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Abstract. We propose new constructions of leakage-resilient public-key
encryption (PKE) and identity-based encryption (IBE) schemes in the
bounded retrieval model (BRM). In the BRM, adversaries are allowed
to obtain at most `-bit leakage from a secret key and we can increase
` only by increasing the size of secret keys without losing efficiency in
any other performance measure. We call `/|sk| leakage-ratio where |sk|
denotes a bit-length of a secret key. Several PKE/IBE schemes in the
BRM are known. However, none of these constructions achieve a constant
leakage-ratio under a standard assumption in the standard model. Our
PKE/IBE schemes are the first schemes in the BRM that achieve leakage-
ratio 1 − ε for any constant ε > 0 under standard assumptions in the
standard model.
As previous works, we use identity-based hash proof systems (IB-HPS)
to construct IBE schemes in the BRM. It is known that a parameter for
IB-HPS called the universality-ratio is translated into the leakage-ratio
of the resulting IBE scheme in the BRM. We construct an IB-HPS with
universality-ratio 1− ε for any constant ε > 0 based on any inner-product
predicate encryption (IPE) scheme with compact secret keys. Such IPE
schemes exist under the d-linear, subgroup decision, learning with errors,
or computational bilinear Diffie-Hellman assumptions. As a result, we
obtain IBE schemes in the BRM with leakage-ratio 1− ε under any of
these assumptions. Our PKE schemes are immediately obtained from our
IBE schemes.

1 Introduction

1.1 Background

Modern cryptography have been placing much importance on provable security.
In a traditional theory of provable security, we often assume that secret values
(e.g., secret key, randomness etc.) are perfectly hidden from an adversary, and
give a security proof in such models. On the other hand, developments of side
channel attacks have discovered that an adversary may obtain partial information
of these secret values, and some cryptographic schemes can be broken due to the
leakage even though they are provably secure in the model where secret values



are perfectly hidden. To withstand these attacks, Akavia et al. [?] initiated the
study of leakage resilient cryptography, where leakages from secret values are
captured in a security model, and their security is proven even if a certain amount
of secret values is leaked to an adversary. There have been vast amount of studies
on leakage resilient cryptography including public key encryption, identity-based
encryption, attribute-based encryption, digital signatures, identification, zero-
knowledge proofs etc. [?,?,?,?,?,?,?,?,?].

Relative-leakage and Absolute-leakage. If a whole secret key is leaked, then
no security remains. Thus we have to bound an amount of leakages an adversary
can obtain to prove security in the presence of leakages. There are two possible
choices for the way to bound an amount of leakage. In the first choice called
the relative-leakage model, we bound a leakage-ratio 0 < α < 1, and we allow an
adversary to obtain α · |sk|-bit leakage from a secret key sk, where |sk| denotes a
bit-length of sk. In the second choice called the absolute-leakage model, we bound
an absolute amount ` of leakage (which we call a absolute-leakage-bound), and
we allow an adversary to obtain `-bit leakage from a secret key. This model is
especially useful when considering security against malware attacks, where an
adversary persistently obtains some parts of secret key remotely. If ` is set to be
very large (say, many gigabytes), it is difficult for such an adversary to obtain
more than ` bits of a secret key. We note that any scheme in the relative-leakage
model can be also seen as one in the absolute-leakage model. Suppose that one
has a scheme resilient to leakage of leakage-ratio α in the relative-leakage model.
We can obtain a scheme resilient to absolute-leakage-bound ` by simply increasing
the security parameter so that |sk| > α`.

Bounded Retrieval Model. As seen above, a scheme in the relative-leakage
model can also be seen as one in the absolute-leakage model by increasing the
security parameter. However, this does not serve as a satisfactory solution con-
sidering efficiency. To increase an absolute-leakage-bound `, we have to increase
the security parameter, which means that the efficiency of the whole system
becomes less efficient when ` is set larger. Considering a situation where we set `
to be extremely large, it is desirable that we can increase ` by just increasing
the secret key size without affecting efficiencies of other parts (e.g., public key
size, encryption-time, decryption-time in the case of PKE). This goal is usually
referred to as the bounded retrieval model (BRM) [?,?].

PKE and IBE in BRM. All known constructions of PKE and IBE schemes in
the BRM follow the same template proposed by Alwen et al. [?]. Specifically, they
introduced a primitive called identity-based hash proof system (IB-HPS), which
is a generalization of a hash proof system [?], and gave a generic construction of
PKE and IBE schemes in the BRM based on that. Moreover, they gave three
concrete constructions of IB-HPS based on (1) truncated augmented bilinear
Diffie-Hellman exponent (TABDHE) assumption, (2) learning with errors (LWE)
assumption, and (3) quadratic residuosity (QR) assumption, where the second
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and the third constructions are in the random oracle model.1 As a result, they
obtained PKE and IBE schemes in the BRM based on any of these assumptions.
Leakage-ratios of these schemes are 1/2− ε, O( 1

poly(λ) ), and 1− ε, respectively,
where ε is an arbitrary constant. Subsequently, Chen et al. [?] constructed IB-
HPSs based on the decisional bilinear Diffie-Hellman (DBDH) and the decisional
square bilinear Diffie-Hellman (DSBDH) assumptions in the random oracle model.
Based on them, one can construct PKE and IBE schemes in the BRM with
leakage-ratio 1/2− ε for an arbitrary constant ε.

Hazay et al. [?] showed that, in fact, an IB-HPS is generically constructed
from any IBE scheme.2 As a result, one can construct PKE and IBE schemes in
the BRM from any IBE scheme. However, one drawback of their construction is
a poor leakage-ratio. Namely, the leakage-ratio of their scheme is O( log(λ)

poly(λ) ). In
that case, if one wants to set an absolute-leakage-bound to be `, then a secret key
size is O(poly(λ)

log(λ) · `), which is significantly larger than `. Hopefully, we want to
make the leakage-ratio close to 1 so that we can set a secret key size to be almost
equal to ` for an absolute-leakage-bound `. However, the only known construction
of PKE and IBE schemes in the BRM that achieve such high leakage-ratio is the
one based on the LWE assumption in the random oracle model. If one only relies
on a standard assumption in the standard model, then the only known way to
construct PKE and IBE schemes in the BRM is just instantiating the generic
construction by Hazay et al. [?], which results in poor leakage-ratio O( log(λ)

poly(λ) ).
Thus the following problem remains open:

Is it possible to construct PKE and IBE schemes in the BRM whose leakage-ratio
is almost equal to 1 based on a standard assumption in the standard model?

1.2 Our Contribution

We give a generic construction of IB-HPS based on any inner product encryption
(IPE) scheme. As a result, we obtain PKE and IBE schemes in the BRM based on
any IPE scheme. The leakage-ratio of our constructions is n

n+|skIPE(n)| where n is an
arbitrary integer and |skIPE(n)| denotes a length of secret key of an underlying IPE
scheme associated with an n-dimensional vector. In particular, if an underlying
IPE scheme is fully key-compact (i.e., |skIPE(n)| does not depend on n), then
leakage-ratio can be made arbitrarily close to 1 by increasing n. For example,
there are some known constructions of fully key-compact IPE schemes based on
the d-linear (d-Lin) assumption [?] and the subgroup-decision assumption on
composite order pairing [?] with adaptive security, and the learning-with-errors
(LWE) assumption [?] with selective security. Moreover, we give a construction
of a fully key-compact selectively secure IPE scheme based on the computational
1 They can be proven secure in the standard model if one assumes non-standard
interactive versions of these assumptions.

2 In [?], IB-HPS is called identity-based weak hash proof system (IB-wHPS) for com-
patibility to their notion of weak hash proof system. We stress that IB-HPS in [?]
and IB-wHPS in [?] mean completely the identical primitive.
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Table 1. The “|ct|” column shows ciphertext-length of IBE schemes in the BRM, Sel
and Ad denote selective and adaptive securities, ε and δ are arbitrary constants larger
than 0, λ denotes the security parameter, N denotes a composite number in underlying
hard problems, |skIBE| and |ctIBE| denote the length of a secret key and a ciphertext of an
underlying IBE scheme, n denotes an arbitrary parameter supposed to be a dimension of
vectors in IPE, |skIPE|(n) and |ctIPE|(n) denotes the length of a secret key and a ciphertext
of an underlying IPE scheme with dimension n, and ROM means the random oracle model.

Reference leakage-ratio |ct| Sel/Ad Assumption
[?] 1

2 − ε O(λ2) Ad TABDHE
[?] 1

O(N) O(N) Ad QR (ROM)
[?] 1− ε O(λ4) Ad LWE (ROM)
[?] 1

2 − ε O(λ2) Ad DBDH (ROM)
[?] 1

2 − ε O(λ2) Ad DSBDH (ROM)
[?] (1− ε) log(λ)

|skIBE|
O(λ2|ctIBE|) Sel/Ad Sel/Ad IBE

Ours (1− ε) n
n+|skIPE(n)| O(nλ|ctIPE(n)|) Sel/Ad Sel/Ad IPE

Ours + [?] 1− ε O(d3λ4) Ad d-Lin
Ours + [?] 1− ε O(N3λ) Ad SD
Ours + [?] 1− ε Õ(λ4+δ) Sel LWE
Ours + Appendix A 1− ε O(λ4) Sel CBDH

bilinear Diffie-Hellman (CBDH) assumption. Each of these schemes gives new
PKE and IBE schemes in the BRM model. In particular,

– We obtain the first PKE and selective/adaptive IBE schemes in the BRM
whose leakage-ratio is arbitrarily close to 1 based on standard assumptions
including d-Lin, LWE and CBDH assumptions in the standard model.

– Our CBDH-based construction is the first selectively secure IBE scheme
whose leakage-ratio is arbitrarily close to 1 based on a search assumption
on pairing groups even in the relative-leakage model where we allow the
efficiency of a scheme to depend on the amount of leakage.

A comparison of IBE schemes in the BRM among known and our constructions
is given in Table 1. We omit the comparison among PKE schemes in the BRM
since all known constructions of PKE in the BRM are just degenerations of IBE
in the BRM. We note that the selective security suffices for this degeneration.

1.3 Technical Overview

IB-HPS. We first roughly explain the definition of IB-HPS. An IB-HPS can
be seen as an identity-based key encapsulation mechanism (IB-KEM) with
a special “invalid encapsulation algorithm”. It consists of a setup algorithm
Setup(1λ) R→ (pp,msk), a key generation algorithm KeyGen(msk, id) R→ skid, a
valid encapsulation algorithm Encap(id) R→ (ct, k), an invalid encapsulation al-
gorithm Encap∗(id) R→ ct, and a decapsulation algorithm Decap(skid, id, ct) R→ k.
The correctness requires that a ciphertext generated by Encap is correctly decap-
sulated to the corresponding encapsulated key. A special feature of IB-HPS is
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that if we decapsulate an invalid ciphertext ct∗ generated by Encap∗ by a secret
key skid, then the resulting key k R← Decap(skid, id, ct∗) has a certain entropy
given any fixed pp, id and ct∗. That is, there are many possible values of secret
keys skid for each id, and the value of k R← Decap(skid, id, ct∗) depends on which
skid was used for the decapsulation. As security, we require that valid and invalid
ciphertexts are computationally indistinguishable even if an adversary can obtain
one secret key per identity for all identities including the challenge identity used
for generating the ciphertext to distinguish.

IBE in BRM from IB-HPS. Alwen et al. [?] proved that we can construct a
leakage resilient IBE scheme in the BRM based on any IB-HPS. The leakage-ratio
of the resulting IBE scheme depends on the parameter called the universality-ratio
of the underlying IB-HPS. Roughly speaking, the universality-ratio is defined
to be n

|skid| where 2n is the number of possible skid for each id and |skid| denotes
the bit-length of skid. They proved that the leakage-ratio of the resulting IBE
scheme could be made arbitrarily close to the universality-ratio of the underlying
IB-HPS. Thus, the problem of constructing IBE schemes in the BRM with high
leakage-ratio is translated into the problem of constructing IB-HPS with high
universality-ratio.

IB-HPS from any IBE. Here, we explain the idea of the work by Hazay et al. [?]
that constructed an IB-HPS based on any IBE scheme. The setup algorithm
of the IB-HPS (denoted by HPS) is the same as that of the IBE scheme and
uses the same pp and msk. Let EncIBE and KeyGenIBE denote the encryption
and key generation algorithms of the underlying IBE scheme. Then, the key
generation algorithm KeyGenHPS, valid encapsulation algorithm EncHPS, and
invalid encapsulation algorithm Enc∗HPS of HPS work as follows. In the description
of Enc∗HPS, differences from EncHPS are highlighted in red letters.

KeyGenHPS(msk, id) : It picks r R← {0, 1}, computes sk′id
R← KeyGenIBE(id‖r), and

sets skid := (sk′id, r). That is, skid consists of secret keys for identities that are
either id‖0 or id‖1, plus the random bit r that represents which identities
were chosen.

EncHPS(id) : It picks k ∈ {0, 1}, computes ctb
R← EncIBE(id‖b, k) for b ∈ {0, 1}, and

outputs a ciphertext ct := (ct0, ct1) and an encapsulated key k. That is, ct0
and ct1 encrypt the same value k under identities id‖0 and id‖1, respectively.
The encapsulated key is defined to be k.

Enc∗HPS(id) : It picks k0, k1 ∈ {0, 1} for b ∈ {0, 1}, computes ctb
R← EncIBE(id‖b, kb)

for b ∈ {0, 1}, and outputs a ciphertext ct := (ct0, ct1). That is, ct0 and ct1
encrypt independently random values k0 and k1 under identities id‖0 and id‖1,
respectively. We note that this algorithm does not output an encapsulated
key.

It is easy to see that the indistinguishability of valid and invalid ciphertexts
can be reduced to the security of the underlying IBE scheme because an adversary
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never obtains secret keys for identities id‖0 and id‖1 simultaneously.3 A valid
ciphertext generated by EncHPS can be correctly decapsulated because either ct0
or ct1, both of which encapsulate the same key k, can be decrypted with skid. On
the other hand, for an invalid ciphertext, ct0 and ct1 encapsulate independent
keys k0 and k1. Therefore the decapsulation result depends on r that was used as
randomness to generate a secret key. This means that the above IB-HPS has 2
different skid for each id, and each of them decapsulate an invalid ciphertext to a
different value.4 However, since the size of skid is poly(λ), the universality-ratio
of the above IB-HPS is 1

poly(λ) , which is far from 1. They also showed that the
universality-ratio can be improved to O( log(λ)

poly(λ) ) by modifying the above scheme
to choose r from [poly(λ)] instead of {0, 1} and modifying other algorithms
accordingly. However, this is still far from optimal.

First Step: Parallel Repetition. As a first step to achieve higher universality-
ratio, we consider a variant of the above IB-HPS via parallel repetition. Let n ∈ N
be an arbitrarily chosen parameter and bin(i) denote a binary representation
of i. The setup algorithm of the “n-parallel variant” (denoted by n-HPS) is the
same as that of the IBE scheme, and use the same pp and msk. Then, the key
generation algorithm KeyGenn-HPS, valid encapsulation algorithm Encn-HPS, and
invalid encapsulation algorithm Enc∗n-HPS of n-HPS as follows. In the description
of Enc∗n-HPS, differences from Encn-HPS are highlighted in red letters.

KeyGenn-HPS(msk, id) : It picks r1, ..., rn
R← {0, 1}, computes sk′id,i

R← KeyGenIBE(id‖bin(i)‖ri)
for i ∈ [n], and outputs a secret key skid := ({sk′id,i}i∈[n], {ri}i∈[n]). That
is, skid consists of secret keys for identities that are either id‖bin(i)‖0 or
id‖bin(i)‖1, plus random bits {ri}i∈[n] that represent which identities were
chosen.

Encn-HPS(id) : It picks k1, ..., kn ∈ {0, 1}, computes cti,b
R← EncIBE(id‖bin(i)‖b, ki)

for i ∈ [n] and b ∈ {0, 1}, and outputs a ciphertext ct := {cti,b}i∈[n],b∈{0,1}
and an encapsulated key k :=

⊕
i∈[n] ki. That is, cti,0 and cti,1 encrypt the

same value ki under identities id‖bin(i)‖0 and id‖bin(i)‖1, respectively, for
each i ∈ [n]. The encapsulated key is defined to be k :=

⊕
i∈[n] ki.

Enc∗n-HPS(id) : It picks k1,b, ..., kn,b ∈ {0, 1} for b ∈ {0, 1}, computes cti,b
R←

EncIBE(id‖bin(i)‖b, ki,b) for i ∈ [n] and b ∈ {0, 1}, and outputs a ciphertext
ct := {cti,b}i∈[n],b∈{0,1}. That is, cti,0 and cti,1 encrypt independently random
values ki,0 and ki,1 under identities id‖bin(i)‖0 and id‖bin(i)‖1, respectively,
for each i ∈ [n]. We note that this algorithm does not output an encapsulated
key.
The indistinguishability of valid and invalid ciphertexts can be reduced to the

security of the underlying IBE scheme similarly to the case for HPS. Next, we
3 Here, it is crucial that an adversary obtains at most one secret key for each identity
in the security model of IB-HPS.

4 Here we assumed that KeyGenIBE is deterministic so that sk′id is determined by id.
This can be assumed without loss of generality since we can derandomize KeyGenIBE
by using a pseudorandom function.
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calculate the universality-ratio of n-HPS. For each id, the number of possible skid
is 2n since different {ri}i∈[n] give different skid. On the other hand, skid contains
n secret keys of the underlying IBE scheme, each of them has a size of poly(λ).
As a result, the universality-ratio of n-HPS is still 1

poly(λ) , which is even not
better than that of HPS. Hence, to achieve better universality-ratio, we need an
additional idea.

Our Idea: Compressing Secret Keys. As seen above, the reason for the poor
universality-ratio of n-HPS is that a secret key of the scheme contains many
secret keys of the underlying IBE scheme. Our idea is to compress them. Towards
this goal, we introduce a notion called multi-identity-based encryption (MIBE).
MIBE works similarly to IBE except that a secret key is associated with multiple
identities, and the key can be used to decrypt a ciphertext that is encrypted
under any of these identities. If we do not care about the size of a secret key, then
it is trivial to construct an MIBE scheme from any IBE scheme: we can just let a
secret key of the MIBE consist of a tuple of those of the IBE. The crucial property
for our purpose is key-compactness, which means that the size of a secret key does
not depend on the number of identities the key is associated with. With such
a key-compact MIBE, the universality-ratio of n-HPS is dramatically improved
because a secret key of the IB-HPS consists of a single secret key of MIBE
whose size is poly(λ) that does not depend on n. Then, the universality-ratio is

n
n+poly(λ) . By increasing n, we can make it arbitrarily close to 1.

MIBE from IPE. The final challenge is to construct a key-compact MIBE.
We show that a key-compact MIBE scheme can be constructed from any key-
compact IPE scheme where key-compactness of an IPE scheme means that its
secret key size does not depend on the dimension of the vector space. In an
IPE scheme, a ciphertext and a secret key are associated with vectors x and y
respectively, and the ciphertext is decryptable by the secret key if and only if
xTy = 0. Suppose that we have a key-compact IPE scheme with vector space
Zn+1
q . We construct a key-compact MIBE scheme whose identity space is Zq and

secret key can be associated with n different identities as follows. To generate
a secret key skid1,...,idn associated with a set (id1, ..., idn) of identities, we first
compute a vector y = (y0, ..., yn) ∈ Zn+1

q such that
∏n
i=1(X − idn) =

∑n
i=0 yiX

i

as a polynomial in the indeterminate X. The secret key skid1,...,idn is set to
be a secret key associated with y of the underlying IPE scheme. To encrypt
a message under an identity id∗, we encrypt the message under the vector
x = (1, id∗, (id∗)2, ..., (id∗)n) by the encryption algorithm of the underlying IPE.
Since we have xTy =

∑n
i=0 yi(id

∗)i =
∏n
i=1(id∗ − idn), we have xTy = 0 if and

only if id∗ ∈ {id1, ..., idn}. Therefore, this gives a construction of an MIBE scheme.
We note that this construction is implicit in the work by Katz, Sahai and Waters
[?]. In the above construction, a secret key of the MIBE scheme consists of one
secret key of the underlying IPE scheme. Therefore, if the underlying IPE scheme
is key-compact, then the resulting MIBE is also key-compact. Finally, we note
that IPE schemes with desirable key-compactness are known to exist based on
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various standard assumptions. Putting everything together, we can construct a
leakage resilient IBE scheme in the BRM with leakage-ratio arbitrarily close to 1
based on these standard assumptions.

1.4 Discussion

Notes on Efficiency of Our IBE. One may think that our scheme does not
satisfy the definition of IBE in the BRM since the efficiency of our IBE scheme
(including encryption time, decryption time, ciphertext size etc.) depends on
the parameter n, which is a dimension of a vector space in the underlying IPE.
However, our scheme actually satisfies the definition. This is because we do not
directly use our IB-HPS itself as an IBE scheme, and we use the compiler by
Alwen et al. [?] to convert our IB-HPS to IBE scheme (in the BRM). Since
their compiler is general and applicable to any IB-HPS, we obtain an IBE
scheme in the BRM. To explain this in more detail, we briefly recall their
compiler. In their construction of an IBE scheme in the BRM, a “key-size
parameter” m and a “locality-parameter” t are set appropriately,5 and the
public parameter is exactly the same as that of the underlying IB-HPS, a secret
key for an identity id consists of secret keys for identities id‖bin(1)...id‖bin(m)
generated by the key generation algorithm of the underlying IB-HPS, and an
encryption algorithm given a message m, randomly picks {r1, ..., rt}

R← [m],
runs the encapsulation algorithm of the underlying IB-HPS under identities
id‖bin(r1)...id‖bin(rt) to obtain (ct1, k1), ..., (ctt, kt), and outputs a ciphertext
(r1, ..., rt, ct1, ..., ctt,m ⊕ g(k1, ..., kt)) where g is a universal hash function. We
remark that the efficiency of the scheme (except the secret key size) just depends
on t and does not depend on m. Their main theorem [?, Theorem 5.1] shows that
we can increase an absolute-leakage-bound ` of the scheme just by increasing m
and without increasing t, and the leakage-ratio of the IBE scheme is almost the
same as the universality-ratio of the underlying IB-HPS. Thus, when we plug
our IB-HPS from IPE (with a fixed dimension n) into their construction, we
can arbitrarily increase an absolute-leakage-ratio ` just by increasing m neither
increasing n nor t. Since what affect the efficiency of the IBE scheme is only n
and t, and not m, we can increase an absolute-leakage-ratio ` without sacrificing
the efficiency.
On Further Improving the Leakage-Ratio. In this paper, we propose IBE
and PKE schemes in the BRM with leakage-ratio 1− ε for arbitrary constant
ε > 0. A natural question is if we can further achieve leakage-ratio 1− 1

poly(λ)
for any polynomial poly, which is optimal. The reason why we cannot achieve
such a leakage-ratio is that we rely on Alwen et al.’s theorem [?] (Theorem 1),
which gives an IBE scheme in the BRM with leakage-ratio β(1 − ε) where β
is the universality-ratio of the underlying IB-HPS and ε > 0 is an arbitrary
constant. As long as we rely on this theorem, the resulting leakage-ratio cannot
be better than 1− ε for constant ε > 0. Though it seems that it is possible to
5 In their paper, they use “n” instead of “m” for representing a “key-size” parameter.
We use m for avoiding confusion with the dimension for IPE.
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achieve leakage-ratio 1− 1
poly(λ) , by extending the theorem to treat the case of

sub-constant ε, the analysis is rather complicated, and thus we simply rely on
their theorem as a black-box to make the presentation of our results simpler.
We note that if we consider schemes in the relative-leakage model where the
efficiency of a scheme can depend on a leakage bound `, then our constructions
easily yield schemes with leakage-ratio 1− 1

poly(λ) .

1.5 Related Work

Here, we review existing works on leakage-resilient PKE and IBE schemes in
other models. We remark that in all these models, the efficiency of schemes
degrades with the leakage bound unlike ones in the BRM.

Leakage Resilient PKE/IBE in the Relative-leakage Model. We review
existing works on leakage resilient PKE and IBE schemes in the relative-leakage
model. Naor and Segev [?] proposed the first PKE scheme whose leakage re-
silience can be reduced to standard assumptions. Namely, they gave a generic
construction of leakage-resilient PKE scheme based on a hash proof system.
Subsequently, various constructions of leakage-resilient PKE schemes have been
proposed [?,?,?,?,?,?].

Chow et al. [?] proposed a leakage resilient IBE scheme based on the DBDH
assumption with leakage-ratio 1/3 − o(1). Kurosawa and Phong [?] proposed
leakage resilient IBE and IPE schemes based on the DLIN (2-Lin) and SXDH
(1-Lin) assumptions with optimal leakage-ratio 1− o(1) (they also constructed
IBE and IPE schemes in an extended leakage model explained below, but its
leakage-ratio is not optimal).

Continual Leakage Model. Brakerski et al. [?] and Dodis et al. [?] concurrently
introduced the notion of continual leakage model (CLM), where there is a notion
of time periods and secret information is updated at the end of each time period.
Adversaries are allowed to obtain a limited amount of secret information in
each time period, but there is no limitation on the total amount of information
that they obtained in all time periods. Brakerski et al. constructed PKE, IBE,
and signature schemes from the DLIN or SXDH assumptions in the CLM.
Dodis et al. constructed signature and identification schemes and authenticated
key agreement protocols from the d-Lin assumption in the CLM.

Subsequently, Lewko et al. [?] constructed adaptively secure IBE and attribute-
based encryption (ABE) schemes based on the subgroup decision assumption in
the CLM. In their scheme, adversaries are allowed to obtain leakage even from
master-secret keys. Yu et al. [?] constructed adaptively secure ABE schemes for
wider classes of functionality based on composite-order pairing groups in the CLM.
Zhang et al. [?] constructed adaptively secure ABE schemes for wider classes of
functionality based on prime-order pairing groups (the d-Lin assumption) in the
CLM.
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Hard-to-invert Leakage. Dodis et al. [?] introduced the notion of cryptogra-
phy with hard-to-invert auxiliary inputs, where adversaries are given auxiliary
input h(s) such that it is computationally hard to find s from h(s) (s is secret
information). Dodis et al. [?] constructed symmetric encryption schemes from a
non-standard variant of the learning parity with noise assumption in that model.
Dodis et al. [?] constructed PKE schemes from the DDH or LWE assumption in
that model. Yuen et al. [?] considered IBE schemes in an extended leakage model
that is a combination of the CLM and hard-to-invert auxiliary input model.

2 Preliminaries

2.1 Notations

For any natural number n, [n] denotes the set {1, . . . , n}. x R← S denotes x is
randomly chosen from a finite set S, and y R← A(x; r) denotes that y is an output
of a randomized algorithm A with input x and randomness r. We say that a
function f(·) : N → [0, 1] is negligible if for all positive polynomials p(·) and
all sufficiently large λ ∈ N, we have f(λ) < 1/p(λ). We say that an algorithm
A is probabilistic polynomial time (PPT) if there exists a polynomial p such
that a running time of A with input length λ is less than p(λ). For a bit string
x, |x| denotes the bit-length of x. The min-entropy of a random variable X is
H∞(X) := − log(maxx Pr[X = x]). We often denote poly to mean an unspecified
polynomial and negl to mean an unspecified negligible function.

2.2 Pseudorandom Function

Definition 1. An deterministic function PRF : K × D → R computable in
polynomial time is said to be a pseudorandom function (PRF) if for any PPT
adversary A,

AdvPRF,A(λ) := |Pr[1← APRF(K·)(1λ)]− Pr[1← ARand(·)(1λ)]|

is negligible where K R← K and Rand R← F(D,R) where F(D,R) denotes the set
of all functions from D to R.

2.3 Identity-based Encryption

We define IBE, and its leakage-resilient security (in the bounded retrieval model).
An IBE scheme consists of the following algorithms.

Setup(1λ, 1`) R→ (pp,msk) : This is the setup algorithm that takes the security
parameter 1λ and the leakage parameter 1` as input 6 and outputs a public
parameter pp and a master secret key msk. All other algorithms implicitly
include pp as an input.

6 Since we consider a leakage resilient IBE, we give the leakage parameter 1` as input,
which means a maximum amount of leakage bits the scheme tolerates.
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ExptLR-CPA
IBE,A (λ, `) :

List← ∅
coin R← {0, 1}
(pp,msk) R← Setup(1λ)
(id∗,m0,m1, st)

R← AKG(msk,·),Leak(·)
1 (pp)

ct∗ R← Enc(pp, id∗,mcoin)
ĉoin R← AKG(msk,·)

2 (ct∗, st)
Return (ĉoin ?= coin)

KG(msk, id)
If there exists (id, skid) ∈ List
Return skid

Else
skid

R← KeyGen(msk, id)
List← List ∪ {(id, skid)}
Return skid

Leak(id ∈ ID, f)
If there exists (id, skid) ∈ List
Lid ← Lid + |f(skid)|
Return f(skid)

Else
skid

R← KeyGen(msk, id)
List← List ∪ {(id, skid)}
Lid ← |f(skid)|
Return f(skid)

Fig. 1. The experiment for defining the leakage-resilience for IBE

KeyGen(msk, id) R→ skid: This is the key generation algorithm that takes a master
secret key msk and an identity id as input, and outputs a secret key skid
associated with the identity id.

Enc(id,m) R→ ct: This is the encryption algorithm that takes an identity id and
a message m, and outputs a ciphertext ct.

Dec(skid, id, ct)→ m: This is the decryption algorithm that takes a secret key
skid, an identity id and a ciphertext ct as input, and outputs a message m.

Remark 1. In our definition, we explicitly give id to Dec as an input, which differs
from a commonly-used definition. We define in this way because id need not be
hidden, and thus it is natural to separate it from a secret key. We note that this
modification does not lose any generality because we can simply include id in
skid. This modification slightly affects the leakage-ratio defined below, but the
difference is negligible when ` = ω(|id|).

Correctness. For any (pp,msk) produced by Setup(1λ, 1`), any id ∈ ID, any
m ∈M, we have

Pr
[

m 6= m′
∣∣∣∣∣ skid

R← KeyGen(msk, id),
ct R← Enc(id,m),m′ := Dec(skid, id, ct)

]
= negl(λ)

Leakage-resilience. Leakage resilience of an IBE scheme IBE is defined by the
experiment ExptLR-CPA

IBE,A (λ, `) for an adversary A = (A1,A2) described in Figure 1.
We say that a PPT adversary A is admissible if it does not query id∗ to KG(msk, ·),
and at the end of the experiment, we have Lid∗ ≤ ` or Lid∗ is undefined (i.e.,
A never queries id∗ to Leak). We say that an PPT adversary A is selectively
admissible if in addition to the above, A1 can be divided into two stages A1-1
and A1-2: A1-1 is given 1λ and not allowed to access to any oracle, and returns
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(id∗, stpre), and A1-2 is given (pp, stpre) and allowed to access to oracles KG(msk, ·)
and Leak(·, ·), and returns (m0,m1, st).

Definition 2. We say that an IBE scheme IBE is adaptively leakage resilient if
for any polynomial `(λ), any admissible adversary A, if the advantage

AdvLR-CPA
IBE,A (λ, `) := 2 · |Pr[ExptLR-CPA

IBE,A (λ, `) = 1]− 1/2|

is negligible in λ. We define selective leakage resilience of IBE analogously by re-
placing “any admissible adversary A” in the above definition with “any selectively
admissible adversary A”. We define leakage-ratio α of the scheme to be minimal
value of `

|skid| where (pp,msk) R← Setup(1λ, 1`) and skid
R← KeyGen(msk, id).

Remark 2. In our security model, we assume that an adversary obtains a leakage
from one decryption key per one identity, and cannot obtain a leakage from a
master secret key. This is the same model as the ones in [?,?,?]. Some works (e.g.,
[?]) consider stronger security models where an adversary obtains leakages from
many secret keys of the same identity and leakages from a master secret key.

Bounded Retrieval Model.
Next, we define leakage resilient IBE in the BRM [?]7.

Definition 3. ([?, Def. 6.2]) We say that an IBE scheme is adaptively (resp.
selectively) leakage-resilient in the bounded retrieval model (BRM), if the scheme
is adaptively (resp. selectively) leakage-resilient, and the public parameter size,
master secret key size, ciphertext size, encryption time, and decryption time
(and the number of secret key bits read by decryption) are independent of the
leakage bound `. More formally, there exist polynomials ppsize, msksize, ctsize,
encT, decT, such that, for any polynomial ` and any (pp,msk) R← KeyGen(1λ, 1`),
id ∈ ID, m ∈M, ct R← Enc(id,m), the scheme satisfies:

1. Public parameter size is |pp| ≤ O(ppsize(λ)), master secret key size is |msk| ≤
O(msksize(λ)), ciphertext size is |ct| ≤ O(ctsize(λ, |m|)).

2. Run-time of Enc(id,m) is ≤ O(encT(λ, |m|)).
3. Run-time of Dec(ct, sk), and the number of bits of sk accessed, is ≤ O(decT(λ, |m|)).

2.4 Inner Product Encryption

We define inner product encryption (IPE) and its security. We remark that we do
not define the leakage resilience for IPE because we do not construct a leakage
resilient IPE scheme, and we just use a (non-leakage resilient) IPE scheme as a
building block to construct a leakage resilient IBE scheme in the BRM. An IPE
scheme consists of the following algorithms.
7 In [?], they only consider the adaptive security. We also define the selective security
similarly.
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ExptCPA
IPE,A(λ, n) :

coin R← {0, 1}
(pp,msk) R← Setup(1λ, 1n)
(x∗,m0,m1, st)

R← AKeyGen(msk,·)
1 (pp)

ct∗ R← Enc(x∗,mcoin)
ĉoin R← AKeyGen(msk,·)

2 (ctcoin, st)
Return (ĉoin ?= coin).

Fig. 2. The experiment for defining the security for IPE

Setup(1λ, 1n) R→ (pp,msk) : This is the setup algorithm that takes the security
parameter 1λ and the vector-dimension 1n as input and outputs a public
parameter pp and a master secret key msk. The public parameter pp specifies
a vector space Znq . All other algorithms implicitly include pp as an input.

KeyGen(msk,y ∈ Znq ) R→ sky: This is the key generation algorithm that takes a
master secret key msk and a vector y ∈ Znq as input, and outputs a secret
key sky associated with the vector y.

Enc(x,m) R→ ct: This is the encryption algorithm that takes a vector x ∈ Znq
and a message m, and outputs a ciphertext ct.

Dec(sky,y, ct)→ m: This is the decryption algorithm that takes a secret key
sky, a vector y and a ciphertext ct as input, and outputs a message m.

Correctness. For any (pp,msk) produced by Setup(1λ, 1n), any x,y ∈ Znq such
that xT · y = 0, any m ∈M, we have

Pr
[

m 6= m′
∣∣∣∣∣ sky

R← KeyGen(msk,y),
ct R← Enc(x,m),m′ := Dec(sky,y, ct)

]
= negl(λ)

Security. Security of an IPE scheme IPE is defined by the experiment ExptCPA
IPE,A(λ, n)

for an adversaryA = (A1,A2) described in Figure 2. We say that a PPT adversary
A is admissible if it does not query y satisfying (x∗)T · y = 0 to KeyGen(msk, ·).
We say that a PPT adversary A is selectively admissible if in addition to the
above, A1 can be divided into two stages A1-1 and A1-2: A1-1 is given (1λ, 1n)
and not allowed to access to any oracle, and returns (x∗, stpre), and A1-2 is given
(pp, stpre) and allowed to access to oracles KeyGen(msk, ·), and returns (m0,m1, st).

Definition 4. We say that an IPE scheme IPE is adaptively secure if for any
polynomial n(λ), any admissible adversary A, if the advantage

AdvCPA
IPE,A(λ, n) := 2 · |Pr[ExptCPA

IBE,A(λ, n) = 1]− 1/2|

is negligible in λ. We define selective security of IPE analogously by replacing “any
admissible adversary A” in the above definition with “any selectively admissible
adversary A”.
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Key-compactness. We say that an IPE scheme is fully key-compact if for any
polynomial n = n(λ), any (pp,msk) produced by Setup(1λ, 1n), any y ∈ Znq , and
any sky produced by KeyGen(msk,y), we have

|sky| = poly(λ)

where poly is a fixed polynomial that does not depend on n.

2.5 Identity-based Hash Proof System (IB-HPS)

An identity-based hash proof system (IB-HPS) [?] consists of five PPT algorithms
Π = (Setup,KeyGen,Encap,Encap∗,Decap).

Setup(1λ) : This is the setup algorithm that takes the security parameter 1λ as
an input, and outputs a public parameter pp and a master secret key msk.
All other algorithms implicitly include pp as an input.

KeyGen(msk, id) : This is the key generation algorithm that takes a master secret
key msk and an identity id as inputs, and outputs a identity secret key skid.

Encap(id) : This is the valid encapsulation algorithm that takes an identity id as
an input and outputs a valid ciphertext ct and a encapsulated key k.

Encap∗(id) : This is the invalid encapsulation algorithm that takes an identity id
as an input and outputs an invalid ciphertext ct′.

Decap(skid, id, ct) : This is the decapsulation algorithm that takes an identity
secret key skid, an identity id and a ciphertext ct as inputs, and outputs an
encapsulated key k.

We require that an IB-HPS satisfies the following properties.

Correctness. For any (pp,msk) produced by Setup(1λ), any id ∈ ID, we have

Pr
[

k 6= k′
∣∣∣∣∣ skid

R← KeyGen(msk, id)
(ct, k) R← Encap(id), k′ := Decap(skid, id, ct)

]
= negl(λ)

Valid/invalid ciphertext indistinguishability. The valid ciphertexts gen-
erated by Encap and the invalid ciphertexts generated by Encap∗ should be
indistinguishable even given a secret key of a challenge identity. In particular, we
define an experiment Exptind

Π,A for an IB-HPS Π and an adversary A = (A1,A2)
as described in Figure 3.

We say that a PPT adversary A is admissible if it does not makes the same
query to KeyGen(msk, ·) twice. We say that a PPT adversary A is selectively
admissible if in addition to that, A1 is given 1λ instead of pp and not allowed to
access to KeyGen(msk, ·).
A1 is only given 1λ instead of pp and does not make any query. We note that

we do not prohibit an adversary from querying id∗. That is, valid and invalid
ciphertexts under an identity id∗ are indistinguishable even if an adversary is
given one secret key that corresponds to id∗.
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Exptind
Π,A(λ) :

coin R← {0, 1}
(pp,msk) R← Setup(1λ)
(id∗, st) R← AKeyGen(msk,·)

1 (pp)
ct0

R← Encap(id∗)
ct1

R← Encap∗(id∗)
ĉoin R← AKeyGen(msk,·)

2 (ctcoin, st)
Return (ĉoin ?= coin).

Fig. 3. The experiment for defining valid/invalid ciphertext indistinguishability for
IB-HPS

Definition 5. We say that an IB-HPS Π is adaptively secure if for any admis-
sible adversary A, the advantage Advind

Π,A(λ) := 2 · |Pr[Exptind
Π,A(λ) = 1] − 1/2|

is negligible. We define selective security of IB-HPS analogously by replacing
“any PPT adversary A” in the above definition with “any selectively admissible
adversary A”.

Universality. Another property of IB-HPS is universality. An IB-HPS is said
to be (n, ρ)-universal if the number of possible values of skid

R← KeyGen(msk, id)
is larger than 2n, and any distinct pair of them decrypts a randomly generated
invalid ciphertext to the same message with probability at most ρ. In other words,
{Decap(ct, id, ·) : ct R← Enc∗(pp)} is a family of ρ-universal functions.
Definition 6. [?, Def. 3.1] We say that an IB-HPS Π is (n, ρ)-universal if for
any fixed values of (pp,msk) produced by Setup(1λ), id ∈ ID, the following hold:

1. H∞(skid) ≥ n where skid
R← KeyGen(msk, id).

2. For any fixed distinct skid 6= skid produced by KeyGen(msk, id),

Pr
ct R←Encap∗(id)

[Decap(skid, id, ct) = Decap(skid, id, ct)] ≤ ρ.

We say that Π has a universality-ratio β if there exists n and a constant ρ < 1
such that Π is (n, ρ)-universal and we have β < n

|skid| for any (pp,msk) produced
by Setup(1λ), any id and any skid produced by KeyGen(msk, id).

Alwen et al. [?] gave a construction of an IBE scheme in the BRM based on an
(n, ρ)-universal IB-HPS, and prove that the leakage-ratio α of their IBE scheme
can be arbitrarily close to the universality-ratio β of an underlying IB-HPS. More
formally, they proved the following theorem 8.

Theorem 1. ([?, Theorem 6.1].) If there exists an adaptively (resp. selectively)
secure IB-HPS with universality-ratio β > c for some constant c, then for any
constant ε > 0 and any polynomial v, there exists an adaptively (resp. selectively)
leakage-resilient IBE scheme in the BRM with message spaceM = {0, 1}v and:

8 Though Alwen et al. [?] only gave a proof for the case of the adaptive security, the
proof can be straightforwardly extended to the selective case.
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1. Master public/secret key size is the same as that of the underlying IB-HPS.
2. Ciphertext-size/encryption-time/decryption-time are t = O(v + λ) times

larger than that of the underlying IB-HPS.
3. Leakage-ratio is α ≥ β(1 − ε) for sufficiently large values of the leakage

parameter `.

3 Generic Construction of IB-HPS from IPE

In this section, we give a generic construction of IB-HPS based on any IPE
scheme. Interestingly, universality-ratio of a resulting IB-HPS is related to key-
compactness of an underlying IPE scheme. Especially, if an underlying IPE is
fully key-compact, then the universality-ratio of the resulting IB-HPS can be
arbitrarily close to 1. We give our construction through an intermediate primitive
called multi-identity-based encryption (MIBE).

3.1 Multi-Identity-based Encryption

Here, we introduce a notion of MIBE, which is a variant of IBE such that a
secret key is associated with multiple identities. Then we show a key-compactness-
preserving conversion from IPE to MIBE. An MIBE scheme consists of four PPT
algorithms (Setup,KeyGen,Enc,Dec).

Setup(1λ, 1n) R→ (pp,msk) : This is the setup algorithm that takes the security
parameter 1λ and the identity-multiplicity 1n as inputs and outputs a public
parameter pp and a master secret key msk. All other algorithms implicitly
include pp as an input.

KeyGen(msk, (id1, ..., idn)) R→ sk(id1,...,idn): This is the key generation algorithm
that takes a master secret key msk and identities id1, ..., idn as inputs, and
outputs secret key sk(id1,...,idn) associated with the set {id1, ..., idn}.

Enc(id,m) R→ ct: This is the encryption algorithm that takes an identity id and
a message m as inputs, and outputs a ciphertext ct.

Dec(skid1,...,idn , (id1, ..., idn), ct)→ m: This is the decryption algorithm that takes
a secret key sk(id1,...,idn), a set of identities (id1, ..., idn) and a ciphertext ct as
inputs, and outputs a message m.

Correctness. For any (pp,msk) produced by Setup(1λ), any n ∈ N, any id1, ..., idn ∈
IDn, any i ∈ [n], and any message m, we have

Pr
[

m 6= m′
∣∣∣∣∣ sk(id1,...,idn)

R← KeyGen(msk, (id1, ..., idn))
(ct, k) R← Enc(idi,m),m′ := Dec(sk(id1,...,idn), (id1, ..., idn), ct)

]
= negl(λ)

Security. The security of an MIBE scheme MIBE is defined by the experiment
ExptCPA

MIBE,A(λ) for an adversary A = (A1,A2) described in Figure 4. We say that
a PPT adversary A is admissible if for any query (id1, ..., idn) made by A, we
have id∗ /∈ {id1, ..., idn}. We say that A is selectively admissible if in addition
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ExptCPA
MIBE,A(λ) :

coin R← {0, 1}
(pp,msk) R← Setup(1λ)
(id∗,m0,m1, st)

R← AKeyGen(msk,·)
1 (pp)

ct∗ R← Enc(pp, id∗,mcoin)
ĉoin R← AKeyGen(msk,·)

2 (ct∗, st)
Return (ĉoin ?= coin).

Fig. 4. The experiment for defining the security for MIBE

to the above, A1 can be divided into two stages A1-1 and A1-2: A1-1 is given
1λ and not allowed to access to any oracle, and returns (id∗, stpre), and A1-2
is given (pp, stpre) and allowed to access to oracles KeyGen(msk, ·), and returns
(m0,m1, st).

Definition 7. We say that a MIBE scheme MIBE is adaptively secure if for any
admissible adversary A, if the advantage

AdvCPA
MIBE,A(λ) := 2 · |Pr[ExptCPA

MIBE,A(λ) = 1]− 1/2|

is negligible. We define selective security of MIBE analogously by replacing “any
admissible adversary A” in the above definition with “any selectively admissible
adversary A”.

Key-compactness. We say that an MIBE scheme is fully key-compact if for any
polynomial n = n(λ), any (pp,msk) produced by Setup(1λ, 1n), any id1, ..., idn,
and skid1,...,idn produced by KeyGen(msk, (id1, ..., idn)), we have

|skid1,...,idn | = poly(λ)

where poly is a fixed polynomial that does not depend on n.

Remark 3. If we do not require the key-compactness, it is trivial to construct an
MIBE scheme from any IBE scheme.

3.2 MIBE from IPE

Here, we give a key-compactness-preserving construction of an MIBE scheme
based on an IPE scheme. Actually, this construction is implicit in the work by
Katz, Sahai and Waters [?]. We give the full description for completeness. Let
IPE = (SetupIPE,KeyGenIPE,EncIPE,DecIPE) be an IPE scheme. We construct an
MIBE scheme MIBE = (SetupMIBE,KeyGenMIBE,EncMIBE,DecMIBE) as follows.

SetupMIBE(1λ, 1n): This algorithm runs (pp,msk) R← SetupIPE(1λ, 1n+1) and out-
puts (pp,msk). If pp specifies vector space Znq as an IPE scheme, an identity-
space of MIBE is specified to be Zq.
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KeyGenMIBE(msk, (id1, ..., idn) ∈ Znq ): This algorithm computes {yi ∈ Zq}i∈{0,...,n}
such that

∏n
i=1(X − idn) =

∑n
i=0 yiX

i as a polynomial in the indetermi-
nate X, sets y := (y0, ..., yn), runs sky

R← KeyGenIPE(msk,y) and outputs
sk(id1,...,idn) := sky.

EncMIBE(id,m): This algorithm sets x := (1, id, id2, ..., idn), where idi denotes the
i-th power of id on Zq, runs ct R← EncIPE(x,m) and outputs ct.

DecMIBE(sk(id1,...,idn), (id1, ..., idn), ct): This algorithm computes y similarly to in
KeyGenMIBE, runs m R← DecIPE(sk(id1,...,idn),y, ct) and outputs m.

Correctness. Suppose that we have id ∈ {id1, ..., idn}. Let x := (1, id, id2, ..., idn)
and y be the vector associated with {id1, ..., idn} specified as in the description
of KeyGenMIBE. Then we have xTy =

∑n
i=0 yiid

i =
∏n
i=1(id− idn) = 0. Therefore

the correcrtness of MIBE follows from the correctness of IPE.

Security.

Theorem 2. If IPE is adaptively (resp. selectively) secure, then MIBE is adap-
tively (resp. selectively) secure. Moreover, if IPE is fully key-compact, then MIBE
is fully key-compact.

Proof. First, it is easy to see that MIBE is fully key-compact if IPE is fully key-
compact since a decryption key sk(id1,...,idn) of MIBE consists of a single secret
key sky of IPE whose size is polynomial in λ due to the full key-compactness
of IPE. Then, we reduce the security of MIBE to IPE. Here, we only give the
proof for the adaptive case because the selective case can be proven similarly. Let
A = (A1,A2) be an admissible adversary against the adaptive security of MIBE.
Then we construct an adversary B = (B1,B2) against the adaptive security of
IPE as follows.

BKeyGenIPE(msk,·)
1 (pp): This algorithm runs AKeyGenMIBE(msk,·)

1 (pp). When A1 queries
(id1, ..., idn) to KeyGenMIBE(msk, ·), B1 computes {yi ∈ Zq}i∈{0,...,n} such
that

∏n
i=1(X − idn) =

∑n
i=0 yiX

i, sets y := (y0, ..., yn), queries y to its
own oracle KeyGenIPE(msk, ·) to obtain sky, sets sk(id1,...,idn) := sky, and
returns sk(id1,...,idn) as a response by the oracle KeyGenMIBE(msk, ·). When A1
outputs (id∗,m0,m1, st), B1 sets x∗ := (1, id∗, (id∗)2, ..., (id∗)n) and outputs
(x∗,m0,m1, st).

BKeyGenIPE(msk,·)
2 (ct∗, st): This algorithms runs AKeyGenMIBE(msk,·)

2 (ct∗, st). When A2
queries (id1, ..., idn) to KeyGenMIBE(msk, ·), B2 computes {yi ∈ Zq}i∈{0,...,n}
such that

∏n
i=1(X − idn) =

∑n
i=0 yiX

i, sets y := (y0, ..., yn), queries y to
its own oracle KeyGenIPE(msk, ·) to obtain sky, sets sk(id1,...,idn) := sky, and
returns sk(id1,...,idn) as a response by the oracle KeyGenMIBE(msk, ·). When A2

outputs ĉoin, B2 outputs ĉoin.

It is easy to see that B perfectly simulates KeyGenMIBE(msk, ·) for A, and the
challenge ciphertext simulated by B is a correct encryption of mcoin where coin
is the random coin chosen by the challenger in the experiment B is involved.
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Therefore, we have AdvCPA
MIBE,A(λ) = AdvCPA

IPE,B(λ). What is left is to prove that
B is admissible if A is admissible. Let y = (y0, ..., yn) be the corresponding
vector to a queried set of identities (id1, ..., idn) by A, i.e., y satisfies

∏n
i=1(X −

idn) =
∑n
i=0 yiX

i, and x∗ := (1, id∗, (id∗)2, ..., (id∗)n). Then we have (x∗)Ty =∑n
i=0 yi(id

∗)i =
∏n
i=1(id∗ − idn) 6= 0 where the last inequality holds because

we have id∗ /∈ {id1, ..., idn} due to the admissibility of A. This completes the
proof.

3.3 IB-HPS from MIBE

Here, we give a construction of an IB-HPS based on any MIBE scheme. Moreover,
we show that if the underlying MIBE scheme is fully key-compact, then the
universality-ratio of the resulting IB-HPS can be made arbitrarily close to 1.

Let MIBE = (SetupMIBE,KeyGenMIBE,EncMIBE,DecMIBE) be an MIBE scheme
with a message spaceM and an identity space {0, 1}`id . We assume that there
exists a positive integer `k such that {0, 1}`k can be embedded into M, i.e.,
there exists an efficiently computable injective function σ : {0, 1}`k → M. In
the following, we often identify k ∈ {0, 1}`k with σ(k) and treat k as an ele-
ment of M. Let PRF : K × {0, 1}`id → R where R denotes the randomness
space for KeyGenMIBE. Then for any positive integer n, we construct an IB-HPS
Πn = (SetupHPS,KeyGenHPS,EncapHPS,Encap∗HPS,DecapHPS) with identity space
{0, 1}`id−dlogne−1 and key space {0, 1}`k as follows, where bin(m) denotes a binary
representation of an integer m.

SetupHPS(1λ): This algorithm generates (pp,msk) R← SetupMIBE(1λ, 1n), chooses
a PRF key K R← K, and outputs pp and (msk,K) as its public parameter
and master secret key.

KeyGenHPS((msk,K), id): This algorithm picks ri
R← {0, 1} for i ∈ [n], gen-

erates sk′id
R← KeyGenMIBE(msk, (id‖bin(1)‖r1, ..., id‖bin(n)‖rn); PRF(K, id)),

and outputs skid := (sk′id, {ri}i∈[n]).
EncapHPS(id): This algorithm picks ki ∈ {0, 1}`k for i ∈ [n], generates cti,b

R←
EncMIBE(id||bin(i)||b, ki) for i ∈ [n] and b ∈ {0, 1}, sets ct := {cti,b}i∈[n],b∈{0,1}
and k :=

⊕
i∈[n] ki, and outputs (ct, k).

Encap∗HPS(id): This algorithm picks ki,b ∈ {0, 1}`k for i ∈ [n] and b ∈ {0, 1},
generates cti,b

R← EncMIBE(id||bin(i)||b, ki,b) for all i ∈ [n], b ∈ {0, 1}, sets
ct := {cti,b}i∈[n],b∈{0,1}, and outputs ct.

DecapHPS(skid, id, ct): This algorithm parses (sk′id, {ri}i∈[n])← skid and {cti,b}i∈[n],b∈{0,1} ←
ct, runs k′i ← DecMIBE(sk′id, (id||bin(1)||r1, ..., id||bin(n)||rn), cti,ri), and out-
puts k :=

⊕
i∈[n] k′i

Correctness. Correctness of Πn is easy to see given the correctness of MIBE.

Security.

Theorem 3. If MIBE is adaptively (resp. selectively) secure MIBE scheme, then
Πn is an adaptively (resp. selectively) secure and (n, 2−`k )-universal IB-HPS with
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the universality-ratio n
n+`sk(n) where `sk(n) denotes the maximum length of sk

generated by KeyGenMIBE(msk, ·) where (pp,msk) R← SetupMIBE(1λ, 1n). Especially,
if MIBE is fully key-compact, then we can make the universality-ratio arbitrarily
close to 1 by increasing n.

Proof.
Valid/invalid ciphertext indistinguishability. First, we prove that Πn is
adaptively (resp. selectively) secure if MIBE is adaptively (resp. selectively) secure.
Here, we only give the proof for the adaptive case because the selective case can
be proven similarly. We assume that there exists a PPT adversary A = (A1,A2)
that breaks the adaptive security of Πn. We consider the following sequence of
hybrid games.

Game0 This game simulates the environment of Exptind
Πn,A(λ) for the case of

coin = 0 (where A is always given a valid ciphertext) to A. ĉoin output by A
is treated as the output of this game.

Game′0 This game is the same as Game0 except that the challenger uses a fresh
randomness instead of PRF(K, id) when responding to A’s key generation
queries. We denote this modified key generation oracle by KeyGen′HPS(msk, ·).
We note that K is not needed for simulating KeyGen′HPS(msk, ·).

Game′x: For x = 0, ..., n, we consider the following games. We remark that the
definitions of Game′0 given above and below is consistent.

Game′x :
(pp,msk) R← SetupMIBE(1λ)
(id∗, stA) R← AKeyGen′HPS(msk,·)

1 (pp)
For i = 1 to x

ki,0, ki,1
R← {0, 1}`k

For i = x+ 1 to n
ki,0

R← {0, 1}`k

ki,1 := ki,0

For i ∈ [n], b ∈ {0, 1}
ct∗i,b

R← EncMIBE(id∗||bin(i)||b, ki,b)
ct∗ := {ct∗i,b}i∈[n],b∈{0,1}

ĉoin R← AKeyGen′HPS(msk,·)
2 (ct∗, stA)

Return ĉoin.

It is easy to see that Game′n simulates the environment of Exptind
Πn,A(λ) given

coin = 1 (where A is always given an invalid ciphertext) to A. Therefore, we
have |Pr[1 R← Game0] − Pr[1 R← Game′n]| = Advind

Πn,A(λ). We prove that this is
negligible by showing the following lemmas.

Lemma 1. There exists a PPT adversary B against PRF such that |Pr[Game0 =
1]− Pr[Game′0 = 1]| = AdvPRF,B(λ).

Proof. The PRF key K is used only when simulating the key generation oracle,
and evaluations of the PRF on the same input id is not repeated more than once
since A is not allowed to query the same identity more than once. Therefore, it is
straightforward to reduce the distinguishing advantage between these two games
to the security of PRF.
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Lemma 2. For x ∈ [n], there exists an admissible adversary B against MIBE
such that |Pr[Game′x−1 = 1]− Pr[Game′x = 1]| = AdvCPA

MIBE,B(λ).

Proof. We assume that A distinguishes Game′x and Game′x+1, and construct a
PPT adversary B = (B1,B2) that breaks the adaptive security of MIBE. We
describe B below.

BKeyGenMIBE(msk,·)
1 (pp): It runs (id∗, stA) R← AKeyGen′HPS(msk,·)

1 (pp) where B simulates
KeyGen′HPS toA1 as follows. WhenA1 makes its j-th query id(j) to KeyGen′HPS,
it randomly picks r(j)

i
R← {0, 1} for i ∈ [n], queries (id(j)‖bin(1)‖r(j)

1 , ..., id(j)‖bin(n)‖r(j)
n )

to its own oracle KeyGenMIBE to obtain sk(j)
id
′
, and gives (sk(j)

id
′
, {r(j)

i }i∈[n]) to
A1 as a response from the oracle KeyGen′HPS. If there exists j ∈ [Q] such that
id∗ = id(j), then it sets r∗x := r

(j)
x . Otherwise it picks r∗x

R← {0, 1}. It picks
kx,0, kx,1

R← {0, 1}`k and sets stB := (stA, r∗x, kx,0, kx,1). Then, B1 outputs
(id‖bin(x)‖(1− r∗x), kx,r∗x , kx,1−r∗x , stB).

BKeyGenMIBE(msk,·)
2 (ct∗MIBE, stB): It parses {cti,b}i∈[n],b∈{0,1} ← ct∗ and (stA, r∗x) ←

stB. It picks ki,0, ki,1
R← {0, 1}`k for i = 1, ..., x−1. It picks ki,0

R← {0, 1}`k and
sets ki,1 := ki,0 for i = x+1, ..., n. It computes ct∗i,b

R← EncMIBE(id‖bin(i)‖b, ki,b)
for all (i, b) ∈ ([n]×{0, 1})\{(x, 1−r∗x)}, and sets ct∗x,1−r∗x := ct∗MIBE. Then, it
sets ct∗HPS := {ct∗i,b}i∈[n],b∈{0,1} and runs ĉoin R← AKeyGen′HPS(msk,·)

2 (ct∗HPS, stA)
where B2 simulates KeyGen′HPS(msk, ·) as follows. When A2 makes a j-th
query id(j) to KeyGen′HPS(msk, ·) (where the number of query is counted
through A1 and A2), if id(j) 6= id∗, then B2 randomly picks r(j)

i
R← {0, 1} for

i ∈ [n], and otherwise it randomly picks r(j)
i

R← {0, 1} for i ∈ [n] \ {x} and
sets r(j)

x := r∗x. Then, B2 queries (id(j)‖bin(1)‖r(j)
1 , ..., id(j)‖bin(n)‖r(j)

n ) to its
own oracle KeyGenMIBE(msk, ·) to obtain sk(j)

id
′
, and gives (sk(j)

id
′
, {r(j)

i }i∈[n])
to A2 as a response from the oracle KeyGen′HPS(msk, ·). Finally, B2 outputs
coin′.

This completes the description of B. First, we can see that B is admissible because
B’s query to its oracle never contains id∗‖bin(x)‖(1 − r∗x). If the random coin
chosen by the challenger of ExptCPA

MIBE,B, which is the experiment B is involved in, is
0, then B perfectly simulates Game′x−1 to A, and if the coin is 1, then B perfectly
simulates Game′x to A. Therefore we have |Pr[Game′x−1 = 1]−Pr[Game′x = 1]| =
AdvCPA

MIBE,B(λ) as desired.

Due to the above lemmas and the triangle inequality, if PRF is a secure
PRF and MIBE is adaptively secure, then |Pr[1 R← Game0]− Pr[1 R← Game′n]| =
Advind

Π,A(λ) is negligible, and thus Πn is adaptively secure.

Universality. We prove that Πn is (n, 2−`k)-universal. First, for any fixed
(msk, pp) and id ∈ {0, 1}`id , we have H∞(skid) = n where skid

R← KeyGenHPS(msk, id)
because a different choice of {ri}i∈[n] ∈ {0, 1}n gives a different value of skid.
For any fixed (msk, pp) and id ∈ {0, 1}`id , let skid = (sk′id, {ri}i∈[n]) and skid =
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(sk′id, {ri}i∈[n]) be distinct secret keys produced by KeyGenHPS(msk, id). Since
the first component sk′id in a secret key skid is deterministically derived from
msk, id, and {ri}i∈[n], we must have {ri}i∈[n] 6= {ri}i∈[n]. Let ct be an invalid
ciphertext generated by Encap∗(id), i.e., we pick ki,b ∈ {0, 1}`k for i ∈ [n] and
b ∈ {0, 1}, generate cti,b

R← EncMIBE(id||bin(i)||b, ki,b) for all i ∈ [n], b ∈ {0, 1}
and set ct := {cti,b}i∈[n],b∈{0,1}. Then, we have Decap(skid, id, ct) =

⊕n
i=1 ki,ri

and Decap(skid, id, ct) =
⊕n

i=1 ki,ri by the correctness of MIBE. Since there ex-
ists i∗ ∈ [n] such that ri∗ 6= ri∗ and ki∗,0 and ki∗,1 are independently random,
Decap(skid, id, ct) and Decap(skid, id, ct) are independently random. Therefore, we
have

Pr
ct R←Encap∗(id)

[Decap(skid, id, ct) = Decap(skid, id, ct)] ≤ 2−`k .

Therefore Πn is (n, 2−`k)-universal. Since a secret key skid of Πn consists of a
secret key sk′id of MIBE and an n-bit string {ri}i∈[n], the secret key size of Πn

is n + `sk(n). Therefore, the universality-ratio of Πn is n
n+`sk(n) . Especially, if

MIBE is fully key-compact, then `sk(n) is a fixed polynomial in λ that does not
depend on n, and thus we can make the universality-ratio arbitrarily close to 1
by increasing n.

4 Leakage resilient IBE in BRM

Here, we first observe that combining Theorem 1, 2, and 3, we can construct a
leakage resilient IBE scheme in the BRM based on any IPE scheme, and the
leakage-ratio of the resulting IBE scheme can be made arbitrary close to 1 if the
underlying IPE is fully key-compact. Then we give some instantiations for it.

4.1 Construction from IPE

Combining Theorem 1, 2, and 3, we obtain the following corollary.

Corollary 1. Suppose we have an adaptively (resp. selectively) secure fully key-
compact IPE scheme with vector space Znq whose secret key size is |skIPE(n)|
where q = λω(1) and the dimension n ∈ N can be flexibly chosen by the setup
algorithm. Then for any n = poly(λ) and constant ε > 0, we can construct an
adaptively (resp. selectively) secure leakage resilient IBE scheme in the BRM
with identity-space {0, 1}b

log q
2 c and message space {0, 1}v such that

1. Public parameter/master secret key size is almost the same as that of the
underlying IPE scheme.

2. Ciphertext-size/encryption-time/decryption-time are O(n(v+λ)) times larger
than that of the underlying IPE with dimension n.

3. leakage-ratio is (1− ε)( n
n+|skIPE(n)| ) for sufficiently large values of the leakage

parameter `.

22



Especially, by choosing sufficiently large n = O(|skIPE(n)|), we can make the
leakage-ratio 1− ε for any constant ε > 0.

Proof. Suppose we have an adaptively (resp. selectively) secure fully key-compact
IPE scheme with vector space Znq . By Theorem 2, we can construct an adap-
tively (resp. selectively) secure fully key-compact MIBE scheme whose identity-
space is {0, 1}blog qc and public parameter/master secret key size, ciphertext-
size/encryption-time/decryption-time, are almost the same as those of the under-
lying IPE. Then by Theorem 3, for any n ∈ N, we can construct an adaptively
(resp. selectively) secure IB-HPS whose identity-space is {0, 1}blog qc−blog(n)c−1,
master public/secret key size is the same as that of the underlying IPE scheme,
ciphertext-size/encryption-time/decryption-time differ by a factor of O(n) from
those of the underlying IPE with dimension n, and universality-ratio n

n+|skIPE(n)| .
Here, for sufficiently large λ, we have blog qc − blognc − 1 > b log q

2 c since we
have q = λω(1) and n = poly(λ). Therefore the identity-space of IB-HPS can be
restricted to {0, 1}b

log q
2 c. Finally, by applying Theorem 1 to this IB-HPS, we

obtain Corollary 1. Especially, for any constant ε′ > 0, if we set n > |skIPE(n)|
ε′

then we have n
n+|skIPE(n)| >

1
1+ε′ . Thus we can make the leakage-ratio arbitrarily

close to 1.

4.2 Instantiations

By Corollary 1, we can construct a leakage resilient IBE scheme in the BRM
whose leakage-ratio is arbitrarily close to 1 based on any fully key-compact IPE
scheme. We give a list of possible instantiations below. Note that all constructions
are secure in the standard model. In the following, |skIPE| and |ctIPE(n)| denotes
the size of a secret key and a ciphertext when the dimension is set to be n.
(Remark that since these schemes are fully-key-compact, |skIPE| does not depend
on n.)

1. Wee constructed an adaptively secure IPE scheme from the subgroup decision
assumption on composite-order pairing groups [?]. The construction is fully
key-compact since a secret key for vector y ∈ ZnN consists of 2 group elements
where N is the order of a group and consists of three distinct primes. A
ciphertext of the scheme consists of n elements of the group. Namely, we
have |skIPE| = O(N) and |ctIPE(n)| = O(nN). For any constant ε > 0, we can
set n = O(N) to achieve the leakage-ratio 1− ε. In this case, the ciphertext
size of the resulting IBE scheme is O(N3λ).

2. Chen et al. constructed an adaptively secure IPE scheme from the d-Lin
assumption on prime-order pairing groups [?]. The construction is fully key-
compact since a secret key for vector y ∈ Znq consists of 2(d + 1) group
elements where q is the order of a group. If we use the 1-Lin (i.e., SXDH)
assumption, only 4 group elements. A ciphertext of the scheme consists of
(n+ 1)(d+ 1) group elements and a message masking part. Namely, we have
|skIPE| = O(dλ) and |ctIPE(n)| = O(ndλ). For any constant ε > 0, we can set
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n = O(dλ) to achieve the leakage-ratio 1− ε. In this case, the ciphertext size
of the resulting IBE scheme is O(d3λ4).

3. Agrawal et al. constructed a selectively secure IPE scheme from the LWE
assumption [?]. The construction is fully key-compact since a secret key
for a vector y ∈ Znq is a vector of small length in Zm where m does not
depend on n. More precisely, a secret key consists of a vector of length of
O(σ
√
m) (with overwhelming probability) in Z2m, and a ciphertext consists

of O(n log q) vectors in Zmq where we can set q = poly(λ, n), m = O(λ1+δ)
and σ = poly(λ, n) where δ > 0 is an arbitrary constant. Namely, we have
|skIPE| = Õ(λ1+δ) and |ctIPE(n)| = O(nλ1+δ). For any constant ε > 0, we can
set n = Õ(λ1+δ) to achieve the leakage-ratio 1− ε. In this case, the ciphertext
size of the resulting IBE scheme is Õ(λ4+3δ).

4. We constructed a selectively secure IPE scheme from the CBDH assumption.
This construction is an extension of Boneh-Boyen selectively secure IBE [?]
and can be seen as a selectively secure variant of the scheme proposed by
Chen et al. [?] (which is an adaptively secure IPE scheme under the d-Lin
assumption). The construction is fully key compact since a secret key for
vector y ∈ Znq consists of 2 group elements where q is the order of a group.
A ciphertext consists of n+ 1 group elements and a message masking part.
Namely, we have |skIPE| = O(λ) and |ctIPE(n)| = O(nλ). For any constant
ε > 0, we can set n = O(λ) to achieve the leakage-ratio 1− ε. In this case,
the ciphertext size of the resulting IBE scheme is O(λ4).
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A Key-Compact IPE from CBDH or DBDH

Here, we give constructions of a fully key-compact selectively secure IPE scheme
based on the CBDH or DBDH assumptions. The constructions are simple exten-
sions of the Boneh-Boyen IBE [?] and can be seen as selectively secure variants
of the adaptively secure short secret key IPE scheme by Chen, Gay, and Wee [?].

A.1 Definitions

First, we define pairing groups and CBDH and DBDH assumptions for it. Let G1,
G2 and GT be groups of prime order q associated with a pairing e : G1×G2 → GT .
We require e to satisfy the following two properties.

Bilinearity For all g1 ∈ G1, g2 ∈ G2 and a, b ∈ Zq, it holds that e(ga1 , gb2) =
e(g1, g2)ab.

Non-degeneracy If g1 and g2 generate G1 and G2 respectively, then e(g1, g2) 6=
1.
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Definition 8. (Computational Bilinear Diffie-Hellman Assumption.) We say
that the computational bilinear Diffie-Hellman (CBDH) assumption holds if for
any PPT adversary A, we have

Advcbdh
A (λ) := Pr[e(g1, g2)xyz R← A(g1, g

α
1 , g

β
1 , g

γ
1 , g2, g

α
2 , g

β
2 , g

γ
2 )] = negl(λ)

where g1
R← G1, g2

R← G2 and α, β, γ R← Zq.

Definition 9. (Decisional Bilinear Diffie-Hellman Assumption.) We say that
the decisional bilinear Diffie-Hellman (DBDH) assumption holds if for any PPT
adversary A, we have

|Pr[A(g1, g
α
1 , g

β
1 , g

γ
1 , g2, g

α
2 , g

β
2 , g

γ
2 , T0) = 1]

−Pr[A(g1, g
α
1 , g

β
1 , g

γ
1 , g2, g

α
2 , g

β
2 , g

γ
2 , T1) = 1]| = negl(λ)

where g1
R← G1, g2

R← G2, α, β, γ
R← Zq, T0 := e(g1, g2)αβγ , and T1

R← GT .

By the Goldreich-Levin theorem [?], the following lemma holds.

Lemma 3. (Hardcore security of CBDH.) If the CBDH assumption holds, then
there exists a family GL of functions hc : GT → {0, 1} such that

|Pr[A(g1, g
α
1 , g

β
1 , g

γ
1 , g2, g

α
2 , g

β
2 , g

γ
2 , hc, T0) = 1]

−Pr[A(g1, g
α
1 , g

β
1 , g

γ
1 , g2, g

α
2 , g

β
2 , g

γ
2 , hc, T1) = 1]| = negl(λ)

where g1
R← G1, g2

R← G2, α, β, γ
R← Zq, hc R← GL, T0 := hc(e(g1, g2)αβγ), and

T1
R← {0, 1}.

A.2 Construction

We first describe our IPE scheme based on the CBDH assumption.

Setup(1λ, 1n) : It generates parameters of a pairing group ppbm := (q,G1,G2,GT , e, g1, g2),
chooses hc R← GL, α, β R← Zq and ri

R← Zq for i ∈ [n], sets v := gα1 , w :=
e(g1, g2)αβ and ui := gri1 for i ∈ [n], and outputs pp := (ppbm, v, w, u1, ..., un)
and msk := (gαβ2 , r1, ..., rn). All other algorithms implicitly include pp as an
input. The message space is {0, 1} and the vector space Znq .

KeyGen(msk,y = (y1, ..., yn)): It chooses s R← Zq, sets k0 := gs2, k1 := gαβ2 ·

(g
∑n

i=1
yiri

2 )s, and outputs sky := (k0, k1).
Enc(x = (x1, ..., xn),m ∈ GT ): It chooses γ R← Zq, computes C0 := gγ1 , Ci :=

(vxiui)γ for i ∈ [n], and Cm := m⊕hc(wγ), and outputs ctx := (C0, C1, ..., Cn, Cm).
Dec(sky,y = (k0, k1), ctx = (C0, C1, ..., Cn, Cm)): It outputs m := Cm⊕hc(e(C0, k1)e(

∏n
i=1(Cyii ), k0)−1).
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Correctness. Let x ∈ Znq and y ∈ Znq be vectors such that xT · y = 0 and
m ∈ {0, 1} be any message. Suppose that ctx = (C0, C1, ..., Cn, Cm) and sky =
(k1, k2) are generated as (msk, pp) R← Setup(1λ, 1n), ctx

R← Enc(x,m), and sky
R←

KeyGen(msk,y = (y1, ..., yn)). Then we have

e(C0, k1) · e(
n∏
i=1

(Cyii ), k0)−1

= e(gγ1 , g
αβ+s

∑n

i=1
yiri

2 ) · e(g
∑n

i=1
yiγ(αxi+ri)

1 , gs2)−1

= e(g1, g2)αβγ+γs
∑n

i=1
yiri · e(g1, g2)−γs(α

∑n

i=1
xiyi+

∑n

i=1
yiri)

= e(g1, g2)αβγ .

Thus, the decryption correctly works since wγ = e(g1, g2)αβγ .

Key-compactness. A secret key sky for a vector y consists of two group
elements of G2, and its size is independent from the demension n. Therefore the
scheme is fully key-compact.

Security.

Theorem 4. If the CBDH assumption holds, then the above scheme is selectively
secure.

Proof. Suppose that there exists a PPT adversary A = ((A1-1,A1-2),A2) that
breaks the selective security of the above IPE scheme. We construct a PPT
algorithm B that breaks the hardcore security of CBDH as follows.

B(g1, g
α
1 , g

β
1 , g

γ
1 , g2, g

α
2 , g

β
2 , g

γ
2 , hc, T ): The goal of B is to distinguish if T =

hc(e(g1, g2)αβγ) or T R← {0, 1}. It first runs (x∗, stA,pre)
R← A1-1(1λ, 1n). Then

it picks r′i
R← Zq for i ∈ [n], sets v R← gα1 , w := e(gα1 , g

β
2 ), ui := g

r′i
1 · (gα1 )−x∗i

(this implicitly sets ri := r′i − αx∗i mod q), and pp := (v, w, u1, ..., un), and
runs (m0,m1, st)

R← AKeyGen(msk,·)
1-2 (pp, stA,pre) where the way to simulate the or-

acle KeyGen(msk, ·) is described below. Then B picks coin R← {0, 1}, sets C∗0 :=
gγ , C∗i := (gγ)r′i for i ∈ [n], C∗m := mcoin ⊕ T , and ct∗ := (C∗0 , C∗1 , ..., C∗n, C∗m),
and runs ĉoin R← AKeyGen(msk,·)

2 (ct∗, st) where the way to simulate the oracle
KeyGen(msk, ·) is described below. Finally, B outputs (ĉoin ?= coin).

KeyGen(msk, ·): Here, we describe the way to simulate KeyGen(msk, ·) by B.
Given a key query y = (y1, ..., yn), it first computes η := (x∗)T · y. If η = 0,
then it aborts. Otherwise it picks s′ R← Zq, sets k0 := gs

′

2 · (g
β
2 )1/η and

k1 := (g
∑n

i=1
yir
′
i · (gα)−η)s′ · (gβ)

∑n

i=1
yir
′
i/η, and returns sky := (k0, k1).

We omit sub/super-script of
∑n
i=1 below for ease of notation. Now, we set
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s := s′ + β/η, then we can rewrite

k1 = gs
′
∑

yi(ri+αx∗i )−s′αη+β/η
∑

yi(ri+αx∗i )

= g(s′+β/η)
∑

yiri+s′α(
∑

yix
∗
i−η)+αβ/η

∑
yix
∗
i

= gs
∑

yiri+αβ (∵ (x∗)T · y =
∑

yix
∗
i = η)

This perfectly simulate secret keys.
For the target ciphertext, C∗0 = gγ , and for i = 1, ..., n, we have

C∗i = (gr
′
i)γ

= (gαx
∗
i

1 · gr
′
i−αx

∗
i

1 )γ

= (vx
∗
i ui)γ

If T = hc(e(g1, g2)αβγ), then C∗m is also simulated correctly. On the othere
hand, if T R← {0, 1}, no information of coin is given to A, and thus the
probability that B outputs 1 is 1/2. Therefore we have

Pr[1 R← B|T = hc(e(g1, g2)αβγ)]− Pr[1 R← B|T R← {0, 1}] =
AdvCPA

IPE,A(λ)
2 .

i Thus, B can break the hardcore security of CBDH if A breaks the selective
security of the IPE scheme. This immediately implies that if the CBDH
assumption holds, then the scheme is selectively secure by Lemma 3.

If we use the DBDH assumption, we can set the message space of the scheme
to GT .
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