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Abstract. In non-zero inner product encryption (NIPE) schemes, ci-
phertexts and secret keys are associated with vectors and decryption is
possible whenever the inner product of these vectors does not equal zero.
So far, much effort on constructing bilinear map-based NIPE schemes
have been made and this has lead to many efficient schemes. However,
the constructions of NIPE schemes without bilinear maps are much less
investigated. The only known other NIPE constructions are based on lat-
tices, however, they are all highly inefficient due to the need of converting
inner product operations into circuits or branching programs.
To remedy our rather poor understanding regarding NIPE schemes with-
out bilinear maps, we provide two methods for constructing NIPE schemes:
a direct construction from lattices and a generic construction from func-
tional encryption schemes for inner products (LinFE). For our first direct
construction, it highly departs from the traditional lattice-based con-
structions and we rely heavily on new tools concerning Gaussian mea-
sures over multi-dimensional lattices to prove security. For our second
generic construction, using the recent constructions of LinFE schemes
as building blocks, we obtain the first NIPE constructions based on the
DDH and DCR assumptions. In particular, we obtain the first NIPE
schemes without bilinear maps or lattices.

1 Introduction

1.1 Background

An attribute-based encryption (ABE) scheme is an advanced form of public key
encryption where an access control over encrypted data is possible. In an ABE
scheme, a ciphertext and a secret key are associated with attributes X and Y , re-
spectively, and the decryption is possible only when they satisfy R(X,Y ) = 1 for
a certain relation R. The concept of ABE was first proposed by Sahai and Waters
[SW05]. Since then, many study followed in order to improve the scheme in many
aspects: security [LOS+10,OT10], expressibility [GPSW06,LW11,GVW13], and
efficiency [ALDP11]. While the early constructions of ABE schemes are based
on bilinear maps, some of the more recent schemes are based on lattices.
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In this paper, we focus on a special form of an ABE scheme called non-zero
inner product encryption (NIPE) scheme. In an NIPE scheme, a ciphertext at-
tribute is a vector x and a secret key attribute is a vector y, and the relation is
defined as R(x,y) = 1 iff 〈x,y〉 6= 0. The notion of NIPE was first introduced
in [KSW08]. It was not until Attrapadung and Libert [AL10] who gave the di-
rect first construction of an NIPE scheme using bilinear maps.1 In their work,
they provided interesting applications of NIPE schemes such as identity-based
revocation (IBR) schemes, where an IBR scheme is a type of broadcast encryp-
tion scheme that allows for efficient revocation of small member size. Since then,
many efficient NIPE schemes have been proposed [AL10,ALDP11,OT10,OT15,
YAHK14,CW14,CLR16]. They are all based on number theoretic assumptions
on bilinear maps.

On the other hand, the constructions of NIPE schemes without bilinear maps
are much less investigated. The only known other constructions are based on
lattices. However, unlike in the bilinear map setting, we do not know of any
direct constructions of a NIPE scheme in the lattice setting. In more detail,
we have ABE schemes for any circuit (i.e. the relation R being general cir-
cuits) [GVW13,BGG+14] and any branching programs [GVW13,GV15] from
the learning with errors (LWE) assumption. Here, the expressibility of the latter
constructions are more limited, however, these schemes can be proven secure
under the LWE assumption with polynomial approximation factors unlike the
former schemes that require sub-exponential approximation factors, i.e., the re-
quired hardness assumption is much weaker. Although we have two lines of works
that allow us to indirectly construct lattice-based NIPE schemes, they are both
highly inefficient. In particular, we can use the former constructions from cir-
cuits to implement an NIPE scheme, however, this would require us to express
the computation of the non-zero inner product predicates as a circuit, which
would result in a highly inefficient scheme. Furthermore, it would require us to
base security on a sub-exponential LWE assumption, which is not desirable both
from the efficiency and security stand points. Alternatively, we can use the lat-
ter construction for branching programs. To do so, we would first represent the
non-zero inner product predicate as an NC1 circuit, which is possible because
arithmetic operations are known to be in NC1 [BCH86], and then convert it into
a branching program using the Barrington’s theorem. Using [GVW13] or [GV15],
the construction by this approach enjoys security from the standard polynomial
LWE assumption. However, the approach is still highly inefficient due to the
large overhead incurred by the invocation of the Barrington’s theorem [Bar89].

More on NIPEs. Although NIPE schemes allows us to construct other cryp-
tographic primitives such as IBR schemes as explained above, it may be more
helpful to understand the usefulness of the primitive through its “negating” fea-
ture. As the name suggests, NIPE scheme is the counterpart of inner-product
encryption (IPE) schemes. It is well known that IPE schemes can be used to con-

1 We note that Goyal et al. [GPSW06] propose an ABE scheme for NC1 circuit,
which in turn implies a NIPE scheme, since the computation of inner products can
be performed in NC1. However, the resulting construction is highly inefficient.
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struct functional encryption schemes that can handle many practical predicates
such as polynomial evaluations, disjunction and/or conjunctions of equality tests,
membership tests and so on (for concrete applications see for example [BW07,
KSW08]). In brief, NIPE schemes are primitives that can handle the exact oppo-
site of all these predicates. Due to its usefulness in practice, negated policies in
the area of ABE have been highlighted in prior works [OSW07, AL10, ABS17].

Furthermore, aside from its practical interest, NIPE schemes are theoretically
interesting in its own right, since as we show as one of our results, NIPE schemes
can be constructed from much weaker assumptions than one would expect. In
particular, we construct NIPE schemes from the DDH or DCR assumption,
where it currently seems that stronger assumptions such as the DBDH or DLIN
assumption is required to construct its counterpart — IPE schemes. Therefore,
although an NIPE scheme may be simply understood as an IPE scheme in the
opposite flavor, our result indicates a distinct gap between the two primitives
when it comes to concrete constructions. Considering the recent breakthrough in
constructing identity-based encryption schemes [DG17] and functional encryp-
tion schemes for inner products [ABDCP15, ALS16] from weak assumptions, we
hope our work to spark interest to finding the minimum assumption for other
ABE-related primitives.

1.2 Our Contributions

To remedy our rather poor understanding regarding NIPE schemes without bi-
linear maps, we provide two methods for constructing NIPE schemes: a direct
construction from lattices and a generic construction from functional encryption
schemes for inner products (LinFE)2 . For the first direct lattice-based approach,
we propose two NIPE constructions where the differences lie in where the inner
products between attribute and predicate vectors are taken. The first scheme is
over Z whereas the second scheme is over Zp. For the second generic approach,
we show how to generically construct NIPE schemes from any LinFE scheme. In
particular, we can use the recent works of [ABDCP15,ALS16] to instantiate var-
ious types of NIPE schemes. Concretely, since [ALS16] provides us with LinFE
schemes from the LWE assumption, the DDH assumption and the DCR assump-
tion, we obtain NIPE schemes secure under all of these assumptions. Notably,
we obtain the first NIPE constructions without bilinear maps or lattices.

We give a brief overview on the properties that our NIPE schemes satisfy. As
for the first direct approach, we obtain two NIPE schemes with different prop-
erties: a selectively secure stateless NIPE scheme over Z and a selectively secure
stateful NIPE scheme over Zp. As for the second generic approach, by using the
LinFE schemes provided in [ALS16], which subsumes the work of [ABDCP15],
we obtain an adaptively secure stateless or stateful NIPE scheme over Z or Zp,
depending on what we use as the underlying LinFE scheme. The main advan-
tage of the first approach is that it leads to a more efficient NIPE scheme in the

2 The term LinFE is borrowed from [ALS16]. It is named as such, since it is a special
type of functional encryption scheme restricted to the class of linear functions.
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amortized sense compared with the second approach instantiated with a lattice-
based LinFE scheme. In more detail, to encrypt a message of `M -bit length, the
first approach requires (`M + m + m`) elements of Zq in a ciphertext and the
second requires (m + `)`M . Here, ` is the dimension of the predicate vectors in
the NIPE scheme and q and m are the modulus size and the number of columns
of the LWE matrix involved in the scheme, respectively. The first approach is
more efficient than the second one when we encrypt more than m`/(m+ `) bits
at once. For a natural setting of ` < m, λ where λ is the security parameter, this
encompasses the most interesting case of KEM-DEM settings where one encrypts
λ bits of session key. In fact, when we are in the ring setting, since m is O(log λ),
the first approach will be more efficient regardless of the size `. Furthermore,
for NIPE schemes over Zp, the first approach would require smaller LWE mod-
ulus. Indeed, in certain regime of parameters such as ` = log n/ log log log n and
p = log log n, the first approach would yield a scheme with polynomial modulus
whereas the second requires super-polynomial modulus. However, on the other
hand, the advantage of the second approach is that it achieves adaptive security
and allows us to instantiate the NIPE scheme with different types of hardness
assumptions such as the DDH and DCR assumptions. Below, we give an outline
of the techniques we used for constructing our lattice-based NIPE schemes and
the generic construction of NIPE schemes from LinFE. We believe the techniques
we utilized for the lattice-based direct NIPE construction to be of independent
interest.

Lattice-Based Constructions. We propose two NIPE schemes built directly
from lattices. At a high level, our two NIPE constructions share many simi-
larities; both constructions highly depart from the previous lattice-based ABE
constructions [GVW13,BGG+14,GV15] and they rely heavily on the tools of
Gaussian measures over multi-dimensional lattices during the security proof.
Notably, for both of our constructions: a trapdoor TA ∈ Zm×m for the public
matrix A ∈ Zn×mq is not required, a secret key for a user is simply a linear com-
bination of the master secret keys, and the algorithm SampleRight of [ABB10] is
used during decryption. To the knowledgeable readers of lattice-based cryptog-
raphy, this may seem somewhat peculiar, since SampleRight is an algorithm that
customary appears in the security proof for allowing the simulator to sample a
short vector e such that [A|B]e = u without knowledge of the trapdoor of A, in
case B is in the special form AR + t ·G mod q, where t ∈ Zq is some invertible
element and G [MP12] is a special matrix with a publicly known trapdoor TG.

Below we sketch our construction. We set the master public key MPK and
the master secret key MSK as follows:

MPK = (A,B1, · · · ,B`,u) and MSK = (R1, · · · ,R`),

where ` denotes the dimension of the vectors, {Ri}i∈[`] are random matrices
whose columns are sampled from the discrete Gaussian distribution and Bi =
ARi mod q. In the following, we focus on the overview of our first NIPE scheme
with inner product space Z. Although the high level construction is the same for
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our second NIPE scheme with inner product space Zp, we require some additional
technicalities during key generation, which we describe later.

Given the master secret key MSK, our secret key generation algorithm is
very simple and does not require any Gaussian sampling as in prior works.
Concretely, given a predicate vector y = (y1, · · · , y`) ∈ Z`, we simply re-

turn Ry =
∑`
i=1 yiRi ∈ Zm×m as the secret key. To embed an attribute

vector x = (x1, · · · , x`) ∈ Z` into the ciphertext, we use the techniques of
[AFV11,BGG+14], and create vectors {ci = s>(Bi+xi ·G)+zi}i∈[`] along with

c0 = s>A + z0. Here, s is a randomly sampled vector in Znq and {zi}i∈[0,`] are
short vectors in Zm sampled from a particular discrete Gaussian distribution.
Then, for decryption, a user with predicate vector y computes the following:

∑̀
i=1

yi · ci = s>(
∑̀
i=1

yiBi + 〈x,y〉 ·G) + noise = s>(ARy + 〈x,y〉 ·G) + noise.

Therefore, if 〈x,y〉 6= 0 (over Z), we can use the algorithm SampleRight to sample
a short vector e ∈ Z2m such that [A|ARy + 〈x,y〉 ·G]e = u mod q. Here, to
take care of the subtle problem that 〈x,y〉 has to be invertible over Zq, we
require the attribute and predicate vectors to be in some restricted domains.

However, despite the simplicity of our construction, the security proof re-
quires a rather sensitive and technical analysis that calls for new techniques. In
particular, building upon the prior works of [BF11], we prepare new tools con-
cerning Gaussian measures over mulit-dimensional lattices, which we believe to
be of independent interest. Using these tools, we are able to provide a rigorous
treatment on the distribution of the secret keys Ry of the real world and the
simulated world. In more detail, given a challenge attribute x∗ ∈ Z` at the outset
of the game, the simulator samples random matrices {RSIM

i }i∈[`] as in the real

world and sets the public matrices Bi as ARSIM
i −x∗i ·G. We answer the secret key

queries as in the real world, i.e., given a predicate vector y = (y1, · · · , y`) ∈ Z`,
we simply return RSIM

y =
∑`
i=1 yiR

SIM
i ∈ Zm×m. At first glance this seems

completely insecure, since an adversary may query y = (1, 0, · · · , 0) ∈ Z` and
recover R1 or RSIM

1 depending on which world it is in. Then, the adversary can
check whether B1 = AR1 or B1 = ARSIM

1 − x∗1 · G to distinguish between
the real world and the simulated world. However, this seemingly acute tactic
cannot be used to attack our NIPE scheme. The main observation is that, if
y = (1, 0, · · · , 0) ∈ Z` is a valid predicate for the key extraction query, then we
must have 〈x∗,y〉 = 0, or in other words x∗1y1 = x∗1 = 0. Therefore, since R1

and RSIM
1 are distributed statistically close, the above attack cannot be used to

distinguish between the two worlds. Our security analysis builds on this idea and
proves that the distribution of the secret keys the adversary obtains in the two
worlds {Ry(j)}j∈[Q] and {RSIM

y(j)}j∈[Q] are indeed statistically indistinguishable.

The main technical contribution is developing new tools for Gaussian measures
over multi-dimensional lattices, and analyzing the (set of) linear combinations

of Gaussian distributions {Ry(j) =
∑`
i=1 y

(j)
i Ri}j∈[Q].
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Finally, we briefly note on the aforementioned technical issue that arises
for our second NIPE construction with inner product space Zp. Notably, we
require our NIPE scheme to be stateful. This is similar to an issue that came
up in the works of [ALS16] for their LinFE scheme over Zp. Unlike in the NIPE
construction with inner product space Z, the linear dependency of the predicate
vectors y ∈ Z`p and the secret keys Ry ∈ Zm×m are no longer consistent. In other
words, even when an adversary queries for secret keys corresponding to predicate
vectors that are linearly dependent over Zp, the corresponding secret keys may
no longer be linearly dependent over Z. Therefore, the adversary can recover
the full master secret key {Ri}i∈[`] by querying the right predicate vectors. To
prevent this from happening, we make the key generation algorithm stateful
and pay special attention so as not to give out linearly independent secret keys
for linearly dependent predicate vectors. In addition, we also specify how to
maintain the state in a clever way. This is because the representation of the
state has a direct effect on the required LWE assumption, and if we maintain
the state naively, we would have to base our security on the subexponential LWE
assumption.

Generic Construction from LinFE. Besides the direct constructions from
lattices, we also propose a generic construction of a NIPE scheme from a LinFE
scheme. The idea for the generic conversion is inspired by the works of [ABP+17]
and is surprisingly simple. To explain the idea, let us first recall that in a LinFE
scheme, a ciphertext and a private key are associated with vectors x and y,
and when we decrypt the ciphertext using the private key, we recover 〈x,y〉.
Given a LinFE scheme, we construct a NIPE scheme as follows. To encrypt a
message M for a vector x, we encrypt a vector M ·x using the underlying LinFE
scheme to obtain a ciphertext. A private key for a vector y in the NIPE scheme
is exactly the same as a private key for y in the underlying LinFE scheme.
Observe that when we decrypt the ciphertext using the private key, we recover
〈M · x,y〉 = M · 〈x,y〉. This value corresponds to 0 when 〈x,y〉 = 0 regardless
of the value of the message. On the other hand, when x and y are known, M
can be recovered by computing M · 〈x,y〉/〈x,y〉 = M. That is, the message is
recovered if and only if 〈x,y〉 6= 0. Indeed, this functionality exactly matches
that of NIPE schemes.

While the idea is very simple, it leads to interesting consequences. By apply-
ing our LinFE-to-NIPE conversion to existing LinFE constructions [ABDCP15,
ALS16], we obtain several new NIPE schemes. Notably, we obtain the first NIPE
constructions from the DDH and DCR assumptions. In other words, we obtain
NIPE constructions without relying on bilinear maps or lattices. This result may
be somewhat surprising, since we do not know any other similar primitives to
inner product encryption (IPE)3 schemes that can be constructed without bi-
linear maps or lattices. In particular, it was not until recently for even a simple

3 IPE is a special kind of ABE where decryption is possible iff the inner product of
the vectors corresponding to a ciphertext and a private key is 0. This should not be
confused with LinFE, where the decryption is always possible and the decryption
result is the inner product itself.
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primitive such as an identity-based encryption scheme (in the standard model)
to be constructed without relying on bilinear maps or lattices [DG17]. Therefore,
our result indicates that NIPE schemes may be a primitive quite different from
other ABE type primitives in nature.

2 Preliminaries

2.1 Non-Zero Inner Product Encryption

Syntax. Let P and I denote the predicate space and attribute space, where the
inner product between elements (i.e., vectors) from P and I are well-defined.
Furthermore, let S denote the space where the inner product is taken. A state-
ful non-zero inner product encryption (NIPE) scheme over S consists of the
following four algorithms:

Setup(1λ, 1`)→ (MPK,MSK, st): The setup algorithm takes as input a security
parameter 1λ and the length ` of the vectors in the predicate and attribute
spaces, and outputs a master public key MPK, a master secret key MSK and
an initial state st.

KeyGen(MPK,MSK, st,y)→ (sky, st): The key generation algorithm takes as in-
put the master public key MPK, the master secret key MSK, the state st and
a predicate vector y ∈ P. It outputs a private key sky and a updated state
st. We assume that y is implicitly included in sky.

Encrypt(MPK,x,M)→ C: The encryption algorithm takes as input a master
public key MPK, an attribute vector x ∈ I and a message M. It outputs a
ciphertext C.

Decrypt(MPK, sky, (x, C))→ M or ⊥: The decryption algorithm takes as input
the master public key MPK, a private key sky, and a ciphertext C with an
associating attribute vector x. It outputs the message M or ⊥, which means
that the ciphertext is not in a valid form.

Correctness. We require correctness of decryption: that is, for all λ, ` ∈ N, all
x ∈ I,y ∈ P, and all M in the specified message space, the following holds:

- if 〈x,y〉 6= 0, then Pr[Dec(MPK, sky,Enc(MPK,x,M)) = M] = 1− negl(λ)
- if 〈x,y〉 = 0, then Pr[Dec(MPK, sky,Enc(MPK,x,M)) = ⊥] = 1− negl(λ),

where the inner products are taken over S and the probability is taken over the
randomness used in all the algorithms.

We also define a stateless non-zero inner product encryption, where we do
not require any state information in the above algorithms.

Security. We define the security of a (stateful) NIPE scheme over S with pred-
icate space P and attribute space I by the following game between a challenger
and an adversary A.

- Setup. At the outset of the game, the challenger runs (MPK,MSK, st) ←
Setup(1λ, 1`) and gives the public parameter MPK to A.
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- Phase 1. A may adaptively make key-extraction queries. If A submits a predi-
cate vector y ∈ P to the challenger, the challenger runs (sky, st)← KeyGen(MPK,
MSK, st,y) and returns sky.

- Challenge Phase. At some point, A outputs messages M0,M1 and an at-
tribute vector x∗ ∈ I on which it wishes to be challenged, with the restriction
that 〈x∗,y〉 = 0 (over S) for all y queried during Phase 1. Then, the challenger
picks a random bit b ∈ {0, 1} and returns C∗ ← Enc(MPK,x∗,Mb) to A.

- Phase 2. After the challenge query, A may continue to make key-extraction
queries for predicate vectors y ∈ P, with the added restriction that 〈x∗,y〉 = 0
(over S).

- Guess. Finally, A outputs a guess b′ for b.
The advantage of A is defined as AdvNIPEA,S =

∣∣Pr[b′ = b]− 1
2

∣∣ . We say that
a stateful NIPE scheme with inner product space S is adaptively secure, if the
advantage of any PPT A is negligible. Similarly, we define selective security for
a stateful NIPE scheme with inner product space S, by modifying the above
game so that the adversary A is forced to declare its challenge attribute vector
x∗ before Setup. Therefore, we also add the restriction that 〈x∗,y〉 = 0 (over
S) during Phase 1. Finally, we define an analogous security notion for stateless
NIPE schemes, where we do not require any state information during the above
game.

Remark on the Security Model. In the stateful setting, it may be more
natural to consider a security model where the adversary is allowed to request
the challenger to create a secret key without actually seeing it. Such a query
will change the internal state of KeyGen in a possibly malicious way. In our
work, we follow the stateful functional encryption formalization of [ALS16] and
do not consider this stronger security model. We leave it open the problem of
constructing efficient NIPE scheme satisfying this security notion.

2.2 Lattices

A (full-rank-integer)m-dimensional lattice Λ in Zm is a set of the form {
∑
i∈[m] xi

bi|xi ∈ Z}, where B = {b1, · · · ,bm} are m linearly independent vectors in Zm.
We call B the basis of the lattice Λ. For any positive integers n,m and q ≥ 2,
a matrix A ∈ Zn×mq and a vector u ∈ Znq , we define Λ⊥(A) = {z ∈ Zm|Az = 0

mod q}, Λ⊥u (A) = {z ∈ Zm|Az = u mod q}.
For an m-dimensional lattice Λ ⊆ Zm, define the m-dimensional k-multi

lattice Λk as [Λ| · · · |Λ] = {[z1| · · · |zk]|∀zi ∈ Λ, ∀i ∈ [k]} ⊆ Zm×k. For a matrix
T = [t1| · · · |tk] ∈ Zm×k, denote Λk + T as [Λ + t1| · · · |Λ + tk] ⊆ Zm×k. For a
matrix M ∈ Zk×` define Λk ·M as the multi lattice {VM|V ∈ Λk} ⊆ Zm×`.

Gaussian Measures. For any vector c ∈ Rm and positive real σ > 0, the m-
dimensional Gaussian function over Rm centered at c with parameter s is defined
as ρσ,c(x) = exp(−π‖x−c‖2/σ2). The continuous Gaussian distribution Dσ over
Rm centered at c with parameter σ is defined as Dσ,c(x) = ρσ,c(x)/σm. For an
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m-dimensional lattice Λ, the discrete Gaussian distribution over Λ with center c
and parameter σ is defined as DΛ,σ,c(x) = ρσ,c(x)/ρσ,c(Λ) for all x ∈ Λ, where
ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x). Finally, for an m-dimensional shifted lattice Λ+ t, we

define the Gaussian distribution DΛ+t,σ with center c = 0 and parameter σ
as the process of adding the vector t to a sample from DΛ,σ,−t. We omit the
subscripts σ and c when they are taken to be 1 and 0, respectively.

Lemma 1 ([GPV08], Lem. 5.2, Cor. 5.4 and Adapted from [ALS16],
Lem. 9). Let q be a prime or some power of a prime4 p and let n,m be
positive integers such that m ≥ 2n log q. Let σ be any positive real such that
σ ≥ ω(

√
log n). Then for A← Zn×mq and e← DZm,σ, the distribution of u = Ae

mod q is statistically close to uniform over Znq .
Furthermore, fix u ∈ Znq and let t ∈ Zm be an arbitrary solution to At = u

mod q. Then the conditional distribution of e ← DZm,σ, given Ae = u mod q
for a uniformly random A in Zn×mq is exactly DΛ⊥(A)+t,σ with all but negligible
probability.

Lemma 2 ([MP12], Lem. 2.8 and Lem. 2.9). Let m, k be positive integers,
{σi}ki=1 a set of positive reals and denote σmax = maxi{σi}. Let R ∈ Zm×k
be a matrix where its i-th column is sampled from DZm,σi . Then there exists a

universal constant C > 0 such that we have s1(R) ≤ C · σmax(
√
m +

√
k) with

all but negligible probability in m.

Lemma 3 ([ABB10], Lem. 8). Let n,m, q be positive integers with m > n,
A ∈ Zn×mq be a matrix, u ∈ Znq be a vector, TA be a basis for Λ⊥(A), and

σ > ‖TA‖ · ω(
√

logm). Then, if we sample a vector x ← DΛ⊥u (A),σ, we have

Pr[‖x‖ >
√
mσ] < negl(n).

Lemma 4 (Noise Rerandomization, [KY16], Lem. 1). Let q, `,m be pos-
itive integers and r a positive real satisfying r > max{ω(

√
logm), ω(

√
log `)}.

Let b ∈ Zmq be arbitrary and z chosen from DZm,r. Then for any V ∈ Zm×`
and positive real σ > s1(V), there exists a PPT algorithm ReRand(V,b+z, r, σ)
that outputs b′> = b>V + z′> ∈ Z`q where z′ is distributed statistically close to
DZ`,2rσ.

Analogously to above, for an m-dimensional k-multi lattice Λk, we define the
discrete Gaussian distribution over Λk with center C ∈ Zm×k and parameter σ
denoted as DΛk,σ,C by the process of sampling a matrix whose i-th column is a
sample from DΛ,σ,Ci for i ∈ [k], where Ci denotes the i-th column of C. This
definition extends naturally to shifted multi-lattices as well.

Key Theorem. The following theorem concerning the distribution of the sum
of discrete Gaussians plays a central roll in our security proof. The proof of the
theorem is given in the full version with a more formal treatment on the output
distribution.

4 Note that for the case q = pk for some k ∈ N, we set the statistical distance to be
n−ω(1) rather than 2−Ω(n) as in [ALS16], Lem. 9.
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Theorem 1. Let q be a prime or some power of a prime p. Let n,m, `, t be
positive integers such that m ≥ 2n log q and ` > t, let A ∈ Zn×mq be a random

matrix and T ∈ Zm×` be an arbitrary matrix. Let M ∈ Z`×(`−t) and W ∈ Z`×t
be full rank matrices satisfying W>M = 0 ∈ Zt×(`−t). Finally, let σ be a positive
real such that σ >

√
s1(W>W) ·ω(

√
logm). Notably, if X ∈ Zm×` is distributed

as DΛ⊥(A)`+T,σ, then XM ∈ Zm×(`−t) is statistically close to to a distribution

parameterized by Λ⊥(A), σ,M, (TM mod Λ⊥(A)`M).

Remark 1. An important observation is that, if we independently sample X0 ←
DΛk+T0,σ and X1 ← DΛk+T1,σ, then the distributions of X0M and X1M are
statistically close whenever T0M = T1M mod ΛkM. This is the key insight
used in our security proof; in the real world the secret components are sampled
as X0 and in the simulated world they are sampled as X1. Furthermore, for
any matrix M̄, if we let M be an arbitrary maximal independent subset of
the columns of M̄, since all the columns of XM̄ are linear combinations of
the columns of XM, the distribution of XM̄ is parameterized solely by the
distribution of Λ, σ,M, (TM mod ΛkM).

Sampling Algorithms. The following lemma states useful algorithms for sam-
pling short vectors from lattices.

Lemma 5. Let n,m, q > 0 be integers with m > n. Then:

− ([GPV08]) SamplePre(A,u,TA, σ) → e : There exists a randomized algo-
rithm that, given a matrix A ∈ Zn×mq , a vector u ∈ Znq , a basis TA for

Λ⊥(A), and a Gaussian parameter σ > ‖TA‖GS ·ω(
√

logm), outputs a vector
e ∈ Zm sampled from a distribution which is negl(n)-close to DΛ⊥u (A),σ.

− ([ABB10]) SampleRight(A,G,R, t,u,TG, σ)→ e: There exists a randomized
algorithm that, given a full-rank matrix A,G ∈ Zn×mq , an invertible element

t ∈ Zq, a matrix R ∈ Zm×m, a vector u ∈ Znq , a basis TG for Λ⊥(G), and a

Gaussian parameter σ > s1(R)·‖TG‖GS·ω(
√

logm), outputs a vector e ∈ Z2m

sampled from a distribution which is negl(n)-close to DΛ⊥u ([A|AR+tG]),σ.
− ([MP12]) Let m ≥ ndlog qe. Then, there exists a fixed full-rank matrix G ∈

Zn×mq such that the lattice Λ⊥(G) has publicly known basis TG ∈ Zm×m with

‖TG‖GS ≤
√

5.

Observe that even if we are in possession of a “nice” trapdoor matrix R,
we can not use the SampleRight algorithm in case t is not invertible over Zq.
Below we consider the case where q = pd for some prime p and positive integer
d, and slightly modify SampleRight so that we can sample short vectors from
some shifted lattice of Λ⊥([A|AR + pd−1t′G]) for an invertible element t′ ∈ Zq.
Note that t = pd−1t′ is no longer invertible over Zq. The proof is provided in the
full version.

Lemma 6 (Algorithm SampleSkewed). Let q = pd for a prime p and positive
integer d. Then, there exists a polynomial time algorithm SampleSkewed with the
following property.
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SampleSkewed(A,G,R, t, pd−1u,TG)→ e: a randomized algorithm that, given
full-rank matrices A,G ∈ Zn×mq , a matrix R ∈ Zm×m, a vector pd−1u ∈
Znq , and an invertible element t ∈ Zq, outputs a vector e ∈ Z2m such that

[A|AR + pd−1 · t ·G]e = pd−1u mod q and ‖e‖ ≤ s1(R)
√
m ·ω(

√
log n) with all

but negligible probability.

Hardness Assumptions. We define the Learning with Errors (LWE) problem
first introduced by Regev [Reg05], and further define a variant of LWE called
the First-is-Errorless LWE (FE.LWE) problem introduced by [BLP+13]. Both
problems are shown to be as hard as approximating the worst-case GapSVP
problems. In particular, the FE.LWE problem is proven to be essentially as hard
as the LWE problem. Looking ahead, FE.LWE will be used for our lattice-based
NIPE construction over Zp.

Definition 1 (LWE and FE.LWE). For integers n = n(λ),m = m(n), q =
q(n) > 2, an error distribution over χ = χ(n) over Z, and a PPT algorithm A,

an advantage Adv
LWEn,m,q,χ
A for the learning with errors problem LWEn,m,q,χ of

A is defined as follows:∣∣∣Pr
[
A
(
{ai}mi=1, {a>i s + xi}mi=1

)
= 1
]
− Pr

[
A
(
{ai}mi=1, {vi}mi=1

)
= 1
]∣∣∣

where ai ← Znq , s ← Znq , xi ← χ, vi ← Zq for each i ∈ [m]. We say that the

LWE assumption holds if Adv
LWEn,m,q,χ
A is negligible for all PPT A.

In addition, we define the first-is-errorless learning with errors problem
FE.LWEn,m,q,χ, which is the LWE problem where the first sample is noise free,
i.e., we have x1 = 0 instead of x1 ← χ. The advantage for the FE.LWEn,m,q,χ
problem of A is defined analogously to above.

3 Construction from Lattices with Inner Product over Z

3.1 Constructions

Here we construct a stateless NIPE scheme with inner product space Z. We con-
sider the predicate space P = {−P + 1, . . . , P − 2, P − 1}` ⊂ Z` and attribute
space I = {−I+ 1, . . . , I−2, I−1}` ⊂ Z` for some integers P = P (n), I = I(n),
where ` = `(n) is typically taken to be poly(n), and set the modulus size to
be a prime q = q(n) such that the inner products of the predicate and at-
tribute vectors do not wrap around q, i.e., `PI < q. Other parameters including
m(n), σ(n), α(n), α′(n), s(n) are specified later. Here, we assume that the mes-
sage space is {0, 1}. For the multi-bit variant, we refer Sec. 3.4.

Setup(1n, 1`): On input 1n, 1`, it samples a random matrix A ← Zn×mq , a

random vector u← Znq and random matrices Ri ←
(
DZm,σ

)m
for i ∈ [`]. It

then sets Bi = ARi mod q. Finally, it outputs

MPK = (A,B1, · · · ,B`,u) and MSK = (R1, · · · ,R`).
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KeyGen(MPK,MSK,y ∈ P): Given a predicate vector y = (y1, · · · , y`) ∈ P, it
computes

Ry =
∑̀
i=1

yiRi ∈ Zm×m.

Then, it returns the secret key sky = Ry.
Enc(MPK,x ∈ I,M): To encrypt a message M ∈ {0, 1} for an attribute x =

(x1, · · · , x`) ∈ I, it samples s ← Znq , z ← DZ,αq and zi ← DZm,α′q for
i ∈ [0, `], and computes

c = u>s + z + Mbq/2e,
c0 = A>s + z0,

ci = (Bi + xiG)>s + zi, (i ∈ [`]).

Then, it returns the ciphertext C = (c, (ci)i∈[0,`]) ∈ Zq × (Zmq )(`+1) with the
corresponding attribute x.

Dec(MPK, (y, sky), (x, C)): To decrypt a ciphertext C = (c, (ci)i∈[0,`]) with an

associating attribute x ∈ I using a secret key sky = Ry =
∑`
i=1 yiRi with

an associating predicate y ∈ P, it first computes

cy =
∑̀
i=1

yici ∈ Zmq .

Next, it samples a short vector e ∈ Z2m by running SampleRight(A,G,Ry,
〈x,y〉,u,TG, s). Then, it computes w = c − e>[c>0 |c>y ]> ∈ Zq. Finally, it
returns 1 if |w − dq/2e| < dq/4e and 0 otherwise.

3.2 Correctness and Parameter Selection

Lemma 7 (correctness). Assume
(
αq + `P 2σmα′q

)
· ω(
√

log n) < q/5 holds
with overwhelming probability. Then the above scheme has negligible decryption
error.

The correctness is omitted to the full version. The main observation is that
cy =

(
ARy + 〈x,y〉G

)>
s + z′ for some vector z′ with sufficiently small noise,

and we are able to use algorithm SampleRight to sample a short vector e ∈ Z2m

such that [A|ARy + 〈x,y〉G]e = u if and only if 〈x,y〉 6= 0 (and invertible).

Parameter Selection. We provide a candidate parameter selection in the full
version. Notably, we can base security on the polynomial LWE assumption.

3.3 Security Proof

Theorem 2. The above NIPE scheme with inner product space Z is selectively
secure assuming LWEn,m+1,q,χ is hard, where χ = DZ,αq.
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Proof. Let A be a PPT adversary that breaks the selective security of the NIPE
scheme. In addition, let Q = Q(n) be the number of key extraction queries
A makes, and denote y(k) ∈ P as the k-th predicate vector A queries, where
k ∈ [Q]. Here, we assume that A always queries for ` − 1 linearly independent
predicate vectors, which are all orthogonal to the challenge attribute vector x∗

over Z. This can be done without loss of generality, since A can simply ignore
these additional queries. The proof proceeds with a sequence of games that starts
with the real game and ends with a game in which A has negligible advantage.
For each game Gamei denote Si the event that A wins the game.

Game0 : This is the real security game. Namely, adversaryA declares its challenge
attribute vector x∗ ∈ I at the beginning of the game. Note that any predicate
vector y ∈ P queried by A to the challenger as a key extraction query must
satisfy 〈x∗,y〉 = 0 over Z if A is a legitimate adversary.

Game1 : In this game, we change the way the public matrices B1, · · · ,B` are
created. On receiving the challenge attribute vector x∗ = (x∗1, · · · , x∗` ) ∈ I from
adversary A at the beginning of the game, the challenger samples random ma-
trices Ri ←

(
DZm,σ

)m
and sets Bi = ARi − x∗iG mod q for i ∈ [`]. Otherwise,

the behavior of the challenger is identical as in Game0. Namely, the challenger
remains to answer the key extraction query for a predicate vector y ∈ P as
sky = Ry =

∑`
i=1 yiRi where y = (y1, · · · , y`), and creates the challenge ci-

phertext as in Game0.

Before continuing to Game2, we show that Game0 is statistically indistin-
guishable from Game1; this is the crux of our proof. In particular, we show that
the view of the adversary in both games is statistically close. Here, the view of
the adversary is completely determined by{

MPK =
{

A, {Bi}i∈[`],u
}
, {Ry(k)}k∈[Q], C∗

}
where {Ry(k)}k∈[Q] is the set of secret keys returned by the challenger during the
key extraction query and C∗ ← Enc(MPK,x∗,Mb) is the challenge ciphertext,
where b is the random bit chosen by the challenger. Observe that in both games
A,u are distributed identically. Furthermore, the challenge ciphertext C∗ is cre-
ated using only the terms in MPK (with some extra randomness that are iden-
tical in both games). Furthermore, from our assumption on A, we assume that
{y(k)}k∈[`−1] is the set of the `− 1 linearly independent vectors that A queries.
Then, what we need to consider are only the ` − 1 secret keys {Ry(k)}k∈[`−1],
since all the other secret keys can be created by the linear combinations of
{Ry(k)}k∈[`−1]. Therefore, the difference in the views of the adversary in Game0
and Game1 is determined solely by the difference in the distribution of{

{Bi}i∈[`], {Ry(k)}k∈[`−1]
}
. (1)

Hence, we aim at proving that the view of Eq.(1) for the adversary is statis-
tically close in both games. More strictly, we compare the following probability
of each game:
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Pr

[{
{Bi}i∈[`], {Ry(k)}k∈[`−1]

}
=
{
{B̂i}i∈[`], {R̂y(k)}k∈[`−1]

}]
= Pr

[
{Ry(k)}k∈[`−1] = {R̂y(k)}k∈[`−1]

∣∣∣ {Bi}i∈[`] = {B̂i}i∈[`]
]

︸ ︷︷ ︸
(A)

× Pr

[
{Bi}i∈[`] = {B̂i}i∈[`]

]
︸ ︷︷ ︸

(B)

,

where the probability is taken over the randomness of {Ri}i∈[`] during Setup;

recall each Ri is distributed according to
(
DZm,σ

)m
in both games. Note that

in the above we abuse the notation for sets by implicitly assigning an order over
the elements, i.e., {X,Y} 6= {Y,X}.

We first prove that the value of (B) is negligibly close in both games. Observe
that for all i ∈ [`], ARi is distributed uniformly at random over Zn×mq with all

but negligible probability where Ri ←
(
DZm,σ

)m
, which follows from Lemma 1

and our parameter selections. Concretely, since Bi = ARi and Bi = ARi−x∗iG
for Game0 and Game1, respectively, we have that in both games {Bi}i∈[`] is

distributed statistically close to uniform over
(
Zn×mq

)`
.

We now proceed to prove that the value of (A) is negligibly close in both
games. We first analyze the case for Game0. Let Bview ∈ Zn×m`q and R ∈
Zm×m` denote the matrices [B1| · · · |B`] and [R1| · · · |R`], respectively. Then
we have Bview = AR mod q. Furthermore, let T = [T1| · · · |T`] ∈ Zm×m` be
an arbitrary solution to Bview = AT mod q. Then, due to Lemma 1, condi-
tioned on {B̂i}i∈[`] = {ARi}i∈[`] (mod q), the conditional distribution of R is
DΛ⊥(A)m`+T,σ. Now, we are ready to determine the conditional distribution of
the secret keys {Ry(k)}k∈[`−1] obtained by the adversary A. Observe the follow-
ing equation:

[Ry(1) |Ry(2) | · · · |Ry(`−1) ]︸ ︷︷ ︸
:=Rsk ∈Zm×m(`−1)

= [R1|R2| · · · |R`]︸ ︷︷ ︸
=R ∈Zm×m`


y
(1)
1 Im

y
(1)
2 Im

...

y
(1)
` Im

y
(2)
1 Im

y
(2)
2 Im

...

y
(2)
` Im

· · ·

· · ·

y
(`−1)
1 Im

y
(`−1)
2 Im

...

y
(`−1)
` Im

 ,
︸ ︷︷ ︸

:=M=Y⊗Im ∈Zm`×m(`−1)

(2)

where y
(k)
j is the j-th entry of the k-th predicate vector y(k) and Y ∈ Z`×(`−1) is

a full rank matrix whose k-th column is y(k). We also denote the left and right
hand matrices as Rsk and M ∈ Zm`×m(`−1), respectively. Note that the equality
is taken over Z. Now, since x?>Y = 0 ∈ Z1×(`−1), we have W>M = 0 ∈
Zm×m(`−1) where W = x?⊗ Im ∈ Zm`×m is a full rank matrix. Furthermore, by
construction, we have

√
s1(W>W) = ‖x∗‖. Therefore, by Theorem 1 and from
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the fact that R is distributed according to DΛ⊥(A)m`+T,σ, for our parameter
selection, we have that the distribution of Rsk = RM is statistically close to a
distribution parameterized by Λ⊥(A), σ,M and (TM mod Λ⊥(A)m`M).

We now show that this holds in case for Game1 as well. Similarly to above, we
begin by determining the conditional distribution of R given {Bi}i∈[`] = {ARi−
x∗iG}i∈[`]. Let us denote Gx∗ ∈ Zn×m`q as the matrix [x∗1G|x∗2G| · · · |x∗`G].
Then, Bview + Gx∗ = AR mod q. Next, let us chose an arbitrary matrix E ∈
Zm×m such that G = AE mod q, and define Ex∗ ∈ Zm×m` as the matrix
[x∗1E|x∗2E| · · · |x∗`E]. Then, we have Gx∗ = AEx∗ mod q. Combining this with
the T we have defined above in Game0, we obtain Bview + Gx∗ = A(T + Ex∗)
mod q. Therefore, by Lemma 1, the conditional distribution of R given {Bi}i∈[`]
is DΛ⊥(A)m`+T+Ex∗ ,σ. Next, we determine the conditional distribution of the
secret keys {Ry(k)}k∈[`−1] obtained by the adversary A. Observe that equation
Eq.(2) holds for Game1 as well, since we do not change the way we answer the
key extraction queries. Concretely, we have M = Y⊗ Im and W>M = 0 where
W = x?⊗Im. Hence, by Theorem 1 and the fact that R is distributed according
to DΛ⊥(A)m`+T+Ex∗ ,σ, we have that the distribution of Rsk = RM is statisti-

cally close to a distribution parameterized by Λ⊥(A), σ,M and (TM + Ex∗M
mod Λ⊥(A)m`M). Finally, it remains to prove that Ex∗M = 0 (over Z) in order
to prove equivalence of (A) between Game0 and Game1. Observe that

Ex∗M = E · [x∗1Im|x∗2Im| · · · |x∗`Im]


y
(1)
1 Im

y
(1)
2 Im

...

y
(1)
` Im

y
(2)
1 Im

y
(2)
2 Im

...

y
(2)
` Im

· · ·

· · ·

y
(`−1)
1 Im

y
(`−1)
2 Im

...

y
(`−1)
` Im


= E · [〈x∗,y(1)〉Im|〈x∗,y(2)〉Im| · · · |〈x∗,y(`−1)〉Im]

= 0 ∈ Zm×m(`−1),

since we have 〈x∗,y(k)〉 = 0 over Z for k ∈ [`− 1]. Hence, we conclude that the
value of (A), i.e., the conditional probability of Rsk given {Bi}i∈[`], in Game0
and Game1 are statistically close. Therefore, we have |Pr[S0]−Pr[S1]| = negl(n).

Game2 : In this game, we change the way the challenge ciphertext is created.
Recall that in the previous game, the challenge ciphertext was created as

c = u>s + z + Mbbq/2e, c0 = A>s + z0, (ci = (ARi)
>s + zi)i∈[`] (3)

where s ← Znq , z ← DZ,αq, zi ← DZm,α′q for i ∈ [0, `], and b ← {0, 1}, where
the last term follows from the fact that in Game1 we modified Bi so that Bi =
ARi − x∗iG, and M0,M1 are the two messages sent by the adversary A. To
create the challenge ciphertext in Game2, the challenger first picks s ← Znq and

z← DZm,αq and computes v = A>s + z ∈ Zmq . It then runs the algorithm

ReRand
(

[Im|R],v, αq,
α′

2α

)
→ c ∈ Zm(`+1)

q
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from Lemma 4, and parses c into ` + 1 vectors (ci)i∈[`+1] in Zmq such that

c> = [c>0 |c>1 | · · · |c>` ] ∈ Zm(`+1)
q . Finally, it picks z ← DZ,αq, b← {0, 1} and sets

the challenge ciphertext as

C∗ =
(
c = v + Mbbq/2e, c0, (ci)i∈[`]

)
∈ Zq × Zmq × (Zmq )`, (4)

where v = u>s + z.

We claim that this change alters the view of A only negligibly. First, the
first term c is distributed identically as in Eq.(3). Next, observe that the input
to ReRand is [Im|R] ∈ Zm×m(`+1) and v = A>s + z ∈ Zmq . Therefore, due to
Lemma 4, for our choices of α and α′, the output of ReRand is

c> =
(
A>s

)>
[Im|R] + z′>

= s>[A|AR] + z′> ∈ Zm(`+1)
q ,

where the distribution of z′ is within statistical distance from z′ ← DZm(`+1),α′q.
By parsing c appropriately as above, it can be seen that it is statistically close
to (ci)i∈[0,`] of Eq.(3). Therefore, the challenge ciphertexts of Game1 and Game2
are statistically indistinguishable. Hence, we have |Pr[S1]− Pr[S2]| = negl(n).

Game3 : In this game, we further change the way the challenge ciphertext is
created. To create the challenge ciphertext, the challenger first samples v ← Zq,
v′ ← Zmq and z← DZm,αq, and runs ReRand

(
[Im|R],v, αq, α

′

2α

)
→ c ∈ Zm(`+1)

q ,

where v = v′+ z. Then, the challenge ciphertext is set as in Eq.(4). We show in
the full version that we have |Pr[S2]−Pr[S3]| = negl(n). assuming the hardness
of LWEn,m+1,q,χ.

Furthermore, since v is uniformly random over Zq and independent of the
other values, the term in the challenge ciphertext c = v + Mbbq/2e that con-
veys the information on the message is distributed independently from the value
of Mb. Therefore, we have Pr[S3] = 1/2. Combining everything together, we

have
∣∣Pr[S0]− 1

2

∣∣ =
∣∣∣∑2

i=0 (Pr[Si]− Pr[Si+1]) + Pr[S3]− 1
2

∣∣∣ ≤ ∣∣Pr[S3]− 1
2

∣∣ +∑2
i=0 |Pr[Si]− Pr[Si+1]| ≤ negl(n). Therefore, the probability thatA wins Game0

is negligible.

3.4 Multi-bit Variant

Here, we explain how to extend our scheme to a multi-bit variant without increas-
ing much the size of the master public keys, secret keys, and ciphertexts following
the techniques of [PVW08,ABB10,Yam16]. To modify the scheme to deal with
message space of length `M , we replace u ∈ Znq in MPK with U ∈ Zn×`Mq . The

component c in the ciphertext is replaced with c = U>s+z+Mdq/2e where z←
DZ`M ,αq and M ∈ {0, 1}`M is the message to be encrypted. When decrypting the

message, one samples a matrix E ∈ Z2m×`M such that [A|ARy+〈x,y〉G]E = U,
which is possible given sky by running SampleRight in a column wise manner.
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We can prove security for the multi-bit variant from LWEn,m+`M ,q,χ by naturally
extending the proof of Theorem 2. We note that the same parameters as in the
single-bit variant work for the multi-bit variant. By this change, the sizes of the
master public keys, ciphertexts, and private keys become Õ((n2`+ n`M ) log q),
Õ((n + ` + `M ) log q), and Õ(n2 log q) from Õ(n2` log q), Õ((n + `) log q), and
Õ(n2 log q), respectively. The sizes of the master public keys and ciphertexts will
be asymptotically the same as long as `M = Õ(n). To deal with longer messages,
we employ a KEM-DEM approach as suggested in [Yam16]. Namely, we encrypt
a random ephemeral key of sufficient length and then encrypt the message by
using the ephemeral key.

4 Constructions from Lattices with Inner Product over
Zp

In this section, we construct a stateful NIPE scheme with inner product space
Zp for p = p(n) a prime, where the predicate and attribute spaces are Z`p.
Overview. We give a more detailed overview on the intuition given in the
introduction. First, we need the state to keep track of what kind of predicate
vectors y we gave out secret keys to. Unlike in the NIPE construction of Sec. 3,
for our NIPE scheme with predicate space Zp, the linear dependency of the
predicate vectors (over Zp) and the secret keys (over Z) are no longer consistent.
Namely, when an adversary queries for linearly dependent predicate vectors over
Zp, the corresponding secret keys may no longer be linearly dependent over
Z. For our particular construction, when an adversary obtains secret keys to a
linearly independent predicate vectors over Z, the scheme leads to a complete
break in security. Therefore, we need to maintain information on the linear span
of the predicate vectors (over Zp and Z) that it has generated secret keys to,
and create a secret key for a new predicate vector y as a Z-linear combination
of the previously generated secret keys if y lies in the Zp-linear span maintained
in the state.

Here, we also maintain our state in a unique way, which allows us to base
security of our scheme on a weaker polynomial LWE assumption. As already
mentioned, the state maintains the information of the linear span of the predicate
vectors that it has generated secret keys to. In our scheme, this is expressed by
a list of tuples of the form (h(i),h(i), skh(i)) ∈ Z`p × Z` × Zm×m, where i ∈
list ⊆ [`]. Informally, list indicates the distinctive indices that specifies the linear
span of the so far queried predicate vectors, and |list| is the dimension of the
linear span. Furthermore, h(i) ∈ Z`p are vectors specifying the linear span of

the queried predicate vectors, h(i) are vectors in Z` that is in a sense encodings
of h(i) that maintain linear dependency over Z, and skh(i) are the secret keys
corresponding to the predicate vector h(i). When queried a new predicate vector
y, the algorithm first checks if it lies in the Zp-linear span of {h(i)}i∈list. If so,
(informally) it computes secret keys as a Z-linear combination of {skh(i)}i∈list. If
not, it processes y into a new vector h(j) ∈ Z`p that does not lie in the Zp-linear

span of {h(i)}i∈list and adds j to list. Here, in order for us to base security on an
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LWE assumption with polynomial approximation factor, we need to process y
in such a way that the matrix with columns {h(i)}i∈list interpreted as vectors in
Z` has a small singular value. At a high level, this can be achieved by keeping
the diagonal elements small, which we can do since we can store any factor of
h(i) ∈ Z`p without altering the Zp-linear span. Here, the crucial observation is

that the Zp-linear dependency of {h(i)}i∈list and the size of the singular values of
{h(i)}i∈list interpreted as a matrix over Z are (almost completely) independent
with each other.

Construction. Let q = pd for some positive integer d ≥ 3 and letm(n), σ(n), α(n),
α′(n), s(n) be parameters that are specified later. Here, we assume that the mes-
sage space is {0, 1}. We can easily extend the scheme to the multi-bit variant
similarly to Sec. 3.4.

Setup(1n, 1`): On input 1n, 1`, it samples a random matrix A ← Zn×mq , a

random vector u ← Znq , random matrices Ri ←
(
DZm,σ

)m
for i ∈ [`] and

sets Bi = ARi mod q. Furthermore, it initializes a state st that inculdes an
empty list list ⊆ [`]. Finally, it outputs

MPK =
(
A, {Bi}i∈[`],u

)
and MSK =

(
st, {Ri}i∈[`]

)
.

KeyGen (MPK,MSK,y ∈ Z`p, st): Given a predicate vector y ∈ Z`p and an inter-
nal state st, it computes the secret key sky as follows. At any point of the
execution, the internal state st contains a list of indices list ⊆ [`] and at most
` tuples of the form (h(i),h(i), skh(i)) ∈ Z`p × Z` × Zm×m, where the vectors

{h(i)}j∈list form a basis of the Zp-linear span of the predicate vectors which
the key extraction queries has been made so far.

If y ∈ Z`p is linearly independent modulo p from all the {h(j)}j∈list in the
state st, it first runs the following procedure. By construction, for all j ∈ list,

we will have (j = arg mini∈[`]{h
(j)
i 6= 0}) ∧ (h

(j)
j = 1), i.e., the smallest

index for which the entry of h(j) is non-zero is j, and at that index it holds

that h
(j)
j = 1. It sets h = y, and starting with the smallest index j ∈ list,

it iterates through list in ascending order by updating h ← h − hj · h(j)

mod p so that the updated h satisfies hj = 0 mod p, where hj denotes the
j-th element of h. After it runs through all the element in list, it finds the
smallest index j′ such that hj′ 6= 0. This always exists since y is linearly
independent modulo p from {h(j)}j∈list. Then, it updates h once more by

h ← (1/hj′) · h mod p and sets h(j′) = h ∈ Z`p. It can be checked that

(j′ = arg mini∈[`]{h
(j′)
i 6= 0}) ∧ (h

(j′)
j′ = 1). Finally, it sets h(j

′) = h(j′),

interpreted as a vector in Z`, and sets skh(j′) as

Rh(j′) =
∑̀
i=1

h
(j′)
i Ri ∈ Zm×m, (5)
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where h
(j′)
i is the i-th entry of h(j

′). It then adds j′ to list and the tuple

(h(j′),h(j
′), skh(j′)) to st.5 Note that after this procedure, the predicate vector

y is linearly dependent modulo p with the vectors {h(j)}j∈list in the state st.
Furthermore, when ` linearly independent queries has been made, we have
list = [`] and the set of vectors {h(j)}j∈[`] forms a lower triangular matrix
with ones along the diagonal.

Finally, to construct the secret key for y, it sets y =
∑
j∈list λjh

(j)

mod p for some λj ’s in Zp and sets y =
∑
j∈list λjh

(j) ∈ Z` where here λj is
viewed as an element over Z. Finally, it sets sky as

Ry =
∑̀
i=1

yiRi ∈ Zm×m,

where yi is the i-th entry of y, and returns the tuple (y, sky) ∈ Z` × Zm×m
as the secret key.

Enc(MPK,x ∈ Z`p,M): To encrypt a message M ∈ {0, 1} for an attribute x =

(x1, · · · , x`) ∈ Z`p, it samples s ← Znq , z0, zi ← DZm,α′q for i ∈ [`], and
computes 

c = pd−1 ·
(
u>s + Mbp/2e

)
,

c0 = A>s + z0,

ci = (Bi + pd−1 · xiG)>s + zi, (i ∈ [`]),

Then, it returns the ciphertext C = (c, c0, (ci)i∈[`]) ∈ Zq × (Zmq )`+1 with its
corresponding attribute x.

Dec(MPK, (y, y, sky), (x, C)): To decrypt a ciphertext C = (c, c0, (ci)i∈[`]) with

an associating attribute x ∈ Z`p, it first computes

cy =
∑̀
i=1

yici mod q ∈ Zmq ,

where yi is the i-th entry of y. Next, it samples a short vector e ∈ Z2m by
running SampleSkewed(A, sky = Ry, 〈x,y〉, pd−1u,TG). Then, it computes
t = c− e>[c>0 |c>y ]> ∈ Zq
Finally, it returns 1 if |t− dq/2e| < dq/4e and 0 otherwise.

4.1 Correctness and Parameter Selection

The correctness of the scheme and a candidate parameter selection is given in
the full version. Notably, by setting the parameters appropriately we can base
security on the polynomial LWE assumption.

5 Although h(j′) ∈ Z`p and h(j′) ∈ Z` are in some sense identical, we intentionally
write it redundantly in this form for consistency with the other predicate vectors y,
i.e., (h(j′), sk

h(j′)) acts as a valid secret key for the predicate vector h(j′).
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4.2 Security Proof

Theorem 3. The above NIPE scheme with inner product space Zp is selectively
secure assuming FE.LWEn,m+1,q,χ is hard, where χ = DZ,αq

Proof. Let A be a PPT adversary that breaks the selective security of the NIPE
scheme. Here, assume that A makes key extraction queries in a way that at
the end of the game the state st contains `− 1 linearly independent (modulo p)
predicate vectors {h(j)}j∈list where |list| = `−1 (which are all orthogonal modulo
p to the challenge attribute vector x∗). Note that this assumption can be made
without loss of generality, since A may simply ignore unnecessary additional
secret keys, and A can not obtain no more than ` − 1 linearly independent
(modulo p) vectors without violating the 〈x∗,y〉 = 0 mod p condition. The
proof proceeds with a sequence of games that starts with the real game and
ends with a game in which A has negligible advantage. For each game Gamei
denote Si the event that A wins the game.

Game0 : This is the real security game. Namely, adversaryA declares its challenge
attribute vector x∗ ∈ Z`p at the beginning of the game. Note that any predicate

vector y ∈ Z`p queried by A to the challenger as a key extraction query must
satisfy 〈x∗,y〉 = 0 mod p if A is a legitimate adversary.

Game1 : In this game, we change the way the public matrices B1, · · · ,B` are
created. On receiving the challenge attribute vector x∗ = (x∗1, · · · , x∗` ) ∈ Z`p
from adversary A at the beginning of the game, the challenger samples random
matrices Ri ←

(
DZm,σ

)m
and sets Bi = ARi − pd−1 · x∗iG mod q for i ∈ [`].

Otherwise, the behavior of the challenger is identical as in Game0. Namely, the
challenger remains to answer the key extraction query for a predicate vector
y ∈ Z`p and creates the challenge ciphertext as in Game0.

Before moving on to Game2, we show that Game0 is statistically indistin-
guishable from Game1. In particular, we prove that the view of the adversary
in both games is statistically close. In doing so, we first show that every secret
keys are Z-linear combinations of the secret keys stored in the state st. Namely,
let {h(j)}j∈list denote the vectors stored in the state st on time of constructing
the secret key for the queried predicate vector y, where list ⊆ [`] is the index
set contained in st. Then, we want to show that for a predicate vector y of
the form

∑
j∈list λjh

(j) mod p for some λj ’s in Zp, the corresponding secret key
sky (= Ry) is a Z-linear combination of {skh(j) = Rh(j)}j∈list. To see this let the
tuples stored in st be (h(j),h(j), skh(j) = Rh(j)) ∈ Z`p × Z` × Zm×m for j ∈ list.
Then, we have the following:

Ry =
∑̀
i=1

yiRi
(i)
=
∑̀
i=1

( ∑
j∈list

λjh
(j)
i

)
Ri =

∑
j∈list

λj

(∑̀
i=1

h
(j)
i Ri

)
(ii)
=
∑
j∈list

λjRh(j) ,

where h
(j)
i is the i-th entry of h(j). Eq. (i) follows from the definition of yi and

Eq. (ii) follows from Eq. (5)
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Therefore the distribution of the secret keys obtained by adversary A is
completely determined by the distribution of the secret keys {skh(j) = Rh(j)}j∈list
stored in the state st at the end of the game. Therefore, the view of the adversary
in both games is determined by{

MPK =
{

A, {Bi}i∈[`],u
}
, {Rh(j)}j∈list, C∗

}
,

where C∗ ← Enc(MPK,x∗,Mb) is the challenge ciphertext, b is the random bit
chosen by the challenger and |list| = `− 1 by assumption. Observe that in both
games A,u are distributed identically and the challenge ciphertext C∗ is created
using only the terms in MPK (with some extra randomness that are identical in
both games). Therefore, the differences in the views of the adversary in Game0
and Game1 is solely determined by the difference in the distribution of{

{Bi}i∈[`], {Rh(j)}j∈list
}
. (6)

Hence, we aim at proving that the view of Eq.(6) in both games are statistically close
to the adversary. More specifically, we compare the following probability of each game:

Pr

[{
{Bi}i∈[`], {Rh(j)}j∈list

}
=
{
{B̂i}i∈[`], {R̂h(j)}j∈list

}]
= Pr

[
{Rh(j)}j∈list = {R̂h(j)}j∈list

∣∣∣ {Bi}i∈[`] = {B̂i}i∈[`]︸ ︷︷ ︸
(A)

]
· Pr

[
{Bi}i∈[`] = {B̂i}i∈[`]

]
︸ ︷︷ ︸

(B)

,

where the probability is taken over the randomness of {Ri}i∈[`] during Setup;

recall each Ri is distributed according to
(
DZm,σ

)m
in both games. Note that

in the above we abuse the notation for sets by implicitly assigning an order over
the elements, i.e., {X,Y} 6= {Y,X}.

We first prove that the value of (B) is negligibly close in both games. Observe
that for all i ∈ [`], ARi is distributed uniformly at random over Zn×mq with all

but negligible probability where Ri ←
(
DZm,σ

)m
, which follows from Lemma 1

and our parameter selections. Concretely, since Bi = ARi and Bi = ARi−pd−1 ·
x∗iG for Game0 and Game1 respectively, we have that in both games {Bi}i∈[`] is

distributed statistically close to uniform over
(
Zn×mq

)`
.

We now proceed to prove that the value of (A) is negligibly close in both
games. We first analyze the case for Game0. Let Bview ∈ Zn×m`q and R ∈ Zm×m`
denote the matrices [B1| · · · |B`] and [R1| · · · |R`], respectively. Then, we have
Bview = AR mod q. Furthermore, let T = [T1| · · · |T`] ∈ Zm×m` be an ar-
bitrary solution to Bview = AT mod q. Then, due to Lemma 1 and the con-
ditions on {B̂i}i∈[`] = {ARi}i∈[`], the conditional distribution of R is given
by DΛ⊥(A)m`+T,σ. Now, we are ready to determine the conditional distribu-
tion of the secret keys {Rh(j)}j∈list obtained by the adversary A. Here, let
j∗ ∈ [`] denote the index [`]\list where |list| = ` − 1, and observe that Rsk :=



22

[Rh(1) |Rh(2) | · · · |Rh(`−1) ] ∈ Zm×m(`−1) is equal to the following

[R1|R2| · · · |R`]︸ ︷︷ ︸
=R ∈Zm×m`


h
(1)
1 Im

h
(1)
2 Im

...

h
(1)
` Im

· · ·
· · ·

· · ·

h
(j∗−1)
1 Im

h
(j∗−1)
2 Im

...

h
(j∗−1)
` Im

h
(j∗+1)
1 Im

h
(j∗+1)
2 Im

...

h
(j∗+1)
` Im

· · ·
· · ·

· · ·

h
(`−1)
1 Im

h
(`−1)
2 Im

...

h
(`−1)
` Im

 ,
︸ ︷︷ ︸

:=M ∈Zm`×m(`−1)

(7)

where h
(j)
k is the k-th entry of h(j) that is associated with the j-th vector h(j) in

st for j ∈ list. We denote the left and right hand matrices as Rsk ∈ Zm×m(`−1)

and M ∈ Zm`×m(`−1) respectively. We show in the full version that there exists
a matrix W ∈ Zm`×m such that W>M = 0 over Z with a sufficiently small
singular value. Therefore, for our parameter selection and the fact that R is
distributed according to DΛ⊥(A)m`+T,σ we can apply Theorem 1. Namely, the
distribution of Rsk = RM is statistically close to a distribution parameterized
by Λ⊥(A), σ,M and (TM mod Λ⊥(A)m`M).

We now show that this holds in case for Game1 as well. We begin by determin-
ing the conditional distribution of R given {Bi}i∈[`] = {ARi − pd−1 · x∗iG}i∈[`].
Let us denote Gx∗ ∈ Zn×m`q as the matrix pd−1 · [x∗1G|x∗2G| · · · |x∗`G]. Then,
Bview + Gx∗ = AR mod q. Next, let us chose an arbitrary matrix E ∈ Zm×m
such that G = AE mod q, and define Ex∗ ∈ Zm×m` as the matrix pd−1 ·
[x∗1E|x∗2E| · · · |x∗`E]. Then, we have Gx∗ = AEx∗ mod q. Combining this with
the T we have defined above in Game0, we obtain Bview + Gx∗ = A(T + Ex∗)
mod q. Therefore, by Lemma 1, the conditional distribution of R given {Bi}i∈[`]
is DΛ⊥(A)m`+T+Ex∗ ,σ. Next, we determine the conditional distribution of the
secret keys {Rh(j)}j∈list obtained by the adversary A. Observe that equation
Eq.(7) holds for Game1 as well, since we do not change the way we answer the
key extraction query. Hence, following the same argument as above, by Theo-
rem 1 and the fact that R is distributed according to DΛ⊥(A)m`+T+Ex∗ ,σ, we
have that the distribution of Rsk = RM is statistically close to a distribution
parameterized by Λ⊥(A), σ,M and (TM + Ex∗M mod Λ⊥(A)m`M).

Finally, we prove that Ex∗M ∈ Λ⊥(A)m`M to prove equivalence of the
distributions between Game0 and Game1. Observe that Ex∗M is qual to the
following:

pd−1 ·E · [x∗1Im|x∗2Im| · · · |x∗`Im] ·


h
(1)
1 Im

h
(1)
2 Im

...

h
(1)
` Im

· · ·
· · ·

· · ·

h
(j∗−1)
1 Im

h
(j∗−1)
2 Im

...

h
(j∗−1)
` Im

h
(j∗+1)
1 Im

h
(j∗+1)
2 Im

...

h
(j∗+1)
` Im

· · ·
· · ·

· · ·

h
(`−1)
1 Im

h
(`−1)
2 Im

...

h
(`−1)
` Im

 ,
= pd−1 ·E · [〈x∗,h(1)〉Im| · · · |〈x∗,h(j

∗−1)〉Im|〈x∗,h(j
∗+1)〉Im| · · · |〈x∗,h(`−1)〉Im]

= q ·E · [n1Im| · · · |nj∗−1Im|nj∗+1Im| · · · |n`−1Im] ∈ qZm×m(`−1),

where we set nj = 〈x∗,h(j)〉/p ∈ N for j ∈ list. Note that this is well-defined
since 〈x∗,h(j)〉 = 〈x∗,h(j)〉 = 0 mod p (See Sec. 4.1) and q = pd. Therefore, to
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prove Ex∗M ∈ Λ⊥(A)m`M, it suffices to prove that qZm×m(`−1) ⊂ Λ⊥(A)m`M.
Namely, we prove that for every Z ∈ qZm×m(`−1), there exists a matrix V ∈
Λ⊥(A)m` ⊂ Zm×m` such that VM = Z (over Z). Here, recall that for the vectors

{h(j)}j∈list in the state st, we had (j = arg mini∈[`]{h
(j)
i 6= 0}) ∧ (h

(j)
j = 1).

Namely, the smallest index with a non-zero entry for h(j) is j, and at that index

we have h
(j)
j = 1. Therefore, denoting H ∈ Z`×(`−1) as the matrix whose columns

are the vectors in {h(j)}j∈list, we can properly rearrange the columns and rows
of H, or more concretely there exists a permutation matrix P ∈ {0, 1}`×`,Q ∈
{0, 1}(`−1)×(`−1), such that H gets transformed into the following matrix:

PHQ =



? · · · ? ?
1 0 · · · · · · 0

? 1
. . .

...
... ?

. . .
. . .

...
...

. . . 1 0
? ? · · · ? 1


=

[
a>

U

]
∈ Z`×(`−1), (8)

where ? denotes an arbitrary element in Z, a ∈ Z`−1 is some vector and U ∈
Z(`−1)×(`−1) is unimodular. Recall that permutation matrices are orthogonal
matrices: Q−1 = Q>, and that the inverse of a unitary matrix is also unitary:
U−1 ∈ Z(`−1)×(`−1). We now proceed to prove that V = [0m×m | Z · (QU−1 ⊗
Im)] · (P ⊗ Im) ∈ Zm×m` satisfies the above condition, i.e., V ∈ Λ⊥(A)m`

and VM = Z (over Z). First, it is easy to check that V ∈ Λ⊥(A)m`, since
Z ∈ qZm×m(`−1) and qZm ⊂ Λ⊥(A). Then, recalling that M = H⊗ Im, we have

VM =
(

[0m×m | Z · (QU−1 ⊗ Im)](P⊗ Im)
)
· (H⊗ Im)

=
(

[0m×m | Z · (QU−1 ⊗ Im)](P⊗ Im)
)
·
(

P>
[

a>

U

]
Q>
)
⊗ Im (9)

= [0m×m | Z · (QU−1 ⊗ Im)](P⊗ Im)(P> ⊗ Im)

([
a>Q>

UQ>

]
⊗ Im

)
(10)

= [0m×m | Z · (QU−1 ⊗ Im)]

[
a>Q> ⊗ Im
UQ> ⊗ Im

]
(11)

= Z, (12)

where Eq. (9) follows from Eq. (8), Eq. (10) follows from the fact that (AB ⊗
Im) = (A⊗ Im)(B⊗ Im) and Eq. (11),(12) follows from the fact that P,Q are
orthogonal matrices. Therefore, we have Ex∗M ∈ Λ⊥(A)m`M.

Hence, we conclude that the value of (A), i.e., the conditional probability of
Rsk given {Bi}i∈[`] in Game0 and Game1 are statistically close. Therefore, we
have |Pr[S0]− Pr[S1]| = negl(n).

It remains to show that the challenge ciphertext is indistinguishable from
random. Since the remaining proof follows closely to Game2 and Game3 in the
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previous proof of Thm. 2, we omit the details to the full version.The main dif-
ference is that we use the first-is-errorless LWE problem instead of the standard
LWE problem to simulate the challenge ciphertext.

5 A Generic Construction of NIPE from LinFE

In this section, we show a generic conversion from a functional encryption scheme
for inner products to a NIPE scheme. We note that the former primitive is a
special case of the notion of functional encryption schemes where only linear
functions are available. Henceforth we call this primitive as LinFE in the fol-
lowing. The idea for the conversion is drawn from the work of Agrawal et al.
[ABP+17], who constructed trace and revoke schemes from LinFE.

5.1 Definition of Functional Encryption for Inner Product

Syntax. Let Q and J denote the predicate space and attribute spaces, where
the inner product between elements (i.e., vectors) fromQ and J are well-defined.
Furthermore, let D denote the space where the inner product is taken. A stateful
functional encryption scheme for inner products over D consists of the following
four algorithms:

Setup(1λ, 1`)→ (MPK,MSK, st): The setup algorithm takes as input a security
parameter 1λ and the length ` of the vectors in the predicate and an attribute
spaces, and outputs a master public key MPK, a master secret key MSK and
an initial state st.

KeyGen(MPK,MSK, st,y)→ (sky, st): The key generation algorithm takes as in-
put the master public key MPK, the master secret key MSK, the state st and
a predicate vector y ∈ Q. It outputs a private key sky and a updated state
st. We assume that y is implicitly included in sky.

Encrypt(MPK,x)→ C: The encryption algorithm takes as input a master public
key MPK and attribute vector x ∈ J . It outputs a ciphertext C.

Decrypt(MPK, sky, C)→ 〈x,y〉 or ⊥: The decryption algorithm takes as input
the master public key MPK, a private key sky, and a ciphertext C. It outputs
〈x,y〉 or ⊥, which means that the ciphertext is not in a valid form.

Correctness. We require correctness of decryption: that is, for all λ, ` ∈ N, and
all x ∈ J ,y ∈ Q, we require

Pr[Dec(MPK, sky,Enc(MPK,x,M)) = 〈x,y〉] = 1− negl(λ)

holds, where the probability is taken over the randomness used in (MPK,MSK, st)
← Setup(1λ, 1`), (sky, st)← KeyGen(MPK,MSK, st,y), and Enc(MPK,x).

We also define a stateless LinFE scheme, where we do not require any state
information in the above algorithms.

Security. We define the security of a (stateful) LinFE scheme for inner product
space D with predicate space Q and attribute space J by the following game
between a challenger and an adversary A.
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- Setup. At the outset of the game, the challenger runs (MPK,MSK, st) ←
Setup(1λ, 1`) and gives the public parameter MPK to A.

- Phase 1. A may adaptively make key-extraction queries. If A submits a predi-
cate vector y ∈ Q to the challenger, the challenger runs (sky, st)← KeyGen(MPK,
MSK, st,y) and returns sky to A.

- Challenge Phase. At some point, A outputs messages x∗0,x
∗
1 on which it

wishes to be challenged, with the restriction that 〈x∗0,y〉 = 〈x∗1,y〉 (over D) for
all y queried during Phase 1. Then, the challenger picks a random bit b ∈ {0, 1}
and returns C∗ ← Enc(MPK,x∗b) to A.

- Phase 2. After the challenge query, A may continue to make key-extraction
queries for predicate vectors y ∈ Q, with the added restriction that 〈x∗0,y〉 =
〈x∗1,y〉 (over D).

- Guess. Finally, A outputs a guess b′ for b. The advantage of A is defined as

AdvLinFEA,D =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ .
We say that an LinFE scheme with inner product space D is adaptively secure, if
the advantage of any PPT A is negligible. Similarly, we define selective security
for a stateful LinFE scheme with inner product space D, by modifying the above
game so that the adversary A is forced to declare its challenge attribute vectors
x∗0,x

∗
1 before Setup. Finally, we define an analogous security notion for stateless

LinFE schemes, where we do not require any state information during the above
game.

5.2 Generic Construction of NIPE from LinFE

Here, we show a generic construction of NIPE from LinFE. Specifically, we con-
vert a LinFE scheme with predicate space Q, attribute space J with inner
product space D into an NIPE scheme over D with predicate space P, attribute
space I, and message space M. The conversion is possible when the following
properties are satisfied:

– We require P,Q, I,J ⊆ D` and M⊆ D for some integral domain D.
– We also require { M · x | M ∈M, x ∈ I } ⊆ J and P = Q.
– Division can be efficiently performed over D. More specifically, we require

that given α, β ∈ D, it is possible to efficiently compute γ ∈ D satisfying
α = βγ if such γ exists.

We now show the construction. Note that the conversion works both for
the stateless and stateful cases. Let (Setup,KeyGen,Enc,Dec) be the underlying
LinFE scheme and (Setup′,KeyGen′,Enc′,Dec′) be the resulting NIPE scheme.

Setup′(1λ, 1`): It is the same as Setup(1λ, 1`).
KeyGen′(MPK,MSK,y ∈ P, st): It is the same as KeyGen(MPK,MSK,y ∈ P, st).
Enc′(MPK,x ∈ I,M ∈ M): To encrypt a message M ∈ M for an attribute

x = (x1, · · · , x`) ∈ I, it runs C ← Enc(MPK,M · x) and outputs C.
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Dec′(MPK, (y, sky), (x, C)): To decrypt a ciphertext C with an associating at-
tribute x ∈ I using a secret key sky with an associating predicate y ∈ P, it
first computes z = Dec(MPK, sky, C). It then computes 〈x,y〉 and outputs
⊥ if 〈x,y〉 = 0 over D. Otherwise, it outputs z/〈x,y〉. Note that the final
step is possible because of the requirement on D.

Correctness. Due to the requirements on the domains, we have M · x ⊆ J
and y ∈ Q = P. Therefore, by the correctness of the underlying LinFE scheme,
we have z = 〈M · x,y〉 = M · 〈x,y〉 with overwhelming probability. Thus, the
correctness of the resulting NIPE scheme follows.

Theorem 4. If the underlying LinFE scheme is adaptively secure, so is the
above NIPE scheme.

Proof. Suppose there exists an adversary A against the NIPE scheme that has
non-negligible advantage. We use A to construct another adversary B against
the underlying LinFE scheme as follows.

- Setup. At the outset of the game, the challenger runs (MPK,MSK, st) ←
Setup(1λ, 1`) and gives the public parameter MPK to B. B then passes MPK to
A.

- Phase 1. When A makes a key-extraction query for a vector y, B submits the
same y to its challenger and is given sky. Then, it passes the same sky to A.

- Challenge Phase. When A outputs the messages (M0,M1) and the challenge
attribute x∗ on which it wishes to be challenged, B submits (M0 ·x∗,M1 ·x∗) to
its challenger and receives the challenge ciphertext C∗. B then passes C∗ to A.

- Phase 2. It is the same as Phase 1.

- Guess. Finally, A outputs a guess b′. B outputs the same bit as its guess.

Analysis. We first show that B does not violate the restriction of the security
game as long as A does not. To see this, observe that

〈M0 · x∗,y〉 = M0 · 〈x∗,y〉 = 0 = M1 · 〈x∗,y〉 = 〈M1 · x∗,y〉

holds for all y that is queried during the game. Here, the second and the third
equalities follow from the restrictions on the queries posed on A. It is clear that
B’s simulation for A is perfect and B’s advantage is exactly the same as A. This
concludes the proof of the theorem.

One may expect that the above proof works also in the selective setting (i.e., if
we start from a selectively secure LinFE, we obtain a selectively secure NIPE).
However, interestingly we require to modify the proof to work in the selective
setting. In particular, in the selective setting, the LinFE adversary B above
has to declare its target (M0x

∗,M1x
∗) at the beginning of the game. However,

since the NIPE adversary A only declares x∗ at the outset and decides (M0,M1)
later in the game, it is difficult for B to correctly decide its target. One way to
circumvent this problem is to restrict the message spaceM to be of polynomial
size and change the proof so that B simply guesses (M0,M1). The probability of
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B correctly guessing the values is noticeable due to the restriction on the size of
the message space, which will be enough for our purpose. The drawback of the
approach is that we can only encrypt short messages of logarithmic length. To
encrypt a longer message, one needs to run the encryption algorithm many times
to encrypt each chunk of the message. Formally, we have the following theorem.
The proof is omitted to the full version.

Theorem 5. Let us assume that the size of the message spaceM is polynomially
bounded. Then, if the underlying LinFE scheme is selectively secure, so is the
above NIPE scheme.

5.3 Instantiations

By applying the conversion to the existing adaptively secure LinFE schemes
of [ABDCP15,ALS16], we obtain several new NIPE schemes. Since the result
of [ALS16] subsumes that of [ABDCP15] in the sense that the former achieves
adaptive security whereas the latter achieves selective security, we discuss new
schemes obtained by applying our conversion to the former schemes. This results
in new adaptively secure NIPE schemes from the LWE assumption, the DDH
assumption, and the DCR assumption. In particular, our DDH and DCR instan-
tiations are the first constructions of NIPE schemes without bilinear maps or
lattices. One thing to note is that the resulting scheme obtained by our conver-
sion can only deal with logarithmic-size message space when D is of polynomial
size and in order to encrypt a longer message, one needs to separate the message
into chunks and run the encryption algorithm multiple times to encrypt each of
them.

Construction from the LWE Assumption. In [ALS16], the authors pro-
posed two LinFE schemes from lattices. One is in the stateless setting where the
inner product is taken over Z, and the other one is in the stateful setting where
the inner product is taken over Zp for some prime p. To apply the conversion to
the former scheme, we set D = Z, P = Q = {0, . . . , P − 1}`, I = {0, . . . , I − 1}`,
M = {0, . . . ,M −1} and J = {0, . . . ,MI−1} for (polynomially bounded) inte-
gers P, I,M . It is straightforward to see that these domains satisfy our conditions
for the conversion. This results in a stateless NIPE scheme over Z. To apply the
conversion to the latter scheme, we set D = Zp, P = Q = I = J = Z`p, and
M = Zp. It is also easy to see that these domains satisfy our condition for the
conversion. This results in a stateful NIPE scheme over Zp. Since the original
scheme is adaptively secure under the LWE assumption with sub-exponential
approximation factors, so is our scheme obtained by the conversion.

Here, we compare our direct construction in Section 4 with the scheme ob-
tained via the above conversion. To encrypt a message of `M -bit length, the first
approach requires (`M +m+m`) elements of Zq in a ciphertext and the second
requires (m + `)`M . The first approach is more efficient than the second one
when we encrypt more than m`/(m + `) bits at once. For a natural setting of
` < m, λ, this condition encompasses the most interesting case of KEM-DEM
settings where one encrypts λ bits of session key. In fact, when we are in the ring
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setting, since m is O(log λ), the first approach will be more efficient regardless
of the size `. Furthermore, for NIPE schemes over Zp, the first approach would
require smaller LWE modulus. Indeed, in certain regime of parameters such as
` = log n/ log log log n and p = log log n, the first approach would yield a scheme
with polynomial modulus whereas the second requires super-polynomial modu-
lus. However, on the other hand, the advantage of the second approach is that
it achieves adaptive security.

Construction from the DDH Assumption. In [ALS16], the authors pro-
posed a stateless LinFE scheme from the DDH assumption. In the scheme, the
inner product is taken over Zq, where q is the order of the underlying group G.
One subtlety regarding their scheme is that the decryption algorithm is efficient
only when the inner product 〈x,y〉 is polynomially bounded. This is because
the decryption algorithm first recovers g〈x,y〉 for the generator g of G and then
retrieves 〈x,y〉 by solving the discrete logarithm problem. Due to this problem,
we cannot apply the conversion in a completely black box manner and some
modification is needed. To apply our conversion to their scheme, we set D = Zq,
P = Q = I = J = Z`q, and M = {0, 1, . . . ,M} for polynomially bounded M .

Then, (Setup′,KeyGen′,Enc′) are defined as in Section 5.2. We slightly modify
the decryption algorithm. We run the decryption algorithm of the underlying
LinFE scheme to obtain Z = gM·〈x,y〉, but halt it before computing the discrete
logarithm logg Z, which is impossible when M · 〈x,y〉 is exponentially large. In-

stead, we compute Z1/〈x,y〉 = gM and then retrieve the message M by solving
the discrete logarithm problem.

The above scheme can encrypt only short messages. We can modify the
scheme so that it can encrypt longer messages without degrading the efficiency
much. The main idea is that we can use the above scheme as a key encapsulation
mechanism (KEM). Namely, we change the above scheme so that the encryption
algorithm first encrypts a randomness s ∈ Zp and then encrypt the message
M by using the “DEM key” K = gs. The decryption algorithm first retrieves
K = gs and then retrieves the message M using the key K.

Construction from the DCR Assumption. In [ALS16], the authors pro-
posed two LinFE schemes from the DCR assumption. One is in the stateless
setting where the inner product is taken over Z, and the other is in the stateful
setting where the inner product is taken over ZN . To apply the conversion to
the former scheme, we set D = Z, P = Q = {0, . . . , P − 1}`, I = {0, . . . , I − 1}`,
M = {0, . . . ,M −1} and J = {0, . . . ,MI−1} for (possibly exponentially large)
integers P, I,M . It is straightforward to see that these domains satisfy our condi-
tion for the conversion. This results in a stateless NIPE scheme over Z. To apply
the conversion to the latter scheme, we set D = ZN , P = Q = I = J = Z`N ,
andM = ZN . Rigorously speaking, we cannot apply the conversion because ZN
is not an integral domain. However, we can treat ZN as if it were an integral
domain, since any element x ∈ ZN with gcd(x,N) 6= 1 will allow us to factorize
N , which contradicts the hardness of the DCR assumption.
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