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Abstract. An emerging trend is for researchers to identify cryptography
primitives for which feasibility was first established under obfuscation
and then move the realization to a different setting. In this work we
explore a new such avenue — to move obfuscation-based cryptography to
the assumption of (positional) witness encryption. Our goal is to develop
techniques and tools, which we will dub “witness encryption friendly”
primitives and use these to develop a methodology for building advanced
cryptography from positional witness encryption.
We take a bottom up approach and pursue our general agenda by attack-
ing the specific problem of building collusion-resistant broadcast systems
with tracing from positional witness encryption. We achieve a system
where the size of ciphertexts, public key and private key are polynomial
in the security parameter λ and independent of the number of users N in
the broadcast system. Currently, systems with such parameters are only
known from indistinguishability obfuscation.

1 Introduction

Over the past five years the introduction of candidate indistinguishability obfus-
cation schemes [27] has produced a dramatic shift in the community’s view of
which cryptographic primitives are plausibly achievable. Starting with [56] there
have been several works [56, 16, 26, 9, 45, 19, 43, 30, 10] that leverage the power of
indistiguishability obfuscation [6, 7] to give new solutions for problems ranging
from deniable encryption to showing the hardness of finding Nash equilibrium.

An emerging trend is for researchers to identify cryptography primitives for
which feasibility was first established under obfuscation and then move the re-
alization to a different setting. For example, several works [9, 46, 2, 40, 39, 59]
proposed solutions under the Learning with Errors [54] (LWE) assumption of
primitives (or impossibility results) that to that point were known only under
indistinguishability obfuscation. The motivation for this movement is that LWE
is considered a standard assumption with connections to certain problems on
lattices, while current indistinguishability obfuscation constructions are based
on much newer multilinear map candidates. In a different line of researchers [31,
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47] have shown how to base applications such as realizing trapdoor permuta-
tions and the hardness of Nash equilibrium from functional encryption. While
subexponentially hard functional encryption is known to imply indistinguishabil-
ity obfuscation [4, 11, 5], this direction is motivated by building these primitives
with only a polynomial loss in the reductions coupled with prospect of func-
tional encryption schemes realized from the polynomial hardness of standard
assumptions.

In this work we explore a new such avenue — to move obfuscation-based
cryptography to the assumption of (positional) witness encryption [29, 33]. Re-
call that in a witness encryption scheme, say for SAT, an encryption algorithm
takes in a message m along with a boolean formula φ that operates an n bit input
w producing a ciphertext ct. A decryptor can recover the message m from ct if it
knows a w such that φ(w) = 1. If no such w exists, then the message is computa-
tionally hidden. In addition to serving as its own application, witness encryption
is known to give rise to primitives such as identity-based encryption [58, 12] and
attribute-based encryption [55].

A natural question is why push for moving cryptography from indistinguisha-
bility obfuscation to positional witness encryption when current constructions
for both rely on multilinear maps [25, 22, 32, 23]. The justification (like in [31,
47]) relies on some projection to the future. Since witness encryption is a less
powerful primitive than indistinguishability obfuscation, it is believed that the
community will likely arrive at a standard assumption solution earlier. This con-
jecture is supported by some heuristic evidence:

– The work of [33] showing provably secure positional witness encryption from
simple multilinear map assumptions came earlier than and was simpler than
the later work [34] which gave a similar result for obfuscation.

– Recently, it was shown [18] that attribute-based encryption gives rise to a
non-trivial form of witness encryption. This might lead to further advances
in witness encryption which would not necessarily translate to general ob-
fuscation.

– Recently, the concept of lockable obfuscation [39, 59] was proposed and shown
to be realizable under the LWE assumption. Like witness encryption this is a
general class of obfuscation, but is more restricted than indistinguishability
obfuscation.

– Very recently, Chen et al. [20] gave a new candidate for witness encryption
(albeit not positional witness encryption) inspired by [32] multilinear en-
codings. An important feature of their candidate is that it directly encodes
read-once branching program representations of the associated CNF formu-
lae, thereby avoiding attacks such as input-mixing and more. Since read-
once branching programs are much less expressive than general branching
programs, this also points towards reaching the goal of witness encryption
before obfuscation.

In addition, we expect future solutions to witness encryption to be practically
more efficient than full blown indistinguishability obfuscation.
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Our goal is to develop techniques and tools, which we will dub “witness
encryption friendly” primitives1, and use these to develop a methodology for
building advanced cryptography from positional witness encryption. While we
don’t expect to move all or even “most” of obfuscation-based cryptography to
positional witness encryption, we believe that a long term effort could yield a
number of applications which are comparable to those achieved from the afore-
mentioned efforts on building from functional encryption [31, 47] or lockable
obfuscation [39, 59].

We will take a bottom-up approach and pursue our general agenda by attack-
ing specific problems that are not known from witness encryption. To that end
in this work we study building collusion-resistant broadcast systems with trac-
ing from positional witness encryption. Our goal is to achieve where the size of
ciphertexts, public key and private key are polynomial in the security parameter
λ and independent of the number of users N in the broadcast system.2 Below we
provide an overview of prior work, present our new results, toolkit of “witness
encryption friendly” primitives, and the techniques that allow us to achieve the
above goals.

1.1 Overview

Broadcast Encryption with Tracing. Broadcast Encryption was introduced by
Fiat and Naor [24]. A broadcast encryption scheme, like a standard public key
encryption scheme, consists of three algorithms — setup, encryption and de-
cryption. The setup algorithm outputs a public key and N secret keys, where N
represents the number of users given as an input. Using the encryption algorithm,
a sender can encrypt a message such that the corresponding ciphertext can only
be decrypted by the “qualified” users S ⊆ [N ].3 Here the set S is given as input
to the encryption algorithm. The decryption algorithm is self-explanatory. For
security it is required that no set of colluding users can decrypt a ciphertext if
none of them are qualified.

Suppose that a set of users S1 collude to create a decoding box D which is
capable of decrypting ciphertexts intended for some (possibly different) set of
users S2 with some non-negligible probability. A broadcast system which pro-
vides tracing capabilities allows extraction of a non-empty set T (from the box
D) such that T ⊆ S1, i.e. contains at least one colluding user but none outside
of it. Such broadcast systems are referred to as Trace and Revoke systems in the
folklore [51, 50]. However, we chose to refer to it as Broadcast and Trace system
as it is more appropriate. They have an additional tracing algorithm which given
only the oracle access to the box D can perform this traitor extraction.

Broadcast and Trace via Augmented Broadcast Encryption (AugBE). Boneh and
Waters (BW) [14] built the first fully collusion resistant Broadcast and Trace

1 This is intended to mirror the term “iO friendly” used elsewhere in the literature.
2 Following prior broadcast encryption literature we will not count a description S of

the recipients of a ciphertext toward the ciphertext overhead.
3 Here qualified could alternatively be interpreted as “non-revoked”.
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scheme with sub-linear (in N) ciphertext size. They also provided a framework
for building Broadcast and Trace schemes by introducing an intermediate prim-
itive called augmented broadcast encryption (AugBE). We follow the same ap-
proach in this work and therefore we elaborate on it now.

An AugBE scheme, as the name suggests, is a broadcast encryption scheme
with an augmented encryption functionality. Similar to a standard broadcast
encryption scheme it consists of setup, encryption and decryption algorithms.
In an AugBE system, the encryption algorithm also receives a “cutoff” index
i ∈ [N + 1], in addition to a set S ⊆ [N ], as an input. This cutoff index affects
the decryptability of the ciphertext in such a way that the resultant ciphertext
can only be decrypted by the users S′ = S \ [i−1], i.e. users whose indices are as
large as i and belong to the set S are now labelled as qualified. BW defined two
security properties for an AugBE system — index hiding and message hiding
security. The first security property (index hiding) states that an encryption of
m under set S to index i is indistinguishable from an encryption of m under set
S to index i+1, if either i /∈ S (even when the adversary has all the secret keys),
or the adversary does not have the ith key. The second property (message hiding)
states that an encryption of m0 under set S to index N + 1 is indistinguishable
from an encryption of m1 under set S to index N + 1, even when the adversary
is given all N secret keys.

BW argued that if an AugBE scheme satisfies these two properties, then
that is sufficient for constructing a Broadcast and Trace (BT) scheme. In their
transformation, the BT setup and decryption algorithm are identical to their
AugBE counterparts. For encryption, a sender runs the AugBE encryption al-
gorithm with the cutoff index value set to be 1. The tracing algorithm runs
AugBE encryption varying the value of cutoff index. Given a decoder box D and
target set S, the tracing algorithm encrypts random messages under set S to
every index i = 1 to N + 1, and estimates (for each index i) the probability D
decrypts correctly. Suppose the probability decoder D is successful, i.e. decrypts
standard (index 1) ciphertexts correctly, is at least ε. By message hiding prop-
erty, we know that D can not have non-negligible success probability when run
on ciphertexts encrypting to index N + 1. This implies that there must exist an
index i∗ ∈ [N ] such that the decoder’s success probability in decrypting index i∗

ciphertexts is at least ≈ ε/N more than in decrypting index i∗ + 1 ciphertexts.
Every cutoff index i where there is a gap in the estimated success probabilities
for index i and i+1, the tracing algorithm adds that user i to the set of traitors.
The main idea here is that if an index i /∈ S or the adversary does not have the
key for user i, then by index hiding security it should not be able to distinguish
between index i and i+ 1 ciphertexts.

Although the above transformation seems to work (at least intuitively), we
would like to point out that the proof provided in [14] was inaccurate. Very
briefly, the problem lies in the fact that there is a “semantic gap” between the
definitions of BT and AugBE schemes. The issue is that in a BT system an
adversary outputs a box which performs some decoding/decryption operations,
whereas in an AugBE system the adversary plays a distinguishing game. At first,
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it seems like one could use the decoder box to decrypt the ciphertext and use its
output for distinguishing. The problem is that decoder might work incorrectly
sometime and it would affect the success probability of the reduction algorithm.
Similar issues were observed by Goyal, Koppula and Waters [41] in the context
of (non-broadcast) traitor tracing. They resolved the issue by upgrading the
security requirements from the underlying intermediate primitives to match the
decoder-based security notions required for traitor tracing. In this work we fix
the proof of security for the BW transformation showing that it does lead to a
secure BT scheme.4 More details are provided later in Section 3.

Our Results and Prior Work. Our main result are new collusion-resistant Broad-
cast and Trace schemes from positional witness encryption where the size of ci-
phertexts, public key and private key are polynomial in the security parameter
λ and independent of the number of users N5. Currently, systems with such
parameters are only known from indistinguishability obfuscation [52]. If we drop
the tracing requirement, that is consider only broadcast encryption, there are
constructions based on multilinear maps [15] and iO [16]. If we drop the re-
vocation requirement, that is consider only traitor tracing, schemes with such
parameters are known based on iO [16]. In bilinear groups we can achieve short
ciphertexts [13, 35], but with longer keys if we drop the tracing requirement. Ad-
ditionally, we have solutions [14] with ciphertexts that grow proportionally to√
N if we keep it. Very recently, Goyal, Koppula and Waters [41] gave a polylog

traitor tracing scheme from the LWE assumption. However, their system does
not have the capability to broadcast to arbitrary sets.

We further develop a toolkit of certain simpler primitives such that these
could be used in conjunction with positional witness encryption in similar vein
to how we have iO friendly primitives to support applications of iO. Our BT
scheme is secure assuming the existence of positional witness encryption and
these simpler primitives. We provide numerous instantiations of these primitives
from a wide variety of standard assumptions such as LWE, RSA and decision
linear over bilinear groups. Now we describe our techniques and main ideas to
build a Broadcast and Trace system.

Building Augmented Broadcast Encryption from Positional Witness Encryption.
The main building block used in our construction is a positional witness encryp-
tion (PWE) scheme. In a PWE scheme, the encryption algorithm also takes as
input a cutoff index i ∈ {0, . . . , 2n} where n is the bit length of witnesses on
which the corresponding boolean formula (witness relation) φ operates. A de-
cryptor can recover the message m from ct if it knows a w such that φ(w) = 1 and
w ≥ i.6 For security it has two properties — message hiding and index hiding.
First, message hiding states that a message encrypted for index 2n (i.e., the last

4 Here we only consider BT schemes with public traceability.
5 Here we assume that number of users N is at most poly(λ)
6 Here comparisons between bit-strings is performed by interpreting each bit-string as

non-negative integer.
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index) is hidden irrespective of the boolean formula used. Second, index hiding
states that an encryption of m under formula φ for index i is indistinguishable
from an encryption of m under φ to index i+ 1, if φ(i) = 0.

We now provide an outline of our AugBE construction. Let us start with
a simple idea. Suppose during setup, the algorithm samples a key pair for a
standard signature scheme. Next, the secret key for ith user consists of a signature
σi on message i and the public key simply corresponds to the verification key
vk. To encrypt a message m under set S and index i, the encryptor runs the
PWE encryption algorithm on message m for index i || 0` and formula φvk,S ,
where φvk,S(j, σ) = 1 iff ‘j ∈ S’ and ‘σ is a valid signature on j under vk’. Here
` denotes the length of the signatures. For decryption a user simply runs the
PWE decryption with its index and signature as the witness. Correctness of this
scheme follows directly. However, this scheme is clearly not compact since the set
S is embedded in the formula φvk,S and since the size of PWE ciphertexts could
arbitrarily (but polynomially) depend on the size of the formula, thus the overall
AugBE scheme could be highly inefficient. In a few words the problem is that
we are implementing a trivial set membership check which breaks compactness.

To get around this problem we will use an alternate set membership check.
Our idea is to embed only a succinct commitment to the set S in the formula
φ such that there exists proofs of membership in S that grow at most logarith-
mically with the number of users N . Clearly such a primitive would resolve the
inefficiency problem. One possible execution of this idea is via a Merkle hash
tree.7 Let IS represent the N -bit indicator string corresponding to set S, i.e.
ith bit of IS is 1 iff i ∈ S. We modify the encryption procedure as follows —
first compute a hash h of string IS ; next run the PWE encryption algorithm on
message m for index i || 0` || 0k and formula φvk,h,N , where φvk,h,N (j, σ, π) = 1 iff
‘j ≤ N ’, ‘π is a valid proof membership for index j w.r.t. hash h’ and ‘σ is a valid
signature on j under vk’. Here proof π simply corresponds to the pre-images in
the hash tree along the path from the root h to the leaf node containing the
jth bit, and k denotes the length of proof π. The decryption is then performed
analogously where the decryptor computes the membership proof by hashing IS
and using the appropriate leaf-to-root path as a proof. This seems to resolve the
succinctness problem as the size of the ciphertext is independent of the number
of users. Also, at least intuitively, it seems that the scheme should satisfy both
index hiding and message hiding security properties. The intuition is that since
φvk,h,N is not satisfied by any witness larger than (N + 1) || 0` || 0k, by using
security of PWE we can argue message hiding security for the above scheme.8

7 The idea of using Merkle hash tree for efficiently committing to large sets has also
been previously used in works such as [3, 60].

8 The proof will invole an exponential number of hybrids. This is because for applying
message hiding security property of PWE the index used must be 2λ+`+k (i.e., the
last index), therefore we need to use index hiding security to go from index (N +
1) || 0` || 0k to 2λ+`+k which takes an exponential number of hybrid steps. Here the
exact ordering of witness components, i.e. i, σ, π, is very important for the proof to
go through. We can only use the security of PWE scheme if index i is leading term
and corresponds to the most significant bits.
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For arguing index hiding security we would hope to use the fact that if i /∈ S,
or if the adversary does not receive the key for ith user, then the adversary does
not know of any witnesses of the form i || {0, 1}` || {0, 1}k and thus we could use
PWE index hiding security. In the first case (i.e., i /∈ S) hardness of computing
witnesses should follow from collision resistance of the hash function, and in
the second scenario it should follow from unforgeability of the signature scheme.
However, there is a problem here. Although we could argue that witnesses are
hard-to-compute while proving index hiding for AugBE, this won’t be sufficient
overall as for applying PWE index hiding security as it is necessary that there
does not exist any witness of the form i || {0, 1}` || {0, 1}k. Thus, unless the un-
derlying PWE scheme provides some strong notion of extractable security, it is
not clear how to prove security of the above construction.9

To this end, we develop a toolkit of certain simpler primitives, which aid
us in proving our construction to be secure. Our motivation here is that us-
ing such primitives, we could somehow indistinguishably switch between in-
stances/formulae which have hard-to-compute witnesses to instances/formulae
which do not have any witnesses (in some particular pre-specified range). Thus
this would enable applicability of the index hiding security property of PWE
scheme in the corresponding proof. Below we elaborate on two such primitives
— all-but-one signatures and somewhere perfectly binding hash functions (a
primitive similar to somewhere statistically binding hash functions described in
[44, 53]).10

A Toolkit for Witness Encryption. The first primitive we consider is a special
type of signature scheme called all-but-one (ABO) signatures. These are just
like standard signatures, except the setup algorithm has a special “punctured”
mode in which it takes a message m∗ as an additional input and outputs a pair of
signing and verification key (sk, vk) such that there does not exist any signature
that gets verified for message m∗. In other words, the verification algorithm
on inputs vk and m∗ rejects every signature σ. Now instead of unforgeability-
type security, we only require that an adversary should not be able to distinguish
verification keys that are output by punctured setup with message m∗ from those
output by normal setup, even when given access to the signing oracle.11 We note
that the notion of ABO signatures is motivated by constrained signatures [16]
and splittable signatures [45], but is much weaker than both of those. In this
work, we also provide new constructions of ABO signatures from a wide variety

9 Although the notion of witness encryption with extractable security has been well
studied [36, 28], extractability in the case of positional witness encryption is rather
non-trivial to define due to the fact that PWE already requires index hiding to hold
for all indices.

10 We would like to point out that our techniques of relaxing extractably-secure assump-
tions to more standard indistinguishability-based assumptions are in part inspired
by analogous results in the regime of moving from differing-inputs obfuscation (diO)
to indistinguishability obfuscation (iO) [44, 52, 21].

11 The adversary is not allowed to query the oracle on message m∗ to allow trivial
distinguishing attacks.
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of standard assumptions. Next we discuss the second primitive we use, and later
we will circle back to the new ABO signature constructions we provide.

The next primitive we employ is a somewhere perfectly binding (SPB) hash
function [44, 53]. An SPB hash consists of four algorithms — setup, hash, open
and verify. The setup algorithm is used to sample a hash key hk, and has two
modes (akin to ABO signatures) — normal and “binding”. In the binding mode
it takes an index i as an additional input, and it ensures that the corresponding
hash function Hhk is perfectly binding for the ith message position (i.e., the hash
value completely determines the ith bit of the pre-image). Additionally, SPB
hashes have a local opening property which states that for any message m, any
index i ≤ |m| and hash h = Hhk(m), one could create a short proof π proving
that the message’s ith bit is m[i] and it hashes to h.12 Such proofs could be
verified by running the verification algorithm which also take as input the hash
key, hash value and a position. For security it is required that an adversary
should not be able to distinguish between hash keys that are output by binding
setup and those output by normal setup.

Next we show that if we use ABO signatures and SPB hash functions in the
previously described AugBE construction then we can prove its security using
positional witness encryption.

Completing AugBE Construction. As discussed earlier, ABO signature scheme
and an SPB hash function enable us to indistinguishably turn instances with
hard-to-compute witnesses into instances which have no witnesses (in a par-
ticular range). Therefore, by simply using an ABO signature scheme and an
SPB hash function in our AugBE construction, we can also prove index hiding
property of our construction. The construction is identical to the one described
before, except that checking membership of index j will now be done by SPB
verification algorithm as follows — ‘π proves that there exists a string x such
that x[j] = 1 and Hhk(x) = h’. The proof of AugBE message hiding stays the
same as φvk,hk,h,N is not satisfied by any witness larger than (N + 1) || 0` || 0k.
The AugBE index hiding proof is divided in two parts. Let i be the challenge
index, S the challenge set and SA the set of keys in adversary’s possession. We
know that either i /∈ S or i /∈ SA. Consider the following cases.

- i /∈ SA : The idea here is that since the adversary does not have key for user
i, thus we could instead generate the (sk, vk) key pair by running punctured
setup for message i. From adversary’s perspective this can not be distin-
guished with non-negligible probability by ABO security. And now, since
the verification key vk no longer accepts any signature σ for message i, we
get φvk,hk,h,N (w) = 0 for all i || 0` || 0k ≤ w < (i+ 1) || 0` || 0k. As a result, we
could use PWE index hiding security to switch from index i AugBE cipher-
texts to index i+ 1 ciphertexts. Finally, we could un-puncture the key vk to
complete the proof.

12 Technically one could visualize the proof π as only proving that the ith bit of pre-
image is m[i]. The fact that it also proves that the message hashes to Hhk(m) is just
due to the structure of the proof.
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- i /∈ S : The proof is very similar to the one described above. The only
modification will be that instead of puncturing the verification key at index
i, we bind the hash key for position i. The intuition is that since the ith bit
of string IS is zero (as i /∈ S), thus if the hash key hk was (perfectly) binding
at position i then there will not exist any proof π that proves that there
exists a string x such that Hhk(IS) = Hhk(x) the ith bit of x is 1. Thus, as
before φvk,hk,h,N (w) = 0 for all indices in that range and we can apply PWE
index hiding security.

At a high level, the proposed paradigm is to first use the developed toolkit to turn
formulae with hard-to-compute satisfying inputs into formulae with only range-
restricted satisfying inputs, then use PWE security to cut through the range of
inactive inputs, and finally switch back to original formulae using our toolkit.
We believe that such a methodology will find more applications especially in
bringing more primitives based on obfuscation to the assumption of (positional)
witness encryption. Finally, we talk about the new ABO signature constructions
that we provide.

ABO Signatures from Standard Assumptions. In this work we give two new
pathways to build ABO signatures. First, we show that an ABO signature scheme
can be generically built from any verifiable random function (VRF) [49] and a
perfectly-binding (non-interactive) commitment scheme. Second, we show that
any identity-based encryption (IBE) scheme [58, 12], that is anonymous [8] as
well as allows efficient key verifiability, also leads to an ABO signature scheme.
VRFs can be based on a wide variety of assumptions such as decision-linear over
bilinear maps as well as RSA-like assumptions [49, 42] and perfectly-binding
(non-interactive) commitment schemes can be based on assumptions such as
DDH, LWE and LPN [37] and perfectly injective OWFs. IBE schemes with
such verifiability and anonymity properties can be based on simple assumptions
over bilinear maps as well as LWE [17, 57, 1, 48, 39, 59]. Thus this leads to new
constructions of ABO signatures. We also point out that ABO signatures can be
built from constrained signatures [16] and splittable signatures [45] which have
been constructed under iO and OWFs. Constrained signatures have also been
constructed from non-interactive witness indistinguishable proofs and perfectly
binding commitments [16].

We now briefly highlight the main ideas to build these from VRFs. A VRF
is like a pseudorandom function (PRF) in which the secret key holder can also
prove correctness and uniqueness of PRF evaluation. Concretely, using the secret
key sk, it could efficiently evaluate the function Fsk(·) on any input x as well as
generate a proof π of the statement y = Fsk(x). An ABO signing key will simply
correspond to the VRF secret key sk, and the ABO verification key will contain
the VRF verification key vk as well as a commitment COM. Here COM commits
to 0 during standard setup, whereas during punctured setup (with message x∗)
COM commits to 1 where the random coins used are Fsk(x

∗). A signature σ for
any message x will simply correspond to its function evaluation y = Fsk(x) as
well as corresponding proof π. While verifying a message-signature pair x, (y, π)
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w.r.t. key (vk,COM), the verifier checks two things — (1) π proves that y is a
correct evaluation on input x, and (2) COM does not match the commitment
of bit 1 obtained using y as randomness. Clearly this scheme satisfies the ABO
scheme correctness condition if the underlying commitment scheme is perfectly
binding as in case of normal setup, condition (2) will never be satisfied. Both
our ABO constructions are provided later in Section 5.

Lastly, one might think that the full power of ABO signatures is not needed to
build the above Broadcast and Trace system. Instead a restricted version where
the message space is fixed to be {1, 2, . . . , N} might suffice. It turns out that
such a restricted ABO signature scheme can be directly constructed from any
SPB Hash function and length doubling pseudo-random generator (PRG). The
idea is to sample an SPB hash key hk, random λ bit strings si for each message
i ∈ [N ] during setup. The verification key consists of the hash key hk and a hash
value h, where h is computed as the SPB hash on the set {ti = PRG(si)}i. The
signature on message i consists of (si, πi) where πi is the SPB hash opening of
hash h on index i. The verification procedure first checks correctness of the hash
proof πi, and then also checks that PRG(si) is ith block value. For punctured
setup at index i∗, the algorithm changes the following — 1) it samples SPB hash
hk to be binding at index i∗, 2) it samples ti∗ uniformly at random from {0, 1}2λ.
With all-but-negligible probability, ti∗ will lie outside the range space of PRG,
therefore no valid signature for i∗ would exist under punctured setup.

However, such an ABO scheme can only be used to build a Broadcast and
Trace system in which the numbers of users is a-priori (and polynomially)
bounded. A more desirable setting would be where the number of users that
can be supported is exponential (i.e., unbounded), while allowing the encryptor
to choose any polynomial sized (a-priori unbounded) subset of users to broadcast
to. Such a Broadcast and Trace system would still require the full power of ABO
signatures, thus we stick to the more general setting.

2 Preliminaries

Notations. For a probability distribution D, we denote by x ← D that x is
sampled according to D. If S is a set, y ← S denotes that y is sampled from
S according to the uniform distribution on S. The set of contiguous integers
{1, . . . , k} for some k ≥ 1 is denoted by [k]. The set of contiguous integers
{m, . . . , n} for some m,n ∈ Z is denoted by [m,n]. We sometimes slightly abuse
notation and refer to bit strings in {0, 1}` by integers, where the left most bit
of x ∈ {0, 1}` is considered as the most significant bit. For any set S, we denote
the size of the set of |S|. We denote security parameter by λ in the rest of the
paper. For any bit string t, we denote that int(t) as the integer representation of
string t.

We define positional witness encryption in this section and defer the defini-
tons of rest of the primitives to the full version of the paper due to space con-
straints.
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2.1 Positional Witness Encryption

In this section, we formally define Positional Witness Encryption (PWE) [33] and
list its correctness and security properties. The encryption system is defined for
an NP language L and a message space {Mλ}λ. Let R(·, ·) be the witness relation
corresponding to L i.e., for any string x ∈ {0, 1}∗, x ∈ L iff ∃w ∈ {0, 1}n(|x|) s.t.
R(x,w) = 1, where n(|x|) is the witness length of instance x. For simplicty of
notation, we hereby denote n = n(|x|). A party can encrypt a message m with
an instance x and index ind. Another party can decrypt the ciphertext using
a witness w to the instance x such that R(x,w) = 1 and w ≥ ind. Given a
string w ∈ {0, 1}n, we sometimes slightly abuse notation and also refer to w as
an integer. Formally, the encryption system contains two procedures defined as
follows.

– Encrypt(1λ, x,m, ind)→ ct. The encryption algorithm takes as input a secu-
rity parameter 1λ, an instance x ∈ {0, 1}∗, a messagem, an index ind ∈ [0, 2n]
and outputs a ciphertext ct.

– Decrypt(w, ct) → m. The decryption algorithm takes as input a witness
w ∈ [0, 2n − 1], a ciphertext ct and outputs either a message m or ⊥.

Correctness. We say that a PWE scheme is correct if for every λ ∈ N, any
instance x ∈ {0, 1}∗, any message m ∈ Mλ, any witness w ∈ [0, 2n − 1], any
position index ind ∈ [0, 2n] such that R(x,w) = 1 and w ≥ ind, and ct ←
Encrypt(1λ, x,m, ind), we have

Pr
[
Decrypt(w, ct) = m

]
= 1

Security. A positional witness encryption scheme should satisfy 2 security prop-
erties: message indistinguishability and position indistinguishability defined as
follows.

Definition 1 (Message Indistinguishability). A PWE scheme for a lan-
guage L is message indistinguishability secure if for any stateful PPT adversary
A, there exists a negligible function negl(·) such that for every λ ∈ N, we have

Pr

[
A(ct) = b :

(x,m0,m1)← A(1λ);
b← {0, 1}; ct← Encrypt(1λ, x,mb, 2

n)

]
≤ 1

2
+ negl(λ).

Note that the above property needs to be satisfied even for instances x ∈ L.

Definition 2 (Position Indistinguishability). A PWE scheme for a lan-
guage L with witness relation R(·, ·) is position indistinguishability secure if for
every stateful PPT adversary A, there exists a negligible function negl(·) such
that for every λ ∈ N, we have

Pr

[
A(ct) = b :

(x,m, ind)← A(1λ);
b← {0, 1}; ct← Encrypt(1λ, x,m, ind + b)

]
≤ 1

2
+ negl(λ).

where the adversary A is restricted to produce a challenge (x,m, ind) such that
R(x, ind) = 0.
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3 Revisiting Broadcast and Trace System

3.1 Broadcast and Trace System

In this section, we formally define Broadcast and Trace system and describe its
security properties. The security definition is motivated by a recent work by
Goyal et al. [38] which points out problems with previously proposed notions of
traitor tracing and proposes an indistinguishability based security definiton for
the primitive.

– Setup(1λ, 1N )→ (pk, {sk1, sk2, . . . , skN}). The setup algorithm takes as input
a security parameter λ and number of users N . It outputs a public key pk,
and secret keys for N users {sk1, sk2, . . . , skN}.

– Encrypt(pk, S,m)→ ct. The encryption algorithm takes as input public key
pk, a set S ⊆ [N ] of users, a message m and outputs a ciphertext ct.

– Decrypt(i, ski, pk, S, ct) → m/ ⊥. The decryption algorithm takes as input
an index i ∈ [N ], secret key of ith user, public key pk, a set of users S ⊆ [N ],
a ciphertext ct and outputs either a message m or ⊥.

– TraceD(pk, SD,m0,m1, 1
1/ε) → S∗. The tracing algorithm takes as input a

public key pk, a set of users SD, two messages m0, m1 and parameter ε < 1.
The algorithm has a black-box access to the decoder D and outputs a set of
indices S∗ ⊆ [N ].

Correctness. The Broadcast and Trace system is said to be correct if for every
λ ∈ N, any number of users N ∈ N, every subset of users S ⊆ [N ], every
message m ∈ Mλ, every user i ∈ S, (pk, {sk1, sk2, . . . , skN}) ← Setup(1λ, 1N )
and ct← Encrypt(pk, S,m), we have

Decrypt(i, ski, pk, S, ct) = m.

Security. Intuitively, the system is said to be secure if it is IND-CPA secure
and if no poly-time adversary can produce a decoder that can fool the tracing
algorithm. We formally define both of these properties below.

Definition 3 (IND-CPA security). We say that a Broadcast and Trace scheme
is IND-CPA secure if for every stateful PPT adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N, the following holds

Pr

AO(·)(ct) = b :
1N ← A(1λ); (pk, (sk1, . . . , skN ))← Setup(1λ, 1N );

(S′,m0,m1)← AO(·)(pk); b← {0, 1};
ct← Encrypt(pk, S′,mb)

 ≤ 1

2
+negl(λ).

Here, O(·) is an oracle that has {ski}i∈[N ] hardwired, takes as input an index

i ∈ [n] and outputs ski. Let the set of indices queried by the adversary to the
oracle be S ⊆ [N ]. Then the adversary is restricted to output the challenge set
S′ such that S′ ⊆ [N ] \ S.
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Experiment Expt-BTA,ε(λ)

– 1N ← A(1λ).
– (pk, (sk1, . . . , skN ))← Setup(1λ, 1N ).
– (D,SD,m0,m1)← AO(·)(pk).
– S∗ ← TraceD(pk, SD,m0,m1, 1

1/ε(λ)).

Here, O(·) is an oracle that has {ski}i∈[N ] hardwired, takes as input
an index i ∈ [N ] and outputs ski. Let S be the set of indices queried
by A.

Fig. 1: Experiment Expt-BT

Definition 4 (IND-secure Traitor Tracing). Let (Setup,Encrypt,Decrypt,Trace)
be a Broadcast and Trace scheme. For any non-negligible function ε(·) and state-
ful PPT adversary A, consider the experiment Expt-BTA,ε(λ) defined as follows.

In order to define the security of tracing mechanism, we define the following
events and probabilities as a function of security parameter λ.

– Good-DecA,ε : Pr[D(ct) = b : b ← {0, 1}, ct ← Encrypt(pk, SD,mb)] ≥ 1/2 +
ε(λ)
Pr-Good-DecA,ε(λ) = Pr[Good-DecA,ε]

– Correct-TrA,ε : |S∗| > 0, S∗ ⊆ S ∩ SD
Pr-Correct-TrA,ε(λ) = Pr[Correct-TrA,ε]

– False-TrA,ε : S∗ 6⊆ S ∩ SD
Pr-False-TrA,ε(λ) = Pr[False-TrA,ε]

The Broadcast and Trace scheme is said to have Ind-secure tracing mechanism if
for every stateful PPT adversary A, polynomial q(·) and non-negligible function
ε(·), there exists negligible functions negl1(·) and negl2(·) such that for all λ ∈ N
satisfying ε(λ) > 1/q(λ), Pr-Correct-TrA,ε(λ) ≥ Pr-Good-DecA,ε(λ) − negl1(λ)
and Pr-False-TrA,ε(λ) ≤ negl2(λ).

3.2 Augmented Broadcast Encryption

In this section, we define Augmented Broadcast Encryption (AugBE) and its
security properties.

– Setup(1λ, 1N ) → (pk, {sk1, . . . , skN}). The setup algorithm takes as input
security parameter λ and number of users N . It outputs a public key pk and
secret keys {sk1, . . . , skN}, where ski is the secret key for user i.

– Encrypt(pk, S,m, ind) → ct. The encryption algorithm takes as input public
key pk, a set of users S ⊆ [N ], a message m, and an index ind ∈ [N + 1]. It
outputs a ciphertext ct.

– Decrypt(i, ski, pk, S, ct) → m/ ⊥. The decryption algorithm takes as input
an index i, secret key for ith user ski, public key pk, a set of users S ⊆ [N ],
a cipheretxt ct and outputs a message m or ⊥.
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Correctness. An AugBE scheme is said to be correct if for every security pa-
rameter λ ∈ N, any number of users N ∈ N, any message m ∈ Mλ, any sub-
set of users S ⊆ [N ], any index ind ∈ [N ], any i ∈ S ∩ {ind, ind + 1, . . . , N},
(pk, {sk1, sk2, . . . , skN}) ← Setup(1λ, 1N ) and ct ← Encrypt(pk, S,m, ind), we
have

Decrypt(i, ski, pk, S, ct) = m.

Security. We need AugBE to satisfy 2 security properties. The first is message
hiding property which states that no PPT adversary can distinguish between
encryptions of m0 and m1 encrypted using the last index N + 1. The second is
index hiding property which states that ciphertexts encrypted to index ind do
not reveal any non-trivial information about the index. We formally define the
security properties below.

Definition 5 (Message Hiding). We say that an AugBE scheme satisfies
message hiding property if for every stateful PPT adversary A, there exists a
negligible function negl(·) such that for every λ ∈ N, the following holds

Pr

AO(·)(ct) = b :

1N ← A(1λ);
(msk, pk, {ski}i∈[N ])← Setup(1λ, 1N );
(S′,m0,m1)← AO(·)(pk); b← {0, 1};

ct← Encrypt(pk, S′,mb, N + 1)

 ≤ 1

2
+ negl(λ).

Here, O(·) is an oracle that has {ski}i∈[N ] hardwired, takes as input an index

i ∈ [N ] and outputs ski.

Definition 6 (Index Hiding). We say that an AugBE scheme satisfies index
hiding property if for every stateful PPT adversary A, there exists a negligible
function negl(·) such that for every λ ∈ N, the following holds,

Pr

AO(·)(ct) = b :

(1N , ind)← A(1λ);
(msk, pk, {ski}i∈[N ])← Setup(1λ, 1N );

(S′,m)← AO(·)(pk); b← {0, 1};
ct← Encrypt(pk, S′,m, ind + b)

 ≤ 1

2
+ negl(λ).

Here, O(·) is an oracle that has {ski}i∈[N ] hardwired, takes as input an index

i ∈ [N ] and outputs ski. Let the set of keys queried by the adversary be S. We
restrict the adversary to satisfy ind /∈ S′ ∨ ind /∈ S.

3.3 Broadcast and Trace from AugBE

We construct a Broadcast and Trace system assuming we have an AugBE scheme.
The construction is same as [14], but we would like to point out their security
proof is inaccurate. The problem lies in the fact that there is a “semantic gap”
between their definitions of BT and AugBE schemes. The issue is that in a BT
system an adversary outputs a box which performs some decoding/decryption
operations, whereas in an AugBE system the adversary plays a distinguishing
game. We modify their security proof as per indistinguishability based definition
of Broadcast and Trace. Due to space constrainsts, we present the construction
in the full version of the paper.
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4 Construction of Augmented Broadcast Encryption

In this section, we construct an augmented broadcast encryption (AugBE) scheme
from positional witness encryption (PWE), somewhere perfectly binding hash
(SPB hash) function and all-but-one (ABO) signatures. We also prove that the
construction satisfies the message hiding and index hiding properties.

Let ABO = (SetupABO,Setup-PuncABO,SignABO,VerifyABO) be an ABO signa-
ture scheme with message space {0, 1}λ, signature space {0, 1}k(λ), secret key
space {Sλ}λ and verification key space {Vλ}λ. Let SPB = (SetupSPB,Setup-BindSPB,
HashSPB,OpenSPB,VerifySPB) be an SPB hash function with hash key space {Kλ}λ,
hash space {Hλ}λ and hash opening space {0, 1}`(λ). For simplicity of notation,
we hereby use ` = `(λ) and k = k(λ). Let PWE = (EncryptPWE,DecryptPWE)
be a PWE scheme with message space {Mλ}λ with respect to the following
language L. The language L contains instances of the form (1λ, N, h, hk, vk) ∈
1λ × {0, 1}λ ×Hλ × Kλ × Vλ, where λ ∈ N, with the following witness relation
R:

(1λ, N, h, hk, vk) ∈ L ⇐⇒
∃(i, σ, π) ∈ {0, 1}λ × {0, 1}k × {0, 1}` s.t.

1 ≤ i ≤ N ∧ VerifyABO(vk, i, σ) = 1∧
VerifySPB(hk, h, i, 1, π) = 1.

Note that the above witness relation R is well defined as VerifyABO and VerifySPB
are deterministic algorithms. We construct an AugBE scheme AUGBE = (Setup,
Encrypt,Decrypt) with message space {Mλ}λ. We sometimes slightly abuse nota-
tion and denote the values in {0, 1}z (for z ∈ N) by integers. For any set S ⊆ [N ],
let IS be a bit vector of length N , where the ith element IS(i) is defined as

IS(i) =

{
1 if i ∈ S,
0 otherwise

.

– Setup(1λ, 1N ): Sample (vk, sk) ← SetupABO(1λ) and hk ← SetupSPB(1λ, N).
Compute signatures {σi ← SignABO(sk, i) : 1 ≤ i ≤ N}. Output pk =
(1λ, N, vk, hk), and secret keys {ski = σi : 1 ≤ i ≤ N}.

– Encrypt(pk, S,m, ind): Let pk = (1λ, N, vk, hk). Compute SPB hash on IS i.e.,
compute the hash h = HashSPB(hk, IS). Then encrypt the message m with
PWE scheme using the instance inst = (1λ, N, h, hk, vk) and index ind||0k+`,
i.e., computes ct← EncryptPWE (inst, m, ind||0k+`).

– Decrypt(i, ski, pk, S, ct): Let pk = (1λ, N, vk, hk). Compute hash h = HashSPB
(hk, IS) and proof πi ← OpenSPB(hk, IS , i). Then decrypt the ciphertext us-
ing the witness w = i||ski||πi i.e., output message m ← DecryptPWE(w =
i||ski||πi, ct).

Note that the correctness properties of SPB hash andABO signature schemes
imply that w = i||ski||πi is a valid witness to the instance inst = (1λ, N, h, hk, vk)
(i.e., R(x,w) = 1). This along with the correctness of PWE scheme imply the
correctness of the above scheme. In the following subsections, we prove that the
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above AugBE construction satisfies message hiding and index hiding properties.
Formally, we prove the following theorem.

Theorem 1. If PWE is a sub-exponentially secure PWE scheme as per Defi-
nitions 1 and 2, ABO is a secure ABO signature scheme and SPB is a secure
SPB hash function, then AUGBE is a secure AugBE scheme as per Definitions
5 and 6.

4.1 Message Hiding

In this subsection, we prove the message hiding property of the above scheme as-
suming sub-exponential security of PWE scheme. For any instance (1λ, N, h, hk, vk),
let r(λ) be the length of witnesses accepted by the witness relation R, i.e.,
r(λ) = λ + k(λ) + `(λ). For simplicity of notation, we ignore the parameters
and simply denote it by r. We first describe the following games that help us in
proving the property.

Game N + 1||0k+`. This game is same as the AugBE message hiding game.

1. Setup Phase. The adversary A sends the number of users 1N to the chal-
lenger. The challenger samples the keys (vk, sk) ← SetupABO(1λ), hash key
hk ← SetupSPB(1λ, N) and signatures {σi ← SignABO(sk, i) : 1 ≤ i ≤ N}. It
then sends the public key pk = (1λ, N, vk, hk) to A.

2. Pre-Challenge Query Phase. The adversary then adaptively queries for secret
keys. For each query j, the challenger responds with the secret key skj = σj .

3. Challenge Phase. The adversary then sends a pair of messages m0,m1 and
a set S ⊆ [N ] to the challenger. The challenger samples a bit b ← {0, 1}
and computes hash h = HashSPB(hk, IS). It then samples ciphertext ct ←
EncryptPWE (x = (1λ, N, h, hk, vk), mb, int(N + 1||0k+`)) and responds with
ct.

4. Post-Challenge Query Phase. This is identical to Pre-Challenge Query Phase.
5. Output Phase. The adversary sends a bit b′ to the challenger. The adversary

wins if b′ = b.

Game y (N + 1||0k+` < y ≤ 2r). This game is similar to Game N + 1||0k+`,
except that the challenger encrypts the challenge message using index y instead
of index int(N + 1||0k+`).

3. Challenge Phase. The adversary then sends a pair of messages m0,m1 and
a set S ⊆ [N ] to the challenger. The challenger samples a bit b ← {0, 1}
and computes hash h = HashSPB(hk, IS). It then samples ciphertext ct ←
EncryptPWE (x = (1λ, N, h, hk, vk), mb, y) and responds with ct.

For any stateful PPT adversary A, we define the advantage of the adversary
in Game x as AdvAx (λ) = Pr[A wins] − 1/2. We prove that the advantage of
any PPT adversary A in Game N + 1||0k+` is negligible in security parameter.
For any stateful PPT adversary B and λ ∈ N, let AdvPosIndB(λ) denote the
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advantage of B in position indistinguishability game and AdvMsgIndB(λ) denote
the advantage of B in message indistinguishability game of PWE scheme. For
any λ ∈ N, let AdvPosInd(λ) = supPPT B AdvPosInd

B(λ) and AdvMsgInd(λ) =
supPPT B AdvMsgIndB(λ). We now establish using the following lemma that the
difference of the adversary’s advantage between each adjacent game is at most
2 · AdvPosInd(λ). Finally we show that if any adversary wins in the last game,
then it wins message indistinguishability game against PWE challenger as well.

Claim 1 For every y s.t. N + 1||0k+` ≤ y ≤ 2r − 1, every PPT adversary A
and λ ∈ N, we have AdvAy (λ)− AdvAy+1(λ) ≤ 2 · AdvPosInd(λ).

Proof. Consider any y s.t. N + 1||0k+` ≤ y ≤ 2r − 1, any PPT adversary A
and λ ∈ N. We build a PPT algorithm B which uses A and has advantage
(AdvAy (λ)−AdvAy+1(λ))/2 in the position indistinguishability game of the PWE
scheme. The reduction algorithm B proceeds as follows.
A first sends the number of users 1N to B. B then samples (sk, vk) ←

SetupABO(1λ), hk ← SetupSPB(1λ, N), signatures {σj ← SignABO(sk, j) : 1 ≤
j ≤ N} and sends the public key pk = (1λ, N, vk, hk) to A. A then adap-
tively queries for secret keys. For each query j, B responds with the secret key
skj = σj . After query phase, A sends a challenge set S and a pair of messages
m0,m1 to B. B samples a bit b← {0, 1} and computes hash h = HashSPB(hk, IS).
It then sends the challenge instance inst = (1λ, N, h, hk, vk), challenge message
mb and challenge index y to the challenger C of position indistinguishability
game. The challenger samples a bit β ← {0, 1} and responds with a ciphertext
ct ← EncryptPWE(inst,mb, y + β) to B, which forwards it to A. A further adap-
tively queries for secret keys. For each query j, B responds with the secret key
skj = σj . Finally, A sends a bit b′ to B. If b′ = b, then B outputs 0 indicating its
guess that the challenger encrypted mb using index y. If b′ 6= b, then B outputs
1 indicating its guess that the challenger encrypted mb using index y + 1.

We know that the index y cannot be a witness for the instance (1λ, N, h, hk, vk)
as y ≥ N + 1||0k+` (i.e., y[1 : λ] ≥ N + 1). Therefore, the reduction algorithm B
acts as a valid adversary in the position indistinguishability game. If β = 0, B
simulates the view of Game y to A and Pr[b′ = b] = 1/2 + AdvAy (λ). Otherwise,

it simulates the view of Game y + 1 to A and Pr[b′ = b] = 1/2 + AdvAy+1(λ).
Therefore, the advantage of B in position indistinguishability game is given by
AdvPosIndB(λ) = 1/2 · Pr[b′ = b|β = 0] + 1/2 · Pr[b′ 6= b|β = 1] − 1/2 =
1/2 ·(AdvAy (λ)−AdvAy+1(λ)). Therefore, AdvAy (λ)−AdvAy+1(λ) ≤ 2 ·AdvPosInd(λ).

Claim 2 For every stateful PPT adversary A and every λ ∈ N, we have AdvA2r (λ) ≤
AdvMsgInd(λ).

Proof. Consider any PPT adversaryA and any λ ∈ N. We build a PPT algorithm
B which usesA and has advantage AdvA2r (λ) in message indistinguishability game
of the PWE scheme. The reduction algorithm B proceeds as follows.
A first sends the number of users 1N to B. B then samples (sk, vk) ←

SetupABO(1λ), hash key hk← SetupSPB(1λ, N) and signatures {σj ← SignABO(sk, j) :
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1 ≤ j ≤ N}. It then sends the public key pk = (1λ, N, vk, hk) to A. A then
adaptively queries for secret keys. For each query j, B responds with the se-
cret key skj = σj . After query phase, A sends a challenge set S and messages
m0,m1 to B. B computes hash h = HashSPB(hk, IS). It then sends challenge
instance inst = (1λ, N, h, hk, vk) and challenge messages m0,m1 to message in-
distinguishability game challenger C. The challenger samples a bit b← {0, 1} and
responds with ciphertext ct ← EncryptPWE(inst,mb, 2

r) to B, which forwards ct
to A. A further adaptively queries for secret keys. For each query j, B responds
with the secret key skj = σj . Finally, A sends a bit b′ to B, which outputs b′ as
its guess in message indistinguishability game.

Clearly, B is a valid adversary of the message indistinguishability game, and
also simulates the view of Game 2r to A. Note that advantage of B in message
indistinguishability game is given by AdvMsgIndB(λ) = AdvA2r (λ), and therefore
AdvA2r (λ) ≤ AdvMsgInd(λ).

Note that by combining claims 1 and 2, the advantage of any PPT adversary A
in AugBE message hiding game is AdvAN+1||0k+`(λ) =

∑2r−1
y=N+1||0k+`(Adv

A
y (λ)−

AdvAy+1(λ))+AdvA2r (λ) ≤ 2 ·(2λ−N) ·2k+` ·AdvPosInd(λ)+AdvMsgInd(λ). Using

complexity leveraging, we demand that AdvPosInd(λ) ≤ 2−(λ+k+`+1) ·negl(λ) for
some negligible function negl(·). At the instantiation level, the security parameter
will be increased to match this condition.

4.2 Index Hiding

In this section, we prove the index hiding property of the above scheme. We first
describe the following 2 games that help us in describing the lemma formally.

Game 0. This game corresponds to AugBE index hiding game where the chal-
lenger always uses bit b = 0.

1. Setup Phase. The adversary A sends the number of users 1N and index
i s.t. 1 ≤ i ≤ N to the challenger. The challenger samples (vk, sk) ←
SetupABO(1λ), hash key hk← SetupSPB(1λ, N) and signatures {σj ← SignABO
(sk, j) : 1 ≤ j ≤ N} of the AugBE scheme. It then sends the public key
pk = (1λ, N, vk, hk) to A.

2. Pre-Challenge Query Phase. The adversary then adaptively queries for secret
keys. For each query j, the challenger responds with the secret key skj = σj .

3. Challenge Phase. The adversary then sends a message m and a set S ⊆ [N ]
to the challenger. The challenger computes hash h = HashSPB(hk, IS) and re-
sponds with ciphertext ct← EncryptPWE (x = (1λ, N, h, hk, vk), m, int(i||0k+`)).

4. Post-Challenge Query Phase. This is identical to Pre-Challenge Query Phase.
5. Output Phase. The adversary sends a bit b′ to the challenger.

Let the set of all secret keys queried by the adversary be S∗. The adversary is
restricted to query such that i /∈ S ∨ i /∈ S∗.
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Game 3. This game is similar to the first game, except that the challenger always
uses bit b = 1.

3. Challenge Phase. The adversary then sends a message m and a set S ⊆ [N ]
to the challenger. The challenger computes hash h = HashSPB(hk, IS) and
responds with ciphertext ct ← EncryptPWE(x = (1λ, N, h, hk, vk),m, int(i +
1||0k+`)).

For any stateful PPT adversaryA, let the probability thatA outputs 1 in Game y
be pAy (λ). We denote the advantage of a PPT adversary A in distinguishing

between any two games Game x and Game y by AdvAx,y(λ) = |pAx (λ)− pAy (λ)|.

Lemma 1. If ABO is a secure ABO signature scheme, SPB is a secure SPB
hash function, and PWE is a sub-exponentially secure PWE scheme as per Def-
inition 2, for every stateful PPT Adversary A, there exists a negligible function
negl(·) such that for every security parameter λ, AdvA0,3(λ) ≤ negl(λ).

Proof. We first classify the adversaries into the following 2 types.

– Type 1 adversary: Restricted to generate set of key queries S∗ and challenge
set S s.t. i /∈ S.

– Type 2 adversary: Restricted to generate set of key queries S∗ and challenge
set S s.t. i ∈ S ∧ i /∈ S∗.

We now prove Lemma 2 and 3 which together imply Lemma 1.

Lemma 2. If SPB is secure, and PWE is a sub-exponentially secure as per
Definition 2, for every stateful Type 1 PPT Adversary A, there exists a negligible
function negl(·) such that for every security parameter λ, AdvA0,3(λ) ≤ negl(λ).

Proof. We prove the lemma using the following sequence of hybrids.

Game 1.t (for 0 ≤ t < 2k+`): Here t is a bit string of length k + `. This game is
similar to Game 0 except that challenger samples SPB hash key using Setup-Bind
and encrypts the challenge message using index int(i||0k+`) + t.

1. Setup Phase. The adversary A sends the number of users 1N to the chal-
lenger. The challenger samples (vk, sk)← SetupABO(1λ), hk← Setup-BindSPB
(1λ, N, i) and signatures {σj ← SignABO(sk, j) : 1 ≤ j ≤ N}. It then sends
the public key pk = (1λ, N, vk, hk) to A.

3. Challenge Phase. The adversary sends a message m and a set S ⊆ [N ] to the
challenger. The challenger computes hash h = HashSPB(hk, IS) and responds
with ciphertext ct← EncryptPWE((1λ, N, h, hk, vk), m, int(i||0k+`) + t).

Game 1.2k+` : This game is similar to Game 1.2k+` − 1 except that challenger
encrypts the challenge message using index int(i+ 1||0k+`).

1. Setup Phase. The adversary A sends the number of users 1N to the chal-
lenger. The challenger samples (vk, sk) ← SetupABO(1λ), hash key hk ←
Setup-BindSPB(1λ, N, i) and signatures {σj ← SignABO(sk, j) : 1 ≤ j ≤ N} of
the AugBE scheme. It then sends the public key pk = (vk, hk) to A.
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3. Challenge Phase. The adversary sends a message m and a set S ⊆ [N ] to
the challenger, which computes hash h = HashSPB(hk, IS) and responds with
ciphertext ct← EncryptPWE((1λ, N, h, hk, vk),m, int(i+ 1||0k+`)).

For any PPT adversary B and λ ∈ N, let AdvSpbIndB(λ) denote the advan-
tage of B in index hiding game of SPB scheme and AdvPosIndB(λ) denote
the advantage of B in position indistinguishability game of PWE scheme. For
any λ ∈ N, let AdvPosInd(λ) = supPPT B AdvPosInd

B(λ) and AdvSpbInd(λ) =
supPPT B AdvSpbInd

B(λ). We prove Lemma 2 using the following sequence of
claims.

Claim 3 For every Type 1 PPT adversary A and any λ ∈ N, we have AdvA0,1.0(λ) ≤
2 · AdvSpbInd(λ).

Proof. Consider any Type 1 PPT adversary A and any λ ∈ N. We build a PPT
algorithm B which uses A and has advantage AdvA0,1.0(λ)/2 in index hiding game
of the SPB scheme. The reduction algorithm B proceeds as follows.
A first sends the number of users 1N and an index i s.t. 1 ≤ i ≤ N to B. B

then sends (N, i) to index hiding game challenger C. The challenger samples a
bit b ← {0, 1}. If b = 0, it responds with hk ← SetupSPB(1λ, N). Otherwise, it
responds with hk← Setup-BindSPB(1λ, N, i). B samples (sk, vk)← SetupABO(1λ),
signatures {σj ← SignABO(sk, j) : 1 ≤ j ≤ N} and sends the public key
pk = (1λ, N, vk, hk) to A. A then adaptively queries for secret keys. For each
query j, B responds with secret key skj = σj . After query phase, A sends a
challenge set S and a message m to B. B aborts if i ∈ S. Otherwise, it com-
putes hash h = HashSPB(hk, IS) and responds with ciphertext ct ← EncryptPWE

((1λ, N, h, hk, vk), m, int(i||0k+`)). A further adaptively queries for secret keys.
For each query j, B responds with secret key skj = σj . Finally, A sends a bit b′

to B, which outputs b′ as its guess in the index hiding game.
As A is a Type 1 adversary, note that i /∈ S and B does not abort. Note

that if b = 0, B simulates the view of Game 0 to A and Pr[b′ = 1] = pA0 (λ).
Otherwise, it simulates the view of Game 1.0 to A and Pr[b′ = 1] = pA1.0(λ). This
implies, the advantage of B in the index hiding game is given by AdvSpbIndB(λ) =
|1/2 · Pr[b′ = 0|b = 0] + 1/2 · Pr[b′ = 1|b = 1]− 1/2| = AdvA0,1.0(λ)/2. Therefore,

AdvA0,1.0(λ) ≤ 2 · AdvSpbInd(λ).

Claim 4 Assuming SPB is somewhere perfectly binding w.r.t. opening, for any
0 ≤ t ≤ 2k+`−1, any stateful Type 1 PPT Adversary A and any λ ∈ N, we have
AdvA1.t,1.t+1(λ) ≤ 2 · AdvPosInd(λ).

Proof. Consider any t s.t. 0 ≤ t ≤ 2k+` − 1, any Type 1 PPT adversary A and
any λ ∈ N. Assuming SPB is somewhere perfectly binding w.r.t. opening, we
build a PPT algorithm B which uses A and has advantage AdvA1.t,1.t+1(λ)/2 in
position indistinguishability game of the PWE scheme. The reduction algorithm
B proceeds as follows.
A first sends the number of users 1N and an index i s.t. 1 ≤ i ≤ N to B.

B then samples (sk, vk)← SetupABO(1λ), hash key hk← Setup-BindSPB(1λ, N, i)
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and signatures {σj ← SignABO(sk, j) : 1 ≤ j ≤ N}. It then sends the public key
pk = (1λ, N, vk, hk) to A. A then adaptively queries for secret keys. For each
query j, B responds with secret key skj = σj . After query phase, A sends a chal-
lenge set S and a message m to B. B aborts if i ∈ S. Otherwise, it computes hash
h = HashSPB(hk, IS), and sends the challenge instance inst = (1λ, N, h, hk, vk),
challenge message m and challenge index int(i||0k+`) + t to the position indis-
tinguishability game challenger C. The challenger samples a bit β ← {0, 1} and
responds with a ciphertext ct← EncryptPWE(inst,m, int(i||0k+`) + t+ β)13 to B.
B forwards the ciphertext to A. A further adaptively queries for secret keys. For
each query j, B responds with secret key skj = σj . Finally, A sends a bit b′ to
B, which outputs b′ as its guess in the position indistinguishability game.

As A is a Type 1 adversary, note that IS(i) = 0 and B does not abort.
We know that, Pr[hk is binding w.r.t. opening at index i] = 1. This implies
that there does not exist a proof π such that VerifySPB(hk, h, i, 1, π) = 1 and
int(i||0κ+`) + t cannot be a witness of the instance (1λ, N, h, hk, vk). Therefore,
B acts as a valid adversary of the position indistinguishability game. If β = 0,
B simulates the view of Game 1.t to A and Pr[b′ = 1] = pA1.t(λ). Otherwise,
it simulates the view of Game 1.t + 1 to A and Pr[b′ = 1] = pA1.t+1(λ). This
implies, the advantage of B in the position indistinguishability game is given
by AdvPosIndB(λ) = |1/2 · Pr[b′ = 0|β = 0] + 1/2 · Pr[b′ = 1|β = 1] − 1/2| =
AdvA1.t,1.t+1(λ)/2. Therefore, AdvA1.t,1.t+1(λ) ≤ 2 · AdvPosInd(λ).

Claim 5 For every Type 1 PPT adversary A and any λ ∈ N, we have AdvA1.2k+`,3(λ) ≤
2 · AdvSpbInd(λ).

Proof. Consider any Type 1 PPT adversary A and any λ ∈ N. We build a PPT
algorithm B which uses A and has advantage AdvA1.2k+`,3(λ)/2 in the index hiding
game of the SPB scheme. We ignore the description of algorithm B as it proceeds
similar to proof of Claim 3.

Note that by triangle inequality and combining Claims 3, 4, and 5, the advan-
tage of any Type 1 PPT adversary A in AugBE index hiding game is AdvA0,3(λ) ≤
AdvA0,1.0 +

∑2k+`−1
t=0 AdvA1.t,1.t+1 + AdvA1.2k+`,3 ≤ 4 · AdvSpbInd(λ) + 2 · 2k+` ·

AdvPosInd(λ). Using complexity leveraging, we demand that AdvPosInd(λ) ≤
2−(k+`+1) ·negl(λ) for some negligible function negl(·). At the instantiation level,
the security parameter will be increased to match these conditions.

Lemma 3. If ABO is a secure ABO signature scheme and PWE is a sub-
exponentially secure as per Definition 2, for every stateful Type 2 PPT Adversary
A, there exists a negligible function negl(·) such that for every security parameter
λ, AdvA0,3(λ) ≤ negl(λ).

Proof. We prove the lemma using the following sequence of hybrids.

13 Note that index int(i||0k+`) + 2k+` is same as int(i+ 1||0k+`).
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Game 2.t (for 0 ≤ t < 2k+`): Here t is a bit string of length k + `. This game
is similar to Game 0 except, the challenger samples ABO signature verification
key using Setup-Punc algorithm and encrypts challenge message using index
int(i||0k+`) + t.

1. Setup Phase. The adversary A sends the number of users 1N to the chal-
lenger. The challenger samples (vk, sk)← Setup-PuncABO(1λ, i), hk← SetupSPB
(1λ, N, i) and signatures {σj ← SignABO(sk, j) : 1 ≤ j ≤ N}. It then sends
the public key pk = (1λ, N, vk, hk) to A.

3. Challenge Phase. The adversary sends a message m and a set S ⊆ [N ] to the
challenger. The challenger computes hash h = HashSPB(hk, IS) and responds
with ciphertext ct← EncryptPWE((1λ, N, h, hk, vk), m, int(i||0k+`) + t).

Game 2.2k+` : This game is similar to Game 2.2k+`−1 except that the challenger
encrypts the challenge message using index int(i+ 1||0k+`).

1. Setup Phase. The adversary A sends the number of users 1N to the chal-
lenger. The challenger samples (vk, sk) ← Setup-PuncABO(1λ, i), hash key
hk ← SetupSPB(1λ, N, i) and signatures {σj ← SignABO(sk, j) : 1 ≤ j ≤ N}
of the AugBE scheme. It then sends the public key pk = (vk, hk) to A.

3. Challenge Phase. The adversary sends a message m and a set S ⊆ [N ] to
the challenger, which computes hash h = HashSPB(hk, IS) and responds with
ciphertext ct← EncryptPWE((1λ, N, h, hk, vk), m, int(i+ 1||0k+`)).

For any PPT adversary B and λ ∈ N, let AdvAboIndB(λ) denote the advantage
of B in VK indistinguishability game of ABO scheme and AdvPosIndB(λ) denote
the advantage of B in position indistinguishability game of PWE scheme. For
any λ ∈ N, let AdvPosInd(λ) = supPPT B AdvPosInd

B(λ) and AdvAboInd(λ) =
supPPT B AdvAboInd

B(λ). We prove Lemma 3 using the following sequence of
claims.

Claim 6 For every Type 2 PPT adversary A and any λ ∈ N, we have AdvA0,2.0(λ) ≤
2 · AdvAboInd(λ).

Proof. Consider any Type 2 PPT adversary A and any λ ∈ N. We build a PPT
algorithm B which uses A and has advantage AdvA0,2.0(λ) in VK indistinguisha-
bility game of the ABO scheme. The reduction algorithm B proceeds as follows.
A first sends the number of users 1N and an index i s.t. 1 ≤ i ≤ N to B.

B sends challenge message i to VK indistinguishability game challenger C. The
challenger samples a bit b← {0, 1}. If b = 0, it samples (sk, vk)← SetupABO(1λ).
Otherwise, it samples (sk, vk) ← Setup-PuncABO(1λ, i). It then sends vk to B. B
samples hk ← SetupSPB(1λ, N) and sends the public key pk = (1λ, N, vk, hk) to
A. A then adaptively queries for secret keys. For each query j, B aborts if j = i.
Otherwise, it forwards the query to C, which responds with σ ← SignABO(sk, j).
B forwards the reply to A. After query phase, A sends a challenge set S and a
message m to B. B computes hash h = HashSPB(hk, IS) and responds with cipher-
text ct← EncryptPWE (x = (1λ, N, h, hk, vk), m, int(i||0k+`)). A then adaptively
queries for secret keys. For each query j, B aborts if j = i. Otherwise, it forwards
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the query to C, which responds with σ ← SignABO(sk, j). B forwards the reply
to A. Finally, A sends a bit b′ to B, which outputs b′ as its guess in the VK
indistinguishability game.

As A is a Type 2 adversary, it does not query for secret key ski and therefore,
B does not abort and acts as a valid adversary of the VK indistinguishability
game. If b = 0, then B simulates the view of Game 0 to A and Pr[b′ = 1] = pA0 (λ).
Otherwise, it simulates the view of Game 2.0 to A and Pr[b′ = 1] = pA2.0(λ). This
implies, the advantage of B in the index hiding game is given by AdvSpbIndB(λ) =
|1/2 · Pr[b′ = 0|b = 0] + 1/2 · Pr[b′ = 1|b = 1]− 1/2| = AdvA0,2.0(λ)/2. Therefore,

AdvA0,2.0(λ) ≤ 2 · AdvAboInd(λ).

Claim 7 For every t s.t. 0 ≤ t ≤ 2k+` − 1, every Type 2 PPT adversary A and
any λ ∈ N, we have AdvA2.t,2.t+1(λ) ≤ 2 · AdvPosInd(λ).

Proof. Consider any t s.t. 0 ≤ t ≤ 2k+` − 1, a Type 2 PPT adversary A and
any λ ∈ N. We build a PPT algorithm B which uses A and has advantage
AdvA2.t,2.t+1(λ) in position indistinguishability game of the PWE scheme. The
reduction algorithm B proceeds as follows.
A first sends the number of users 1N and an index i s.t. 1 ≤ i ≤ N to B. B

then samples (sk, vk) ← Setup-PuncABO(1λ, i), hash key hk ← SetupSPB(1λ, N)
and signatures {σj ← SignABO(sk, j) : 1 ≤ j ≤ N, j 6= i}. It then sends the
public key pk = (1λ, N, vk, hk) to A. A then adaptively queries for secret keys.
For each query j, B aborts if j = i. Otherwise, it responds with the secret key
skj = σj . After query phase, A sends a challenge set S and a message m to B.
B computes hash h = HashSPB(hk, IS) and sends the challenge instance inst =
(1λ, N, h, hk, vk), challenge message m and challenge index int(i||0k+`) + t to
the position indistinguishability game challenger C. The challenger samples a bit
β ← {0, 1} and responds with a ciphertext ct← EncryptPWE(inst,m, int(i||0k+`)+
t + β)14 to B. B forwards the ciphertext to A. A further adaptively queries for
secret keys. For each query j, B aborts if j = i. Otherwise, it responds with the
secret key skj = σj . Finally, A sends a bit b′ to B, which outputs b′ as its guess
in the position indistinguishability game.

As A is a Type 2 adversary, it does not make key query on i and therefore,
B does not abort. As vk is punctured at i, 6 ∃σ s.t. VerifyABO(vk, i, σ) = 1. This
implies int(i||0k+`) + t cannnot be a witness of the instance (1λ, N, h, hk, vk) and
therefore, B acts as a valid adversary of the position indistinguishability game.
If β = 0, B simulates the view of Game 2.t to A and Pr[b′ = 1] = pA2.t(λ).
Otherwise, it simulates the view of Game 2.t+1 to A and Pr[b′ = 1] = pA2.t+1(λ).
This implies, the advantage of B in the position indistinguishability game is
given by AdvPosIndB(λ) = |1/2 ·Pr[b′ = 0|β = 0]+1/2 ·Pr[b′ = 1|β = 1]−1/2| =
AdvA2.t,2.t+1(λ)/2. Therefore, AdvA2.t,2.t+1(λ) ≤ 2 · AdvPosInd(λ).

Claim 8 For every Type 2 PPT adversary A and any λ ∈ N, we have AdvA2.2k+`,3(λ) ≤
2 · AdvAboInd(λ).

14 Note that index int(i||0k+`) + 2k+` is same as int(i+ 1||0k+`).

23



Proof. Consider any Type 2 PPT adversary A and any λ ∈ N. We build a PPT
algorithm B which uses A and has advantage AdvA2.2k+`,3(λ) in VK indistin-
guishability game of the ABO scheme. We ignore the description of algorithm
B as it proceeds similar to proof of Claim 6.

Note that by combining triangle inequality and Claims 6, 7, and 8, the advantage
of any Type 2 PPT adversary A in AugBE index hiding game is AdvA0,3(λ) ≤
AdvA0,2.0 +

∑2k+`−1
t=0 AdvA2.t,2.t+1 + AdvA2.2k+`,3 ≤ 4 · AdvAboInd(λ) + 2 · 2k+` ·

AdvPosInd(λ). Using complexity leveraging, we demand that AdvPosInd(λ) ≤
2−(k+`+1) ·negl(λ) for some negligible function negl(·). At the instantiation level,
the security parameter will be increased to match this condition.

Note that Lemma 1 follows by combining Lemmas 2 and 3 as any adversary A
of AugBE index hiding game is of either Type 1 or Type 2.

5 All-but-one Signatures from Standard Assumptions

In this section, we present two new constructions for all-but-one (ABO) signa-
tures from standard assumptions. The first construction is based on verifiable
random functions (VRF) and perfectly-binding (non-interactive) commitment
schemes. The second construction is based on verifiable and anonymous identity-
based encryption (VAIBE). The first ABO scheme satisfies perfect correctness,
where as the second scheme satisfies correctness with all but negligible prob-
ability. We would like to point that using the second ABO signature scheme
to instantiate the AugBE construction described in Section 4 results in AugBE
scheme without perfect correctness. We finally note that VRFs can be based on
simple assumptions over bilinear maps as well as RSA-like assumptions [49, 42],
and perfectly binding commitments can be constructed from any injective OWF
as well as based on assumptions such as DDH, LWE and LPN [37], and VAIBE
can be based on simple assumptions over bilinear maps as well as LWE [17, 57,
48, 1].15 Therefore, this leads to constructions of ABO signatures from a wide
variety of standard assumptions listed above.

5.1 All-but-one Signatures from VRFs

Let VRF = (SetupVRF,EvalVRF,VerifyVRF) be a verifiable random function (VRF)
with input space {0, 1}i(λ), output space {0, 1}o(λ) and proof space {0, 1}p(λ).
Let COM = (SetupCOM,Commit,VerifyCOM) be a perfectly binding computa-
tionally hiding commitment scheme with randomness space {0, 1}o(λ) and com-
mitment space {0, 1}k(λ). We construct an ABO signature scheme ABO =
(Setup,Setup-Punc,Sign,Verify) on message space {0, 1}i(λ) and signature space
{0, 1}o(λ)+p(λ) as follows. For the simplicity of notation, we hereby denote i =
i(λ), o = o(λ), p = p(λ) and k = k(λ).

15 We would like to point out that most existing IBE constructions based on LWE are
already verifiable and they can be made anonymous by using the transformation
from [39, 59].
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– Setup(1λ). Sample (skVRF, vkVRF) ← SetupVRF(1λ) and pp ← SetupCOM(1λ).
Sample y∗ ← {0, 1}o and cm ← Commit(pp, 0; y∗). Output sk = skVRF and
vk = (pp, vkVRF, cm).

– Setup-Punc(1λ,m∗). Sample (skVRF, vkVRF)← SetupVRF(1λ) and pp← SetupCOM

(1λ). Sample (y∗, π) ← EvalVRF(skVRF,m
∗) and cm ← Commit(pp, 1; y∗).

Output sk = skVRF and vk = (pp, vkVRF, cm).
– Sign(sk,m). Sample (y, π)← EvalVRF(sk,m). Output σ = (y, π).
– Verify(vk,m, σ). Let σ = (y, π) and vk = (pp, vkVRF, cm). Output 1 iff VerifyVRF

(vkVRF,m, y, π) = 1 ∧ VerifyCOM(pp, 1, cm, y) = 0.

Due to space constraints, we prove that the ABO signature scheme satisfies
the required correctness properties in the full version of the paper.

We prove that the above scheme satisfies VK indistinguishability property
using a sequence of hybrids. The first hybrid is same as the VK indistinguisha-
bility game, except that the challenger always uses punctured setup to generate
verification key. The second hybrid is same as the first hybrid, except that the
challenger samples y∗ randomly during the setup phase. These two hyrbids are
indistinguishable to the adversary as the VRF scheme has pseudorandomness
property and as the adversary is not allowed to query for signature on message
m∗. The third hybrid is same as the VK indistinguishability game, except that
the challenger always uses normal setup to generate verification key. The second
and third hybrids are indistinguishable to the adversary as he cannot distinguish
between commitment of 0 and commitment of 1 (computational hiding property
of the COM scheme). Due to space constraints, we prove that the above scheme
satisifies VK indistinguishability in the full version of the paper.

5.2 All-but-one Signatures from VAIBE

In this section, we construct all-but-one (ABO) signatures from verifiable and
anonymous identity based encryption system (VAIBE). Let VAIBE = (SetupVAIBE,
KeyGen,Encrypt,Decrypt,VerifyVAIBE) be any VAIBE scheme for message space
{0, 1}m(λ), ciphertext space {0, 1}c(λ), secret key space {0, 1}k(λ), identity space
{0, 1}i(λ) and proof space {0, 1}r(λ). We construct an ABO signature scheme
ABO = (Setup,Setup-Punc,Sign,Verify) for message space {0, 1}i(λ) \ {0i(λ)}
and signature space {0, 1}k(λ)+r(λ) i.e., for every λ ∈ N, identity 0i(λ) is not
supported by the signature scheme. Let Iλ = {0, 1}i(λ) \ {0i(λ)}. For simplic-
ity of notation, we hereby denote m = m(λ), c = c(λ), k = k(λ), i = i(λ) and
p = p(λ). Also, we hereby refer to messages in ABO scheme by identities in
VAIBE scheme. Formally, the construction proceeds as follows.

– Setup(1λ). Sample VAIBE keys (mpkVAIBE,mskVAIBE)← SetupVAIBE(1λ). Sam-
ple a random message x ← {0, 1}m and compute ciphertext t ← Encrypt
(mpkVAIBE, 0

i, x). Output secret key sk = mskVAIBE and verification key vk =
(x,mpkVAIBE, t).

– Setup-Punc(1λ, id∗). Sample VAIBE keys (mpkVAIBE,mskVAIBE)← SetupVAIBE
(1λ). Choose a random message x ← {0, 1}m. Encrypt the message x using
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identity id∗ i.e., compute ciphertext t ← Encrypt(mpkVAIBE, id
∗, x). Output

secret key sk = mskVAIBE and verification key vk = (x,mpkVAIBE, t).
– Sign(sk, id). Sample (skid, π)← KeyGen(sk, id). Output signature σ = (skid, π).
– Verify(vk, id, σ). Let σ = (sk′, π) and vk = (x,mpk, t). Output 1 iff VerifyVAIBE

(mpk, id, sk′, π) = 1 ∧ x 6= Decrypt(sk′, t).

We note that the ABO scheme does not achieve perfect correctness 16. We
now prove that the ABO scheme satisfies the required correctness properties
with all but negligible probability.

Correctness of Setup.

Claim 9 There exists a negligible function negl(·) such that for all λ ∈ N and
any identity id ∈ Iλ, we have

Pr

Verify(vk, id, σ) = 0 :
(mpk,msk)← SetupVAIBE(1λ), x0 ← {0, 1}m,
t← Encrypt(mpk, 0i, x0), vk← (x0,mpk, t),

σ = (skid, π)← KeyGen(msk, id)

 ≤ 1

2m
+negl(λ).

Proof. Suppose there exists a non-negligible function δ(·) such that, for every
λ ∈ N, there exists an identity id′λ ∈ Iλ such that,

Pr

Verify(vk, id′λ, σ) = 0 :
(mpk,msk)← SetupVAIBE(1λ), x0 ← {0, 1}m,
t← Encrypt(mpk, 0i, x0), vk← (x0,mpk, t),

σ = (skid′λ , π)← KeyGen(msk, id′λ)

 > 1

2m
+δ(λ).

By the correctness of VAIBE scheme, we know that VerifyVAIBE(mpk, id′λ, skid′λ , π) =
1. This implies,

Pr

Decrypt(skid′λ , t) = x0 :
(mpk,msk)← SetupVAIBE(1λ),

x0 ← {0, 1}m, t← Encrypt(mpk, 0i, x0),
σ = (skid′λ , π)← KeyGen(msk, id′λ)

 > 1

2m
+δ(λ).

(1)
For any fixed x0 ∈ {0, 1}m, let

px0 = Pr

Decrypt(skid′λ , t) = x0 :
(mpk,msk)← SetupVAIBE(1λ),

x1 ← {0, 1}m, t← Encrypt(mpk, 0i, x1),
(skid′λ , π)← KeyGen(msk, id′λ)

 .
We know that

∑
x0
px0

= 1. This implies,

Pr

Decrypt(skid′λ , t) = x0 :
(mpk,msk)← SetupVAIBE(1λ), x1 ← {0, 1}m,
x0 ← {0, 1}m, t← Encrypt(mpk, 0i, x1),

(skid′λ , π)← KeyGen(msk, id′λ)

 =
1

2m
.

(2)

16 Using this ABO scheme in our AugBE construction results in an AugBE scheme
without perfect correctness.
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We build a non-uniform PPT adversary A that breaks IND-CPA security
of VAIBE scheme. The algorithm proceeds as follows. Assume the adversary
is given id′λ as a non-uniform advice. A first samples two random messages
x0 ← {0, 1}m, x1 ← {0, 1}m and sends challenge messages (x0, x1) and chal-
lenge identity 0i to VAIBE IND-CPA challenger C. C samples VAIBE keys
(mpk,msk) ← SetupVAIBE(1λ), a bit b ← {0, 1}, and computes ciphertext t ←
Encrypt(mpk, 0i, xb). C sends public key mpk and challenge response t to A. The
adversary then makes a key query on index id′λ to the challenger, which re-
sponds with (skid′λ , π)← KeyGen(msk, id′λ). A outputs 1 if Decrypt(skid′λ , t) = x0
and outputs 0 otherwise.

By equation 1, if b = 0, A outputs 1 with probability greater than 1
2m +δ(λ).

By equation 2, if b = 1, A outputs 1 with probability 1
2m . This implies that the

advantage of A in the IND-CPA game is at least 1/2 · δ(λ).

Correctness of Punctured Setup.

Claim 10 For all λ ∈ N, any identity id∗ ∈ Iλ, any keys (sk, vk)← Setup-Punc
(1λ, id∗), any σ ← {0, 1}k+r, we have Verify(vk, id∗, σ) = 0.

Proof. Let vk = (x,mpk, t) and σ = (sk′, π). From the soundness of verifiability
property of VAIBE scheme, we know that if VerifyVAIBE(mpk, id∗, sk′, π) = 1,
then Decrypt(sk′, t) = x. Therefore, Verify(vk, id∗, σ) = 0.

The VK indistinguishability property of the above scheme follows from the
IND-ANON security of the VAIBE scheme. Intuitively, if an adversary can dis-
tinguish between verification key generated by the normal setup and the punc-
tured setup, then he can also distinguish between VAIBE ciphertext encrypted
using identity 0i and VAIBE ciphertext encrypted using identity id∗, which con-
tradicts the IND-ANON security property of the VAIBE scheme. Due to space
constraints, we defer the full proof to the full version of the paper.
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44. Hubácek, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: Proceedings of the 2015 Conference on Innovations in
Theoretical Computer Science, ITCS 2015. pp. 163–172 (2015)

45. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC 2015. pp. 419–428 (2015)

46. Koppula, V., Waters, B.: Circular security counterexamples for arbitrary length
cycles from LWE. In: CRYPTO (2016)

47. Liu, Q., Zhandry, M.: Decomposable obfuscation: A framework for building ap-
plications of obfuscation from polynomial hardness. In: Proceedings of TCC 2017
(2017)

48. Luo, S., Shen, Q., Jin, Y., Chen, Y., Chen, Z., Qing, S.: A variant of boyen-
waters anonymous IBE scheme. In: Information and Communications Security -
13th International Conference, ICICS 2011. pp. 42–56 (2011)

49. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: In Proc. 40th
IEEE Symposium on Foundations of Computer Science (FOCS. pp. 120–130. IEEE
(1999)

50. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Advances in Cryptology - CRYPTO 2001. pp. 41–62 (2001)

51. Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Financial Cryptogra-
phy, 4th International Conference, FC 2000. pp. 1–20 (2000)

52. Nishimaki, R., Wichs, D., Zhandry, M.: Anonymous traitor tracing: How to embed
arbitrary information in a key. In: Advances in Cryptology - EUROCRYPT 2016.
pp. 388–419 (2016)

53. Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of somewhere
statistically binding hashing and positional accumulators. In: Advances in Cryp-
tology - ASIACRYPT 2015. pp. 121–145 (2015)

54. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the 37th Annual ACM Symposium on Theory of Comput-
ing, 2005. pp. 84–93 (2005)

55. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: EUROCRYPT. pp.
457–473 (2005)

56. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable en-
cryption, and more. In: Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014. pp. 475–484 (2014)

57. Seo, J.H., Kobayashi, T., Ohkubo, M., Suzuki, K.: Anonymous hierarchical
identity-based encryption with constant size ciphertexts. In: Public Key Cryp-
tography - PKC 2009. pp. 215–234 (2009)

58. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Proceedings
of CRYPTO 84 on Advances in cryptology. pp. 47–53. Springer-Verlag New York,
Inc., New York, NY, USA (1985)

59. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.
In: 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017. pp. 600–611 (2017)

60. Zhandry, M.: How to avoid obfuscation using witness prfs. In: Theory of Cryptog-
raphy Conference. pp. 421–448. Springer (2016)

30


