (b, α, {si,b}i∈[m],b∈{0,1}) and msk1 = (b̂, α̂, {ŝi,b}i∈[m],b∈{0,1}) are two
independent master secret keys and u is a partitioning policy embedded into the
merged key.

Now, we look at why the construction satisfies partition-hiding. Intuitively, a
partitioning policy u is hidden because it is hardwired in an obfuscated circuit.
However, since the functionality of k[msk0,msk1,⊥m] and k[msk0,msk1, u] differ
on exponentially many inputs, we cannot directly argue indistinguishability of
them based on the security of IO. In the following, we explain how to prove it
relying on the subgroup hiding assumption. Roughly speaking, this consists of
two parts. In the first part, we modify the way of computing PRF values inside a
merged key (which is an obfuscated program) so that it uses a different way to
compute them on inputs in the challenge space and on those in the simulation
space. In the second step, we make a shadow copy of the real master key by using
the Chinese remainder theorem.
7 It assumes that {(G, g, (gβ

i

)i∈[L], g
1/β)} ≈c {(G, g, (gβ

i

)i∈[L], ψ1)} holds, where G =
(N,G,Gp,Gq, g1, g2), G, Gp, and Gq are groups of order N , p, and q, respectively, g,
g1, and g2 are generators of G, Gp, and Gq, respectively, and ψ1

R← G.
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First, to modify the way of computing PRF values inside a merged key, we use
the (m−1)-DDH assumption, which claims that we have {(G, g, (gβi)i∈[m−1], g

βm)}
≈c {(G, g, (gβ

i)i∈[m−1], ψ1)}, where G = (N,G,Gp,Gq, g1, g2), G, Gp, and Gq are
groups of order N , p, and q, respectively, g, g1, and g2 are generators of G, Gp,
and Gq, respectively, and ψ1

R← G. As shown in Lemma 2.1, this assumption can
be reduced to the subgroup hiding assumption. Recall that the partitioning policy
Pu(y) outputs 0 (i.e., x is in the challenge space) if for all i, ui = yi∨ui = ⊥. Here,
we set si,η := βs′i,η ∈ ZN for all (i, η) such that ui = ⊥ or η = ui, where s′i,η is a
uniformly random and β comes from the (m−1)-DDH instance. The distributions
of si,η set as above are statistically close to the original ones. Now, a merged key
uses the (m− 1)-DDH challenge w ∈ G (which is gβm or random) for simulating
a PRF value on an input x in the challenge space. That is, it computes the PRF
value on x as w(

∏m

i=1
s′i,yi

)·U(b,x)/α. On the other hand, on inputs x in the simu-
lation space, it uses the values (g, gβ , . . . , gβm−1) in the (m− 1)-DDH problem
instances as (gβr )(

∏m

i=1
s′i,yi

)·U(b,x)/α, where r := |{i ∈ [m] | ui = yi}| ≤ m − 1.
If w = gβ

m , then a merged key as modified above correctly computes PRF
values on all inputs. Thus, this modification causes a negligible difference by the
security of IO. Then we can replace w with a random element in G by using the
(m− 1)-DDH assumption.

Now, we use the subgroup hiding assumption to make a shadow copy of the
real master key. By the subgroup hiding assumption, we can replace w ∈ G
and g ∈ G with w ∈ Gp and g ∈ Gq, respectively, where G (resp. Gp, Gq) is
a group of order N = pq (resp. p, q) and p, q are primes.8. Then, we can set
msk0 := {s′i,b mod p}i,b and msk1 := {s′i,b mod q}i,b. Since w ∈ Gp and gβj ∈ Gq
where j ∈ {1, . . . ,m− 1}, it holds that

w(
∏

s′i,yi
)·U(b,x)/α = w((

∏
s′i,yi

)·U(b,x)/α mod p)

(gβ
j

)(
∏

s′i,yi
)·U(b,x)/α = (gβ

j

)((
∏

s′i,yi
)·U(b,x)/α mod q)

and this change is indistinguishable due to the security of IO. Lastly, by the
Chinese remainder theorem, msk0 and msk1 are independently and uniformly
random (that is, msk1 can be changed into {ŝi,b mod q}i,b where ŝi,b are inde-
pendent of s′i,b and uniformly random). Now, the shadow master secret key is
used for evaluating PRF values on inputs in the challenge space whereas the real
master secret key is used for evaluating those on inputs in the simulation space
as desired.

By these techniques, we can obtain a partitionable CPRF for NC1 based on
IO and the subgroup hiding assumption in pairing-free groups though we omit
many details for simplicity in this overview.

In summary, we can obtain an adaptively single-key secure CPRF for NC1 by
combining the above partitionable CPRF for NC1 based on IO and the subgroup
hiding assumption with the transformation from a partitionable CPRF into an
8 Note that being given both g1 ∈ Gp and g2 ∈ Gq does not lead to a trivial attack
since we use “pairing-free” groups.
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adaptively secure CPRF explained in the paragraph of “Adaptively secure CPRF
from partitionable CPRF”.

1.4 Discussion

Why subgroup-hiding needed? One may wonder why we need the subgroup hiding
assumption as an extra assumption though we rely on IO, which is already
a significantly strong assumption. We give two reasons for this below. The
first reason is that we do not know how to construct a CPRF with selective-
constraint security (even in the single-key setting) from IO though we can
construct collusion-resistant CRPF with selective-challenge security from IO [12].
In the CPRF based on IO, a constrained key is an obfuscated program that
evaluates the PRF on inputs that satisfy the constraint. In the security proof,
we puncture the obfuscated program on the challenge input by using the security
of IO. This argument is crucially based on the fact that the challenge is given
before all constraining queries, and cannot be used in the selective-constraint
setting where the challenge is chosen after a constrained key is given. Since our
security definition of partitionable CPRF requires selective-constraint security, it
seems difficult to construct it from IO. We note that selective-constraint security
(rather than selective-challenge security) of partitionable CPRF is crucial to
prove the adaptive security of our final CPRF. The second reason is specific
to the security proof of our partitionable CPRF. Namely, in the proof of the
partition-hiding property of our partitionable CPRF, we have to modify outputs
of an obfuscated circuit (which is a constrained key) on exponentially many inputs.
Since the security of IO only enables us to modify an obfuscated circuit only on
one input, it would need an exponential number of hybrids to modify outputs on
exponentially many inputs if we just use the security of IO. We overcome this
issue by sophisticated use of the subgroup hiding assumption in a similar way to
the work by Hohenberger et al. [35]. We note that in this technique, the Chinese
remainder theorem is essential, and we cannot replace the assumption with the
decisional linear (DLIN) assumption on a prime-order group, though there are
some known prime-to-composite-order conversions in some settings [25,44,39,32].

Why single-key security for NC1? One may wonder why our adaptive CPRF
only achieves single-key security rather than collusion-resistance and supports
NC1 rather than all polynomial-size circuits (P/poly) though there seems to
be no obvious attack against our CPRF even if an adversary is given multiple
constrained keys for constraints possibly outside NC1.9 In fact, we can prove that
our CPRF is collusion-resistant and supports P/poly in the selective-challenge
setting by the puncturing technique similarly to [12]. However, in the security
of adaptive security, we crucially rely on the selective-constraint security of the
9 We note that even if the underlying partitionable CPRF only supports NC1, we can
naturally define a constrained key for a function outside NC1 in the CPRF given
in Section 4 because a function class supported by the partitionable CPRF matters
only in the security proof and does not matter for the correctness.
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underlying partitionable CPRF, which stems from the CPRF by Attrapadung
et al. [3]. Since their CPRF only achieves single-key security and supports
NC1, our CPRF inherits them. Possible alternatives to their CPRF are lattice-
based CPRFs [15,14,42] which satisfy selective-constraint single-key security
and supports P/poly. If we could use these CPRFs instead of Attrapadung et
al.’s scheme, we would obtain adaptively single-key secure CPRFs for P/poly.
However, since we use techniques based on the subgroup-hiding assumption in
the proof of the partition-hiding property of our partitionable CPRF, we have to
rely on group-based CPRFs for compatibility to the technique, and this is the
reason why we cannot use lattice-based CPRFs.

Relation with private CPRF. Partitionable CPRF and private CPRF [10] share
a similarity that both enable one to modify functionality of a PRF key without
revealing inputs on which outputs were manipulated. Actually, a partitionable
CPRF can be seen as a private CPRF for the “admissible hash friendly” function-
ality [31]. On the other hand, the inverse is not true. Private CPRF does not put
any restriction on behaviors of a constrained key on inputs that do not satisfy
the constraint except that they look random. On the other hand, partitionable
CPRF requires behaviors on these inputs should be consistent in the sense that
they are PRF values evaluated on another master secret key. This difference
makes it more difficult to construct a partitionable CPRF than constructing a
private CPRF.

1.5 Other Related Work

Here, we discuss two additional related works that are relevant to adaptively
secure CPRFs.

Fuchsbauer, Konstantinov, Pietrazk, and Rao [27] proved that the classical
GGM PRF [30] is an adaptively secure puncturable PRF if the underlying PRG
is quasi-polynomially secure. We note that quasi-polynomially-secure PRG is a
super-polynomial hardness assumption.

Canetti and Chen [16] proposed a lattice-based construction of (constraint-
hiding) single-key secure CPRF for NC1 that achieves a weaker form of adaptive
security where adversaries are allowed to send logarithmically many evaluation
queries before a constraining query as long as it correctly declares if the evaluation
query satisfies the constraint to be queried as a constraining query. We note that
in the proceedings version [17], they claimed security against adversaries that
make an unbounded number of evaluation queries before a constraining query,
but they retracted the claim [16, footnotes 1 and 2]. We remark that the adaptive
security defined in this paper does not put any restriction on the number of
evaluation queries before a constraining query nor require adversaries to declare
if the evaluation query satisfies the constraint to be queried as a constraining
query.

Organization. The rest of the paper is organized as follows. After introducing
notations, security definitions, and building blocks in Section 2, we present the
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definition of partitionable CPRF, our construction of partitionable CPRF for
NC1, and its security proofs in Section 3, and our adaptively single-key secure
CPRFs for NC1 and its security proofs in Section 4.

2 Preliminaries

In this section, we review the definitions for complexity assumptions, tools, and
cryptographic primitives.

2.1 Composite Order Group

In this paper, in a similar manner to Hohenberger et al. [35], we will use a group
of composite order in which the subgroup hiding assumption holds. We recall it
here.

Let GGen be a PPT algorithm (called the group generator) that takes a
security parameter 1λ as input, and outputs (N, p, q,G,Gp,Gq, g1, g2), where
p, q ∈ Ω(2λ), N = pq, G is a cyclic group of order N , Gp and Gq are the subgroups
of G of orders p and q respectively, and g1 and g2 are generators of Gp and Gq
respectively. The subgroup hiding assumption with respect to GGen is defined as
follows:
Definition 2.1 (Subgroup Hiding Assumption). Let GGen be a group gen-
erator. We say that the subgroup hiding assumption holds with respect to GGen, if
for all PPT adversaries A, the advantage Advsgh

GGen,A(λ) defined below is negligible:

Advsgh
GGen,A(λ) :=

∣∣∣Pr[A(G, ψ0) = 1]− Pr[A(G, ψ1) = 1]
∣∣∣,

where (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), G := (N,G,Gp,Gq, g1, g2), ψ0
R←

G, and ψ1
R← Gp.

For our purpose in this paper, it is convenient to introduce the following L-
DDH 10 and L-DDHI assumptions with respect to GGen. These are not additional
assumptions since they are implied by the subgroup hiding assumption.
Definition 2.2 (L-DDH & L-DDHI Assumptions). Let GGen be a group
generator and L = L(λ) = poly(λ). We say that the L-decisional Diffie-Hellman
(L-DDH) assumption holds with respect to GGen, if for all PPT adversaries A,
the advantage AdvL-ddh

GGen,A(λ) defined below is negligible:

AdvL-ddh
GGen,A(λ) :=

∣∣∣Pr[A(G, g, (gα
i

)i∈[L], ψ0) = 1]− Pr[A(G, g, (gα
i

)i∈[L], ψ1) = 1]
∣∣∣,

where (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), G := (N,G,Gp,Gq, g1, g2), g R← G,
α

R← Z∗N , ψ0 := gα
L+1 , and ψ1

R← G.
The L-decisional Diffie-Hellman inversion (L-DDHI) assumption with respect

to GGen is defined in the same way as the above, except that “ψ0 := gα
L+1” is

replaced with “ψ0 := g1/α”.
10 The L-DDH assumption was called Assumption 2 by Hohenberger et al. [34].
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Lemma 2.1. Let GGen be a group generator. If the subgroup hiding assumption
holds with respect to GGen, then the L-DDH and L-DDHI assumptions hold with
respect to GGen for all polynomials L = L(λ).

The proof of Lemma 2.1 can be found in the full version.

2.2 Balanced Admissible Hash Functions and Related Facts

Here, we describe the definition of a balanced admissible hash function (AHF)
introduced by Jager [36]. A balanced AHF is an extension of an ordinary AHF
[8,20], but with some more properties. Similarly to an ordinary AHF, it partitions
the input space in a security proof so that the simulation is possible with a
noticeable probability. The reason why we use a balanced AHF instead of an
ordinary AHF is that the former simplifies our security proof. We note that the
following formalization of a balanced AHF is slightly different from that by Jager
[36] and corresponds to a special case of the general notion of “a partitioning
function" introduced by Yamada [48].

Definition 2.3 ([36,48]). Let n(λ) and m(λ) be polynomials. Furthermore, for
u ∈ {0, 1,⊥}m, let Pu : {0, 1}m → {0, 1} be defined as

Pu(y) =
{

0 If for all i ∈ [m], ui = ⊥ ∨ yi = ui

1 Otherwise
,

where yi and ui are the i-th bit of y and u, respectively. We say that an efficiently
computable function h : {0, 1}n → {0, 1}m is a balanced admissible hash function
(balanced AHF), if there exists an efficient algorithm AdmSample(1λ, Q, δ), which
takes as input (Q, δ) where Q = Q(λ) ∈ N is polynomially bounded and δ =
δ(λ) ∈ (0, 1] is noticeable, and outputs u ∈ {0, 1,⊥}m such that:

1. There exists λ0 ∈ N such that

Pr
[
u

R← AdmSample(1λ, Q(λ), δ(λ)) : u ∈ {0, 1}m
]

= 1

for all λ > λ0. Here, λ0 may depend on functions Q(λ) and δ(λ).
2. For λ > λ0 (defined in Item 1), there exist γmax(λ) and γmin(λ) that depend on

Q(λ) and δ(λ) such that for all x1, ..., xQ, x
∗ ∈ {0, 1}n with x∗ 6∈ {x1, ..., xQ},

γmax(λ) ≥ Pr [Pu(h(x1)) = ... = Pu(h(xQ)) = 1 ∧ Pu(h(x∗)) = 0] ≥ γmin(λ)

where γmax(λ) and γmin(λ) satisfy that the function τ(λ) defined as

τ(λ) = γmin(λ) · δ(λ)− γmax(λ)− γmin(λ)
2

is noticeable. We note that the probability is taken over the choice of u where
u

R← AdmSample(1λ, Q(λ), δ(λ)).
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Remark 2.1. The term τ(λ) defined above may appear very specific. However, as
discussed by Jager [36], such a term appears typically in security analyses that
follow the approach of Bellare and Ristenpart [6].

As shown by Jager [36], who extended previous works that gave simple
constructions of AHF [40,26], a family of codes h : {0, 1}n → {0, 1}m with
minimal distance mc for a constant c is a balanced AHF. Explicit constructions
of such codes are known [45,49,29].

2.3 Constrained Pseudorandom Functions

Here, we recall the syntax and security definitions for a CPRF. We use the same
definitions as Attrapadung et al. [3].

Syntax. Let F = {Fλ,k}λ,k∈N be a class of functions11 where each Fλ,k is a set
of functions with domain {0, 1}k and range {0, 1}, and the description size (when
represented by a circuit) of every function in Fλ,k is bounded by poly(λ, k).

A CPRF for F consists of the five PPT algorithms (Setup,KeyGen,Eval,
Constrain,CEval) with the following interfaces:

Setup(1λ) R→ pp: This is the setup algorithm that takes a security parameter
1λ as input, and outputs a public parameter pp,12 where pp specifies the
descriptions of the key space K, the input-length n = n(λ) = poly(λ) (that
defines the domain {0, 1}n), and the range R.

KeyGen(pp) R→ msk: This is the key generation algorithm that takes a public
parameter pp as input, and outputs a master secret key msk ∈ K.

Eval(pp,msk, x) =: y: This is the deterministic evaluation algorithm that takes a
public parameter pp, a master secret key msk ∈ K, and an element x ∈ {0, 1}n
as input, and outputs an element y ∈ R.

Constrain(pp,msk, f) R→ skf : This is the constraining algorithm that takes as
input a public parameter pp, a master secret key msk, and a function f ∈ Fλ,n,
where n = n(λ) = poly(λ) is the input-length specified by pp. Then, it outputs
a constrained key skf .

CEval(pp, skf , x) =: y: This is the deterministic constrained evaluation algorithm
that takes a public parameter pp, a constrained key skf , and an element
x ∈ {0, 1}n as input, and outputs an element y ∈ R.

Whenever clear from the context, we will drop pp from the inputs of Eval,
Constrain, and CEval, and the executions of them are denoted as “Eval(msk, x)”,
“Constrain(msk, f)”, and “CEval(skf , x)”, respectively.
11 In this paper, a “class of functions” is a set of “sets of functions”. Each Fλ,k in F

considered for a CPRF is a set of functions parameterized by a security parameter λ
and an input-length k.

12 For clarity, we will define a CPRF as a primitive that has a public parameter. However,
this treatment is compatible with the standard syntax in which there is no public
parameter, because it can always be contained as part of a master secret key and
constrained secret keys.
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Exptcprf
CPRF,F,A(λ) :

coin R← {0, 1}
pp R← Setup(1λ)
msk R← KeyGen(pp)
RF(·) R← Func({0, 1}n,R)

OChal(·) :=
{

Eval(msk, ·) if coin = 1
RF(·) if coin = 0

(f, stA) R← AOChal(·),Eval(msk,·)
1 (pp)

skf
R← Constrain(msk, f)

ĉoin R← AOChal(·),Eval(msk,·)
2 (skf , stA)

Return (ĉoin ?= coin).

Fig. 1. The experiment for defining single-key security for a CPRF.

Correctness. For correctness of a CPRF for a function class F = {Fλ,k}λ,k∈N,
we require that for all λ ∈ N, pp R← Setup(1λ) (which specifies the input length
n = n(λ) = poly(λ)), msk R← KeyGen(pp), functions f ∈ Fλ,n, and inputs x ∈
{0, 1}n satisfying f(x) = 0, we have CEval( Constrain(msk, f), x ) = Eval(msk, x).
We stress that a constrained key skf can compute the PRF if f(x) = 0. (This
treatment is reversed from the original definition by Boneh and Waters [11].)

Security. Here, we give the security definitions for a CPRF. We only consider
CPRFs that are secure in the presence of a single constrained key, for which
we consider two flavors of security: adaptive single-key security and selective-
constraint no-evaluation security.13 The former notion captures security against
adversaries A that may decide the constraining function f any time during the
experiment. (That is, A can specify the constraining function f even after seeing
some evaluation results of the CPRF.) In contrast, the latter notion captures
security against adversaries that declare a constraining query at the beginning
of the security game and have no access to the evaluation oracle. The definition
below reflects these differences.

Formally, for a CPRF CPRF = (Setup,KeyGen,Eval,Constrain,CEval) (with
input-length n = n(λ)) for a function class F = {Fλ,k}λ,k∈N and an adversary
A = (A1,A2), we define the single-key security experiment Exptcprf

CPRF,F,A(λ) as
described in Figure 1 where Func({0, 1}n,R) denotes the set of all functions from
{0, 1}n to R.

In the security experiment, the adversary A’s single constraining query is
captured by the function f included in the first-stage algorithm A1’s output.
Furthermore, A1 and A2 have access to the challenge oracle OChal(·) and the
evaluation oracle Eval(msk, ·), where the former oracle takes x∗ ∈ {0, 1}n as input,

13 selective-constraint no-evaluation security was simply called no-evaluation security
in [3].
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and returns either the actual evaluation result Eval(msk, x∗) or the output RF(x∗)
of a random function, depending on the challenge bit coin ∈ {0, 1}.

We say that an adversary A = (A1,A2) in the experiment Exptcprf
CPRF,F,A(λ) is

admissible if A1 and A2 are PPT and respect the following restrictions:

– f ∈ Fλ,n.
– A1 and A2 never make the same query twice.
– All challenge queries x∗ made by A1 and A2 satisfy f(x∗) = 1, and are distinct

from any of the evaluation queries x that they submit to the evaluation oracle
Eval(msk, ·).

Furthermore, we say that A is a selective-constraint no-evaluation adversary if
A1 and A2 are PPT, and they do not make any queries, except that A2 is allowed
to make only a single challenge query x∗ such that f(x∗) = 1.

Definition 2.4 (Single-Key Security of CPRF).We say that a CPRF CPRF
for a function class F is adaptively single-key secure, if for all admissible
adversaries A, the advantage Advcprf

CPRF,F,A(λ) := 2·|Pr[Exptcprf
CPRF,F,A(λ) = 1]−1/2|

is negligible.
We define selective-constraint no-evaluation security of CPRF analogously, by

replacing the phrase “all admissible adversaries A” in the above definition with
“all selective-constraint no-evaluation adversaries A”.

Remark 2.2. As noted by Boneh and Waters [11], without loss of generality we
can assume that A makes a challenge query only once, because security for a
single challenge query can be shown to imply security for multiple challenge
queries via a standard hybrid argument. Hence, in the rest of the paper we only
use the security experiment with a single challenge query for simplicity.

2.4 Indistinguishability Obfuscation

Here, we recall the definition of indistinguishability obfuscation (iO) (for all
circuits) [5,28].

Definition 2.5 (Indistinguishability Obfuscation). We say that a PPT al-
gorithm iO is a secure indistinguishability obfuscator (iO), if it satisfies the
following properties:

Functionality: iO takes a security parameter 1λ and a circuit C as input, and
outputs an obfuscated circuit Ĉ that computes the same function as C. (We
may drop 1λ from an input to iO when λ is clear from the context.)

Security: For all PPT adversaries A = (A1,A2), the advantage function
Advio

iO,A(λ) defined below is negligible:

Advio
iO,A(λ) := 2·

∣∣∣∣∣Pr
[

(C0, C1, st)
R← A1(1λ); coin← {0, 1};

Ĉ
R← iO(1λ, Cb); ĉoin R← A2(st, Ĉ)

: ĉoin = coin
]
− 1

2

∣∣∣∣∣ .
where it is required that C0 and C1 compute the same function and have the
same description size.
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3 Partitionable Constrained Pseudorandom Function

In this section, we introduce a concept of Partitionable Constrained Pseudoran-
dom Function (PCPRF), which is used as a building block for constructing our
adaptively single-key secure CPRF. Then we construct a PCPRF for NC1 based
on iO and the subgroup hiding assumption.

3.1 Definition

A PCPRF for F w.r.t. a function h : {0, 1}n → {0, 1}m consists of (Setup,KeyGen,
Eval,Constrain,CEval,Merge,MEval) where (Setup,KeyGen,Eval,Constrain,CEval)
forms a CPRF for F . Two additional algorithms ,Merge and MEval works as
follows.

Merge(msk0,msk1, u): This is the merging algorithm that takes two master keys
(msk0,msk1) and a partitioning policy u ∈ {0, 1,⊥}m, and outputs a merged
key k[msk0,msk1, u].

MEval(k[msk0,msk1, u], x): This is the evaluation algorithm that takes a merged
key k[msk0,msk1, u] and x ∈ {0, 1}n as input, and outputs y.

Correctness. In addition to the correctness as a CPRF, we require the fol-
lowing. For all λ ∈ N, pp R← Setup(1λ) (which specifies the input length n =
n(λ) = poly(λ)), msk0,msk1

R← KeyGen(pp), u ∈ {0, 1,⊥}m, k[msk0,msk1, u] R←
Merge(msk0,msk1, u) and inputs x ∈ {0, 1}n we have

MEval(k[msk0,msk1, u], x) = Eval(mskPu(h(x)), x)

where we recall that Pu is as defined in Definition 2.3.

Security. We define two security requirements for PCPRFs. The first one is the
security as a CPRF, and the second one is partition-hiding, which roughly means
that a merged key hides the partition policy u with which the merged key is
generated.

CPRF security. We say that a PCPRF is selective-constraint no-evaluation se-
cure if (Setup,KeyGen,Eval,Constrain,CEval) is selective-constraint no-evaluation
secure as a CPRF.14

14 Though it is possible to define the adaptive security for PCPRFs in the similar way,
we only define the selective-constraint no-evaluation security since we only need it.
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Partition-hiding. For all PPT adversaries A = (A1,A2), the following advan-
tage Advph

PCPRF,A(λ), defined below, is negligible:

Advph
PCPRF,A(λ) :=

2 ·

∣∣∣∣∣∣∣∣∣∣∣
Pr


pp R← Setup(1λ); msk0,msk1

R← KeyGen(pp);
(u, st) R← A1(pp);
k0

R← Merge(msk0,msk1,⊥m);
k1

R← Merge(msk0,msk1, u);
coin← {0, 1}; ĉoin R← A2(st, kcoin)

: ĉoin = coin

−
1
2

∣∣∣∣∣∣∣∣∣∣∣
.

We note that k0 generated by Merge(msk0,msk1,⊥m) works completely iden-
tically to msk0, albeit in the sense that MEval(k0, x) = Eval(msk0, x). This is
since we have P⊥m(h(x)) = 0 for all x ∈ {0, 1}n.

3.2 Construction

Here, we construct a partition-hiding and selective-constraint no-evaluation
secure PCPRF for NC1 based on iO and the subgroup hiding assumption. Before
describing our scheme, we prepare some notations and describe class of functions
our scheme supports. Since the function class our scheme supports is exactly the
same as that of [3], the following two paragraphs are taken from [3].

Notations. In the following, we will sometimes abuse notation and evaluate
a boolean circuit C(·) : {0, 1}` → {0, 1} on input y ∈ R` for some ring R. The
evaluation is done by regarding C(·) as the arithmetic circuit whose AND gates
(y1, y2) 7→ y1∧y2 being changed to the multiplication gates (y1, y2) 7→ y1y2, NOT
gates y 7→ ¬y changed to the gates y 7→ 1−y, and the OR gates (y1, y2) 7→ y1∨y2
changed to the gates (y1, y2) 7→ y1 + y2 − y1y2. It is easy to observe that if the
input is confined within {0, 1}` ⊆ R, the evaluation of the arithmetized version
of C(·) equals to that of the binary version. (Here, we identify ring elements
0, 1 ∈ R with the binary bit.) In that way, we can regard C(·) as an `-variate
polynomial over R. The degree of C(·) is defined as the maximum of the total
degree of all the polynomials that appear during the computation.

Class of Functions. Let n = poly(λ), z(n) = poly(n), and d(n) = O(logn) be
parameters. The function class that will be dealt with by the scheme is denoted
by FNC1 = {FNC1

λ,n(λ)}λ∈N, where FNC1

λ,n consists of (Boolean) circuits f whose
input size is n(λ), the description size is z(n), and the depth is d(n). We can set
the parameters arbitrarily large as long as they do not violate the asymptotic
bounds above, and thus the function class corresponds to NC1 circuits with
bounded size. The following lemma will be helpful when describing our scheme.

Lemma 3.1. ([21,3]) Let n = poly(λ). There exists a family of universal circuit
{Un}n∈N of degree D(λ) = poly(λ) such that Un(f, x) = f(x) for any f ∈ FNC1

λ,n(λ)
and x ∈ {0, 1}n.
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Construction. Let FNC1 = {FNC1

λ,n }λ,n∈N be the family of the circuit defined
as above and {Un}n∈N be the family of the universal circuit defined in Lemma 3.1.
Let the parameter D(λ) be the degree of the universal circuit (chosen as specified
in Lemma 3.1). Since we will fix n in the construction, we drop the subscripts
and just denote FNC1 and U in the following. Let h : {0, 1}n → {0, 1}m be
any efficiently computable function.15 The description of our PCPRF PCPRF =
(Setup,KeyGen,Eval,Constrain,CEval,Merge,MEval) is given below.

Setup(1λ): It obtains the group description G = (N, p, q,G,Gp,Gq, g1, g2) by
running G R← GGen(1λ). It then outputs the public parameter pp := (N,G).

KeyGen(pp): It chooses g R← G, (s1,0, s1,1), ..., (sm,0, sm,1) R← Z2
N , and (b1, ..., bz)

R←
ZzN , α R← Z∗N .16 It outputs msk := (g, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α).

Eval(msk, x): Given input x ∈ {0, 1}n, it computes y := h(x) and outputs

X := g
∏m

i=1
si,yi

·U((b1,...,bz),(x1,...,xn))/α.

Constrain(msk, f): It first parses (g, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α) ←
msk. Then it sets

b′i := (bi − fi)α−1 mod N for i ∈ [z]

where fi is the i-th bit of the binary representation of f . It then outputs

skf := ((s1,0, s1,1), ..., (sm,0, sm,1), f, b′1, . . . , b′z, g, gα, . . . , gα
D−1

).

CEval(skf , x): It parses ((s1,0, s1,1), ..., (sn,0, sn,1), f, b′1, . . . , b′z, g, gα, . . . , gα
D−1)←

skf . It can be shown that, from (b′1, ..., b′z), f and x, it is possible to efficiently
compute {ci}i∈[D] that satisfies

U((b1, . . . , bz), (x1, . . . , xn)) = f(x) +
D∑
j=1

cjα
j . (1)

If f(x) = 0, it computes y = h(x) and X := (
∏D
j=1(gαj−1)cj )

∏m

i=1
si,yi and

outputs X. Otherwise it outputs ⊥.
Merge(msk0,msk1, u): Let MergedKey[msk0,msk1, u] be a program as described

in Figure 2. It computes and outputs

k[msk0,msk1, u] R← iO(MergedKey[msk0,msk1, u]).

MEval(k[msk0,msk1, u], x): It computes and outputs y := k[msk0,msk1, u](x).
15 The construction will be partition-hiding with respect to h. Looking ahead, we

will show that PCPRF that is partition-hiding with respect to a balanced AHF is
adaptively single-key secure in Section 4. There, we will set h to be a balanced AHF.
However, in this section, h can be any efficiently computable function.

16 This can be done by sampling in ZN ; if it is not in Z∗N , sampling again until it is.
This will succeed with an overwhelming probability since N is a composite with two
large prime factors.
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MergedKey[msk0,msk1, u]
Input: x ∈ {0, 1}n
Constants: pp = (N,G)

msk0 = (g, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α)
msk1 = (ĝ, (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1, . . . , b̂z, α̂)
u ∈ {0, 1,⊥}m

Output Eval(mskPu(h(x)), x)

Fig. 2. Description of Program MergedKey[msk0,msk1, u]

The proof of correctness of PCPRF can be found in the full version.

Theorem 3.1. If iO is a secure indistinguishability obfuscator and the sub-
group hiding assumption holds for GGen, then PCPRF is selective-constraint
no-evaluation secure PCPRF for F and partition-hiding with respect to h.

3.3 Security of Our Partitionable CPRF

We present the proof of Theorem 3.1 in this section.

Proof sketch of Theorem 3.1. We have to prove that the construction satisfies the
selective-constraint no-evaluation security and partition-hiding. From high level,
the selective-constraint no-evaluation security is proven similarly to [3], and the
partition-hiding is proven similarly to [35]. The selective-constraint no-evaluation
security of PCPRF can be reduced to the (D − 1)-DDHI assumption, which in
turn follows from the subgroup hiding assumption similarly to the security proof
of the no-evaluation secure CPRF of [3]. Therefore we omit it here, and the proof
for this part can be found in the full version. In the following, we give a proof
sketch for the partition-hiding.

We want to prove that k generated by iO(MergedKey[msk0,msk1,⊥m]) and
generated by iO(MergedKey[msk0,msk1, u]) are computationally indistinguishable.
The difficulty is that MergedKey[msk0,msk1,⊥m] and MergedKey[msk0,msk1, u]
do not have the same functionality, and thus we cannot simply use the security
of iO to conclude it.17 Actually, this can be proven by using the subgroup hiding
assumption in a sophisticated way as in the work by Hohenberger, Koppula and
Waters [35]. Let A = (A1,A2) be a PPT adversary against the partition-hiding
property. We prove the above theorem by considering the following sequence
of games. We underline modifications from the previous one in descriptions of
games. In the following, Ti denotes the event that Game i returns 1.

Game 0: This game corresponds to the case of coin = 0 in the experiment defining
the partition-hiding. More precisely,

17 If one relies on the technique of “exponential number of hybrids” (e.g., [19]), then
we can prove the indistinguishability of these two cases without relying on subgroup
hiding. However, the technique requires sub-exponentially secure iO, which we want
to avoid.
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MergedKey-Zero[msk0]
Input: x ∈ {0, 1}n
Constants: pp = (N,G)

msk0 = (g, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α)
Compute y := h(x)
Output g

∏m

i=1
si,yi

·U((b1,...,bz),(x1,...,xn))/α
.

Fig. 3. Description of Program MergedKey-Zero[msk0]

1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), Set pp := (N,G).
2. Compute (u, stA) R← A1(pp).
3. Choose g R← G, (b1, ..., bz)

R← ZzN , and α R← Z∗N . Then choose (s1,0, s1,1), ...,
(sm,0, sm,1) R← Z2m

N . Set msk0 := (g, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α).
Choose ĝ R← G, (̂b1, ..., b̂z)

R← ZzN and α̂ R← Z∗N . Then choose (ŝ1,0, ŝ1,1), ...,
(ŝm,0, ŝm,1) R← Z2m

N . Set msk1 := (ĝ, (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1, . . . , b̂z, α̂).
4. Compute k R← iO(MergedKey[msk0,msk1,⊥m])
5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.

Game 1: In this game, we set k as an obfuscation of MergedKey-Zero[msk0], which
is described in Figure 3.
1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), Set pp := (N,G).
2. Compute (u, stA) R← A1(pp).
3. Choose g R← G, (b1, ..., bz)

R← ZzN , and α R← Z∗N . Then choose (s1,0, s1,1), ...,
(sm,0, sm,1) R← Z2m

N . Set msk0 := (g, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α).
4. Compute k R← iO(MergedKey-Zero[msk0])
5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.
We have |Pr[T1]− Pr[T0]| = negl(λ) by the security of iO.

Game 2: In this game, we generate (s1,0, s1,1), ..., (sm,0, sm,1) in a different way.
1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), Set pp := (N,G).
2. Compute (u, stA) R← A1(pp).
3. Choose g R← G, (b1, ..., bz)

R← ZzN , and α R← Z∗N .
Choose β R← Z∗N and (s′1,0, s′1,1), ..., (s′m,0, s′m,1) R← Z2m

N . Set

si,η :=
{
β · s′i,η If ui = ⊥ ∨ η = ui

s′i,η Otherwise
.

Set msk0 := (g, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α).
4. Compute k R← MergedKey-Zero[msk0]
5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.
We have Pr[T2] = Pr[T1] since {si,η}i∈[m],η∈{0,1} is uniformly distributed in
Z2m
N in both games.

Game 3: In this game, we set k as an obfuscation of MergedKey-Zero′[msk′0, u, v0,
..., vm−1, w]), which is described in Figure 4.
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MergedKey-Zero′[msk′0, u, v0, ..., vm−1, w]
Input: x ∈ {0, 1}n
Constants: pp = (N,G)

v0, ..., vm−1, w ∈ Gm+1

msk′0 = ((s′1,0, s′1,1), ..., (s′m,0, s′m,1), b1, . . . , bz, α)
u ∈ {0, 1,⊥}m

Compute y := h(x)
If Pu(y) = 0

Output w
∏m

i=1
s′i,yi

·U((b1,...,bz),(x1,...,xn))/α
.

Else
Compute r := |{i ∈ [m]|ui = yi}|

Output v
∏m

i=1
s′i,yi

·U((b1,...,bz),(x1,...,xn))/α
r .

Fig. 4. Description of Program MergedKey-Zero′[msk′0, u, v0, ..., vm−1, w]

1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), Set pp := (N,G).
2. Compute (u, stA) R← A1(pp).
3. Choose g R← G, (b1, ..., bz)

R← ZzN , and α R← Z∗N .
Choose β R← Z∗N and (s′1,0, s′1,1), ..., (s′m,0, s′m,1) R← Z2m

N .
Set vj := gβ

j for j ∈ {0, ...,m− 1} and w := gβ
m .

Set msk′0 := ((s′1,0, s′1,1), ..., (s′m,0, s′m,1), b1, . . . , bz, α).

4. Compute k R← iO(MergedKey-Zero′[msk′0, u, v0, ..., vm−1, w])
5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.
We have |Pr[T3]− Pr[T2]| = negl(λ) by the security of iO.

Game 4: In this game, we randomly choose w from G, which was set to be gβm

in the previous game.
1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), Set pp := (N,G).
2. Compute (u, stA) R← A1(pp).
3. Choose g R← G, (b1, ..., bz)

R← ZzN , and α R← Z∗N .
Choose β R← Z∗N and (s′1,0, s′1,1), ..., (s′m,0, s′m,1) R← Z2m

N .
Set vj := gβ

j for j ∈ {0, ...,m− 1}. Choose w R← G.
Set msk′0 := ((s′1,0, s′1,1), ..., (s′m,0, s′m,1), b1, . . . , bz, α).

4. Compute k R← iO(MergedKey-Zero′[msk′0, u, v0, ..., vm−1, w])
5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.
We have |Pr[T4]− Pr[T3]| = negl(λ) by the (m− 1)-DDH assumption.

Game 5: In this game, we randomly choose g and w from Gq and Gp, respectively,
which are randomly chosen from G in the previous game.
1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), Set pp := (N,G).
2. Compute (u, stA) R← A1(pp).
3. Choose g R← Gq, (b1, ..., bz)

R← ZzN , and α R← Z∗N .
Choose β R← Z∗N and (s′1,0, s′1,1), ..., (s′m,0, s′m,1) R← Z2m

N .
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MergedKey-Alt[msk′0,msk′1, u, v0, ..., vm−1, w]
Input: x ∈ {0, 1}n
Constants: pp = (N,G)

v0, ..., vm−1, w ∈ Gm+1

msk′0 = ((s′1,0, s′1,1), ..., (s′m,0, s′m,1), b1, . . . , bz, α)
msk′1 = ((ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1, . . . , b̂z, α̂)
u ∈ {0, 1,⊥}m

Compute y := h(x)
If Pu(y) = 0

Output w
∏m

i=1
s′i,yi

·U((b1,...,bz),(x1,...,xn))/α
.

Else
Compute r := |{i ∈ [m]|ui = yi}|

Output v
∏m

i=1
ŝi,yi

·U((̂b1,...,̂bz),(x1,...,xn))/α̂
r .

Fig. 5. Description of Program MergedKey-Alt[msk′0,msk′1, u, v0, ..., vm−1, w]

Set vj := gβ
j for j ∈ {0, ...,m− 1}. Choose w R← Gp.

Set msk′0 := ((s′1,0, s′1,1), ..., (s′m,0, s′m,1), b1, . . . , bz, α).
4. Compute k R← iO(MergedKey-Zero′[msk′0, u, v0, ..., vm−1, w])
5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.
We have |Pr[T5]− Pr[T4]| = negl(λ) by the subgroup hiding assumption.

Game 6: In this game, we set k as an obfuscation of MergedKey-Alt[msk′0,msk′1, u,
v0, ..., vm−1, w], which is described in Figure 5.
1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), Set pp := (N,G).
2. Compute (u, stA) R← A1(pp).
3. Choose g R← Gq, (b1, ..., bz)

R← ZzN , and α R← Z∗N .
Choose β R← Z∗N and (s′1,0, s′1,1), ..., (s′m,0, s′m,1) R← Z2m

N .
Set s′i,η,p := s′i,η mod p and s′i,η,q := s′i,η mod q for i ∈ [m] and η ∈ {0, 1}.
Set bi,p := bi mod p and bi,q := bi mod q for i ∈ [m].
αp := α mod p and αq := α mod q.
Set vj := gβ

j for j ∈ {0, ...,m− 1}. Choose w R← Gp.
Set msk′0 := ((s′1,0,p, s′1,1,p), ..., (s′m,0,p, s′m,1,p), b1,p, . . . , bz,p, αp).
Set msk′1 := ((s′1,0,q, s′1,1,q), ..., (s′m,0,q, s′m,1,q), b1,q, . . . , bz,q, αq).

4. Compute k R← iO(MergedKey-Alt[msk′0,msk′1, u, v0, ..., vm−1, w]).
5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.
We have |Pr[T6]− Pr[T5]| = negl(λ) by the security of iO.

Game 7: In this game, we modify how to generate s′i,η,q, bi,q and αq.
1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), Set pp := (N,G).
2. Compute (u, stA) R← A1(pp).
3. Choose g R← Gq, (b1, ..., bz)

R← ZzN , and α R← Z∗N .
Choose β R← Z∗N and (s′1,0, s′1,1), ..., (s′m,0, s′m,1) R← Z2m

N .
Choose (̂b1, ..., b̂z)

R← ZzN , α̂ R← Z∗N , and (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1) R← Z2m
N .
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Set s′i,η,p := s′i,η mod p and s′i,η,q := ŝi,η mod q for i ∈ [m], η ∈ {0, 1}.
Set bi,p := bi mod p and bi,q := b̂i mod q for i ∈ [m].
Set αp := α mod p and αq := α̂ mod q.
Set vj := gβ

j for j ∈ {0, ...,m− 1}. Choose w R← Gp.
Set msk′0 := ((s′1,0,p, s′1,1,p), ..., (s′m,0,p, s′m,1,p), b1,p, . . . , bz,p, αp).
Set msk′1 := ((s′1,0,q, s′1,1,q), ..., (s′m,0,q, s′m,1,q), b1,q, . . . , bz,q, αq).

4. Compute k R← iO(MergedKey-Alt[msk′0,msk′1, u, v0, ..., vm−1, w]).
5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.
We have Pr[T7] = Pr[T6] by the Chinese remainder theorem.

Game 8: In this game, we modify the way to set msk′0 and msk′1.
1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), Set pp := (N,G).
2. Compute (u, stA) R← A1(pp).
3. Choose g R← Gq, (b1, ..., bz)

R← ZzN , and α R← Z∗N .
Choose β R← Z∗N and (s′1,0, s′1,1), ..., (s′m,0, s′m,1) R← Z2m

N .
Choose (̂b1, ..., b̂z)

R← ZzN , α̂ R← Z∗N , and (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1) R← Z2m
N .

Set vj := gβ
j for j ∈ {0, ...,m− 1}. Choose w R← Gp.

Set msk′0 := ((s′1,0, s′1,1), ..., (s′m,0, s′m,1), b1, . . . , bz, α).
Set msk′1 := ((ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1, . . . , b̂z, α̂).

4. Compute k R← iO(MergedKey-Alt[msk′0,msk′1, u, v0, ..., vm−1, w]).
5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.
We have |Pr[T8]− Pr[T7]| = negl(λ) by the security of iO.

Game 9: In this game, we set k to be an obfuscation of MergedKey[msk0,msk1, u],
which is described in Figure 2. For clarity, we give more concrete description
of MergedKey[msk0,msk1, u] in Figure 6.
1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), Set pp := (N,G).
2. Compute (u, stA) R← A1(pp).
3. Choose g R← Gq, (b1, ..., bz)

R← ZzN , and α R← Z∗N .
Choose β R← Z∗N and (s′1,0, s′1,1), ..., (s′m,0, s′m,1) R← Z2m

N .
Set

si,η :=
{
β · s′i,η If ui = ⊥ ∨ η = ui

s′i,η Otherwise
.

Choose (̂b1, ..., b̂z)
R← ZzN , α̂

R← Z∗N , and (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1) R←
Z2m
N .

Choose w R← Gp.
Set msk0 := (w, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α).
Set msk1 := (g, (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1, . . . , b̂z, α̂).

4. Compute k R← iO(MergedKey[msk0,msk1, u]).
5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.
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MergedKey[msk0,msk1, u]
Input: x ∈ {0, 1}n
Constants: pp = (N,G)

v0, ..., vm−1, w ∈ Gm+1

msk′0 = (g, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α)
msk′1 = (ĝ, (ŝ1,0, ŝ1,1), ..., (ŝ′m,0, ŝm,1), b̂1, . . . , b̂z, α̂)
u ∈ {0, 1,⊥}m

Compute y := h(x)
If Pu(y) = 0
Output g

∏m

i=1
si,yi

·U((b1,...,bz),(x1,...,xn))/α
.

Else
Output ĝ

∏m

i=1
ŝi,yi

·U((̂b1,...,̂bz),(x1,...,xn))/α̂
.

Fig. 6. Description of Program MergedKey[msk0,msk1, u], more concretely

We have |Pr[T9]− Pr[T8]| = negl(λ) by the security of iO.
Game 10: In this game, we modify the way to set si,η.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), Set pp := (N,G).
2. Compute (u, stA) R← A1(pp).
3. Choose g R← Gq, (b1, ..., bz)

R← ZzN , and α R← Z∗N .
Choose β R← Z∗N and (s1,0, s1,1), ..., (sm,0, sm,1) R← Z2m

N .
Choose (̂b1, ..., b̂z)

R← ZzN , α̂
R← Z∗N , and (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1) R←

Z2m
N .

Choose w R← Gp.
Set msk0 := (w, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α).
Set msk1 := (g, (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1, . . . , b̂z, α̂).

4. Compute k R← iO(MergedKey[msk0,msk1, u]).
5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.
We have Pr[T10] = Pr[T9] since {si,η}i∈[m],η∈{0,1} is uniformly distributed in
Z2m
N in both games.

Game 11: In this game, we randomly choose g and w from G, which are chosen
from Gq and Gp in the previous game.
1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), Set pp := (N,G).
2. Compute (u, stA) R← A1(pp).
3. Choose g R← G, (b1, ..., bz)

R← ZzN , and α R← Z∗N .
Choose β R← Z∗N and (s1,0, s1,1), ..., (sm,0, sm,1) R← Z2m

N .
Choose (̂b1, ..., b̂z)

R← ZzN , α̂
R← Z∗N , and (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1) R←

Z2m
N .

Choose w R← G.
Set msk0 := (w, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α).
Set msk1 := (g, (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1, . . . , b̂z, α̂).

4. Compute k R← iO(MergedKey[msk0,msk1, u]).
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5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.
We have |Pr[T11]− Pr[T10]| = negl(λ) by the subgrup hiding assumption.

Game 12: This game is the same as the previous game except that we rename g
and w by ĝ and g.
1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), Set pp := (N,G).
2. Compute (u, stA) R← A1(pp).
3. Choose ĝ R← G, (b1, ..., bz)

R← ZzN , and α R← Z∗N .
Choose β R← Z∗N and (s1,0, s1,1), ..., (sm,0, sm,1) R← Z2m

N .
Choose (̂b1, ..., b̂z)

R← ZzN , α̂
R← Z∗N , and (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1) R←

Z2m
N .

Choose g R← G.
Set msk0 := (g, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α).
Set msk1 := (ĝ, (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1, . . . , b̂z, α̂).

4. Compute k R← iO(MergedKey[msk0,msk1, u]).
5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.
We have Pr[T12] = Pr[T11] since we just renamed g and w by ĝ and g.
This game corresponds to the case of coin = 1 in the experiment defining the
partition-hiding.

Game 0 and Game 12 correspond to the cases of coin = 0 and coin = 1 in the
experiment defining the partition-hiding, and we proved |Pr[T12] − Pr[T0]| =
negl(λ). This completes the proof of the constraint-hiding. More detailed analysis
of the above sequence of games can be found in the full version.

This completes the proof of Theorem 3.1.

4 Adaptively Single-key Secure CPRF

In this section, we construct an adaptively single-key secure CPRF based on iO
and a partition-hiding no-evaluation secure PCPRF. By instantiating the latter
with our construction of PCPRF in Section 3.2, we obtain the first adaptively
single-key secure CPRF for NC1 in the standard model.

4.1 Construction

Let PCPRF = (Setup,KeyGen,Eval,Constrain,CEval,Merge,MEval) be a partition-
hiding and selective-constraint no-evaluation secure PCPRF for function class F .
Then we construct CPRF CPRF = (Setup′,KeyGen′,Eval′,Constrain′,CEval′) for
the same function class as follows.

Setup′(1λ): This algorithm is completely identical to Setup(1λ).
KeyGen′(pp): This algorithm is completely identical to KeyGen(pp).
Eval′(msk, x): This algorithm is completely identical to Eval(msk, x).
Constrain′(msk, f): It computes and outputs skf

R← iO(ConstrainedKey[msk, f ])
where ConstrainedKey[msk, f ] is a program described in Figure 7.
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ConstrainedKey[msk, f ]
Input: x ∈ {0, 1}n
Constants:pp, msk, f
If f(x) = 0
Output Eval(msk, x)

Else
Output ⊥

Fig. 7. Description of Program ConstrainedKey[msk, f ]

CEval′(skf , x): It computes and outputs skf (x).

We note that the program ConstrainedKey[msk, f ] is padded so that the size of
it is the same size as the programs that appear in the security proof. See also
Remark 4.1.

The following theorem addresses the security of the above construction. We
require F to contain some basic functions in the theorem. However, this restriction
is very mild. Indeed, the requirement for the function class is satisfied in our
construction of PCPRF in Section 3.2.

Theorem 4.1. Let F be a function class that contains constant functions and
punctured function gy : {0, 1}n → {0, 1} defined as gy(x) = (x ?= y) for all
y ∈ {0, 1}n. If iO is a secure indistinguishability obfuscator and PCPRF is both
partition-hiding with respect to a balanced AHF h : {0, 1}n → {0, 1}m and
selective-constraint no-evaluation secure PCPRF for F , then CPRF constructed
above is an adaptively single-key secure CPRF for F .

By combining Theorems 3.1 and 4.1, we obtain the following theorem.

Theorem 4.2. If there exists a secure indistinguishability obfuscator and a group
generator for which the subgroup hiding assumption holds, then there exists an
adaptively single-key secure CPRF for the function class FNC1 , which is defined
in Section 3.

Proof. Let A be a PPT adversary that breaks adaptive single-key security of the
scheme. In addition, let ε = ε(λ) and Q = Q(λ) be its advantage and the upper
bound on the number of evaluation queries, respectively. By assumption, Q(λ)
is polynomially bounded and there exists a noticeable function ε0(λ) such that
ε(λ) ≥ ε0(λ) holds for infinitely many λ. By the property of the balanced AHF
(Definition 2.3, Item 1), Pr[u R← AdmSample(1λ, Q(λ), ε0(λ)) : u ∈ {0, 1}m] = 1
for all sufficiently large λ. Therefore, in the following, we assume that this
condition always holds. We show the security of the scheme via the following
sequence of games. In the following, Ti denotes the event that Game i returns
1, and we denote the master secret key of the scheme by msk0 for notational
convenience.
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Game 0: This is the real single-key security experiment Exptcprf
CPRF,F,A(λ) against

an admissible adversary A = (A1,A2). Namely,
coin R← {0, 1}
pp R← Setup(1λ)
msk0

R← KeyGen(pp)
X∗

R← R
(f, stA) R← AOChal(·),Eval(msk0,·)

1 (pp)
skf

R← iO(ConstrainedKey[msk, f ])
ĉoin R← AOChal(·),Eval(msk0,·)

2 (skf , stA)
Return (ĉoin ?= coin)

where the challenge oracle OChal(·) is
described below.

OChal(x∗): Given x∗ ∈ {0, 1}n as in-
put, it returns Eval(msk0, x

∗) if
coin = 1 and X∗ if coin = 0.

We recall that OChal(·) is queried at
most once during the game.

Game 1: In this game, we change Game 0 so that the game performs the following
additional step at the end of the experiment. First, the game samples u R←
AdmSample(1λ, Q, ε0) and checks whether the following condition holds:

Pu(h(x1)) = · · · = Pu(h(xQ)) = 1 ∧ Pu(h(x∗)) = 0, (2)

where x1, . . . , xQ are inputs to the PRF for which A called the evaluation
oracle Eval(msk0, ·). If it does not hold, the game ignores the output ĉoin of
A, and replace it with a fresh random coin ĉoin R← {0, 1}. In this case, we
say that the game aborts.
By using the property of AHF, we can prove that the probability that
the game does not abort is noticeable. More precisely, if |Pr[T0] − 1/2| is
non-negligible, so is |Pr[T1]− 1/2| (See the full version for details).

Game 2: In this game, we change the way skf is generated and the oracles return
answers. At the beginning of the game, we sample msk0

R← KeyGen(pp) and
msk1

R← KeyGen(pp), and compute k[msk0,msk1,⊥m] R← PCPRF.Merge[msk0,
msk1,⊥m]. We then set C := k[msk0,msk1,⊥m]. Note that C is a circuit such
that C : {0, 1}n → {0, 1}. Furthermore, skf given to A2 is generated as skf

R←
iO(ConstrainedKeyAlt[C, f ]) instead of skf

R← iO(ConstrainedKey[msk, f ]),
where the circuit ConstrainedKeyAlt[C, f ] is depicted in Figure 8. We also
replace the evaluation oracle Eval(msk0, ·) and the challenge oracle ÕChal(·)
with the following oracles.
Ẽval(C, ·): Given x ∈ {0, 1}n as input, it returns C(x).
ÕChal(C, ·): Given x∗ as input, it returns C(x∗) if coin = 1 and X∗ if coin = 0.
We have |Pr[T2]− Pr[T1]| = negl(λ) by the security of iO.

Game 3: Recall that in Game 2, it is checked whether the abort condition Eq. (2)
holds or not at the end of the game. In this game, we change the game so
that it samples u at the beginning of the game and aborts and outputs a
random bit as soon as the abort condition becomes true.
We have Pr[T3] = Pr[T2] since the change is conceptual and nothing is
changed from the adversary’s view.

Game 4: In this game, we further change the way C is generated. At the beginning
of the game, the game samples k[msk0,msk1, u] R← PCPRF.Merge[msk0,msk1, u]
and then set C := k[msk0,msk1, u] instead of C := k[msk0,msk1,⊥m].
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ConstrainedKeyAlt[C, f ]
Input: x ∈ {0, 1}n
Constants: pp, C, and f
If f(x) = 0

Output C(x)
Else

Output ⊥

Fig. 8. Description of Program ConstrainedKeyAlt[C, f ]

We have |Pr[T4] − Pr[T3]| = negl(λ) by the partition-hiding property of
PCPRF.

Game 5: In this game, we replace Ẽval(C, ·) and ÕChal(C, ·) with the following
oracles.
Eval(msk1, ·): Given x ∈ {0, 1}n as input, it returns Eval(msk1, x).
ŌChal(msk0, ·): Given x∗ ∈ {0, 1}n as input, it returns Eval(msk0, x

∗) if coin =
1 and X∗ if coin = 0.

We have Pr[T5] = Pr[T4] since as soon as A makes an evaluation or challenge
query that makes a difference for the response by the oracles, these games
abort.

Game 6: In this game, we change the way skf is generated when A1 makes the call
to OChal (namely, the challenge query is made before f is chosen by A). Let
x∗ be the challenge query made by A1. We set the function gx∗ : {0, 1}n →
{0, 1} as gx∗(x) = (x ?= x∗). To generate skf , we first sample sk0,gx∗

R←
PCPRF.Constrain(msk0, gx∗) and set skf

R← iO(C̃[sk0,gx∗ ,msk1, f, u]), where
C̃[sk0,g,msk1, f, u] is depicted in Figure 9. Note that if A1 does not make the
challenge query, we do not change the way skf is generated.
We have |Pr[T6]− Pr[T5]| = negl(λ) by the security of iO.

Game 7: In this game, we change the way skf is generated when A1 stops without
making challenge query (namely, the challenge query will be made after A
chooses f). In such a case, we first sample sk0,f

R← PCPRF.Constrain(msk0, f)
and set skf

R← iO(C̃[sk0,f ,msk1, f, u]).
We have |Pr[T7]− Pr[T6]| = negl(λ) by the security of iO.

Finally, we observe that we have |Pr[T7] − 1/2| = negl(λ) by the selective-
constraint no-evaluation security of PCPRF. The above completes the proof of
Theorem 4.1. More detailed analysis of the above sequence of games can be found
in the full version.

Remark 4.1. As one may notice, in the hybrids, we obfuscate a program that
contains a merged key k[msk0,msk1, u] that itself is also an obfuscation of some
program in our construction. Therefore when generating a constrained key,
ConstrainedKey[msk, f ] should be padded to the maximum size of an obfuscated
program that appears in the hybrids, and thus the size of skf is the size of an
obfuscation of an obfuscation. Actually, this “obfuscation of obfuscation” blowup
could be avoided if we directly construct an adaptively secure CPRF based on iO
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C̃[sk0,g,msk1, f, u]
Input: x ∈ {0, 1}n
Constants: pp, sk0,g, msk1, f , u
If f(x) = 0 ∧ Pu(h(x)) = 0

Output CEval(sk0,g, x)
If f(x) = 0 ∧ Pu(h(x)) = 1
Output Eval(msk1, x)

Else
Output ⊥

Fig. 9. Description of Program C̃[sk0,g,msk1, f, u]

and the subgroup hiding assumption. However, we believe that the abstraction
of PCPRF makes it easier to understand our security proof, and there should be
further applications of it.
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