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Abstract. In this work, we revisit the primitive functional encryption
(FE) for inner products and show its application to decentralized attribute-
based encryption (ABE). Particularly, we derive an FE for inner prod-
ucts that satisfies a stronger notion, and show how to use such an FE to
construct decentralized ABE for the class {0, 1}-LSSS against bounded
collusions in the plain model. We formalize the FE notion and show
how to achieve such an FE under the LWE or DDH assumption. There-
fore, our resulting decentralized ABE can be constructed under the same
standard assumptions, improving the prior construction by Lewko and
Waters (Eurocrypt 2011). Finally, we also point out challenges to con-
struct decentralized ABE for general functions by establishing a relation
between such an ABE and witness encryption for general NP statements.

1 Introduction

In this work, we revisit the functional encryption (FE) for inner products [6] and
show its application to decentralized attribute-based encryption [22]. In partic-
ular, we identify a stronger notion for FE required in this application, and show
how to build such a scheme under the LWE or DDH assumption. Our new anal-
ysis improves the parameters of the LWE-based scheme (over [6]) substantially.
Next, we show how to build a decentralized ABE against bounded collusion
from FE for inner products that satisfies the stronger notion. By combining the
instantiation of the FE, we can derive a decentralized ABE against bounded
collusion from LWE or DDH, improving the prior work [42] in the perspective
of weaker assumptions. Below, we briefly review the contexts and motivation of
our study.

1.1 A Brief History and Motivation

We start with the application of decentralized ABE, and then discuss our central
tool – FE for inner products.
? This work was done when the author was visiting Florida Atlantic University.



Attribute-based Encryption. Attribute-based Encryption (ABE) [11, 34]
generalizes public key encryption to allow fine grained access control on en-
crypted data. In (ciphertext-policy) attribute-based encryption, a ciphertext ct
for message µ is associated with a policy function f , and a secret key sk corre-
sponds to an attribute x. The functionality requires that decryptor learns the
underlying message µ if attribute x satisfies the policy function f , and if not,
security guarantees that nothing about µ can be learned. In the past decade, sig-
nificant progress has been made towards constructing attribute-based encryption
for advanced functionalities based on various assumptions [5, 8, 14, 17, 18, 20, 26,
29,32,33,35,39,43,50,52,55,56].

In 2007, Chase [22] considered an extension called multi-authority (or de-
centralized) ABE. In almost all ABE proposals listed above, the secret keys are
generated by one central authority, who has the ability to verify all attributes
for the secret keys it generated. These systems can be utilized to share informa-
tion according to a policy within a domain or organization, where the central
authority is in charge of issuing secret keys. However, in many applications, we
wish to share some confidential information associated with a policy function
across several different trusted organizations. For instance, in a joint project by
two corporations, like Google and Facebook, they both may issue secret keys as-
sociated with attributes within their own organizations. This setting is outside
the scope of the single authority ABE, as the single authority is not capable to
verify attributes from different organizations. In [42], the authors show how to
construct a decentralized ABE that captures the desired properties, for a large
class of functions. Their solutions are secure against unbounded collusion in the
random oracle model, or against bounded collusion in the standard model. For
both cases, their proofs of security however, rely on several new computational
assumptions on bilinear groups. Moreover, their security model only captures a
static corruption where the adversary must commit to a set of corrupted parties
at the beginning of the security game. To our knowledge, there is no construc-
tion that is based on better studied computational assumptions, such as DDH
or LWE, even for the setting of bounded collusion. Thus, we ask:

Can we build a decentralized ABE under standard assumptions, even for some
restricted class of functions and against bounded collusion?

Along the way to answer this question, we identify an interesting connection
between decentralized ABE and functional encryption for inner products [6]. We
first review the context of functional encryption (for inner products), and then
elaborate on the connection in the technical overview section below.

Functional Encryption (for Inner Products). In a Functional Encryption
(FE) scheme [16, 49], a secret key skg is associated with a function g, and a ci-
phertext ctx is associated with some input x from the domain of g. The function-
ality of FE requires that the decryption procedure outputs g(x), while security
guarantees that nothing more than than g(x) can be learned. Constructing FE
for general functions is quite challenging – the only known solutions (support-
ing unbounded key queries) either rely on indistinguishability obfuscation [25]
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or multilinear maps [27]. On the other hand, researchers have identified some
special classes of functions that already suffice for many interesting applica-
tions [3, 7]. One of them is the inner products, where a ciphertext ct encrypts a
vector y ∈ D` for some domain D, and a secret key for vector x ∈ D` allows
computing 〈x,y〉 but nothing else. Abdalla et al. [1] constructed a scheme and
prove security against selective adversaries, who have to declare the challenge
messages (y0,y1) at the beginning before seeing the master public key mpk.
More recently, Agrawal et al. [6] constructed an adaptively secure FE for inner
products that removes this restriction, and in particular, their scheme guaran-
tees the indistinguishability-based (IND) security for key queries both before and
after the challenge ciphertext. Moreover, Agrawal et al. [6] pointed out that the
IND-based security achieves “almost” the best possible security, as it implies
the simulation-based (SIM) security (for the case of inner products) without
post-challenge-ciphertext key queries. On the other hand, the SIM-based secu-
rity is in general impossible to achieve even for one post-challenge-ciphertext key
query [6, 16].

In this work, we observe that the IND-based security does not suffice for
our task of constructing decentralized ABE with a stronger security guarantee.
Furthermore, the efficiency of the currently best known lattice-based construc-
tion (FE for inner products) [6] degrades exponentially with the dimension of
the vector y. A subsequent work [4] improved the parameters significantly, yet
with a tradeoff of weaker security where the adversary can only receive skx for
random x’s before the challenge ciphertext and cannot issue more key queries
afterwards. Their scheme [4] is useful in the setting of designing trace-and-revoke
systems, but cannot be applied to the decentralized ABE where the adversary
can obtain keys of his own choice, both before and after the challenge ciphertext.
Thus, the applicability of currently known FE for inner products is still limited.
Therefore, we ask the following question:

Can we further generalize the security framework and construct
more efficient schemes of FE for inner products?

1.2 Our Results

Below we summarize our answers to the two questions in three folds as below.

1. For the question related to decentralized ABE, we first generalize the security
notion of [42] by considering adaptive corruption of parties (in addition to
making adaptive key queries). Then we construct a new scheme for {0, 1}-
LSSS (a class that captures monotone boolean formula) with the building
block – functional encryption for inner products (with a stronger security
requirement). Our scheme is in the plain model and the security holds against
bounded collusion.

2. We formalize this requirement and instantiate two schemes – one by LWE,
and the other by DDH. Our constructions make essential modifications of
the constructions by [6], and we improve the analysis significantly (especially
for the LWE-based construction), resulting in more efficient schemes with
stronger security.
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3. We show that decentralized ABE for general access structures is somewhat
equivalent to witness encryption (WE) for general NP relations. This can
be viewed as a challenge in achieving decentralized ABE based on standard
assumptions, as we are not aware of any construction of WE for NP relations
based on standard assumptions.

By putting (1) and (2) together, we achieve the following informal theorem:

Theorem 1.1 (Informally Stated) Assume the DDH or LWE assumption.
For the function class of {0, 1}-LSSS, there exists a decentralized ABE scheme
that is secure against adversary who can make adaptive key queries and adap-
tively corrupt parties, with bounded collusions.

Our LWE-based construction provides another path to construct decentral-
ized ABE that is potentially secure against quantum computers as long as LWE
is quantum hard. Next we compare our DDH construction with that of the prior
work [42]. First, both schemes achieve the function class {0, 1}-LSSS. Second,
our scheme achieves stronger security against adaptive corruptions of parties, yet
the work [42] achieves security against static security where the adversary needs
to commit to a subset of corrupted parties at the beginning of the security exper-
iment. Third, our scheme only relies on the DDH assumption without the need
of pairings, yet the work [42] requires three new assumptions on bilinear groups.
Finally, the work [42] can support an unbounded number of collusions by using
random oracle, yet in the plain model, their scheme can only support a bounded
number of collusions. On the other hand, our scheme works natively in the plain
model and supports a bounded number of collusions. We leave it as an interesting
open question whether our scheme can be upgraded in the random oracle model.

1.3 Our Techniques

Decentralized ABE. In this work, one focus is to construct decentralized
ABE, following the direction of the prior work [22, 42]. We first briefly review
the setting. In a decentralized ABE system, anyone can become an authority by
simply creating a public key and issuing secret keys to different users for their
attributes, without coordinating with (or even being aware of) other authori-
ties. Similarly as in [22, 42], we use the concept of global identifiers (GID) to
link together secret keys issued by different authorities. Ciphertexts are gener-
ated corresponding to some access structure over attributes. The decryptor can
recover the message if he holds secret keys from different attributes that have
the same GID and satisfy the access structure specified by the ciphertext. In
the security model, the adversary can corrupt authorities and query authorities
for attributes associated with GID adaptively, with the restrictions that the in-
formation learned from these collusion cannot help adversary decrypt challenge
ciphertext. For the bounded collusion setting, the number of GID queried by
adversary is fixed according to the scheme parameter.

To present our intuition, we first consider a very simple case and then present
how we can generalize the idea. Let us assume that there is only one known GID,
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and there are three parties P1, P2, P3, where each Pi holds only one attribute i.
In this case, constructing a decentralized ABE is simple. Each Pi just samples
(pki, ski) from a regular encryption scheme, and outputs pki as the master public
key and keeps ski as the master secret key. To issue a key for the attribute i,
the party Pi just simply outputs ski. To encrypt a message m, the encryptor
first secret share (w1, w2, w3) ← Share(m) (according to its access structure),
and outputs Encpk1(w1),Encpk2(w2),Encpk3(w3) as the ciphertext. Intuitively, if
the decryptor holds a set of keys {skj}j∈S where S satisfies the access structure,
then the decryptor can obtain {wj}j∈S and recover the original message m. On
the other hand, if S does not satisfy the structure, then by the security of the
secret sharing scheme, the adversary cannot learn any information about m.

To generalize the idea to a larger GID domain, we consider a new secret
sharing that takes shares over polynomials.4 Particularly, we let p0(x) = m be
a constant degree polynomial with the coefficient m. The encryptor now shares

(p1(x), p2(x), p3(x))← Share(p0(x)), and outputs the ciphertext as
(
Encpk1(p1(x)),

Encpk2(p2(x)),Encpk3(p3(x))
)

. Suppose we can achieve the following properties:

1. Pi can issue a secret key ski,GID such that whoever holds the key can learn
pi(GID).

2. Suppose
(
{pi(GID1)}i∈S1

, {pi(GID2)}i∈S2
, . . . , {pi(GIDt)}i∈St

)
is given for

distinct GID1, . . . ,GIDt.

(a) If there exists some Sj that satisfies the access structure, then one can
recover p0(GIDj) = m.

(b) If no such Sj exists, then p0(x) = m remains hidden.

Then it is not hard to see that the scheme also achieves the decentralized ABE,
as Pi can issue ski,GID as Property 1, the decryption works by Property 2(a), and
intuitively, security is guaranteed by Property 2(b).

Now we elaborate on how to implement the properties in more details. First,
we can see that functional encryption (FE) is exactly what we need for Prop-
erty 1, and in fact, FE for inner products suffices for the functionality. The
encryption algorithm can encrypt y = (c0, c1, . . . , ck) that represents the poly-

nomial p(x) =
∑k
i=0 cix

i, and a key for GID can be set as the FE key skx for

x = (1,GID,GID2, . . . ,GIDk). By using the FE decryption with the secret key
skx, one can learn 〈x,y〉 = p(GID). To implement Property 2, we find that we
can apply the known {0, 1}-LSSS sharing scheme [13] over the coefficients of the
polynomial, and prove Properties 2(a) and 2(b). If the shares of polynomials are
of degree k, then we can tolerate up to t = k − 1 distinct GID queries. See our
Section 4 for further details.

We notice that any FE for inner products can achieve the functionality of
Property 1 as stated above, yet connecting security of the FE and security of
the decentralized ABE is not obvious. First, the (challenge) messages used in

4 We will discuss the secret sharing in more details, but let us focus on the high level
concepts at this point.
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the decentralized ABE come from a distribution (i.e., shares from Share (p0(x))
form a distribution), yet the IND-based security considered by prior work [1,
6, 16] focuses on two fixed challenge messages y0 and y1. It is not clear how
to define two fixed y0 and y1 to capture two distributions of Share (p0(x)) and
Share (q0(x)) in the decentralized ABE setting, and furthermore, is not clear how
to define admissible key queries in our setting. SIM-based FE might be helpful,
but it is impossible to achieve the notion (for challenge ciphertexts that encrypt a
vector of messages) if the adversary is allowed to make post-challenge ciphertext
key queries, as pointed out by [6]. We also note that the scheme of Gorbunov,
Vaikuntanathan, and Wee [31] cannot be applied to our setting directly, as their
SIM adaptive security only holds for challenge ciphertexts that encrypt a single-
message.5 Second, in our decentralized ABE, the adversary is allowed to corrupt
parties and make key queries adaptively, i.e., at any time of the game. It is
not clear whether the currently functional encryption schemes are secure under
adaptive corruption if several ciphertexts under different public keys are given
first and then several master secret keys are compromised. Consider the following
example: suppose Encpk1(y1),Encpk2(y2),Encpk3(y3) are given first, and then the
adversary can corrupt any subset, say sk1 and sk2, and make key query to sk3,
what security can we guarantee for the remaining message y3?

Functional Encryption for Inner Products. To handle the issues above, we
consider a more generalized security notion of functional encryption. Intuitively,
our framework considers encryption over a set of messages from two (challenge)
distributions, say (y1, . . . ,y`) ← D`b for b ∈ {0, 1}, under different public keys
(pk1, . . . , pk`), and the ciphertexts

(
Encpk1(y1), . . . ,Encpk`(y`)

)
are given to the

adversary. The adversary can make (1) a corruption query to any ski and (2)
a key query x to an uncorrupted skj , multiple times before or after the chal-
lenge phase. Our security requires that the adversary cannot guess b correctly,
as long as the distributions D`0 and D`1 remain indistinguishable under the func-
tionalities from (1) and (2). This security notion lies in between the IND-based
security and the SIM-based security. We prove that any functional encryption
that satisfies the notion can be used to implement the idea above to build a
secure decentralized ABE. We present the details in Section 4.

Next we turn to the question how to build such a functional encryption
scheme. We make essential modifications of the DDH and LWE-based construc-
tions from the work [6], and prove that the modified schemes achieve our new
security definition. Conceptually, we develop two new techniques: (1) we use a
complexity leverage argument (or random guessing [36]) in a clever way that
does not affect of the underlying LWE or DDH assumption at all. (2) Our LWE-
based construction uses a re-randomized technique proposed in the work [37]
to avoid the use of multi-hint extended LWE as required by the work [6]. The
reduction from multi-hint LWE to LWE incurs a significant security loss, and

5 The work [31] can derive an IND adaptively secure scheme for challenge ciphertexts
that encrypt a vector of messages, but as we discussed above, IND security seems
not sufficient for our application.
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the standard deviation required by the discrete Gaussian distribution is large.
By using our new analysis, we are able to have a direct security proof of the
scheme without multi-hint LWE, resulting in an exponential improvement over
the parameters. Below we elaborate on more details. As we improve over some
subtle but important points of the work [6], for the next paragraph we assume
some familiarity of the work [6].

We briefly review the approach of [6]. The master public/secret keys have
the form mpk = (A,U) and msk = Z such that U = ZA. The ciphertext has
the form Enc(y) = (c0, c1) where c0 = As+e0, and c1 = Us+e1 +Ky for some
appropriate number K. The security proof of [6] proceeds as follows:

– Let H0 be the original game.
– Hybrid H1: c0 remains the same, and c1 = Z(c0 − e0) + e1 +Ky.
– Hybrid H2: c0 is switched to the uniform vector, and c1 remains the same

as H1.

It is quite easy to see that H1 is just a rephrase of H0, so the two hybrids are
identical. The difference between H1 and H2 relies on the multi-hint extended
LWE, as we need the hint of Ze0 in order to simulate c1 given c0. Then Agrawal
et al. [6] showed that in H2, the adversary has a negligible winning probability
with an information-theoretic argument. This is to say, in H2, even a computa-
tionally unbounded adversary cannot win the game with better than a negligible
probability.

To get rid of the use of multi-hint extended LWE, we modify the hybrid 1:

– New H ′1: c0 remains the same as H0, and c1 = ReRand(Z, c0, αq, σ
∗) + Ky

for some αq, σ∗.

The algorithm ReRand was proposed in the work by Katsumata et al. [37]. We
show that this technique can be used to improve analysis in our setting: by setting
αq, σ∗ appropriately, the output distribution of the ReRand will be statistically
close to Us + e∗ where e∗ has the same distribution of e1. Consequently, c1
can be generated independent of e0, and thus we can get rid of the need of the
multi-hint LWE.

To prove security of our setting, we need to analyze the success probability of
an adversary in H2. We observe that the proof technique by the work [6] cannot
be applied to our setting. Intuitively, the crux of their security proof (in H2) relies
on the following facts: (1) once the adversary submits the challenge messages
y0,y1, the space of key queries in the remaining game is fixed to Λ⊥(y0−y1). (2)
The adversary cannot distinguish y0 from y1 even if he is given the ciphertext
and a set of keys in each dimension of Λ⊥(y0 − y1) at the same time. (This is
captured as XtopZ in their proof.) (3) Any post-challenge key queries can be
derived by a linear combination of the keys obtained in (2), i.e, XtopZ. In our
setting however, the fact (1) no longer holds. Given two message distributions,
it is not clear whether the space for the remaining key queries is even fixed or
not. Therefore, their argument cannot be used in our setting.

Another possible way to handle adaptive queries is to use a complexity lever-
aging argument (or random guessing according to the work [36]). However, by
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folklore we know that naively applying the argument will result in an exponen-
tial security loss, i.e., εscheme ≤ 2λ · εLWE. Our new insight to tackle this problem
is to apply it cleverly: we only apply the argument in the hybrid H2 where
all the analysis is information-theoretic. In more details, we show that in H2

the advantage of any adversary who only makes pre-challenge ciphertext key
queries is bounded by some ε2, and by the complexity leveraging argument, the
advantage of a full adversary is bounded by 2λ · ε2. By setting the parameters
appropriately, we can afford the loss without affecting the hardness of the un-
derlying LWE or DDH assumption. Our overall advantage of the adversary would
be εscheme ≤ ∆(H0, H1) + ∆(H1, H2) + Adv(H2). By the property of ReRand,
∆(H0, H1) is negligible; by the security of LWE, ∆(H1, H2) ≤ εLWE; by the above
argument Adv(H2) = 2λ · ε2 can also be set to negligible. Therefore, we have
εscheme ≤ εLWE + negl(λ). Details can be found in the full version of the paper.

Can We Achieve Decentralized ABE for General Functions? After
achieving decentralized ABE for {0, 1}-LSSS, it is natural to ask whether we
can do more. Here we show that any decentralized ABE for general functions
implies a witness encryption (WE) for general NP statements. On the other
hand, an extractable witness encryption for general NP statements plus signa-
tures implies decentralized ABE, following the argument of the work [29]. The
result provides a challenge to construct decentralized ABE for general functions
under standard assumptions, as we are not aware of any construction of WE
from standard assumptions. We leave it as an interesting open question whether
there exists a decentralized ABE for a class between {0, 1}-LSSS and general
functions.

1.4 Additional Related Work

Decentralized ABE. The problem of building ABE with multiple authorities
was proposed by Sahai and Waters [54], and first considered by Chase [22].
In [22], Chase introduced the concept of using a global identifier to link secret
keys together. However, her system relies on a central authority and is limited
to express a strict AND policy over a pre-determined set of authorities. Müller
et al. [47,48] proposed another construction with a centralized authority for any
LSSS structure, based on [55], but their construction is secure only against non-
adaptive queries. Lin et al. [44] showed a threshold based scheme (somewhat
decentralized) against bounded collusions. In their system, the set of authorities
is fixed ahead of time, and they must interact during system setup. Chase and
Chow [23] showed how to remove the central authority using a distributed PRF,
but the restriction of an AND policy over a pre-determined set of authorities
remained. In [42], Lewko and Waters proposed a decentralized ABE system for
any LSSS structure from bilinear groups. Their system is secure against adaptive
secret key queries and selective authority corruption in random oracle model. Liu
et al. [45] proposed a fully secure decentralized ABE scheme in standard model,
but there exists multiple central authorities issuing identity-related keys to users.
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Functional Encryption for Inner Products. The problem of FE for inner
products was first considered by Abdalla et al. [1], where they show construc-
tions against selective adversaries based on standard assumptions, like DDH and
LWE. Later on, Bishop et al. [12] consider the same functionality in the secret-
key setting with the motivation of achieving function privacy and security against
adaptive adversaries. Recently, in work by Agrawal et al. [6], they provide con-
structions in public key setting based on several standard assumptions that are
secure against more realistic adaptive adversaries, where challenge messages are
declared in the challenge phase, based on previously collected information. Ben-
hamouda et al. [10] show a CCA-Secure Inner-Product Functional Encryption
generically from projective hash functions with homomorphic properties.

For the multi-input version of the inner product functionality, more re-
cently, Abdalla et al. [2] show a construction of multi-input functional encryp-
tion scheme (MIFE) for the inner products functionality based on the k-linear
assumption in prime-order bilinear groups, which is secure against adaptive ad-
versaries. In [24], Datta et al. describe two non-generic constructions based on
bilinear groups of prime order, where one construction can withstand an arbi-
trary number of encryption slots.

Witness Encryption. Recently, Brakerski et al. [19] proposed a new framework
to construct WE via ABE. We note that a result similar to our construction can
be obtained from their work.

1.5 Roadmap

The notations and some preliminaries are described in Section 2. In Section
3, we present our new security definition for FE, and propose an LWE based
construction satisfying our new security. Due to the space limitation, we defer
the full security proof to the full version of the paper. In Section 4, we give a
stronger security definition for decentralized ABE and present our construction.
Furthermore, we explore the relationship between decentralized ABE and (ex-
tratable) witness encryption in Section 5. The DDH-based constructions for FE
and decentralized ABE can be found in the full version of the paper.

2 Preliminaries

Notations. We use λ to denote security parameter throughout this paper. For
an integer n, we write [n] to denote the set {1, . . . , n}. We use bold lowercase
letters to denote vectors (e.g. v) and bold uppercase letters for matrices (e.g.
A). For a vector v, we let ‖v‖ denote its `2 norm. The `2 norm of a matrix
R = {r1, ..., rm} is denoted by ‖R‖ = maxi ‖ri‖. The spectral norm of R is
denoted by s1(R) = supx∈Rm+1‖R · x‖.

We say a function negl(·) : N → (0, 1) is negligible, if for every constant
c ∈ N, negl(n) < n−c for sufficiently large n. For any set X, we denote by
P(X) as the power set of X. For any Y,Z ∈ {0, 1}n, we say that Y ⊆ Z if for
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each index i ∈ [n] such that Yi = 1, We have Zi = 1. The statistical distance
between two distributions X and Y over a countable domain D is defined to be
1
2

∑
d∈D |X(d) − Y (d)|. We say that two distributions are statistically close if

their statistical distance is negligible in λ.
A family of functions H = {hi : D → R} from a domain D to range R is

called k-wise independent, if for every pairwise distinct x1, ..., xk ∈ D and every
y1, ..., yk ∈ R,

Prh←H[h(x1) = y1 ∧ ... ∧ h(xk) = yk] = 1/|R|k.

Secret Sharing and the {0, 1}-LSSS Access Structure. We briefly describe
the syntax of secret sharing and the {0, 1}-LSSS access structure, and refer the
full version of the paper for further details. A secret sharing scheme consists
of two algorithms as follow: SS = (SS.Share,SS.Combine). The share algorithm
SS.Share takes input a secret message k and an access structure A and output a
set of shares s1, . . . , st. The combine algorithm SS.Combine takes input a subset
of shares can recover the secret k if the subset satisfies the access structure A. If
not, then the secret k should remain hidden to the algorithm. Briefly speaking,
if the combine algorithm just applies a linear combination over shares to recover
the message, then the secret sharing scheme is called linear, or LSSS in brief.
If the coefficients are in {0, 1}, then it is called {0, 1}-LSSS. It is worthwhile
pointing out that the {0, 1}-LSSS contains a powerful class called Monotone
Boolean Formula (MBF) pointed out by the work [13,41], who showed that any
MBF can be expressed as an access structure in {0, 1}-LSSS. In this work, our
construction of decentralized ABE achieves the class of {0, 1}-LSSS and thus
supports any the class of MBF.

3 Adaptively Secure FE for Chosen Message
Distributions

In this section, we define a new security notion of functional encryption, called
adaptively secure functional encryption for chosen message distributions. This
notion is a generalization of prior adaptively secure functional encryption [6].
We first propose the definition, and then construct an LWE-based scheme that
achieves the security notion. Our construction modified the scheme of [6] in an
essential way, and our security analysis provides significantly better parameters
than the work [6]. The DDH-based construction and its security proof can be
analyzed in a similar way as our LWE-based scheme.

3.1 New Security Definition

In functional encryption, a secret key skg is associated with a function g, and
a ciphertext ctx is associated with some input x from the domain of g. The
functionality of FE requires that the decryption procedure outputs g(x), while
security guarantees that nothing more than g(x) can be learned. The formal
description of syntax is in the full version of the paper.
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Suppose that in a functional encryption scheme, a set of messages can be
chosen from two distributions, and we obtain a set of ciphertexts by encrypting
each message yi using different master public keys mpki. Before choosing the
two message distributions, the adversary is sent a set of master public keys
{mpki}i∈[t] and can also make two kinds of queries:

– Function queries: For query (f, i), obtain secret key skfi for function f from
mski.

– Opening queries: For query i, obtain master secret key mski.

The natural restrictions we enforce here are (1) the distributions of queried func-
tion evaluations for the two message distributions remains indistinguishable, (2)
the distributions of opening messages are also indistinguishable. Otherwise, there
can be no security as the adversary can trivially distinguish the two message dis-
tributions. On the other hand, other additional information such as, the opening
messages, queried keys, and the function values, may help the adversary to learn
to distinguish the message distributions from the ciphertexts. Our new security
notion – adaptively secure functional encryption for chosen message distribu-
tions, requires that the choice of the message distribution of challenger remains
indistinguishable even if the adversary is given the additional information.

We formalize IND-based security definition with respect to admissible map-
pings. For ease of exposition, we first define the query mappings.

Definition 3.1 Let t = t(λ) be an integer andM be the message space. {xi}i∈[t] ∈
Mt is a set of messages, and f :M→K be a function. We define the functions
(i, f) : Mt → K as (i, f)(x1, ..., xt) = f(xi), and function (i, I) : Mt → M as
(i, I)(x1, ..., xt) = xi.

Definition 3.2 (Admissible mappings) Let t = t(λ) be an integer, M be
the message space, and M0,M1 be two distributions over space Mt. Let subsets
T1, T2 ( [t] such that T2 ∩ T1 = ∅ and |T2 ∪ T1| < t, and let {ki}i∈T2 be a
set of integers. We say that mappings {(i, I)}i∈T1

and {(i, fij)}i∈T2,j∈[ki] are
admissible if it holds that

{{(i, I)(M0)}i∈T1
, {(i, fij)(M0)}i∈T2,j∈[ki]}

={{(i, I)(M1)}i∈T1
, {(i, fij)(M1)}i∈T2,j∈[ki]}

Remark 3.3 The requirement of admissible mappings is that the above two
distributions are identical. We can also relax the definition by requiring the two
distributions are statistically or computationally close.

We define the adaptive security of functional encryption for chosen message
distributions through an experiment ExptFEA (1λ, 1t) between an adversary and
challenger:

1. Setup: For i ∈ [t], challenger first computes (mpki,mski)← Setup(1λ), then
sends {mpki}i∈[t] to adversary A.
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2. Query Phase I: Proceeding adaptively, adversary can make any polynomial
number of queries to the oracle O({mski}i∈[t], ·) of the following two kinds:
– Function queries (i, fij): Challenger sends back skfij ← KeyGen(ski, fij).
– Opening queries (i, I): Challenger sends back mski.

3. Challenge Phase: Adversary A sends two message distributions M0 and
M1 over message space Mt with the restriction that any queries made
in Query Phase I are admissible with respect to (M0,M1) (c.f. Defini-
tion 3.2). The challenger chooses a random bit b ∈ {0, 1}, and sends cipher-
text {cti = Enc(mpki, xi)}i∈[t] back to adversary, where {xi}i∈[t] ←Mb.

4. Query Phase II: Adversary A can continue making queries as specified in
Query Phase I as long as the queries are admissible.

5. Guess: Adversary A outputs his guess b′.

We define the advantage of adversary A in the experiment ExptFEA (1λ, 1t) as

AdvA(1λ, 1t) = |Pr[ExptFEA (1λ, 1t) = 1]− 1/2|

Definition 3.4 We say a functional encryption scheme Π is adaptively secure
for chosen message distributions security if for any polynomial t = t(λ), and any
ppt adversary A, we have AdvA(1λ, 1t) ≤ negl(λ).

3.2 Functional Encryption for Inner Products Modulo p

Agrawal et al. [6] show a construction of functional encryption for inner products
modulo p assuming the hardness of LWE problem. In this section, we made some
important modifications of their construction, particularly the encryption and
key generation algorithms, and then show that the modified scheme satisfies our
new security definition. Our modifications and new analysis provide significantly
better parameters as we will discuss below. We first present the construction:

– Setup(1n, 1`, 1k, p): Set integers m, q = pe for some integer e, and real numbers

α, α′ ∈ (0, 1). Randomly sample matrices A
$← Zm×nq and Zi

$←− Z`×mp , for

i = 1, ..., k. Compute Ui = Zi ·A ∈ Z`×nq . Output mpk := (A, {Ui}i∈[k]) and
msk := ({Zi}i∈[k]).

– KeyGen(msk,x): On input a vector x = (x1, . . . ,xk), where for each i ∈ [k],
xi ∈ Z`p, compute the secret key zx as follows. As x is linearly independent
from the key queries have been made so far modulo p, we can compute zx =∑k
i=1 x

T
i · Zi, and output secret key skx = zx.

– Enc(mpk,y): On input y = (y1, ...,yk), where for each i ∈ [k], yi ∈ Z`p, sample

s
$← Znq , e0 ← DmZ,αq and {ei}i∈[k] ← D`Z,α′q and compute

c0 = A · s+ e0 ∈ Zmq , ci = Ui · s+ ei + pe−1 · yi ∈ Z`q,∀i ∈ [k]

Then, output ct = (c0, {ci}i∈[k]).
– Dec(mpk, skx, ct): On input ct = (c0, {ci}i∈[k]) and a secret key skx = zx for

x = (x1, . . . ,xk) ∈ Zk`p , compute µ′ =
∑k
i=1〈xi, ci〉 − 〈zx, c0〉 and output the

value µ ∈ Zp that minimizes |pe−1 · µ− µ′|.
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Decryption correctness. Correctness derives from the following equation:

µ′ =

k∑
i=1

〈xi, ci〉−〈zx, c0〉 = pe−1·

(
k∑
i=1

〈xi,yi〉 mod p

)
+

k∑
i=1

〈xi, ei〉−〈zx, e0〉 mod q

If the magnitude of error term
∑k
i=1〈xi, ei〉−〈zx, e0〉 is ≤ pe−1/2 with over-

whelming probability, then the correctness holds with overwhelming probability.

Parameters setting. The parameters in Table 1 are selected in order to satisfy
the following constraints. In the table below, e, c1, c2, δ1, δ2, δ are constants, and
δ = δ1 + δ2

Parameters Description Setting

λ security parameter

n column of public matrix λ

m row of public matrix n1+δ

p modulus of inner products nc1

e power of q to p > 3 + ( 7δ
2

+ c2
2

+ 2)/c1
q modulus of LWE nc1e

αq Gaussian parameter of e0

√
nc2+2δ · logn

α
′
q Gaussian parameter of ei n1+δ+c1 ·

√
nc+2δ · logn

t number of distinct mpk’s nc2

k number of xi in x nδ1

` dimension of xi nδ2

σ∗ parameter of ReRand algorithm pm

Table 1. Parameter Description and Simple Example Setting

– To ensure correctness of decryption, we require pe−1 > 2kp2m`αq(2
√
` +√

m).
– To ensure the correctness of ReRand algorithm, we require σ∗ ≥ pm.
– By the property of ReRand algorithm, we have α

′
q = 2σ∗αq.

– To ensure small enough reduction loss for the ReRand algorithm, we require
αq >

√
λ+ tk2`2 log p.

– To ensure large enough entropy required by Claim (in full version), we require
m ≥ 2k`+ ek`(n+ 1) + 3λ.

Comparison with the Work [4,6]. Our analysis shows that the scheme can
support a much wider range of parameters than the analysis of Agrawal et al. [6].
For their analysis, the efficiency degrade quickly when the dimension increases,
and in particular, the modulus q ≥ p`. This is why the work [6] sets the dimension
` = Ω(log n). In our analysis, we can build a direct reduction to LWE (without
using the intermediate extended LWE), allowing us to choose Zi ← U(Z`×mp )
(instead of using a discrete Gaussian with a very large deviation). This gives us
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a significant improvement over the parameters: our modulus q does not depend
on ` in an exponential way, so we can set the dimension to any fixed polynomial,
without increasing q significantly.

A subsequent work [4] improved the parameters significantly, yet with a
tradeoff of weaker security where the adversary can only receive skx for random
x’s before the challenge ciphertext and cannot issue more key queries afterwards.
Their scheme [4] is useful in the setting of designing trace-and-revoke systems,
but cannot be applied to the decentralized ABE where the adversary can obtain
keys of his own choice, both before and after the challenge ciphertext.

Security Proof. Now we can show the following theorem that under the pa-
rameters above, the functional encryption for inner product scheme described
above is adaptively secure for chosen message distributions. Due to space limit,
we defer the full proof to the full version of the paper.

Theorem 3.5 Under the LWE assumption, the above functional encryption for
inner products is adaptively secure for chosen message distributions, assuming
for each mski, the secret key queries to the mski are linearly independent.

Remark 3.6 The functionality of the scheme described above is inner products
modulo a prime p. In [6], the authors have given an attack for the case that the
secret key queries are not linearly independent modulo p but linearly independent
over the integers, and they proposed a stateful key generation technique to get
rid of the attack. Here we can also use a stateful key generation algorithm to
remove the last assumption (i.e., linearly independent queries) in the theorem.

4 Decentralized ABE: Stronger Definition and
Construction

In this section, we first describe the syntax of decentralized ABE, following the
work [41], and then we define a stronger security notion. Next, we present our
construction and security proof, relying on the functional encryption scheme in
Section 3.2. We first present a basic scheme that supports smaller GID and mes-
sage spaces (Section 4.2) , and next we show an improved scheme that supports
significantly larger spaces (Section 4.3).

4.1 Syntax of Decentralized ABE Scheme and Stronger Security

We first recall the syntax of decentralized ABE as defined in [41] and then present
a stronger security definition. Let F be a function class. A decentralized ABE
for F consists of the following algorithms:

– Global.Setup(1λ) → GP The global setup algorithm takes in the security
parameter λ and outputs global parameters GP for the system.

– Authority.Setup(GP) → (pk, sk) Each authority runs the authority setup
algorithm with GP as input to produce its own secret key and the public key
pair (sk, pk).
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– Enc(µ, f,GP, {pk})→ ct Encryption algorithm takes as inputs a message µ,
a function f ∈ F , a set of public keys for relevant authorities, and the global
parameters, and outputs a ciphertext ct.

– KeyGen(GID,GP, i, sk)→ ki,GID The key generation algorithm takes as inputs
an identity GID, global parameters GP, an attribute i, and secret key sk
for this authority who holds the attribute. It produces a key ki,GID for this
attribute-identity pair.

– Dec(ct,GP, {ki,GID}) → µ The decryption algorithm takes as inputs the
global parameters GP, a ciphertext ct, and a set of keys {ki,GID} correspond-
ing to attribute-identity pairs. It outputs a message µ, if the set of attributes
i satisfies the policy specified by f and all the identities have the same GID.
Otherwise, it outputs ⊥.

Definition 4.1 (Correctness) We say a decentralized ABE scheme is correct
if for any GP ← Global.Setup(1λ), f ∈ F , message µ, and {ki,GID} obtained
from the key generation algorithm for the same identity GID where the attributes
satisfy the policy f , we have

Pr[Dec(Enc(µ, f,GP, {pk}),GP, {ki,GID}) = µ] = 1− negl(λ).

Security Definition. We define the notion of full security of decentralized
ABE schemes. In our setting, the adversary can adaptively corrupt authorities,
as well as making adaptive key queries. In a similar but weaker model defined
in [41], the adversary can make adaptive key queries but only static corruption
queries, i.e., the adversary can only corrupt parties before the global parameter
is generated.

Let t = poly(λ) denote the number of authorities, and we consider parties
P1, P2, . . . , Pt, where each party Pi holds an attribute i. Then we define the
security notion via an experiment ExptdabeA (1λ, 1t) between an adversary and
the challenger:

1. Setup: The challenger runs GP ← Global Setup(1λ), and then (pki, ski) ←
Authority Setup(GP) for i ∈ [t]. Then the challenger sends

(
GP, {pki}i∈[t]

)
to

the adversary, and keeps {ski}i∈[t] secretly.
2. Key Query Phase 1: Proceeding adaptively, adversary can make the two types

of queries:
(a) Secret key query (i,GID): A submits a pair (i,GID) to the challenger,

where i is an attribute belonging to an uncorrupted authority Pi and
GID is an identity. The challenger runs ki,GID ← KeyGen(GID,GP, i, ski)
and forwards the adversary ki,GID.

(b) Corruption query (i, corr): A submits (i, corr) to the challenger, where i is
an attribute that the adversary want to corrupt. The challenger responds
by giving A the corresponding master secret key mski

3. Challenge Phase:A specify two messages µ0, µ1, and a function f , where func-
tion satisfies the following constraint. We let ωc denote the attributes con-
trolled by the corrupted authorities, and for each GID we let ωGID denote the
attributes which the adversary has queried. We require that f(ωc,ωGID) 6= 1
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(In other words, the adversary does not hold a set of keys that allow decryp-
tion). The challenger flips a random coin b ∈ {0, 1} and sends the adversary
an encryption of µb under f .

4. Key Query Phase 2: The adversary can further make corruption and key
queries as the Key Query Phase 1, under the constraint of f as specified
above.

5. Guess: The adversary submits a guess bit b′, and wins if b′ = b. The advantage
of adversary in the experiment ExptdabeA (1λ, 1t) is defined as AdvA(1λ) =
|Pr[b′ = b]− 1/2|.

Definition 4.2 A decentralized ABE scheme is fully secure if for any ppt ad-
versary A, we have AdvA(1λ) ≤ negl(λ). The scheme is fully secure against
k-bounded collusion if we further require that A can query at most k distinct
GID’s in the experiment.

4.2 Our Basic Construction

In the description here, we first present our basic construction of decentralized
ABE for {0, 1}-LSSS. The basic construction can only support GID ∈ GF(p) for
some fixed prime p, and the message space is also GF(p). Next we show how to
extend the GID domain to GF(p`) by using the field extension technique.

Our construction uses the following building blocks: (1) a {0, 1}-LSSS scheme
SS, and (2) a fully secure functional encryption for inner product modulo p,
denoted as FEIP. We can instantiate the {0, 1}-LSSS as definition in [13], and
the FEIP as the construction in Section 3.2. Then we define our construction
Π = (Global.Setup,Authority.Setup,Enc,KeyGen,Dec) as follows:

– Global.Setup(1λ): On input security parameter λ, the global setup algorithm
sets k = k(λ) to denote the collusion bound of the scheme and t = t(λ)
to denote the number of associated attributes. The global setup algorithm
also sets an integer n = n(λ) and a prime number p = p(λ). It outputs
GP = (k, t, n, p) as the global parameter.

– Authority.Setup(GP): On input GP, for any attribute i belonged to the au-
thority, the authority runs the algorithm FEIP.Setup(1n, 1`, 1k, p) to generate
FEIP.mpki and FEIP.mski. Then output pk = {FEIP.mpki} as its public key,
and keep sk = {FEIP.mski,∀i} as its secret key. (In the basic scheme, ` is set
to 1.)

– Enc(µ, (A, ρ),GP, {pk}): On input a message µ ∈ Zp, an access matrix A ∈
Zt×dp with ρmapping its row number x to attributes, the global parameters GP,
and the public keys {FEIP.mpki} of the relevant authorities. The encryption
algorithm invokes k times {0, 1}-LSSS for secret space K = Zp to generate:

(u1,1, ...u1,t)← SS.Share(µ,A),

(ui,1, ...ui,t)← SS.Share(0,A),∀i ∈ [2, k].

For each (u1,x, ..., uk,x) ∈ Zkp, x ∈ [t] it generates

FEIP.ctρ(x) ← FEIP.Enc(FEIP.mpkρ(x), (u1,x, ..., uk,x)).
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The ciphertext is ct = ({FEIP.ctρ(x)}x=1,...t).
– KeyGen(GID, i, sk,GP): On inputs attribute i, global identifier GID ∈ Zp, secret

key sk and global parameter GP, the algorithm sets GID = (1,GID, ...,GIDk−1)
and computes

FEIP.ski,GID ← FEIP.KeyGen(FEIP.mski,GID),

and outputs ki,GID = FEIP.ski,GID.
– Dec({ki,GID},A, ct,GP): On input secret keys {kρ(x),GID}, the access matrix A,

ciphertext ct and global parameter GP, the decryptor first checks if (1, 0, . . . , 0)
is in the span of the rows {Ax}. If not, the algorithm outputs ⊥. Otherwise,
it computes

ηρ(x) = FEIP.Dec
(
FEIP.skρ(x),GID,FEIP.ctρ(x)

)
for each ρ(x),

and outputs η = SS.Combine({ηρ(x)}).

Remark 4.3 We note that for any distinct k GID’s, GID1, . . . ,GIDk, the vectors{
GIDi = (1,GIDi, ...,GID

k−1
i )

}
i∈[k]

are linearly independent. In our construction

above, each GID ∈ Zp and the vectors can be expressed as a Vandermonde matrix

X =


1 . . . 1
x1 . . . xk
...

. . .
...

xk−11 . . . xk−1k

, which is full-rank if the elements {xi}i∈[k] are distinct.

Therefore, for any less than k distinct GID’s, the key queries for these GID’s are
linearly independent.

Correctness. We show that the scheme above is correct. By correctness of the
fully secure functional encryption scheme FEIP, we have that for each ρ(x),

ηρ(x) = u1,ρ(x) +

k−1∑
j=1

uj+1,ρ(x)GID
j mod p.

Since (u1,1, ...u1,t) is secret sharing of message µ, and {(ui,1, ...ui,t)}ki=2 is secret
sharing of 0, then by correctness of {0, 1}-LSSS scheme, we have that η = µ mod
p. This proves correctness.

Parameter Setting. We can instantiate the scheme FEIP (c.f. Section 3.2) by
setting n = λ, ` = 1, k = poly(λ), t = poly(λ) and p = poly(λ), and obtain
a decentralized ABE with both the message space and GID space being Zp.
In summary, our basic scheme can support any fixed poly(λ) GID and message
spaces, against any fixed poly(λ) bounded collusion.

Security Proof. Next we prove security of the above scheme in the following
theorem.
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Theorem 4.4 Assuming that FEIP is a functional encryption for inner products
and FEIP is adaptively secure for chosen message distributions, and SS is a
{0, 1}-LSSS, the decentralized ABE construction Π described above is fully secure
against k − 1 bounded collusion.

Proof. We prove the theorem by reduction. Assume that there exists an adver-
sary A who breaks the scheme with some non-negligible advantage ε, then we
can construct a reduction B that breaks the security of FEIP. Given an adversary
A, we define B as follows:

1. B first receives {mpki} from its challenger, and forwards {mpki} to A.
2. B runs A to simulate the Key Query Phase 1 of the ABE security game. In

each round, B may receive either a corruption query (i, I) or a key query
(GID, i).

– Upon receiving a query (GID, i), B makes a key query
(

(1,GID, ...,GIDk), i
)

to its challenger, and receives ki,GID. B forward A with the key.
– Upon receiving a query (i, corr), B make a query (i, I) to the challenger

and receives mski. B just sends A mski.
B continue to run this step until A makes the challenge query.

3. Upon receiving A’s challenge query, which contains an access structure A
and two messages µ0, µ1 ∈ Zp, B first checks whether all the key queries
satisfy the constraint of the security game of decentralized ABE. (This can
be efficiently checked in our setting). If not, B aborts the game and outputs a
random guess. Otherwise, B defines two distributionsM0 andM1 as follows.
For b ∈ {0, 1},Mb is defined as the distribution that first samples k times of
the {0, 1}-LSSS procedure

(u
(b)
1,1, ...u

(b)
1,t)← SS.Share(µb,A)

(u
(b)
i,1 , ...u

(b)
i,t )← SS.Share(0,A),∀i ∈ [2, k].

Then Mb outputs: (
(u

(b)
1,1, ..., u

(b)
k,1), ..., (u

(b)
1,t , ..., u

(b)
k,t)
)
.

B sends the descriptions ofM0,M1 (which can be succinctly described, e.g.,
(µb,A)) to the challenger, and then B forwards A the challenge ciphertext
received from the external FEIP challenger.

4. B simulates the Key Query Phase 2 in the same way as Step 2.
5. Finally B outputs A’s guess b′.

Next we are going to analyze the reduction B. Since B perfectly emulates
the FEIP security game for A, B’s advantage is the same as A’s, assuming the
queries are admissible in the FEIP security game. Therefore, it suffices to prove
the theorem by showing that the queries made by B are admissible.

The assumption of the theorem requires that A can query at most k − 1
different GID’s for each mski. Let T1 be the set that B (and also A as well)
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makes corruption queries, and ki be the number of secret key queries that B
makes to mski. Then we need to show that the two distributions defined below
are identical, i.e., D0 = D1, where

Db =
{
{(i, I)(Mb)}i∈T1

, {(i,xij)(Mb)}i∈T2,j∈[ki]

}
,

where xij = (1,GIDij , ...GID
k−1
ij ), T1 is the set B corrupts, and T2 is the set that

B makes key queries but does not corrupt.

We note that, for an opening query (i, I), (i, I)(Mb) =
(
u
(b)
1,i , ..., u

(b)
k,i

)
can be

viewed as coefficients of the polynomial Pi(x) = u
(b)
1,i +

∑k
j=2 u

(b)
j,i ·xj−1 mod p).

By the property of Lagrange interpolation formula, the coefficients of a poly-
nomial P (x) of degree k can be uniquely determined given P (x1), . . . , P (xk)
for any distinct (x1, . . . , xk). This implies that (i, I)(Mb) can be simulated by
{(i,GIDij)(Mb)}j∈[k] for any distinct {GIDij}j∈[k], where GID = (1,GID, . . . ,GIDk−1).
Therefore, it is without loss of generality to assume that Db only contains infor-
mation of the form {(i,GIDij)(Mb)}.

As we argue above, all queries are of the form (i,xij), so we can re-write
the queries in Db as {q1, . . . , qn}, where each qj is of the form (i,x). Denote
{q1, . . . , qn} as −→q , and then we can further re-write Db as −→q (Mb). Now it
suffices to show that for every admissible −→q and possible values z,

Pr[−→q (M0) = z] = Pr[−→q (M1) = z].

Pr[−→q (Mb) = z] can be expanded as

Pr[−→q (Mb) = z]

=Pr[q1(Mb) = z1] · Pr[q2(Mb) = z2|q1(Mb) = z1] · ··
Pr[qn(Mb) = zn|q1(Mb) = z1 ∧ ... ∧ qn−1(Mb) = zn−1].

We first observe that the message distributionMb =
(

(u
(b)
1,1, ..., u

(b)
k,1), ..., (u

(b)
1,t ,

..., u
(b)
k,t)
)

can be viewed as coefficients of t degree-k polynomials (P1(x), . . . , Pt(x)).

Since the marginal distribution of (u
(b)
1,i , ..., u

(b)
k,i) is uniformly random by the

{0, 1}-LSSS property, the marginal distribution of any polynomial Pi is uniform,
i.e., a random degree-k polynomial in Zp. Therefore, Pr[q1(Mb) = x1] = 1/p,
independent of b.

Next we will show that for any j ∈ [n],

Pr [qj(Mb) = zj | qj−1(Mb) = zj−1 ∧ · · · ∧ q1(Mb) = z1] = 1/p,

assuming q1, . . . , qj are admissible.
To prove this, we first set up some notations. We assume that GID1, . . . ,GIDk−1

are the identifiers queried by the adversary. If the adversary corrupts some
mski, then he will further learn Pi(GIDk) (for another GIDk) in addition to
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Pi(GID1), . . . , Pi(GIDk−1). We assume that qj = (i,GIDr) for some i ∈ [t], r ∈ [k].
Let S be an arbitrary maximal invalid set that includes all v’s with (v,GIDr)
belongs to the queries {q1, . . . , qj}, according to the access structure A, i.e.
{v : (v,GIDr) ∈ {q1, . . . , qj}} ⊆ S. Since the queries are admissible, such a
set S always exists.

By the privacy guarantee of the LSSS, we know the distributions of the
polynomials P1(x), . . . , Pt(x) generated in the encryption algorithm is identical
to the following process:

– For every v ∈ S, sample Pv(x) (the coefficients) uniformly and independently
at random.

– For every v /∈ S, set Pv(x) = µb −
∑
w∈Γv

Pw(x), where Γv ⊆ S is the
reconstruction set that can be efficiently determined given (v,A).

Next, we observe the following facts:

1. Since Pi(x) is a random polynomial (the marginal distribution), we know
that the (marginal) distribution Pi(GIDr) is uniformly random even condi-
tioned on all {Pi(GIDw)}w∈[k]\{r} (as a random degree k polynomial is k-wise
independent).

2. From the above sampling procedure, we know that Pi(x) is independent of
{Pv(x)}v∈S\{i}.

3. From the above two facts, we know that the (marginal) distribution Pi(GIDr)
is still uniformly random even further conditioned on {Pv(x)}v∈S\{i} and
{Pi(GIDw)}w∈[k]\{r}.

4. For every v /∈ S, w ∈ [k] \ {r}, Pv(GIDw) can be deterministically obtained
given the information {Pv(x)}v∈S\{i} and {Pi(GIDw)}w∈[k]\{r}. This implies
that the conditional distribution Pi(GIDr) is uniform even further given
{Pv(GIDw)}v∈[t]\S,w∈[k]\{r} in addition to {Pv(x)}v∈S\{i} and {Pi(GIDw)}w∈[k]\{r}.
It is not hard to see that the information of q1(Mb), . . . , qj−1(Mb) can be ob-

tained given {Pv(GIDw)}v∈[t]\S,w∈[k]\{r}, {Pv(x)}v∈S\{i}, and {Pi(GIDw)}w∈[k]\{r}.
Therefore, we have showed: for any j ∈ [n],

Pr [qj(Mb) = zj | qj−1(Mb) = zj−1 ∧ · · · ∧ q1(Mb) = z1] = 1/p.

Then we can conclude that

Pr[−→q (M0) = x]

=Pr[q1(M0) = x1] · Pr[q2(M0) = x2|q1(M0) = x1] · ··
Pr[qn(M0) = xn|q1(M0) = x1 ∧ ... ∧ qn−1(M0) = xn−1]

=Pr[q1(M1) = x1] · Pr[q2(M1) = x2|q1(M1) = x1] · ··
Pr[qn(M1) = xn|q1(M1) = x1 ∧ ... ∧ qn−1(M1) = xn−1]

=Pr[−→q (M1) = x].

This proves that all the queries B makes during the game are admissible. This
means that B is a legal adversary in the security game of FEIP. Since B also
perfect simulates the challenger of A, the advantage of B is the same as the
advantage of A, a non-negligible quantity. This reaches a contraction, and com-
pletes the proof. ut
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4.3 An Improved Construction for Large Spaces

We can modify our basic construction so that it can support significantly lager
GID and message spaces, using the technique of finite field extension to GF(p`)
for some `. In more detail, we consider the embedding technique described in
the work [46, 57]. Intuitively, we can compute GF(p`) field operations via pro-
jecting GF(p`) elements to Z`p (and Z`×`p ), and thus, the field operations can be
supported by our FEIP scheme.

Let p ∈ N be a prime, ` ∈ N, and let f(x) be a monic irreducible polynomial in
Zp of degree `. Then we define R = Zp[X]/〈f(x)〉, and note that R is isomorphic
to GF(p`) as p is a prime and f(x) is an irreducible polynomial of degree `. We
will use R as the representation of GF(p`).

We then define two mappings φ : R→ Z`p and Rot : R→ Z`×`p by

φ : θ = a1 + a2x+ ...+ a`x
`−1 7→ (a1, ..., a`)

>,

Rot : θ = a1 + a2x+ ...+ a`x
`−1 7→

[
φ(θ)φ(θx)...φ(θx`−1)

]
.

We note that Rot(θ) · φ(ϑ) = φ(θϑ), Rot(θ) · Rot(ϑ) = Rot(θϑ), and Rot(θ) +
Rot(ϑ) = Rot(θ + ϑ). This means that Rot is a ring-homomorphism from R to
Z`×`p . If θ 6= θ

′ ∈ GF(p`), then Rot(θ)− Rot(θ
′
) = Rot(θ − θ′

) 6= 0.

Now we present our modified constructionΠ = (Global.Setup,Authority.Setup,
Enc,KeyGen,Dec):

– Global.Setup(1λ): On input the security parameter λ, the global setup algo-
rithm sets k = k(λ) to denote the collusion bound of our scheme and t = t(λ)
to denote the number of associated attributes. The global setup algorithm
also sets n = n(λ), ` = `(λ) and p = p(λ) to denote the input parameters
of FEIP.Setup. It outputs GP = (k, t, n, `, p) as the global parameter, and sets
both the GID and message spaces as GF(p`).

– Authority.Setup(GP): On input GP, for attribute i belonged to the authority,
the authority runs the algorithm FEIP.Setup(1n, 1`, 1k, p) to generate FEIP.mpki
and FEIP.mski. Then output pk = {FEIP.mpki} as its public key, and keep
sk = {FEIP.mski,∀i} as its secret key.

– Enc(µ, (A, ρ),GP, {pk}): On input a message µ ∈ GF(p`), an access matrix
A ∈ GF(p`)t×d with ρ mapping its row number x to attributes, the global pa-
rameters GP, and the public keys {FEIP.mpki} of the relevant authorities. The
encryption algorithm invokes k times {0, 1}-LSSS over secret space GF(p`) to
generate

(u1,1, ...u1,t)← SS.Share(µ,A),

(ui,1, ...ui,t)← SS.Share(0,A),∀i ∈ [2, k],

For each (u1,x, ..., uk,x) ∈ GF(p`)k, x ∈ [t], the encryption algorithm first
computes:

(u1,x, ...,uk,x)← φ(u1,x, ..., uk,x),
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and then generates

FEIP.ctρ(x) ← FEIP.Enc(FEIP.mpkρ(x), (u1,x, ...,uk,x)).

The ciphertext is ct = ({FEIP.ctρ(x)}x=1,...t).

– KeyGen(GID, i, sk,GP): On input attribute i, global identifier GID ∈ GF(p`),
secret key sk and global parameters GP. To generate a key for GID for attribute
i belonging to an authority, the authority first computes k elements GIDj ∈
GF(p`),∀j ∈ [k − 1], then computes Rot(GIDj),∀j ∈ [k − 1], and denotes

the column vectors of


I

Rot(GID)
...

Rot(GIDk−1)

 to be {gj}j∈`, where I is the identity

matrix in Z`×`p , finally sets

FEIP.sk
(j)
i,GID ← FEIP.KeyGen

(
FEIP.mski, gj , randi

)
,∀j ∈ [`].

Outputs ki,GID = {FEIP.sk(j)i,GID}j∈[`].
– Dec({ki,GID},A, ct,GP): On input secret keys {kρ(x),GID}, the access matrix

A, ciphertext ct and global parameters GP, the decryptor first checks if
(1, 0, . . . , 0) is in the span of the rows {Ax} or not. If not, the algorithm
outputs ⊥. Otherwise, it computes

η
(j)
ρ(x) = FEIP.Dec

(
FEIP.sk

(j)
ρ(x),GID,FEIP.ctρ(x)

)
,∀j ∈ [`], for each ρ(x),

and sets ηρ(x) =
(
η
(1)
ρ(x), ..., η

(`)
ρ(x)

)
, θρ(x) = φ−1(ηρ(x)), then outputs θ =

SS.Combine({θρ(x)}).

Correctness. By correctness of the scheme FEIP, we have that for each ρ(x),

ηρ(x) = u1,ρ(x) +

k−1∑
j=1

uj+1,ρ(x)Rot(GID
j)(mod p)

= φ(u1,ρ(x) +

k−1∑
j=1

uj+1,ρ(x)GID
j).

Then θρ(x) = u1,ρ(x) +
∑k−1
j=1 uj+1,ρ(x)GID

j . By correctness of the {0, 1}-LSSS
scheme over GF(p`), we have that θ = µ. This proves correctness.

Parameters. We can instantiate the scheme FEIP (c.f. Section 3.2) by setting
n = λ, ` = poly(λ) k = poly(λ), t = poly(λ) and p = poly(λ), and obtain a
decentralized ABE with both the message space and GID space being GF(p`). In
summary, our modified scheme can support exponential-sized GID and message
spaces, against any fixed poly(λ) bounded collusion.
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Security. Security of the modified scheme can be proven in the same way as our
basic scheme, as the only difference is the underlying finite field. We note that
the analysis that the distributions Db are identical in the proof of Theorem 4.4
works for any underlying finite field (either Zp or GF(p`)), so the analysis can
be carried to the modified scheme straightforwardly. To avoid repetition, we just
state the theorem as follow.

Theorem 4.5 Assume that FEIP is a functional encryption for inner prod-
ucts that is adaptively secure for chosen message distributions, and SS is a
{0, 1}-LSSS over GF(p`). Then the scheme Π above is a fully secure decen-
tralized ABE against k − 1 bounded collusion for {0, 1}-LSSS over GF(p`).

Combining Theorem 4.5 and the instantiation by Theorem 3.5, we obtain the
following corollary:

Corollary 4.6 Assume the LWE assumption. Then there exits a decentralized
ABE that is fully secure against k−1 bounded collusion for any polynomial k, for
the function class {0, 1}-LSSS over Zp for any polynomial prime p. The scheme
supports exponential-sized GID and message spaces.

5 Witness Encryption and Decentralized ABE

In this section, we discuss the relation between decentralized ABE and witness
encryption, which is introduced by Garg et al. [28]. We first recall the syntax of
witness encryption and its security, after that we give a construction of witness
construction for NP language using decentralized ABE for general circuits, and
then show that extractable witness encryption implies decentralized ABE for
general circuits.

5.1 Witness Encryption

We recall the syntax of WE introduced by Garg et al. [28], and also the ex-
tractability security defined by Goldwasser et al. [29]. A witness encryption
scheme for an NP language L (with corresponding witness relation R) consists
of algorithms Π = (Enc,Dec):

– Enc(1λ, x, µ): On input the security parameter λ, an unbounded-length string
x, and a message µ ∈ {0, 1}, the encryption algorithm outputs a ciphertext
ct.

– Dec(ct, w): On input a ciphertext and an unbounded-length string w, the
decryption algorithm outputs a message µ or a special symbol ⊥.

Definition 5.1 (Witness Encryption) We say Π described above is a wit-
ness encryption, if it satisfies:

– Correctness: For any security parameter λ, any µ ∈ {0, 1}, and x ∈ L such
that R(x,w) = 1, we have that

Pr[Dec(Enc(1λ, x, µ), w) = µ] = 1
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– Soundness Security: For any ppt adversary A, there exists a negligible
function negl(·) such that for any x /∈ L, we have:

|Pr[A(Enc(1λ, x, 0)) = 1]− Pr[A(Enc(1λ, x, 1)) = 1]| < negl(λ)

Definition 5.2 (Extractable security) A witness encryption scheme for an
NP language L is secure if for all ppt adversary A, and all poly q, there exist
a ppt extractor E and a poly p, such that for all auxiliary inputs z and for all
x ∈ {0, 1}∗, the following holds:

Pr[b← {0, 1};ct←WE.Enc(1λ, x, b) : A(x, ct, z) = b] ≥ 1/2 + 1/q(|x|)
⇒ Pr[E(x, z) = ω : (x, ω) ∈ RL] ≥ 1/p(|x|).

5.2 Witness Encryption from Decentralized ABE for General
Circuit

We first describe a transformation from witness encryption for NP languages
from decentralized ABE for general circuits. Intuitively, the witness encryption
can use the Decentralized ABE scheme in the following way: the general circuit
f is used as the NP verifier such that that the decryptor can recover the message
if he has the witness ω for the statement x satisfying f(x, ω) = 1.

More specifically, given an NP language L, we present witness encryption
scheme (WE.Enc,WE.Dec) for L as follows:

– WE.Enc(1λ, x, µ): The encryption algorithm takes input a string x ∈ {0, 1}n
(whose witness has length bounded bym) and message µ. Then the algorithm
runs the following procedures:

• It runs Global.Setup and Authority.Setup to generate a global parameters
GP and public keys {pki}i∈[n+m] and secret keys sk = {ski}i∈[n+m].

• Then it invokes KeyGen to generate {ki,xi
}i∈[n] and {kj,0, kj,1}n+mj=n+1.6

• It sets f : {0, 1}n × {0, 1}m → {0, 1} as the NP verifier for L that on
input x ∈ {0, 1}n, ω ∈ {0, 1}m outputs 1 iff ω is a valid witness of x.
Then it generates ct← Enc(µ, f,GP, {pki}i∈[n+m]).

• Finally, it outputs ct =
(
x, {ki,xi}i∈[n], {kj,0, kj,1}n+mj=n+1, {pki}i∈[n+m], ct

)
.

– WE.Dec(1λ, ω, ct): The decryption algorithm takes input a witness ω ∈ {0, 1}m
for the statement x ∈ {0, 1}n and a ciphertex ct for x. Then the algorithm
runs the following procedures:
• It first checks if f(x, ω) = 1 holds, if not, the decryption algorithm

outputs ⊥.
• Otherwise, for j = n + 1, . . . , n + m, the decryption algorithm chooses

kj,ωt
from {kj,0, kj,1}n+mj=n+1 (where ωi ∈ {0, 1} is the i-th bit of ω). Then

it outputs

µ = Dec
(
ct,GP,

{
{ki,xi}i∈[n], {kj,ωt}n+mj=n+1

})
.

6 In our setting, we consider a general case where there is no GID.
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Correctness of the witness encryption scheme is straightforward from the cor-
rectness of decentralized ABE scheme. Now we can show the following theorem.
Due to space limit, we defer the full proof to the full version of the paper.

Theorem 5.3 Assuming that Π is a secure decentralized ABE scheme for gen-
eral circuits (against 1-bounded corruption, static corruption of authorities and
selective key queries), the witness encryption scheme above is secure.

Remark 5.4 Bellare et al. [9] has introduced a stronger security of WE which
is denoted as adaptive soundness security. However, our construction can not
achieve the stronger adaptive soundness security, because the NP language L we
defined is not (efficiently) falsifiable.

Remark 5.5 We note that a weaker notion of decentralized ABE (where the
adversary makes static corruption at the beginning of security game, and key
queries only once) suffices to construct the witness encryption scheme. This
demonstrates the hardness to construct decentralized ABE for general circuits.

Remark 5.6 The scheme we construct above makes use of a decentralized
ABE scheme for n + m authorities. We can also construct a WE scheme by
invoking a decentralized ABE scheme for only two authorities. Intuitively, we
set the attribute space as {0, 1}n. Then the NP statement x ∈ {0, 1}n is the one
attribute controlled by the non-corrupt authority, and the witness ω ∈ {0, 1}m
of x is the one attribute controlled by the corrupt authority. We set f as the NP
verifier algorithm. And the decryptor of WE scheme can recover the message if
he can find the witness ω for x such that f(x, ω) = 1. Then we can obtain the
scheme similarly to the scheme above.

5.3 Decentralized ABE from Extractable Witness Encryption

Next, we show how to construct a decentralized ABE for general circuits from
the following two components: (1) an extractable witness encryption scheme
WE = (WE.Enc,WE.Dec) [29], and (2) an existentially unforgeable signature
scheme SIG = (SIG.KeyGen,SIG.Sign,SIG.Verify) [30].

In our construction, we assume that each authority Pi has a polynomial
number of distinct attributes Si = {xj}. This is without loss of generality because
we can always encode the party’s ID in the first several bits of the attributes.
Our construction Π = (Authority Setup,Enc,KeyGen,Dec) (we omit algorithm
Global Setup, as it does not affect the functionality) is described as follows:

– Authority Setup(1λ) (for party Pj): On input security parameter λ, for each
attribute xi belonged to the authority Pj , i.e., xi ∈ Sj , the algorithm
runs SIG.KeyGen(1λ) to generate key pair (svkxi

, sskxi
). Then it sets pk =

{svkxi
}xi∈Sj

as the public key, and keeps sk = {sskxi
}xi∈Sj

as its secret key.
– Enc({pk}, f, µ): On input public key pk, a function f and message µ, the

encryption algorithm sets an instance xf as xf = ({svkxi}, f), and defines
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NP language L such that xf ∈ L if and only if there exists n signature pairs
(σ1, (x1,GID)), . . . , (σn, (xn,GID)) such that

(∀i,SIG.Verifysvkxi
(σi, (xi,GID)) = 1) ∧ (f(x1, ...,xn) = 1)

Next it computes and outputs ct←WE.Enc(xf , µ).
– KeyGen(xj ,GID, ski): On input attribute xj , the authority outputs kj,GID =
σj ← SIG.Sign(sski, (xj ,GID)) if xj ∈ Si. Otherwise, it outputs ⊥.

– Dec({ki,GID},GP, ct): If the decryptor has a set of keys with the same GID
such that f(x1, . . . ,xn) = 1, and all the signature verifications succeed, then
{ki,GID} servers as witness for xf , and it calls WE.Dec(ω, ct) to recover the
message µ. Otherwise, the decryption fails.

It is straightforward that the correctness of the scheme described above comes
from the correctness of witness encryption WE and signature scheme SIG.

Next, we are going to show that the construction above achieves a ABE
against static corruption. For convenience of our proof, we use the following
presentation of definition for security against static corruption. Let A = (A1,A2)
be an adversary, and T denote the set of authorities.

Expdabe(1λ):

1. (T ′, {pki, ski}i∈T ′)← A1(1λ)

2. {pkj , skj}j∈T\T ′ ← Authority.Setup(1λ)

3. (f, state)← AKeyGen(skj ,·)
1 ({pkk}k∈[T ])

4. Choose a bit b at random and let ct← Enc({pkk}k∈[T ], f, b)

5. b′ ← AKeyGen(skj ,·)
2 (state, ct)

6. If b = b′ and for all attributes xgo that A makes key requests to oracle KeyGen(skj , .)
along with the attributes xco controlled by corrupted authorities (A), we have
f(xgo,xco) 6= 1, output 1, else output 0.

We say that the scheme is secure (against static corruption of authorities) if
for all PPT adversaries A, the advantage Advdabe

A of A is negligible. where:

Advdabe
A = |Pr[ExpdabeA (1λ) = 1]− 1/2|.

Then we can show the following theorem. Due to space limit, we defer the full
proof to the full version of the paper.

Theorem 5.7 Assuming the existence of an extractable witness encryption scheme
WE and an existentially unforgeable signature scheme SIG, then the scheme de-
scribed above is secure against static corruption of authorities.

6 Conclusion

We investigated the constructions of LWE-based and DDH-based decentralized
ABE, which satisfy stronger security notion that adversary can make corrup-
tion queries of parties adaptively in addition to making adaptive key queries.
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As a building block, we first introduced a functional encryption for inner prod-
uct functionality with a stronger security requirement, and then we proposed the
constructions of FE for inner product with the stronger security by making some
modifications of the constructions by [6]. Combining the FE for inner product
with the stronger security and a {0, 1}-LSSS scheme, we obtained the construc-
tions of the desired decentralized ABE. Finally, we showed that decentralized
ABE for general access structures is somewhat equivalent to witness encryption
(WE) for general NP relations.

Our scheme is in the plain model and the security holds against bounded
collusion, the work [42] can support an unbounded number of collusions by using
random oracle. We leave it as an interesting open question whether our scheme
can be upgraded in the random oracle model.
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