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Abstract. We initiate the study of general tight reductions in cryptog-
raphy. There already exist a variety of works that offer tight reductions
for a number of cryptographic tasks, ranging from encryption and signa-
ture schemes to proof systems. However, our work is the first to provide a
universal definition of a tight reduction (for arbitrary primitives), along
with several observations and results concerning primitives for which
tight reductions have not been known.
Technically, we start from the general notion of reductions due to Rein-
gold, Trevisan, and Vadhan (TCC 2004), and equip it with a quantifica-
tion of the respective reduction loss, and a canonical multi-instance ex-
tension to primitives. We then revisit several standard reductions whose
tight security has not yet been considered. For instance, we revisit a
generic construction of signature schemes from one-way functions, and
show how to tighten the corresponding reduction by assuming collision-
resistance from the used one-way function. We also obtain tightly secure
pseudorandom generators (by using suitable rerandomisable hard-core
predicates), and tightly secure lossy trapdoor functions.

1 Introduction

Motivation. To argue for the security of a cryptographic scheme, we usually em-
ploy a security reduction (or simply reduction). A reduction formalises that the
only way to break the scheme is to solve an underlying computational problem
(such as factoring a large integer). More specifically, a reduction turns any ad-
versary A on the scheme into a problem solver B. Hence, if the problem is hard
to solve, then the scheme must be secure.

Most existing reductions are however loose, in the sense that B’s success is
much lower (or its runtime much higher) than that of A. For instance, for most
existing encryption schemes, the best known reduction in a multi-user, multi-
ciphertext scenario yields Bs whose success degrades linearly in the number of
users and/or ciphertexts. Hence, in a large-scale setting, this reduction loss can
easily be in the order of, say, 230.

In contrast, a tight reduction yields problem solvers B which have the same
success (and running time) as A.1 A loose reduction gives quantitatively lower

†This work was carried out when the author was doing an internship at the KIT.
1Of course, there are other interesting properties (such as memory usage [4]) of a

given adversary A one would want a reduction to preserve.



guarantees than a tight one. For instance, suppose one would like to give a key
length recommendation for a scheme based on the currently best attacks on the
underlying computational problem. In this case, loose reductions lead to larger
key length recommendations, and thus to a (perhaps substantially) less efficient
scheme.

In this work, we are interested in tight reductions, in particular in a setting
in which the scheme or primitive is used multiple times.

State of the art. The tightness of reductions (in particular for schemes in a
multi-instance scenario) has first been considered by Bellare, Boldyreva, and
Micali [6]. Since their work, a variety of tightly secure constructions for concrete
cryptographic building blocks (such as encryption [27,1,34,35,17,26,18], identity-
based encryption [11,7,28,3,22], digital signatures [34,35,25,2], or zero-knowledge
proofs [27,17]) have been proposed.

On the other hand, the notion of a reduction has been formalised early on in
cryptography (e.g., in the context of black-box separations such as [31,45,43]).2

We note that these works were mostly interested in the (non-)existence of re-
ductions for certain types of schemes, and do not take into account reduction
loss. Hence, currently there is no general (i.e., formal but primitive-independent)
definition of a tight reduction.

Our contribution. We provide the first general definition of a tight reduction,
and revisit several classical reductions (with an emphasis on their tightness). We
obtain the following results:
– We obtain a new (and tighter) security reduction for the classical construc-

tion of signatures from one-way functions [44,32,23].
– We also obtain tightly secure pseudorandom generators by instantiating the

classical construction of Blum and Micali [8] with a suitable (i.e., reran-
domisable) hard-core predicate.

– Finally, we show that the DDH-based lossy trapdoor functions of Peikert
and Waters [42] are tightly secure in a multi-instance scenario.

In the following, we will outline our definition and results.

Our new definition. Our definition of tight security adapts the general defini-
tion of reductions due to Reingold, Trevisan, and Vadhan [43]. First, we will
consider the tightness of a reduction as an additional property of that reduction.
Additionally, we will formalise the “multi-instance version” of a given primi-
tive (taking into account a suitably modified multi-instance security game and
potential global parameters).

Perhaps most interestingly, this modification allows to define the notion of
a “tightly extensible primitive”. Intuitively, a primitive X is tightly extensible
relative to another primitive Y if the multi-instance version of X can be tightly
reduced to Y . For instance, it is easy to see that one-way functions are tightly

2We also remark that other formalisations of cryptographic assumptions exist, e.g.,
[38,14].
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extensible relative to collision-resistant hash functions (CRHFs). In fact, a simple
extension of an argument of Damg̊ard [12] shows that any compressing CRHF h
already is a one-way function in the multi-instance setting: suppose an algorithm
A successfully finds a preimage x′i for one of potentially many given images h(xi).
Since h is compressing, we have x′i 6= xi with probability at least 1/2, so that
(xi, x

′
i) forms a collision. This holds even if we require “adaptive” one-wayness3,

in the sense that A may get selected preimages xi upon request (and then loses
the inversion game in those instances of course).

Our results. We now outline the results mentioned above.
First, we revisit the classical construction of signatures from one-way func-

tions from [44,32,23]. This construction uses the one-time signature scheme of
Lamport [33], which in turn uses many (i.e., L = O(λ), where λ is the security
parameter) instances of a given one-way function f . Each forged (one-time) sig-
nature implies an inversion of one instance of f . The problem here is that it is
not clear a priori which instance is inverted. Hence, the corresponding security
reduction for the one-time signature scheme (as formalized, e.g., in [20]) loses a
factor of L, which of course is inherited by the security reduction of the overall
signature scheme.

This loss of L can essentially be avoided if we assume that f is collision-
resistant. Concretely, recall our observation above that f (when viewed as an
adaptive one-way function) is tightly extensible relative to itself (when viewed as
a CRHF). In particular, an adversary that inverts one out of many f -instances
can be turned into a collision finder for f with a reduction loss of only 2. Hence,
any forged one-time signature can be converted into an f -collision with proba-
bility of at least 1/2, and we can save a factor of L/2 in the overall reduction.

Next, we consider pseudorandom generators (PRGs) G that are tightly ex-
tensible (relative to themselves). In other words, we are looking for a G such
that the pseudorandomness of many G(xi) instances (for independently chosen
seeds xi) can be tightly reduced to the pseudorandomness of a single G(x). This
property leads to tighter reductions whenever G is used multiple times (e.g., in
one or many instances of a larger scheme).

Note that an almost trivial solution to this problem can be found under
the DDH assumption (assuming groups with dense representations, such that
random group elements are random bitstrings). Namely, recall that the DDH
assumption states that for a generator g and random exponents a, b, c, the tu-
ple (ga, gb, gab) is computationally indistinguishable from (ga, gb, gc). Now the
DDH assumption is known to be rerandomisable (e.g., [6, Lemma 1]), in the
sense a distinguisher between many (gai , gbi , gaibi) and many (gai , gbi , gci) can
be converted into a DDH distinguisher, with (almost) no reduction loss. Hence,
defining G(a, b) = ga||gb||gab yields a tightly extensible PRG.

Here, however, we are interested in constructions from (potentially) weaker
assumptions. To this end, we revisit the PRG of Blum and Micali [8]. This PRG

3This notion is not related to the notion of adaptive one-way functions from [40] in
which an adversary gets access to a full inversion oracle for the function.
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assumes a one-way permutation f with a hard-core predicate b, and defines
G(x) = f(x)||b(x).4 We set f(x) = gx (which also means we require a group with
dense representations), and b(x) to be the Legendre symbol (xp ) of x modulo the

group order p.5 Under a suitable computational assumption (that appears to lie
in between the CDH and DDH assumptions), b is indeed a hard-core predicate
of f . Most importantly, and unlike with other hard-core predicates, f and b are
rerandomisable: given f(x) and b(x), it is easy to compute f(ax) and b(ax) (for
a known random a). Hence, by rerandomising PRG images, we can show the
tight extensibility of this G.6

Finally, we consider the tight extensibility of lossy trapdoor functions (LTDFs)
relative to themselves. Our motivation to consider LTDFs is that they form an
abstract tool which is already known to imply tightly (IND-CPA-)secure encryp-
tion in the single-user (but multi-ciphertext) setting [42]. A tightly extensible
LTDF can be additionally useful in settings with many instances (e.g., users).
Here, our main result is that the DDH-based LTDF construction of Peikert and
Waters [42] is already tightly extensible. The corresponding argument is some-
what technical, but relies on the rerandomisability of the DDH assumption (as
outlined already above).

We note that this last result does not yield interesting new tightly secure
encryption schemes. In fact, already the ElGamal scheme is tightly IND-CPA-
secure under the DDH assumption [6]. Rather, we view our last result as concep-
tual: it shows that an abstract building block (that was already known to enable
“partially tight” reductions) is tightly secure even in a multi-instance setting.

There are areas of cryptography where we have not looked at applying tight
extensibility. For example, a natural question would be if we can build tightly
extensible symmetric encryption schemes or even more complicated protocols
(e.g. zero-knowledge). More importantly, it is an open question whether this
notion can be used in constructing more efficient and more secure primitives
which could not be shown using current state-of-the-art methods.

2 Preliminaries

In this section we review standard notation and cryptographic definitions we use
in later sections. We also provide relevant background related to formal notion
of black-box reductions.

2.1 Notation

Let N be the set of natural numbers and Zn be the set of integers modulo n. We
denote the security parameter by λ ∈ N and assume that it is implicitly given to

4For simplicity, we only consider a PRG that stretches its seed x by one bit.
5Slightly simplifying, we ignore the unlikely case x = 0 and treat (x

p
) as a bit.

6We note that the Legendre symbol has already been considered as a hard-core
predicate by Damg̊ard [13], although, to the best of our knowledge, its rerandomisability
has not been investigated before.
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all algorithms in the unary representation 1λ, unless stated otherwise. An algo-
rithm here is defined as a stateless Turing machine. Algorithms are randomised
and PPT means ”probabilistic polynomial time” in the (unary) security parame-
ter λ. For a randomised algorithm A, we denote T(A) for the worst-case runtime
of A, parametrized over λ. Also, we describe (y1, . . . )←$A(1λ, x1, . . . ; r) as an
event when A gets (1λ, x1, . . . ) as input, uses fresh random coins r and outputs
(y1, . . . ). If A is determininstic then we simply write (y1, . . . ) ← A(1λ, x1, . . . ).
Let us write AB to denote that A has black-box access to algorithm B, mean-
ing it sees only its input-output behaviour. We define queries(AB , B) to be the
worst-case number of messages/queries sent by B to A (parametrized by λ). On
the other hand, A(·) means that A expects a black-box access to some other
algorithm.

For a finite set S, we denote its cardinality by |S| and write s←$S meaning
that we choose an element s from S uniformly at random. For a function f :
A→ B and C ⊂ A, we define f |C : C → B as f |C(x) = f(x). We write poly(λ)
to denote the set of polynomials in λ. A function v : N→ R≥0 is negligible if for
any c ∈ N, limλ→∞ v(λ)λc = 0. We let negl(λ) denote an unspecified negligible
function in λ. Throughout the paper, ⊥ denotes an error symbol.

Denote X = {Xλ}λ∈N,Y = {Yλ}λ∈N as ensembles of random variables over
some countable set S indexed by λ. Then, X and Y are statistically indistin-

guishable (X
s
≈ Y) if ∆(Xλ, Yλ) = 1

2

∑
s∈S |Pr[X = s] − Pr[Y = s]| = negl(λ).

Moreover, X and Y are computationally indistinguishable (X
c
≈ Y) if for every

PPT algorithm A:

|Pr[1←$A(1λ, Xλ)]− Pr[1←$A(1λ, Yλ)]| = negl(λ).

2.2 Cryptographic Primitives

One-Way Functions. Intuitively, we say that a function is one-way (OWF) if
it is easy to compute but hard to invert. Using our notation, we formalise it as
follows:

Definition 1. A function f : {0, 1}∗ → {0, 1}∗ is one-way if:

• There exists a deterministic polynomial-time algorithm f so that

∀λ ∈ N,Pr[f(x)← f(1λ, x) : x←$ {0, 1}λ] = 1.

• For every PPT algorithm A,

Pr[f(y) = f(x) : x←$ {0, 1}λ, y←$A(1λ, f(x))] = negl(λ).

Most of the time, we do not deal with a single one-way function but rather with
a collection of one-way functions. That is, we consider a set F = {f} of functions
f that each have a finite domain, but may be parameterized over the security
parameter (and other public parameters such as a fixed group). In that case, we
choose f at random for the currently given security parameter (and potentially
other parameters), and sample x uniformly at random from f ’s domain.
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In the case of a family F of parameterized one-way functions f (with finite
domain Df ), we say that F is a family of one-way permutations if f is bijective
and f(Df ) = Df .

We also recall the notion of a hard-core predicate introduced by Goldreich
et al. [21].

Definition 2. Let b : {0, 1}∗ → {0, 1} be a function and u←$ {0, 1}. Then, b is
a hardcore-bit predicate for function f : {0, 1}∗ → {0, 1}∗ if

(f(x), b(x))
c
≈ (f(x), u)

Goldreich et al. provide in [21] a construction of a one-way function with hard-
core predicate from any given one-way function.
Lossy Trapdoor Functions. We say that a function f is a trapdoor function
if it is easy to compute f(x) and also easy to invert if we know some ”special
information” (called trapdoor) but hard to invert without trapdoor. The notion
of a lossy trapdoor function was introduced by Peikert et al. [41]. A tuple of PPT
algorithms (Sinj , Sloss, F, F

−1) is called a collection of (n, k)−lossy trapdoor
functions (LTDF) if:

• Sinj outputs (s, t) where s is a function index and t its trapdoor, F (s, ·)
computes a deterministic injective function f over the domain {0, 1}n, and
F−1(t, ·) computes f−1,
• Sloss outputs (s,⊥) and F (s, ·) computes a deterministic function f over the

domain {0, 1}n whose image has size at most 2n−k,
• For (s1, t1)←$Sinj and (s2,⊥)←$Sloss,

s1
c
≈ s2.

Peikert et al. also define all-but-one trapdoor functions in order to construct an
IND-CCA encryption scheme. In this paper we concentrate more on LTDFs but
our results can be easily generalised to the second notion.
Pseudorandom Generators. A function G : {0, 1}k → {0, 1}l, where k < l,
is a pseudorandom generator (PRG) if given random x from {0, 1}k, no PPT
adversary can distinguish G(x) and a random element from {0, 1}l.

Definition 3. Let G : {0, 1}k → {0, 1}l be a function where k < l, and let
x←$ {0, 1}k and u←$ {0, 1}l be uniformly chosen. Then, G is a pseudorandom
generator if

G(x)
c
≈ u.

H̊astad et al.[24] show that one can construct a pseudorandom generator from
any one-way function. Unfortunately, their security reduction has a large loss,
i.e., is far from tight. Since then, more efficient constructions of PRGs from
OWFs with much tighter reductions have been discovered [29] but they still
suffer from a large reduction loss. On the other hand, Blum and Micali [8]
provide a construction of a PRG from a one-way permutation which loses a
factor of l.
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Hashing. A family of functions H = {hi : A → B} is universal if for every
distinct x, x′ ∈ A,Prh←$H[h(x) = h(x′)] = 1/|B|. Moreover, we say that H
is pairwise independent if, for every distinct x, x′ ∈ A and every y, y′ ∈ B,
Prh←$H[h(x) = y ∧ h(x′) = y′] = 1/|B|2.

A hash function H : {0, 1}k → {0, 1}l, where k > l, is collision resistant if for
any PPT adversary A, Pr[(x, y)←$A(1λ, h) : h(x) = h(y)] = negl(λ). Similarly
we can define a collection of collision-resistant hash functions.

2.3 Cryptographic Assumptions

We briefly state the most common computational and decisional problems in
public-key cryptography. Let G be a cyclic group (that may depend on the
security parameter λ) of order p where p is a λ-bit prime. Also, let g ∈ G be a
generator of G. We denote 〈G〉 to be the description of G.

• Discrete Logarithm Problem (DLOG) - we say that the discrete logarithm
problem is hard in G if for every PPT algorithm A:

Pr[x←$A(〈G〉, p, g, gx) : x←$Zp] = negl(λ).

• Computational Diffie-Hellman Problem (CDH) - we say that the computa-
tional Diffie-Hellman problem is hard in G if for every PPT algorithm A:

Pr[gxy ←$A(〈G〉, p, g, gx, gy) : x, y←$Zp] = negl(λ).

• Decisional Diffie-Hellman Problem (DDH) - we say that the decisional Diffie-
Hellman problem is hard in G if for z←$Zp:

(〈G〉, p, g, gx, gy, gxy)
c
≈ (〈G〉, p, g, gx, gy, gz).

2.4 Public Key Schemes

Public-Key Encryption. A public-key encryption scheme for a given security
parameter λ is a triple of PPT algorithms (Gen;Enc;Dec) such that:

• (pk, sk)←$Gen(1λ) is the key generation algorithm which takes a security
parameter λ and outputs a pair (pk, sk) where pk and sk are called public
and secret keys respectively,
• c←$Enc(pk,m) is the encryption algorithm which takes a public key pk, a

message m and returns a ciphertext c,
• m ← Dec(sk, c) is the decryption algorithm which takes a secret key sk,

ciphertext c and returns a message m or ⊥ if given ciphertext is invalid.

A public-key encryption must satisfy the correctness condition, meaning that
for every message m and every security parameter λ, if (pk, sk)←$Gen(1λ) then
Dec(sk,Enc(pk,m)) = m.

We recall basic notions of security for public-key encryption schemes. We
say that an encryption scheme E = (Gen;Enc;Dec) is IND-CPA secure (has
indistinguishable ciphertexts under chosen plaintext attack) if there exists no
PPT adversary A which wins the following game with non-negligible probability:
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1. Challenger C generates (pk, sk)←$Gen(1λ) and sends pk to A.
2. Adversary A sends messages (m0,m1) to C. Challenger then selects a bit b

uniformly at random and returns c←$Enc(pk,mb).
3. At the end, A sends a bit b′ to the challenger. Then, A wins if b = b′ and

loses otherwise.

Similarly, we define IND-CCA security (indistinguishability under chosen cipher-
text attack). We say that E is IND-CCA secure if there exists no PPT adversary
A which wins a similar game to the one described above (with non-negligible
probability), but this time A also has access to decryption oracle ODec which on
input c′ returns ⊥ if c = c′ and Dec(sk, c′) otherwise.
One-Time Signatures. A signature scheme consists of a tuple of PPT algo-
rithms (Gen;Sign;Ver) satisfying the following conditions:

• (vk, sk)←$Gen(1λ) is the key generation algorithm, which takes a security
parameter λ and outputs a pair (vk, sk) where vk and sk are called verifica-
tion and signing keys respectively,

• c←$ Sign(sk,m) is the signing algorithm which takes the signing key sk, a
message m and returns a signature σ,

• b ← Ver(vk,m, σ) is the verification algorithm which takes the verification
key vk, message m and signature σ and returns a bit b.

Any signature scheme must satisfy the correctness condition meaning that for
every message m and every security parameter λ, if (vk, sk)←$Gen(1λ) then
Ver(vk,m,Sign(sk,m)) = 1.

We now define a security notion for signature schemes called existential un-
forgeability under a one-time chosen message attack (EUF-OTCMA). We say
that the signature scheme E = (Gen;Sign;Ver) is EUF-OTCMA secure if there
is no PPT adversary A which wins the following game with non-negligible prob-
ability:

1. Challenger C generates (vk, sk)← Gen(1λ) and sends vk to A.
2. AdversaryA sends message am to C. Challenger then returns σ = Sign(sk,m).
3. Finally, A outputs a pair (m′, σ′) b′. Then, A wins if Ver(vk,m′, σ′) = 1 and
m′ 6= m and loses otherwise.

Strong unforgeable one-time signatures can be constructed from a one-way func-
tion as well as collision-resistant hash functions.

2.5 Fully Black-Box Reductions

We review the framework of Reingold et al. [43] on security reductions. For sim-
plicity, we only consider fully black-box reductions against uniform adversaries.
There are many formal definitions of reductions (such as [5,16,30,43]) but in this
paper we focus on work by Reingold et al. [43], mainly due to its simplicity and
the ease to modify their framework to suit our needs. Using their notation, prim-
itive P is a pair

〈
FP , RP

〉
where FP is a set of functions f : {0, 1}∗ → {0, 1}∗
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and RP is a relation over pairs (f,M) for f ∈ FP and machine M . One can
think of FP as implementations of primitive P and RP as security conditions on
FP . For example, if we think of P as a one-way function, the set of implementa-
tions could be a set of one-way functions. On the other hand, RP would be the
standard one-wayness game. Depending on the application, it might be useful
to define FP such that it only corresponds to efficient (e.g., realizable through
PPT machines) implementations.

There is a fully-BB reduction from a primitive P =
〈
FP , RP

〉
to Q =〈

FQ, RQ
〉

if there exist PPT machines G,S such that:

• for every function f ∈ FQ, Gf ∈ FP ,
• for every function f ∈ FQ and every adversary A, (Gf ,A) ∈ RP =⇒

(f, SA) ∈ RQ.

As mentioned in [43], this definition of reduction does not apply to non-uniform
or information-theoretic notions of security. They also define different types of
reductions such as semi-black-box or relativizing reductions.

3 Notion of Tight Reduction

In this section we formalise the notion of tight reduction by adapting the frame-
work of Reingold et al. (RTV) [43]. Roughly speaking, we represent security
conditions as a security game instead of a set of relations. Thus, we could for-
mally define what we mean by “breaking one primitive with about the same
success as the other primitive” in terms of probabilities. Then, we define what
a multi-instance version of a primitive is. At the end, we give a few examples of
cryptographic primitives which satisfy our framework.

3.1 Primitives and Reductions

We start by stating what a primitive is and what it means for it to be secure.

Definition 4. A primitive P is a tuple
〈
P, SP , FP , RP , σ

〉
where:

• P is a triple of sets (A,B,C) where C ⊂ A,
• FP is a subset of {f : A→ B},
• SP is a PPT setup algorithm which sends parameters (r1, . . .) to RP ,

• R(·,·)
P is a PPT security algorithm which gets parameters (r1, . . .) from SP .

• σ : N→ R is a security threshold.

We say that f is an implementation of P if f ∈ FP .

There are three main differences between this definition and the one proposed
by Reingold et al. Firstly, P = (A,B,C) is a triple of sets which describe the
domain, co-domain and the challenge space respectively. Indeed, an implemen-
tation f is a function from A to B and the security game RP can call f only
on inputs in C (e.g. A = {0, 1}∗ and C = {0, 1}λ). This modification enables us
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to characterize implementations which are defined on more abstract mathemat-
ical models (e.g. groups, rings) rather than on {0, 1}∗. Secondly, RP is now an
algorithm which expects black-box access to both an implementation f and an
adversary A. One can think of RP as a security game, e.g. one-wayness game
or IND-CCA game. Here, we want to associate for each pair (f,A) a value in
[0, 1] which corresponds to the probability of A winning the RP game against f
(see Definition 5). This adjustment helps us introduce the notion of a security
loss. Eventually, we introduce a setup algorithm SP which sends some values
to RP . This machine could as well send nothing or just provide fresh random
coins which RP would use in its game. However, this addition will be very useful
in defining the multi-instance setting of a primitive. Informally, we can define a
new security game R′ which represents the security of P in the multi-user setting
as follows: given parameters (r1, . . .) from SP , run n independent copies of RP
and send (r1, . . .) as setup parameters to each of them. Then, R′ returns a bit
depending on what the n copies returned earlier. This idea is formally defined
in Subsection 3.2.

Definition 5. Let P =
〈
P, SP , FP , RP , σ

〉
be a primitive and P = (A,B,C).

Take f ∈ FP and any algorithm A. We define the advantage of A in breaking f
as

Advp
f,A(λ) := |Pr[R

f |C ,A
P = 1]− σ(λ)|

where the probability is defined over random coins in the system. We say that A
P−breaks f if Advp

f,A(λ) is non-negligible. Primitive P is called secure if there
exists an implementation f of P such that there are no PPT algorithms A that
P−break f .

From the definition above one observes that we do not assign each pair (f,A) a
binary value (that would indicate, e.g., whether it satisfies a relation or not), but
a probability. Therefore, the notion of a primitive from [43] is a generalisation
of our definition. Indeed, any primitive in our sense can be easily transformed
into a primitive from RTV definition: let P =

〈
P, SP , FP , RP , σ

〉
be a primitive

in our sense and define a primitive P ′ =
〈
F ′P , R

′
P

〉
such that F ′P = FP and

R′P = {(f,A)|A P -breaks f}. Then, primitives P and P ′ are equivalent. On the
other hand, it is not clear if implication in the opposite direction holds. It is
unknown if given relation set R we can construct a PPT algorithm R which
could be equivalent to R, meaning that (f,A) ∈ R ⇐⇒ |Pr[Rf,A = 1]− σ(λ)|
is not negligible. An obvious brute force solution would be to check all elements
of R but this could take exponential time. Despite the fact that our definition
of a primitive is less general, it allows us to spot relations between two distinct
advantages and consequently, to formally define a security loss.

Using our previous definitions we formalise the notion of a (tight) fully black-
box reduction.

Definition 6 (C-tightness). Let P =
〈
P1, SP , FP , RP , σ

〉
and Q =

〈
P2, SQ, FQ,

RQ, τ
〉

be primitives. Then, there is a fully black-box reduction from P to Q if

there exist algorithms G(·), S(·) such that:
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• for every implementation f of Q, Gf is an implementation of P ,

• for every implementation f of Q and every (unbounded) algorithm A, if A
P -breaks Gf then SA Q-breaks f .

We require that Gf is PPT for every f ∈ FQ, and that SA is PPT for every
PPT A. Let C: N→ R be a function. We say that the reduction is C-tight (and

write P
C
↪−→ Q) if:

• for every algorithm A, T(SA) = T(A) + queries(SA,A) · n1(λ) + n2(λ) for
some n1, n2 ∈ poly(λ) that do not depend on A7,8,

• for every implementation f of Q and every algorithm A:

Advp
Gf ,A(λ) ≤ C(λ) · Advq

f,SA
(λ) + negl(λ). (1)

In particular, we say that the reduction is fully-tight if C = 1, tight if C = a
for a ∈ N and almost-tight if C ∈ poly(λ).

We say that G is a generic construction of P from Q and S is an actual reduction.
The first condition for a tight reduction states that the runtime of SA should be
about the same as the runtime of the adversary A. This prevents the reduction
S from running many copies of A. An alternative way to formalise this condition
would be to use the definition of a time-success ratio from [24] and combine it
with the security loss C. However, in this paper we do not calculate exactly the
runtime of SA 9 and thus, we omit such formalities. Note that we allow a tight
reduction to do some small enough amount of work proportional to the number of
queries it gets from A. Hence, some reductions, which are commonly considered
as tight (e.g. ElGamal encryption scheme to DDH), would be also classified as
tight by our definition. Further, the second condition from the definition of tight
reduction assures that the success of an adversary A breaking the primitive is
always about as large as the success of the reduction SA breaking the other one.

We note that reductions with security loss L, which depends on the number
of queries made by A, are still almost-tight as long as L = poly(λ). This ob-
servation includes recent identity-based encryption (IBE) schemes [10,19] with
security loss O(logQ), where Q is the number of IBE secret key queries. In these
reductions, we have that Q ≤ 2λ and consequently, they are still almost-tight in
our definition.

We can get some simple but useful properties of tight reductions from the
definition above. For example, they satisfy the transitivity property.

Lemma 1. Let P,Q,R be primitives such that P
C
↪−→ Q and Q

D
↪−→ R, where

C,D ∈ poly(λ). Then, P
E
↪−→ R, where E(λ) = C(λ) ·D(λ).

7Recall that queries(SA,A) denotes the worst-case number of queries/messages from
A to S.

8Runtime of A is included in T(SA).
9As long as it is similar to the runtime of A.
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Proof. Let (G,S) be a tight reduction from P to Q and (G′, S′) be a tight
reduction from Q to R. Define:

Ḡ(·) = GG
′(·)
, S̄(·) = S′S

(·)
.

We claim that (Ḡ, S̄) gives a reduction from P to R.

Take f ∈ FR. Then, G′f is an implementation of Q. Therefore, Ḡf = GG
′f

is an implementation of P . Now, take any f ∈ FR and algorithm A. Note that
there are some negligible functions negl1(λ), negl2(λ) and negl(λ) such that:

Advp
Ḡf ,A(λ) ≤ C(λ) · Advq

G′f ,SA
(λ)|+ negl1(λ)

≤ C(λ) · (D(λ) · Advr
f,S̄A(λ) + negl1(λ)) + negl2(λ)

= C(λ)D(λ) · Advr
f,S̄A(λ) + negl(λ)

= E(λ) · Advr
f,S̄A(λ) + negl(λ)

(2)

by the definition of the almost-tight reduction. Therefore, we have shown that
(Ḡ, S̄) is a E−tight reduction from P to R. ut

The notion of computational indistinguishability (≈, see Section 2) can also
be recast in our definitional framework. Let Ω1, Ω2, S be finite sets and Xλ :
Ω1 → S, Yλ : Ω2 → S be random variables (parametrized over λ). We define
fX,Y : Ω1 × Ω2 → S × S as fX,Y (u) = (Xλ(u), Yλ(u)). Then, the [Xλ;Yλ]
primitive is a tuple

〈
P, SX,Y , FX,Y , RX,Y , 1

2

〉
, where P = (Ω1×Ω2, S×S,Ω1×Ω2),

FX,Y = {fX,Y }, SX,Y sends b←$ {0, 1} to RX,Y , and RX,Y is the following game:
generate (u0, u1)←$Ω1 ×Ω2 and send (u0, u1) to an implementation f ∈ FX,Y .
Then, get back (v1, v2) from f and take b from SX,Y . Output vb to an adversary
A and eventually get back b′ from A. Then, the adversary A wins if b = b′.

3.2 Multi-instance Setting

RPRP

SP

RP

AdversaryImplementation

(r1, . . .)(r1, . . .) (r1, . . .)

Fig. 1. New security game for the three-instance version of primitive P =〈
P, SP , FP , RP , σ

〉
is described as the green dashed box.
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Using notions from Subsection 3.1 we define the multi-instance setting of a
primitive. Informally, this means that an adversary now interacts with (poly-
nomially) many independent copies of the security game, so it gets more infor-
mation. However, the winning condition would be almost the same as in the
single-instance case, e.g. returning a preimage or guessing a bit (see Fig. 1). We
define it formally for a primitive P =

〈
P, SP , FP , RP , σ

〉
in terms of the security

algorithm RP . We, however, provide two definitions of the multi-instance setting
due to the differences between computational and decisional problems.

Rf |C ,A∃ (1λ, r1, . . .)

1 : Initialise n(λ) ind. copies of R
f |C ,A
P

2 : send (r1, . . .) to each of them

3 : as the setup parameters

4 : if one of the copies returns 1

5 : return 1

6 : else return 0

Rf |C ,A∀ (1λ, r1, . . .)

1 : Initialise n(λ) ind. copies of R
f |C ,A
P

2 : send (r1, . . .) to each of them

3 : as the setup parameters

4 : if all of the copies return 1

5 : return 1

6 : else return 0

Fig. 2. Security algorithms for ∃MIn(P ) (on the left) and ∀MIn(P ) (on the right). They
get as input the security parameter λ (in unary) and parameters (r1, . . .) from the
setup algorithm SQ. Here, we assume that R has black-box access to implementation
f (restricted to the domain C, where P = (A,B,C)) and adversary A.

Definition 7 (∃/∀-Multi-instance Setting). Let n(λ) be a polynomial in λ
and P =

〈
P, SP , FP , RP , σ

〉
be a primitive. Then, the ∃MIn(P ) primitive (resp.

∀MIn(P )) is a primitive
〈
P,S,F ,R∃, σ

〉
(resp.

〈
P,S,F ,R∀, σ

〉
) such that F =

FP , S = SP and R∃ (resp. R∀) is defined in Fig. 2 (left) (resp. right).

Now we provide examples of cryptographic primitives in the multi-instance set-
ting using definitions above.

Example 1. Let OWF =
〈
POWF, SOWF, FOWF, ROWF, 0

〉
be the primitive of a one-

way function. That is, POWF = (A,B,C), FOWF is a collection of functions
f : A → B, and ROWF is a standard one-wayness game (i.e. ROWF gener-
ates x uniformly at random from C, gets f(x) by calling an implementation
f and returns 1 only if adversary can guess the preimage of f(x)). For simplic-
ity, when we write OWFp(λ), where p = poly(λ), we mean OWF with POWF =

({0, 1}∗, {0, 1}∗, {0, 1}p(λ)) which is closer to the standard definition of a one-
way function. The security game for ∃MIn(OWF) would be as follows: it gen-
erates x1, . . . , xn independently and uniformly at random from C, then it gets
f(x1), . . . , f(xn) by calling f and sends to adversary. The winning condition
is that adversary returns a preimage of one of the values it was given i.e. x
satisfying f(x) = f(xi) for some i. On the other hand, in ∀MIn(OWFp(λ)), the
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adversary wins if it returns preimages for all values f(x1), . . . , f(xn). In prac-
tice, the ∃MIn(OWFp(λ)) setting is more common and therefore we focus on the
former case.

Example 2. Let us define a primitive PRG =
〈
PPRG, SPRG, FPRG, RPRG,

1
2

〉
of a

pseudorandom generator where PPRG = (A,B,C) such that C = A and |B| >
|A|. Let FPRG be a collection of functions G : A → B and let SPRG generate a
bit b←$ {0, 1}. We also define RPRG, given bit b, to generate random x ∈ C and
output the image G(x) of an implementation G if b = 0 and uniformly random
value from B otherwise. The adversary wins if it can guess the bit b. Then, the
security game for ∀MIn(PRG) would be as follows: given bit b from the setup
algorithm, generate and send G(x1), . . . , G(xn) for some x1, . . . , xn ∈ A if b = 0
or n uniformly random elements from B if b = 1. The winning condition here is
that adversary guesses the bits for all of the n subgames which is equivalent to
guessing the bit b.

Now, consider ∃MIn(PRG). We claim that it is not secure. Note that in this
case adversary wins if it guesses the bit b for one of the n subgames. In other
words, it has n chances to guess b. Thus, an adversary which just sends 1 to a
random subgame and 0 to another one will always win one of these two games
(because b ∈ {0, 1}) and consequently, break ∃MIn(PRG). Therefore, we only
analyse the security of ∀MIn(PRG).

Example 3. We define a primitive corresponding to an IND-CPA secure public-
key encryption scheme as PKE =

〈
PPKE, SPKE, FPKE, RPKE,

1
2

〉
where, as before,

SPKE does the sampling b←$ {0, 1}, RPKE is the IND-CPA game and FPKE con-
tains encryption schemes. Note that ∃MIn(PKE) is not secure due to the same
reasons as the ∃-multi instance pseudorandom generator. On the other hand,
∀MIn(PKE) yields the definition of an encryption scheme in the multi-user set-
ting by Bellare et al. [6]. In a similar fashion we can define IND-CCA secure
PKE schemes.

One observes that one can slightly change the definition of a primitive in
order to get a definition of “multi-ciphertext setting”. If we give SPKE black-box
access to an implementation and let it also generate keys (pk, sk) instead of RPKE

then the security game for ∀MIn(PKE) is indeed an IND-CPA game with many
ciphertexts. However, we do not consider the multi-ciphertext security in this
paper so we omit defining it formally here.

We also introduce the notion of a primitive being tightly extensible, meaning that
a reduction from its multi-instance setting admits the same security loss as in
the single-instance case.

Definition 8. Let P be a primitive and C : N → R be a function. Then, P is
(C, ∀)-tightly extensible (resp. (C,∃)-tightly extensible) with respect to primitive
Q if:

• P C
↪−→ Q,

• ∀n ∈ poly(λ), ∀MIn(P )
C
↪−→ Q (resp. ∃MIn(P )

C
↪−→ Q).
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Based on what we have already defined, we can formally state the main problem
of this paper:

Problem. Suppose that P
C
↪−→ Q. Show that P is (C, ∃( or ∀))-tightly extensible

w.r.t. Q.

There are two standard approaches to show that P is tightly extensible
w.r.t. Q. Namely, (i) somehow tightly reduce the multi-instance primitive to the
single case, (ii) modify the former reduction and apply re-randomisation/self-
reducibility techniques to eventually obtain the same security loss, or (iii) hide
the factor of n in the statistical difference. In Section 4 we discuss these meth-
ods used in practical examples. When we apply (i), we use the following simple
lemma.

Lemma 2. Let n be a polynomial in λ and let P and Q be primitives such

that P =
〈
P1, SP , FP , RP , σ

〉 C
↪−→ Q =

〈
P2, SQ, FQ, RQ, τ

〉
and let (G,S) be

such a reduction. Define P/Q to be the primitive
〈
P1, SP ,F , RP , σ

〉
such that

F = {Gf : f ∈ FQ}. Then, if ∃MIn(P )
D
↪−→ P/Q (resp. ∀MIn(P )

D
↪−→ P/Q) then

∃MIn(P )
C·D
↪−−→ Q (resp. ∀MIn(P )

C·D
↪−−→ Q). In particular, if D = 1 then P is

(C, ∃) (resp. (C,∀))-tightly extensible w.r.t. Q.

Proof. Using the notation above, it is easy to see that P
C
↪−→ Q implies P/Q

C
↪−→ Q.

The result holds by this simple observation and by Lemma 1. ut

4 Tightly Extensible Primitives

We provide a few constructions of tightly extensible primitives from more general
primitives. In principle, we first take a tight reduction from the single-instance
primitive and see if we can extend it (in a tight way) to the multi-instance setting
or otherwise, use the Lemma 2. In the first subsection, we demonstrate the use
of definitions from Section 3, and derive formal proofs. In the later subsections,
however, we focus more on showing novel techniques to extend reductions to the
multi-instance setting.

4.1 One-wayness of Collision-Resistant Hash Functions

It is well-known that signatures schemes can be constructed from one-way func-
tions [44,32,23]. Concretely, we can use the Lamport construction [33] of a one-
time signature scheme from one-way functions, and then extend these one-time
signatures to full signatures using Merkle trees [37]. The corresponding reduc-
tion is far from tight, and not known to scale well to the multi-user setting.
Here, we consider the same construction under a slightly stronger assumption
(namely, collision-resistance) of the used one-way function. We will show that
this stronger assumption enables a much tighter security reduction.

We start by defining collision-resistant hash functions w.r.t. the definition of
a primitive from Section 3. Define CRHF =

〈
PCRHF, SCRHF, FCRHF, RCRHF, 0

〉
as
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follows: PCRHF = ({0, 1}∗, {0, 1}λ, {0, 1}∗), SCRHF returns no parameters, FCRHF =
{h : {0, 1}∗ → {0, 1}λ} and RCRHF is the collision resistance game, i.e. it waits
until it gets (x, x′) from adversary, checks if x 6= x′ and then calls the implemen-
tation h to check if h(x) = h(x′).

Let us define an adaptive one-way function. Specifically, we denote AOWF =〈
POWF, SOWF, FOWF, RAOWF, 0

〉
, where POWF, SOWF, FOWF are defined in Example

1. Also, RAOWF is defined identically as ROWF, but here adversary can also send
a message lose, in which case RAOWF outputs back the challenge preimage x
and automatically returns 0. Similarly as in Example 1, we use the notation
AOWFp(λ) when POWF = ({0, 1}∗, {0, 1}∗, {0, 1}p(λ)). Clearly, security of OWF
implies (tightly) the AOWF security. Interestingly, we cannot conclude the same
for ∃MIn(OWF) and ∃MIn(AOWF).

Damg̊ard [12] showed that h, when considered as a function with domain
{0, 1}λ+1, is also a (adaptive) one-way function. Indeed, if there exists an ad-
versary A which can find preimage of h(x) for uniformly random x, then we
can construct adversary SA which breaks the collision-resistance of h as follows:
given h, choose random x and send h(x) to A. Let x′ be the output of A. Then,
return the pair (x, x′). Note that with non-negligible probability (over x and
x′), we have x 6= x′. Hence, adversary SA wins the collision-resistance game and
additionally, the reduction itself is clearly tight.

Damg̊ard’s argument in fact nicely extends to the multi-instance setting:

Theorem 1. Let CRHF be the primitive of a collision-resistant hash function
and AOWF2λ be the primitive of a one-way function defined in Example 1. Then,
AOWF2λ is (2,∃)-tightly extensible w.r.t. CRHF.

Proof. We first reprove that AOWF2λ
2
↪−→ CRHF. Let us define PPT algorithms

G· and S· as in Fig. 3. Clearly, both G and S run in polynomial time. One can
observe that G is a generic construction. Indeed, G only forwards all the queries
from/to an implementation and hence, ∀h ∈ FCRHF, Gh = h. In particular,
Gh : {0, 1}∗ → {0, 1}λ is a function, so Gh ∈ FOWF. Now, suppose that there

Gh(1λ)

1 : if G is queried on x:

2 : send x to h

3 : get y from h

4 : return y

SA(1λ)

1 : x←$ {0, 1}2λ

2 : send h(x) to A
3 : if A outputs lose, send x to A and abort

4 : Othewise, get x′ from A and return (x, x′)

Fig. 3. PPT Algorithms G and S.

exists an algorithm A which OWF2λ-breaks Gh. We want to prove that SA
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CRHF-breaks h. Using the variables x and x′ from Fig. 3, one observes that:

Advcrhfh,SA(λ) = Pr[Rh,S
A

CRHF = 1]

= Pr[x 6= x′ ∧ h(x) = h(x′)]

≥ Pr[x 6= x′ ∧ h(x) = h(x′) | |h−1(h(x))| ≥ 2] · Pr[|h−1(h(x))| ≥ 2],

(3)

where h−1(u) = {v ∈ {0, 1}2λ : h(v) = u}. Clearly, |h−1(h(x))| ≥ 1. Note that
Pr[x 6= x′ | h(x) = h(x′) ∧ |h−1(h(x))| ≥ 2] ≥ 1

2 since adversary A does not
know, given h(x), if S chose exactly x or some other element in h−1(h(x)) (it
exists h−1(h(x)) ≥ 2). Hence, if we denote X = |h−1(h(x))|, then we eventually
have X−1

X ≥ 1/2. Using this observation and the fact that h(x) is generated by
S with the same distribution as the challenge by ROWF , we deduce that:

Advcrhfh,SA(λ) ≥ 1

2
Pr[h(x) = h(x′) | |h−1(h(x))| ≥ 2] · Pr[|h−1(h(x))| ≥ 2]

≥ 1

2
Pr[h(x) = h(x′)]− 1

2
Pr[|h−1(h(x))| = 1]

≥ 1

2
AdvowfGh,A(λ)− 1

2
Pr[|h−1(h(x))| = 1].

(4)

The only thing to compute here is Pr[|h−1(h(x))| = 1]. Let a1, . . . , am ∈ {0, 1}2λ
be the bit-strings such that |h−1(h(ai))| = 1 for i = 1, . . . ,m. Clearly, we have
that h(a1), . . . , h(am) are pairwise distinct. Also {h(a1), . . . , h(am)} ⊂ {0, 1}λ,

and therefore m ≤ 2λ. Thus, Pr[|h−1(h(x))| = 1] = m
22λ ≤ 2λ

22λ = 1
2λ

. By substi-
tuting this result into Equation 4 and reordering both sides we get:

2Advcrhfh,SA(λ) +
1

2λ
≥ AdvaowfGh,A(λ),

which concludes that AOWF2λ
2
↪−→ CRHF.

Now, we have to prove that ∃MIn(AOWF2λ)
2
↪−→ CRHF for any n ∈ poly(λ).

Denote n = n(λ). We define the reduction (Ḡ, S̄) as in the Fig. 4. One observes
that Ḡ and S̄ are both PPT algorithms, and also Ḡ = G is a generic construction
of ∃MIn(AOWF2λ) from CRHF. Suppose that there exists an algorithm A which
OWF2λ-breaks Gh for some h ∈ FCRHF. We extend the previous argument for
many instances as follows (the probabilities are calculated over x1, . . . , xn, x

′

which are defined in Fig. 4):

Advcrhfh,S̄A(λ) = Pr[Rh,S̄
A

CRHF = 1]

= Pr[xi 6= x′ ∧ h(xi) = h(x′)]

≥ Pr[xi 6= x′ ∧ h(xi) = h(x′) | E] · Pr[E],

(5)
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Ḡh(1λ)

1 : if G is queried on x:

2 : send x to h

3 : get y from h

4 : return y

S̄A(1λ)

1 : x1, . . . , xn ←$ {0, 1}2λ, U = ∅
2 : send h(x1), . . . , h(xn) to A
3 : if A returns lose in the i-th subgame:

4 : send back xi and set U ← U ∪ {i}
5 : if A returns some x′ in the i-th subgame:

6 : if h(x′) = h(xi), return (x′, xi)

Fig. 4. PPT Algorithms G and S.

where E =
n∧
i=1

|h−1(h(xi))| ≥ 2. In the similar fashion as before, we have that

Pr[xi 6= x′ | h(xi) = h(x′) ∧ E] ≥ 1
2 . Hence,

Advcrhfh,S̄A(λ) ≥ 1

2
Pr[h(xi) = h(x′) | E] · Pr[E]

≥ 1

2
Adv

min(aowf)

Ḡh,A (λ)− 1

2
Pr[¬E].

(6)

By the union bound, we compute:

Pr[¬E] = Pr[

n∨
i=1

|h−1(h(xi))| = 1] ≤
n∑
i=1

Pr[|h−1(h(xi))| = 1] =
n

2λ
. (7)

Eventually, by reordering both sides of Equation 6 we get that ∃MIn(AOWF2λ)
2
↪−→

CRHF:
2Advcrhfh,S̄A(λ) +

n

2λ
≥ Adv

min(aowf)

Ḡh,A (λ).

ut

Even though this proof is not complicated, the theorem itself can be useful in
constructing secure one-time signature schemes (OTS) with small security loss.
Let us first define OTS using the definition of a primitive from Section 3. That
is, OTS =

〈
POTS, SOTS, FOTS, ROTS, 0

〉
, where P = ({0, 1}∗, {0, 1}∗, {0, 1}∗), SOTS

does not send any global parameters, FOTS is the set of all signature schemes
and ROTS represents the EUF-OTCMA game.

Let f be a one-way function and let n be a polynomial in λ. Consider the
Lamport’s one-time signature scheme [33] (GenL;SignL;VerL) for messages of
length n = n(λ), meaning:

• GenL(λ): generate 2n random values xi,j and compute yi,j = f(xi,j) for
j ∈ {0, 1}, i ∈ {1, . . . , , n}. Then, set sk = {x1,0, . . . , xn,0, x1,1, . . . , xn,1} and
vk = {y1,0, . . . , yn,0, y1,1, . . . , yn,1}.
• SignL(m, sk): for message m = m1m2 . . .mn, output σ = σ1σ2 . . . σn where
σi = xi,mi .
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• VerL(vk,m, σ): for signature σ = σ1σ2 . . . σn and message m = m1m2 . . .mn,
check if f(σi) = yi,mi for all i = 1, . . . , n. If so, return 1 and 0 otherwise.

Lamport proved that this scheme is EUF-OTCMA secure by giving a reduction
to the one-wayness of f which admits the security loss of 2n. We show how to
tightly reduce it to the adaptive one-wayness of f in the multi-instance setting.

Theorem 2. Let n ∈ poly(λ) and OTS and AOWF2λ be the primitives of a one-
time signature scheme and one-way function respectively. Then, there exists a
fully-tight fully black-box reduction from OTS to ∃MI2n(AOWF2λ).

Proof. As usual, let us define PPT algorithms G and S as in Fig. 5. We can

Gf (1λ)

1 : if G is queried on Gen(1λ):

2 : run GenL(λ) by calling f

3 : if G is queried on Sign(m, sk):

4 : run SignL(m, sk)

5 : if G is queried on Ver(vk,m, σ):

6 : run VerL(vk,m, σ)

SA(1λ)

1 : receive (y1,0, . . . , yn,0, y1,1, . . . , yn,1)

2 : vk = (y1,0, . . . , yn,1)

3 : send vk to A
4 : if A requests a signature on m′:

5 : for i = 1, ..., n

6 : send lose to i+m′i · n-th subgame

7 : get back xi,m′i

8 : send σ = x1,m′1 ...xn,m′n to A

9 : if A outputs (m,σ = σ1, . . . , σn):

10 : find i so that mi 6= m′i

11 : send σi to i+mi · n-th subgame

Fig. 5. PPT Algorithms G and S. Here, (GenL; SignL;VerL) is the Lamport signature
scheme.

see that G represents the Lamport construction of a one-time signature scheme.
In particular, G is a signature scheme and also, G is a generic construction of
OTS from ∃MI2n(AOWF2λ). Now, let us consider S and suppose that S is given
f(x1,0), . . . , f(xn,1) from R∃MI2n(AOWF2λ). If A requests a signature on m′ =
m′1...m

′
n then we abort 1+m′1 ·n-th,...,n+m′n ·n-th subgames of R∃MI2n(AOWF2λ)

and consequently, get back preimages xi,m′i , ..., xn,m′n . Eventually, when A out-
puts a valid forgery (m,σ), then we must have m 6= m′. So, there exists some
index i such that mi 6= m′i

10. This means that f(σi) = yi,mi and therefore, S
wins the i+mi ·n-th subgame of R∃MI2n(AOWF2λ). Hence, we end up with a tight
reduction which admits security loss 1. ut

Combining the previous two results we get that it is possible to construct a
one-time signature scheme, which can be reduced to a collision-resistant hash

10If A has not requested a signature before, then we just set i = 1.
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function with the loss of 2. Thus, we managed to eliminate the factor n and if
one wants to apply Merkle trees, the overall reduction to CRHF from a secure
signature scheme would have the security loss of O(l), where l is the number of
signing queries.

4.2 A Rerandomisable Hard-core Predicate

Blum and Micali [8] provided a construction of a pseudorandom generator from
a one-way permutation. Let f be a one-way permutation and b be its hard-core
predicate. Then, the function G(x) = f(x)||b(x) is a pseudo-random generator.
Now, our aim is to construct, given f and b, a tightly extensible pseudo-random
generator w.r.t. some certain mathematical assumption. We find suitable f and
b such that we can apply Lemma 2. Note that in order to do this, we need a
rerandomisation property from these functions. For instance, given b(x) and a
value a, we should somehow be able to compute b(ax). We will choose a one-way
permutation on a group where the discrete logarithm problem is hard and use
properties of Legendre symbol to construct a rerandomisable hard-core predicate.
Background. Let a ∈ Z be an integer and p be a prime number such that
p - a. We say that a is a quadratic residue mod p if there exists x ∈ Z \ {0} so
that x2 ≡ a( mod p). If there is no such x, then a is a quadratic non-residue
mod p. It is a well-known fact that in {1, . . . , p− 1} there are exactly (p− 1)/2
quadratic residues (and also (p − 1)/2 quadratic non-residues) mod p. Clearly,
the quadratic residues form a subgroup of Z∗p.

The Legendre symbol is defined as follows:

(
a

p
) =


0 if p|a
1 if a is a quadratic residue mod p

−1 if a is a quadratic non-residue mod p

One of useful properties of the Legendre symbol is that it is homomorphic,
meaning (ap )( bp ) = (abp ) for any a, b. Moreover, by the Euler’s criterion, the
Legendre symbol can be computed efficiently.
The LGR Problem. We propose a new computational problem, called Legen-
dre Problem (LGR).

Definition 9. Let p be a λ-bit prime number and let G be a group of order p
with generator g. We say that the Legendre Problem (LGR) is hard in G if for
all PPT algorithms A,

AdvlgrG,A(λ) := Pr[b←$A(〈G〉, p, g, gx) : x←$Zp, b =
1 + (xp )

2
] =

1

2
+ negl(λ).

Equivalently, define a primitive LGRG =
〈
PLGR, SLGR, FLGR, RLGR,

1
2

〉
such that

PLGR = (Zp, G,Zp), SLGR sends parameters (G, p, g) to RP and FLGR = {fg},
where fg is defined by a 7→ ga. The security game RLGR first chooses random
x←$Zp, sends x to an implementation f ∈ FLGR of LGRG and gets back y. Then,
it outputs y to adversary A. When it receives b ∈ {0, 1} from A, it returns a
value of the statement b = (1 + (xp ))/2.
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One observes that the Legendre Problem is not harder than the discrete loga-
rithm problem. Indeed, given gx, solving the discrete logarithm problem yields x,
from which one can directly compute (xp ). A more interesting question is whether
LGR is as hard as DLOG. We first show that LGR is at least as hard as DDH.

Lemma 3. Let G be a group of prime order p and suppose that DDH is hard in
G. Then, the Legendre Problem is also hard in G.

Proof. Suppose there exists a PPT algorithm A which solves LGR with a non-
negligible advantage. We construct a PPT algorithm SA which wins the DDH
game as follows. S first generates random a, b, c←$Zp. Next, given gx, gx, gz,

where z = xy or z is random, S sends gax, gby, gcz to A and gets (axp ), ( byp ), ( czp )

respectively. Then, S simply extracts (xp ), (yp ), ( zp ) (e.g. by (xp )(ap ) = (axp )) and

returns the value of statement (xp )(yp ) = ( zp ). Note that if z = xy then this will
always be true. On the other hand, if z is random, then the probability that
( zp ) = b for b ∈ {−1, 1} is 1/2. All in all, S wins the DDH game with non-

negligible probability. The reduction itself, however, is far from tight 11. ut

Legendre’s symbol has already been used in building pseudorandom gen-
erators [13,36,46]. For example, Damg̊ard [13] applied specific subsequences of
the sequence of Legendre symbols modulo a prime to obtain a pseudorandom
generator. Security of such constructions, however, rely on empirical results or
additional unproven conjectures.
Our Construction. We build a tightly extensible pseudorandom generator
with respect to the Legendre assumption. Let G be a densely presentable group
with generator g of prime order p, i.e. a group which satisfies the property that
for x ∈ Zp, the map x 7→ gx is a permutation (e.g. [9]). We define PRGG to be the
primitive from Example 2 with P = (Zp, G× {0, 1},Zp). Then, the construction
is presented as follows.

Theorem 3. Let G be a densely presentable group of prime order p where the
Legendre problem is hard. Denote g ∈ G to be a generator of G. Then, PRGG is
(2,∀)-tightly extensible w.r.t. LGRG.

Proof. Define f : Zp → G as x 7→ gx, b : Zp → {0, 1} as x 7→ (1 + (xp ))/2 and

eventually, F (x) := f(x)||b(x). Clearly, if the Legendre Problem is hard in G
then f is a one-way permutation and b is a hard-core predicate for f .

Blum and Micali [8] showed that F is a pseudorandom generator. In this case,
the generic reduction is fully-tight. Thus, by Lemma 2 it is enough to reduce the
multi-instance setting of F to the single-instance with security loss 2. Suppose
that there exists an adversary A which can win the n-multi-instance game for the
pseudorandom generator F . We construct an adversary SA that wins a single-
instance game as follows. Given (u||v) (u ∈ G, v ∈ {0, 1}), toss a fair coin n
times. For the i-th trial, where i = 1, . . . , n, if we get heads - generate random

11On the other hand, one can actually derive a simple tight reduction from
∀MI3(LGR) to DDH.
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xi←$Zp and set yi = F (xi). On the other hand, if the coin comes out tails, we
choose random ai←$Zp and set yi = uai ||vi where vi = (1 + (aip )(2v − 1))/2.
Then, send y1, . . . , yn to adversary A and eventually output what A returns.

Let us assume that x 6= 0 12. In order to analyse correctness of this reduction,
we have to consider two cases. First, suppose that u = gx for some x. Then,
v = (1 + (xp ))/2 or v = (1− (xp ))/2.

Case 1: v = (1+(xp ))/2. Let us fix i and consider the i-th trial of flipping the

coin. If it comes out heads, then yi = F (xi) for randomly chosen xi. Otherwise,
we get that vi = (1 + (aip )(xp ))/2 = (1 + (aixp ))/2 and thus yi = F (xi) where

xi = aix for uniformly random ai. Therefore, for each i we have yi = F (xi) and
also x1, . . . , xn are independently, uniformly random in Zp.

Case 2: v = (1− (xp ))/2. Let us denote yi = gsi ||ti where si ∈ Zp, t ∈ {0, 1}.
We need to show that for every α1, . . . , αn ∈ Zp and β1, . . . , βn ∈ {0, 1} we have

Pr[s1 = α1, . . . , sn = αn, t1 = β1, . . . , tn = βn] =
1

2npn
.

This is the same as showing Pr[t1 = β1, . . . , tn = βn|s1 = α1, . . . , sn = αn] ·
Pr[s1 = α1, . . . , sn = αn] = 1

2npn . Note that Pr[s1 = α1, . . . , sn = αn] = 1/pn

because x 6= 0 and si = aix or si = xi for random ai, xi. Now, consider
Pr[t1 = β1, . . . , tn = βn|s1 = α1, . . . , sn = αn]. Clearly, this is the same as
Pr[t1 = β1|s1 = α1, . . . , sn = αn]

n
. Firstly, assume that β1 = (1 + (α1

p ))/2 and

let X denote the output of tossing a coin for the first time (and say H - heads,
T - tails). Then, Pr[t1 = β1|X = H, s1 = α1, . . . , sn = αn] = 1 because if
SA gets heads then it generates fresh F (x1) and in this case x1 = s1 = α1 so
t1 = (1 + (α1/p))/2 = β1. On the other hand, if the coin comes out tails then
we have αi = si = aix. Also, t1 = v1 = (1 − (aip )(xp )/2 = (1 − (α1

p ))/2 6= β1

and hence Pr[t1 = β1|X = T, s1 = α1, . . . , sn = αn] = 0. Consequently, we get
Pr[t1 = (1+(α1

p ))/2|s1 = α1, . . . , sn = αn] = (1+0)/2 = 1/2. Using a similar ar-

gument it can be shown that Pr[t1 = (1− (α1

p ))/2|s1 = α1, . . . , sn = αn] = 1/2.

Thus, Pr[t1 = β1, . . . , tn = βn|s1 = α1, . . . , sn = αn] = 1/2n and the result
holds. In particular, if v = (1 − (xp ))/2 then all the values yi sent to A look
independently and uniformly random.

In conclusion, we obtain the following results:

Pr[1←$SA(u||v) | (u||v)←$F ] = Pr[1←$A(y1, ..., yn) | (y1, ..., yn)←$F ],

and also Pr[1←$SA(u||v) | (u||v)←$G× {0, 1}] = α, where

α ≥ 1

2
Pr[1←$SA(u||v) | (u||v)←$G× {0, 1} ∧ v = (1− (

x

p
))/2]

=
1

2
Pr[1←$A(y1, ..., yn) | (y1, ..., yn)←$G× {0, 1}].

(8)

Thus, we get a tight fully black-box reduction from ∀MIn(PRGG) to PRGG/LGRG
which admits the security loss of 2. Hence, by Lemma 2 the result holds. ut

12This occurs with an overwhelming probability.
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A rerandomisable hard-core predicate can be potentially also very useful in con-
structing a tightly extensible encryption scheme out of a computational problem
(rather than a decisional one). However, it is not known how it can concretely
be used, for example, because we do not have any information about functions
related to DLOG being trapdoor one-way functions.

4.3 Tightly Extensible Lossy Trapdoor Functions

Our aim is to construct IND-CPA secure encryption schemes in the multi-
user setting from lossy trapdoor functions in a tight way. In order to do so,
we introduce tightly secure LTDFs in the multi-instance setting. Let LTDF =〈
PLTDF, SLTDF, FLTDF, RLTDF,

1
2

〉
be a primitive of lossy trapdoor functions, i.e.

PLTDF defines the domain, codomain and challenge space, FLTDF is a collection
of LTDFs, SLTDF provides a random bit to RLTDF and RLTDF runs a game where
the goal is to distinguish a lossy function from an injective one. As before, let
PKE be a public-key encryption scheme with its security game being IND-CPA.
For exact same reasons as in PRGs or PKE cases, it is sensible only to consider
∀MIn(LTDF) for the multi-instance setting. Also, denote DDH as a primitive rep-
resenting the DDH assumption (formal definition is not required here). Peikert
et al. [41] showed that:

PKE
2
↪−→ LTDF

λ
↪−→ DDH.

Using these results, we show the following:

∀MIn(PKE)
2
↪−→ ∀MIn(LTDF)

1
↪−→ LTDF/DDH

λ
↪−→ DDH. (9)

Primitive LTDF/DDH is a construction of a lossy trapdoor function from a DDH
group by Peikert et al.

Clearly, LTDF
2
↪−→ DDH implies LTDF/DDH

2
↪−→ DDH and so we concentrate

on proving the first two reductions.

Theorem 4. Let n ∈ poly(λ). Then, ∀MIn(PKE)
2
↪−→ ∀MIn(LTDF).

Proof. We use the construction of Peikert et al. Let (Sinj , Sloss, F, F
−1) be a

collection of (m, k)-lossy trapdoor functions. Let H be a family of pairwise in-
dependent hash functions from {0, 1}m to {0, 1}l for l ≤ k − 2 log(1/ε) where
ε = negl(λ). The message space is {0, 1}l. Define the encryption scheme E =
(Gen;Enc;Dec) where:

• Gen(1λ) takes an injective trapdoor function (s, t)←$Sinj and a hash func-
tion h←$H. Then, it sets pk = (s, h) and sk = (t, h).
• Enc(pk,m) first generates random x←$ {0, 1}m. Then, it sets c1 = F (s, x)

and c2 = m⊕ h(x). It outputs c = (c1, c2).
• Dec(sk, c) computes x = F−1(t, c1) and returns c2 ⊕ h(x).

Peikert et al. proved that E is an IND-CPA secure scheme. We show that if
(Sinj , Sloss, F, F

−1) is a LTDF in the multi-instance setting then E is a IND-
CPA tightly secure scheme in the multi-user setting. We do it using the same
technique as Peikert et al. Consider the following variables:
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– Variable X0: choose (s1, t1), . . . , (sn, tn)←$Sinj , x1, . . . , xn←$ {0, 1}m and
also h1, . . . , hn ∈ H. Then the value of X0 is

(s1, . . . , sn, h1, . . . , hn, F (s1, x1), . . . , F (sn, xn), h(x1), . . . , h(xn)).

– Variable X1: choose (s1, t1), . . . , (sn, tn)←$Sloss, x1, . . . , xn←$ {0, 1}m and
also h1, . . . , hn ∈ H. Then the value of X1 is

(s1, . . . , sn, h1, . . . , hn, F (s1, x1), . . . , F (sn, xn), h(x1), . . . , h(xn)).

– Variable X2: choose (s1, t1), . . . , (sn, tn)←$Sloss, x1, . . . , xn←$ {0, 1}m and
also r1, . . . , rn ∈ {0, 1}l. Then the value of X2 is

(s1, . . . , sn, h1, . . . , hn, F (s1, x1), . . . , F (sn, xn), r1, . . . , rn).

– Variable X3: choose (s1, t1), . . . , (sn, tn)←$Sinj , x1, . . . , xn←$ {0, 1}m and
also r1, . . . , rn ∈ {0, 1}l. Then the value of X3 is

(s1, . . . , sn, h1, . . . , hn, F (s1, x1), . . . , F (sn, xn), r1, . . . , rn).

Lemma 4 ([41], generalized). Let X0, X1, X2, X3 be random variables defined

as above. Then, {X0}
c
≈ {X1}

s
≈ {X2}

c
≈ {X3}.

Proof. Note that X0 and X1 are computationally indistinguishable because of
the multi-setting indistinguishability property of LTDFs. Identical argument
works for X2 and X3. In order to show that X1 and X2 are statistically in-
distinguishable we use the result by Peikert et al. ([41], Lemma 3.4) for the
single-instance case. Then, by the standard hybrid argument we get ∆(X1, X2) ≤
n · ε(λ) which is still negligible. ut

One observes that, by Lemma 4, the encryption scheme E is indeed IND-CPA
in the multi-user setting. Moreover, the reduction is still tight because only the
statistical difference between X1 and X2 is dependent on the number of instances
n. This completes the proof. ut

In a similar way we can define the multi-instance All-But-One LTDFs and use
them to construct IND-CCA secure scheme in the multi-user setting. One could
take the construction provided by Peikert et al. and extend the proof of security
to many instances. This approach would give us a reduction with security loss
O(qdec), the same as in the single-instance case. However, we omit the formal
proof here.

Let us consider the construction of a pseudorandom generator provided by
Peikert et al., i.e. define G(x) = (h1(F (s, x)), h2(x)), for h1, h2←$H. By Lemma
3.4 in [41] and the Leftover Hash Lemma (e.g. [15]), if (Sinj , Sloss, F, F

−1) is a
collection of lossy trapdoor functions then G is a pseudorandom generator. One
observes that this result can be easily extended to the multi-instance setting
thanks to Lemma 4. This example and Theorem 4 show that multi-instance
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LTDFs can be useful in constructing more general primitives in the multi-
instance setting. We now present how to build such primitives from a standard
assumption, namely DDH.
Constructing Tightly Extensible LTDFs. We focus on proving the second
reduction in (2) which involves encrypting matrices in a way similar to ElGamal
encryption scheme. Suppose we work with a group G of prime order p and gen-
erator g. For simplicity, we write [x] = gx for x ∈ Zp. We write small bold letters
(e.g. x,y) for column vectors and capital bold letters (e.g. A,U) for matrices.
We denote At to be the transpose of A. For simplicity, we write [x] = gx for
x ∈ Zp and similarly [x] = ([x1], . . . , [xm]) for x = (x1, . . . , xm). We use identical
notation [A] also for matrix A.

For a matrix A with at least 2 rows, we write WLR(A) for a matrix A without
last row. Similarly, we define WLC(A) for A without last column. We will use the
following simple observation.

Observation 1 Let m,n, k ≥ 2 and A,B be m × n and n × k matrices in G
respectively. Then, WLR(AB) = WLR(A)B and WLC(AB) = AWLC(B)

We briefly recall the method for encrypting matrix M ∈ Zm×mp by Peikert et
al. Firstly, we generate secret keys z = (z1, . . . , zm) ∈ Zmp and set sk = z, pk =
[z]. Also, denote hi = [zi]. Then, choose uniformly random r1, . . . , rm ∈ Zp. The
encryption of M is a matrix C = (Ci,j) where Ci,j = ([ri], [mi,j ][zi]

ri). The
construction of a LTDF (Sinj , Sloss, F, F

−1) from a DDH group looks as follows.

• Sinj first selects group parameters (G, p, g). Then, it returns (C, t) where C
is a matrix encryption of the identity I and t consists of secret keys z.
• Sloss selects group parameters (G, p, g) and returns (C,⊥) where C is a

matrix encryption of zero matrix 0.
• F takes as input (C,x), where C is a function index and x ∈ {0, 1}m, and

returns y = xC.
• F−1 takes as input y = ((y1,0, y1,1), . . . , (ym,0, ym,1)) and the trapdoor z =

(z1, . . . , zm). Then, it returns x = (x1, . . . , xm) where xi = logg(yi,1/y
zi
i,0) (it

can be efficiently computed since xi is a bit).

Security of this lossy trapdoor function relies heavily on the fact that the
matrix encryption scheme described above gives indistinguishable ciphertexts if
the DDH assumption holds [39,41]. The key observation is that if DDH is hard
in G, then for randomly chosen x,y ∈ Zmp , [xyt] is indistinguishable from a
uniformly random chosen matrix U←$Gm×m. We claim that this is also true
for many instances, i.e. for randomly chosen xi,yi ∈ Zmp where i = 1, . . . , n,
([x1y

t
1], . . . , [xnytn]) is indistinguishable from a uniformly random chosen matrix

([U1], . . . , [Un]) where Ui←$Zm×mp . We write it formally as follows.

Theorem 5. Let n be a polynomial in λ and m ≥ 2. Define primitive Pm =〈
P, SP , FPRP , 1

2

〉
where:

• P = (Zmp × Zmp ,Zm×mp ,Zmp × Zmp ),
• SP sends group information (G, p, g) to RP ,
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• FP contains only a function f defined by f(x,y) = xyt,
• RP first generates x,y←$Zmp , calls f to get xyt, samples b←$ {0, 1} and sets
U = xyt if b = 0 and U ←$Zm×mp if b = 1. Finally, it sends ([x], [y], [U])
along with (G, p, g) to adversary A. Security game RP returns 1 if A guesses
the bit b.

Then, ∀MIn(Pm)
1
↪−→ Pm.

Proof. Assume first that there exists a PPT algorithm C1, which given a triple
([x], [y], [U]) sent by RP , returns another triple ([x′], [y′], [U′]) such that: (i)
y′ = y, (ii) x′ is uniformly random, (iii) if b = 0 then U′ = x′y′t and if b = 1
then U′ is uniformly random with probability 1− negl(λ). In a similar fashion
we can define a PPT algorithm C2 which does the same thing as C1 but it fixes
x instead of y. Note that if C1 exists then clearly C2 also exists.

Now, suppose there exists an adversary A which ∀MIn(Pm)−breaks f . We
construct an adversary SA which Pm-breaks f as follows. Given a triple v =
([x], [y], [U]) from RP , it runs n independent copies of C1 on input v and gets
back outputs v1, . . . ,vn. Next, it runs n independent copies of C2 where the i-th
copy of C2 gets as input vi. Then, collect the outputs w1, . . . ,wn and pass them
to A. Eventually, when A returns a bit b′, output b′. Note that this reduction
is tight by the property (iii) of C1 and by standard hybrid argument. Therefore,
what we have left is to construct an algorithm C1.

C1(1λ, G, p, g, [x], [y], [U])

1 : R←$Zm×mp

2 : r̃←$Zmp
3 : [x′] = [Rx + r̃]

4 : [U′] = [RU + r̃yt]

5 : return ([x′], [y], [U′])

Fig. 6. PPT algorithm for C1.

Consider the following algorithm for C1 in Fig. 3. Note that we are able to
compute [x′] and [U′] in lines 3 and 4 even though we do not know values for
x′,U′. Clearly, property (i) is satisfied. Also, x′ is uniformly random because of
the randomness of r̃. The most challenging part is to show (iii).

First, suppose that b = 0. So we have U = xyt. Hence, U′ = RU + r̃yt =
Rxyt + r̃yt = (Rx + r̃)yt = x′yt. Now, consider the case b = 1. Then, U is a
uniformly random matrix. We want to show that U′ is also a uniformly random
matrix with overwhelming probability. Denote x = (x1, . . . , xm) and assume
that xm 6= 0 (this occurs with an overwhelming probability). We slightly change
the algorithm for C1: we first choose random x′ = (x′1, . . . , x

′
m), r̃ = (r̃1, . . . , r̃m)

from Zmp and R̃ = (R̃i,j) ∈ Zm×(m−1)
p . Next, we set r = (r1, . . . , rm), where
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ri = xm
−1(x′i− r̃i−

∑m−1
j=1 xjR̃i,j), and R =

(
R̃
∣∣ r). Note that this change does

not affect the input/output behaviour of C1. Moreover, we can rewrite R as:

R =


r̃1 R̃1,1 R̃1,2 · · · R̃1,m−1 x′1
r̃2 R̃2,1 R̃2,2 · · · R̃2,m−1 x′2
...

...
...

...
...

r̃m R̃m,1 R̃m,2 · · · R̃m,m−1 x
′
m





0 0 · · · 0 −x−1
m

1 0 · · · 0 −x1x
−1
m

0 1 · · · 0 −x2x
−1
m

...
...

. . .
...

...
0 0 · · · 1 −xm−1x

−1
m

0 0 · · · 0 x−1
m


(10)

Denote R̄ and M as the left-hand side and the right-hand side matrices re-
spectively. Also, define A = MU and R̂ such that R̄ =

(
R̂
∣∣x′). Note that

the first column of M is the (additive) inverse of the last column of M. Conse-
quently, we get the same property in A. Moreover, WLR(M) is clearly invertible
and thus U being uniformly random matrix implies that WLR(A) = WLR(M)U
is also uniformly random. For simplicity, let us denote a to be the last row of
A, A1 = WLR(A) and A2 be the matrix A1 without the first row (which is the
inverse of the last row of A). Then, by the observations above we can expand
U′ as follows:

U′ = RU + r̃yt

=
((

R̂
∣∣0)+

(
0
∣∣x′))A + r̃yt

= R̂A1 + x′at + r̃yt

=
((

r̃
∣∣0)+

(
0
∣∣∣ R̃))A1 + x′at + r̃yt

= r̃(yt − at) + R̃A2 + x′at.

(11)

This is equivalent to U′
t

=
(
y− a

∣∣At
2

) (
r̃
∣∣∣ R̃)t + ax′

t
. Note that

(
y− a

∣∣At
2

)
is with high probability an invertible matrix because A1 is uniformly random.

Moreover, we chose
(
r̃
∣∣∣ R̃) uniformly at random and therefore U′ is also uni-

formly random (with probability 1− negl(λ)). ut

Similarly as in [41], we obtain ∀MIn(LTDF)
1
↪−→ ∀MIn(Pm). Hence, ∀MIn(LTDF)

1
↪−→

LTDF/DDH follows from the Theorem 5 applied to the construction by Peikert
et al. along with the random self-reducibility of DDH. Thus, combining (9) with
Lemma 2 we obtain the following.

Theorem 6. LTDF is (λ,∀)-tightly extensible w.r.t. DDH and PKE is (2λ, ∀)-
tightly extensible w.r.t. DDH.

All in all, we have provided a new way of constructing multi-user IND-CPA
encryption schemes out of a DDH group using tightly extensible lossy trapdoor
functions. We leave it as an open question whether it is possible to obtain tightly
extensible LTDFs from different standard assumptions, such as lattices.
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