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Abstract. Lattice-based group signature is an active research topic in
recent years. Since the pioneering work by Gordon, Katz and Vaikun-
tanathan (Asiacrypt 2010), ten other schemes have been proposed, pro-
viding various improvements in terms of security, efficiency and function-
ality. However, in all known constructions, one has to fix the number N
of group users in the setup stage, and as a consequence, the signature
sizes are dependent on N .
In this work, we introduce the first constant-size group signature from
lattices, which means that the size of signatures produced by the scheme
is independent of N and only depends on the security parameter λ. More
precisely, in our scheme, the sizes of signatures, public key and users’ se-
cret keys are all of order Õ(λ). The scheme supports dynamic enrollment
of users and is proven secure in the random oracle model under the Ring
Short Integer Solution (RSIS) and Ring Learning With Errors (RLWE)
assumptions. At the heart of our design is a zero-knowledge argument
of knowledge of a valid message-signature pair for the Ducas-Micciancio
signature scheme (Crypto 2014), that may be of independent interest.

Keywords. lattice-based cryptography, constant-size group signatures,
zero-knowledge proofs, Ducas-Micciancio signature

1 Introduction

Group signature, introduced by Chaum and van Heyst [18], is a fundamental
anonymity primitive which allows members of a group to sign messages on be-
half of the whole group. Yet, users are kept accountable for the signatures they
issue since a tracing authority can identify them should the need arise. These two
appealing features allow group signatures to find applications in various real-life
scenarios, such as digital right management, anonymous online communications,
e-commerce systems, and much more. On the theoretical front, designing se-
cure and efficient group signature schemes is interesting and challenging, since
those advanced constructions usually require a sophisticated combination of care-
fully chosen cryptographic ingredients: digital signatures, encryption schemes,
and zero-knowledge protocols. Numerous group signature schemes have been
proposed in the last quarter-century, some of which produce very short signa-
tures [2,8]. In the setting of bilinear groups, many schemes [1,28,12,40] achieved



constant-size signatures, which means that the group signatures only contain
O(1) number of group elements. In other words, the signature sizes in those
schemes only depend on the security parameter and are independent of the
number N of group users. In the lattice setting, however, none of the existing
constructions achieved this feature.

Lattice-based group signatures. Lattice-based cryptography has been an
exciting research area since the seminal works of Regev [55] and Gentry et al. [24].
Lattices not only allow to build powerful primitives (e.g., [23,25]) that have no
feasible instantiations in conventional number-theoretic cryptography, but they
also provide several advantages over the latter, such as conjectured resistance
against quantum adversaries and faster arithmetic operations. Along with oth-
er primitives, lattice-based group signature has received noticeable attention in
recent years. The first scheme was introduced by Gordon, Katz and Vaikun-
tanathan [26] whose solution produced signature size linear in the number of
group users N . Camenisch et al. [16] then extended [26] to achieve anonymi-
ty in the strongest sense. Later, Laguillaumie et al. [32] put forward the first
scheme with the signature size logarithmic in N , at the cost of relatively large
parameters. Simpler and more efficient solutions with O(logN) signature size
were subsequently given by Nguyen et al. [52] and Ling et al. [42]. Libert et
al. [37] obtained substantial efficiency improvements via a construction based on
Merkle trees which eliminates the need for GPV trapdoors [24]. More recently,
a scheme supporting message-dependent opening (MDO) feature [56] was pro-
posed in [39]. All the schemes mentioned above are designed for static groups,
and all have signature sizes dependent on N .

Three lattice-based group signatures that have certain dynamic features were
proposed by Langlois et al. [33], Libert et al. [35], and Ling et al. [43]. The first
one is a scheme with verifier-local revocation (VLR) [9], which means that only
the verifiers need to download the up-to-date group information. The second
one addresses the orthogonal problem of dynamic user enrollments, which was
formalized by Kiayias and Yung [31] and by Bellare et al. [5]. The third one
is a fully dynamic scheme that supports both features, following Bootle et al.’s
model [10]. Again, all these three schemes have signature size O(logN).

In all existing works on lattice-based group signatures, for various reasons,
one has to fix the number N = poly(λ), where λ is the security parameter, in the
setup stage. For the schemes from [26,16,32,33,42,52,39,35] - which are based
on full-fledged lattice-based ordinary signatures [24,11,17], this is due to the
fact that their security reductions have to guess a target user with probability
1/N , and cannot go through unless N is known in advance. For the schemes
from [37,43] - which associate group users with leaves in lattice-based Merkle
hash trees - this is because the size N of the trees has to be determined so
that the setup algorithm succeeds. As a consequence, the parameters of those
schemes, including the signature sizes, are unavoidably dependent on N . This
state-of-affairs is somewhat unsatisfactory, considering that the constant-size
feature has been achieved in the pairing setting. This inspires us to investigate
the problem of designing constant-size lattice-based group signatures.
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Our Results and Techniques. We introduce the first constant-size group
signature scheme from lattices. Here, by “constant-size”, we mean that the sig-
nature size is independent of the number of group users N , as in the context
of pairing-based group signatures [28,12]. The crucial difference between our
scheme and previous works on lattice-based group signatures is that we do not
have to fix N in the setup phase. As a result, the execution of the scheme is
totally independent of N . The sizes of the public key, users’ signing keys and
signatures are of order Õ(λ). A comparison between our schemes and previous
works, in terms of asymptotic efficiency and functionality, is given in Table 1.

The scheme operates in Bellare et al.’s model for partially dynamic groups [5],
and is proven secure under the hardness of the Ring Short Integer Solution (RSIS)
and the Ring Learning With Errors (RLWE) problems. As for all known lattice-
based group signatures, our security analysis is in the random oracle model.

Scheme Sig. Size Group PK size Signer’s SK size Functionality
GKV [26] Õ(λ2 ·N) Õ(λ2 ·N) Õ(λ2) static
CNR [16] Õ(λ2 ·N) Õ(λ2) Õ(λ2) static
LLLS [32] Õ(λ · `) O(λ2 · `) Õ(λ2) static

LLNW [33] Õ(λ · `) Õ(λ2 · `) Õ(λ · `) VLR
NZZ [52] Õ(λ+ `2) Õ(λ2 · `2) Õ(λ2) static

LNW-I [42] Õ(λ · `) Õ(λ2 · `) Õ(λ) static
LNW-II [42] Õ(λ · `) Õ(λ · `) Õ(λ) + ` static
LLNW [37] Õ(λ · `) Õ(λ2 + λ · `) Õ(λ · `) static

LLM+ [35] Õ(λ · `) Õ(λ2 · `) Õ(λ) partially
dynamic

LMN [39] Õ(λ · `) Õ(λ2 · `) Õ(λ) MDO

LNWX [43] Õ(λ · `) Õ(λ2 + λ · `) Õ(λ) + `
fully

dynamic

Ours Õ(λ) Õ(λ) Õ(λ) partially
dynamic

Table 1. Comparison of known lattice-based group signatures, in terms of asymptotic
efficiency and functionality. The comparison is done based on two governing parame-
ters: security parameter λ and the maximum expected number of group users N = 2`.
Among the listed schemes, the LNW-II [42] scheme and ours are the only ideal-lattice-
based constructions, while other schemes rely on various SIS and LWE assumptions in
the general-lattice setting.

Our scheme relies on the RSIS-based signature scheme by Ducas and Miccian-
cio [20], which exploits the “confined guessing” technique [7] in the ring setting
to achieve short public key. We employ the stateful and adaptively secure version
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of the scheme, described in [21], which suffices for building group signatures and
which allows to work with even shorter key.

The scheme follows the usual sign-then-encrypt-then-prove approach for con-
structing group signatures. Each user generates a secret-public key pair (x, p)
and becomes a certified group member once receiving a Ducas-Micciancio sig-
nature on his public key p. When generating group signatures, the user first
encrypts his public key p to ciphertext c via a CCA-secure encryption scheme
obtained by applying the Naor-Yung transformation [51] to a variant of the RL-
WE-based scheme by Lyubashevsky, Peikert and Regev [47]. Then he proves in
zero-knowledge that: (i) he has a valid secret key x corresponding to p; (ii) he
possesses a Ducas-Micciancio signature on p; and (iii) c is a correct ciphertex-
t of p. The protocol is then transformed into a signature via the Fiat-Shamir
heuristic [22].

To instantiate the above approach, we design a zero-knowledge argument of
knowledge of a valid message-signature pair for the Ducas-Micciancio signature,
which is based on Stern’s framework [57]. We observe that a similar protocol for
the Boyen signature [11] was proposed by Ling et al. [42], but their method is sub-
optimal in terms of efficiency. We thus propose a refined technique that allows to
achieve better communication cost, and hence, shorter signature size. We believe
that our protocol is of independent interest. Indeed, apart from group signatures,
zero-knowledge protocols for valid message-signature pairs are essential ingredi-
ents for designing various privacy-enhancing constructions, such as anonymous
credentials [15], compact e-cash [14,38], policy-based signatures [3,19], and much
more.

On the practical front, as all known lattice-based group signatures, our
scheme is not truly practical. Even though the scheme produces signatures of
constant size Õ(λ), due to a large poly-logarithmic factor contained in the Õ
notation, the signature size is too big to be really useful in practice. We, however,
hope that our result will inspire more efficient constructions in the near future.

2 Background

Notations. The set {1, . . . , n} is denoted by [n]. If S is a finite set, then x $←− S
means that x is chosen uniformly at random from S. When concatenating column
vectors x ∈ Rm and y ∈ Rk, for simplicity, we use the notation (x‖y) ∈ Rm+k

instead of (x>‖y>)>.

2.1 Rings, RSIS and RLWE

Let q ≥ 3 be a positive integer and let Zq = [− q−1
2 , q−1

2 ]. Consider rings of
the form R = Z[X]/(Φ2n(X)) and Rq = (R/qR), where n is a power of 2 and
Φ2n(X) = Xn + 1 is the cyclotomic polynomial of degree n.

We will use the coefficient embedding τ : Rq → Znq that maps ring element
v = v0+v1 ·X+. . .+vn−1 ·XN−1 ∈ Rq to vector τ(v) = (v0, v1, . . . , vn−1)> ∈ Znq .
We will also use the ring homomorphism rot : Rq → Zn×nq that maps a ∈ Rq to

4



matrix rot(a) =
[
τ(a) | τ(a · X) | . . . | τ(a · Xn−1)

]
∈ Zn×nq (see, e.g., [49,58]).

These functions allow us to interpret the product y = a · v over Rq as the
matrix-vector product τ(y) = rot(a) · τ(v) mod q.

When working with vectors over Rq, we often abuse the notations rot and τ .
If A = [a1 | . . . | am] ∈ R1×m

q , then we denote by rot(A) the matrix

rot(A) =
[
rot(a1) | . . . | rot(am)

]
∈ Zn×mnq .

If v = (v1, . . . , vm)> ∈ Rmq , then we let τ(v) = (τ(v1)‖ . . . ‖τ(vm)) ∈ Zmnq . Note
that, if y = A · v over Rq, then we have τ(y) = rot(A) · τ(v) mod q.

For a = a0 + a1 ·X + . . .+ an−1 ·XN−1 ∈ R, we define ‖a‖∞ = maxi(|ai|).
Similarly, for vector b = (b1, . . . , bm)> ∈ Rm, we define ‖b‖∞ = maxj(‖bj‖∞).

We now recall the average-case problems RSIS and RLWE associated with the
rings R,Rq, as well as their hardness results.

Definition 1 ([44,54,45]). The RSISn,m,q,β problem is as follows. Given a
uniformly random A = [a1 | . . . | am] ∈ R1×m

q , find a non-zero vector x =
(x1, . . . , xm)> ∈ Rm such that ‖x‖∞ ≤ β and A ·x = a1 ·x1 + . . .+am ·xm = 0.

For m > log q
log(2β) , γ = 16βmn log2 n, and q ≥ γ

√
n

4 logn , the RSISn,m,q,β problem
is at least as hard as SVP∞γ in any ideal in the ring R (see, e.g., [44]).

Definition 2 ([46]). Let n,m ≥ 1, q ≥ 2, and let χ be a probability distri-
bution on R. For s ∈ Rq, let As,χ be the distribution obtained by sampling
a

$←− Rq and e ←↩ χ, and outputting the pair (a, a · s + e) ∈ Rq × Rq. The
RLWEn,m,q,χ problem (the Hermite-Normal-Form version) asks to distinguish m
samples chosen according to As,χ (for s←↩ χ) and m samples chosen according
to the uniform distribution over Rq ×Rq.

Let q = poly(n) be a prime power. Let B = Õ(n5/4) be an integer and χ be a
B-bounded distribution on R, i.e., it outputs samples e ∈ R such that ‖e‖∞ ≤ B
with overwhelming probability in n. Then, for γ = n2(q/B)(nm/ log(nm))1/4,
the RLWEn,m,q,χ problem is at least as hard as SVP∞γ in any ideal in the ring R,
via a polynomial-time quantum reduction (see, e.g., [46,48,34,53]).

2.2 Decompositions

We next recall the integer decomposition technique from [41]. For any B ∈ Z+,
define δB := blog2 Bc+ 1 = dlog2(B + 1)e and the sequence B1, . . . , BδB , where
Bj = bB+2j−1

2j c, for each j ∈ [1, δB ]. As observed in [41], it satisfies
∑δB
j=1 Bj = B

and any integer v ∈ [0, B] can be decomposed to idecB(v) = (v(1), . . . , v(δB))> ∈
{0, 1}δB such that

∑δB
j=1 Bj ·v(j) = v. This decomposition procedure is described

in a deterministic manner as follows:
1. v′ := v
2. For j = 1 to δB do:
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(i) If v′ ≥ Bj then v(j) := 1, else v(j) := 0;
(ii) v′ := v′ −Bj · v(j).

3. Output idecB(v) = (v(1), . . . , v(δB))>.

In this work, we will employ the above decomposition procedure when work-
ing with polynomials in the ring Rq. Specifically, for B ∈ [1, q−1

2 ], we define the
injective function rdecB that maps a ∈ Rq such that ‖a‖∞ ≤ B to a ∈ RδB such
that ‖a‖∞ ≤ 1, which works as follows.

1. Let τ(a) = (a0, . . . , an−1)>. For each i, let σ(ai) = 0 if ai = 0; σ(ai) = −1 if
ai < 0; and σ(ai) = 1 if ai > 0.

2. ∀i, compute wi = σ(ai) · idecB(|ai|) = (wi,1, . . . , wi,δB )> ∈ {−1, 0, 1}δB .
3. Form the vector w = (w0‖ . . . ‖wn−1) ∈ {−1, 0, 1}nδB , and let a ∈ RδB be

such that τ(a) = w.
4. Output rdecB(a) = a.

When working with vectors of ring elements, e.g., v = (v1, . . . , vm)> such that
‖v‖∞ ≤ B, then we let rdecB(v) =

(
rdecB(v1)‖ . . . ‖rdecB(vm)

)
∈ RmδB .

Now, ∀m,B ∈ Z+, we define matrices HB ∈ Zn×nδB and Hm,B ∈ Znm×nmδB as

HB =

B1 . . . BδB
. . .

B1 . . . BδB

 , and Hm,B =

HB

. . .
HB

 .
Then we have

τ(a) = HB · τ(rdecB(a)) mod q and τ(v) = Hm,B · τ(rdecB(v)).

For simplicity of presentation, when B = q−1
2 , we will use the notation rdec

instead of rdec q−1
2

, and H instead of H q−1
2

.

2.3 A Variant of the Ducas-Micciancio Signature scheme

We recall a variant of the Ducas-Micciancio signature scheme [20,21], which is
to used to design a (partially) dynamic group signature scheme as in the model
of Bellare, Shi and Zhang [5]. Specifically, we use it to enroll new users.

In their papers, Ducas and Micciancio proposed two versions of signature
schemes from ideal lattices: non-stateful and stateful. Note that in a group sig-
nature scheme, there are at most polynomial number of users. Therefore, it is
reasonable to assume there are at most polynomial number of signature queries
to the Ducas-Micciancio signature scheme. Under this assumption, the stateful
version not only reduces the security loss of the proof, but also allows better
parameters ([21, Section 4.1]), compared with the non-stateful version. We al-
so note that in a group signature scheme, the signature scheme used to enroll
users should be adaptively secure. To achieve adaptive security, we thus embed
the chameleon hash function [21, Appendix B.3] into the above non-adaptively
secure version.
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Now we summarize the stateful and adaptively secure version of Ducas-
Micciancio signature scheme below. Following [20,21], throughout this work,
let c > 1 be some real constant and α0 ≥ 1/(c − 1). Let d ≥ logc(ω(logn))
be an integer and {c0, c1 · · · , cd} be a strictly increasing integer sequence with
c0 = 0 and ci = bα0c

ic for i ∈ [d]. Define Ti = {0, 1}ci for i ∈ [d]. For a tag
t = (t0, t1 . . . , tcd−1)> ∈ Td, let t[i] = (tci−1 , . . . , tci−1)>. Then we can check that
t = (t[1]‖t[2]‖ . . . ‖t[d]). Identify each tag t ∈ Td as t(X) =

∑cd−1
j=0 tjX

j ∈ R and
t[i] as t[i](X) =

∑ci−1
j=ci−1

tjX
j ∈ R.

This variant works with the following parameters. Given the security param-
eter λ, the key generation algorithm works as follows.

– Choose parameter n = O(λ) being a power of 2, and modulus q = 3k for
some positive integer k. Let R = Z[X]/(Xn + 1) and Rq = R/qR.

– Also, let ` = blog q−1
2 c+ 1, m ≥ 2dlog qe+ 2, and m = m+ k.

– Let integer d and sequence c0, . . . , cd as described above. Let β = Õ(n) be a
integer.

– Let S ∈ Z be a state initialized to 0.

The verification key consists of the following:

A,F0 ∈ R1×m
q ; A[0], . . . ,A[d] ∈ R1×k

q ; F,F1 ∈ R1×`
q ; u ∈ Rq

while the signing key is a Micciancio-Peikert [50] trapdoor matrix R ∈ Rm×kq .
To sign a message p ∈ Rq, let p = rdec(p) ∈ R` whose coefficients are in the

set {−1, 0, 1}. The signer then proceeds as follows.

– Set the tag t = (t0, t1 . . . , tcd−1)> ∈ Td, where S =
∑cd−1
j=0 2j ·tj , and compute

At = [A|A[0] +
∑d
i=1 t[i]A[i]] ∈ R

1×(m+k)
q . Update S to S + 1.

– Sample r ∈ Rm such that ‖r‖∞ ≤ β.
– Let y = F0 · r + F1 · p ∈ Rq and up = F · rdec(y) + u ∈ Rq.
– Using the trapdoor matrix R, generate a ring vector v ∈ Rm+k such that

At · v = up and ‖v‖∞ ≤ β.
– Output the tuple (t, r,v) as a signature for p ∈ Rq.

To verify a signature tuple (t, r,v) on message p ∈ Rq, the verifier computes the
matrix At as above and checks the following conditions hold or not. If yes, he
outputs 1. Otherwise, he outputs 0.{

At · v = F · rdec(F0 · r + F1 · rdec(p)) + u,

‖r‖∞ ≤ β, ‖v‖∞ ≤ β.

Remark 1. We remark that p = rdec(p) ∈ R` and rdec(y) ∈ R` are ring vectors
with coefficients in the set {−1, 0, 1} while Ducas-Micciancio signature scheme
handles ring vectors with binary coefficients. However, this does not affect the
security of the Ducas-Micciancio signature scheme.
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Lemma 1 ([20,21]). If we assume there are at most polynomial number of sig-
nature queries and the RSIS

n,m,q,Õ(n2) problem is hard, then the above variant of
Ducas-Micciancio signature scheme is existentially unforgeable against adaptive
chosen message attacks.

2.4 Zero-Knowledge Argument Systems and Stern-like Protocols

We will work with statistical zero-knowledge argument systems, namely, inter-
active protocols where the zero-knowledge property holds against any cheat-
ing verifier, while the soundness property only holds against computationally
bounded cheating provers. More formally, let the set of statements-witnesses
R = {(y, w)} ∈ {0, 1}∗ × {0, 1}∗ be an NP relation. A two-party game 〈P,V〉 is
called an interactive argument system for the relation R with soundness error e
if the following conditions hold:

– Completeness. If (y, w) ∈ R then Pr
[
〈P(y, w),V(y)〉 = 1

]
= 1.

– Soundness. If (y, w) 6∈ R, then ∀ PPT P̂: Pr[〈P̂(y, w),V(y)〉 = 1] ≤ e.

An argument system is called statistical zero-knowledge if there exists a PPT
simulator S(y) having oracle access to any V̂(y) and producing a simulated
transcript that is statistically close to the one of the real interaction between
P(y, w) and V̂(y). A related notion is argument of knowledge, which requires
the witness-extended emulation property. For protocols consisting of 3 moves
(i.e., commitment-challenge-response), witness-extended emulation is implied by
special soundness [27], where the latter assumes that there exists a PPT extractor
which takes as input a set of valid transcripts with respect to all possible values of
the “challenge” to the same “commitment”, and outputs w′ such that (y, w′) ∈ R.

Stern-like protocols. The statistical zero-knowledge arguments of knowledge
presented in this work are Stern-like [57] protocols. In particular, they are Σ-
protocols in the generalized sense defined in [29,6] (where 3 valid transcripts are
needed for extraction, instead of just 2). The basic protocol consists of 3 moves:
commitment, challenge, response. If a statistically hiding and computationally
binding string commitment scheme, such as the KTX scheme [30], is employed
in the first move, then one obtains a statistical zero-knowledge argument of
knowledge (ZKAoK) with perfect completeness, constant soundness error 2/3.
In many applications, the protocol is repeated κ = ω(log λ) times to make the
soundness error negligibly small in λ.
An abstraction of Stern’s protocol. We recall an abstraction of Stern’s
protocol, proposed in [35]. Let K,L, q be positive integers, where L ≥ K and
q ≥ 2, and let VALID be a subset of {−1, 0, 1}L. Suppose that S is a finite set
such that one can associate every φ ∈ S with a permutation Γφ of L elements,
satisfying the following conditions:{

w ∈ VALID ⇐⇒ Γφ(w) ∈ VALID,
If w ∈ VALID and φ is uniform in S, then Γφ(w) is uniform in VALID.

(1)
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We aim to construct a statistical ZKAoK for the following abstract relation:

Rabstract =
{

(M,u),w ∈ ZK×Lq × ZKq × VALID : M ·w = u mod q.
}

The conditions in (1) play a crucial role in proving in ZK that w ∈ VALID: To
do so, the prover samples φ $←− S and let the verifier check that Γφ(w) ∈ VALID,
while the latter cannot learn any additional information about w thanks to the
randomness of φ. Furthermore, to prove in ZK that the linear equation holds,
the prover samples a masking vector rw

$←− ZLq , and convinces the verifier instead
that M · (w + rw) = M · rw + u mod q.

The interaction between prover P and verifier V is described in Figure 1.
The protocol employs a statistically hiding and computationally binding string
commitment scheme COM (e.g., the RSIS-based scheme from [30]).

1. Commitment: Prover samples rw
$←− ZLq , φ $←− S and randomness ρ1, ρ2, ρ3 for

COM. Then he sends CMT =
(
C1, C2, C3

)
to the verifier, where

C1 = COM(φ,M · rw mod q; ρ1), C2 = COM(Γφ(rw); ρ2),
C3 = COM(Γφ(w + rw mod q); ρ3).

2. Challenge: The verifier sends a challenge Ch $←− {1, 2, 3} to the prover.
3. Response: Depending on Ch, the prover sends RSP computed as follows:

– Ch = 1: Let tw = Γφ(w), tr = Γφ(rw), and RSP = (tw, tr, ρ2, ρ3).
– Ch = 2: Let φ2 = φ, w2 = w + rw mod q, and RSP = (φ2,w2, ρ1, ρ3).
– Ch = 3: Let φ3 = φ, w3 = rw, and RSP = (φ3,w3, ρ1, ρ2).

Verification: Receiving RSP, the verifier proceeds as follows:

– Ch = 1: Check that tw ∈ VALID, C2 = COM(tr; ρ2), C3 = COM(tw+tr mod q; ρ3).

– Ch = 2: Check that C1 = COM(φ2,M·w2−u mod q; ρ1), C3 = COM(Γφ2 (w2); ρ3).

– Ch = 3: Check that C1 = COM(φ3,M ·w3; ρ1), C2 = COM(Γφ3 (w3); ρ2).

In each case, the verifier outputs 1 if and only if all the conditions hold.
Fig. 1: Stern-like ZKAoK for the relation Rabstract.

Theorem 1 ([35]). Assume that COM is a statistically hiding and computa-
tionally binding string commitment scheme. Then, the protocol in Figure 1 is a
statistical ZKAoK with perfect completeness, soundness error 2/3, and commu-
nication cost O(L log q). In particular:

– There exists a polynomial-time simulator that, on input (M,u), outputs an
accepted transcript statistically close to that produced by the real prover.
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– There exists a polynomial-time knowledge extractor that, on input a com-
mitment CMT and 3 valid responses (RSP1,RSP2,RSP3) to all 3 possible
values of the challenge Ch, outputs w′ ∈ VALID such that M ·w′ = u mod q.

The proof of the Theorem 1, appeared in [35], employs standard simulation and
extraction techniques for Stern-like protocols (e.g., [30,41,36]). The details are
available in the full version.

Looking ahead, all the relations we consider in this work (Sections 3.2 and 4.2),
will be reduced to instances of the above abstract protocol.

3 ZKAoK for the Ducas-Micciancio Signature Scheme

This section presents our statistical zero-knowledge argument of knowledge for a
valid message-signature pair for the Ducas-Micciancio signature scheme [20,21].
In the process, we will need to prove knowledge of a witness vector of the “mix-
ing” form (

z ‖ t0 · z ‖ . . . ‖ tcd−1 · z
)
, (2)

where z ∈ {−1, 0, 1}m and t = (t0, . . . , tcd−1)> ∈ {0, 1}cd for some positive
integers m and cd.

We note that, in their ZK protocol for the Boyen signature [11], Ling et
al. [42] also derived a vector of similar form. To handle such a vector in the
Stern’s framework [57], Ling et al. used a permutation in the symmetric group
S3m to hide the value of z and a permutation in the symmetric group S2cd to hide
the value of t. As a consequence, the cost of communicating the permutations
from the prover to the verifier is 3m logm + 2cd log cd bits. This is sub-optimal,
because the cost is much larger than the number of secret bits.

In Section 3.1, we put forward a refined permuting technique in which the
total cost for the permutations is exactly the total bit-size of z and t. We then
employ this technique as a building block for our ZK protocol in Section 3.2.

3.1 A Refined Permuting Technique

We first observe that the coefficients of the vector described in (2) are highly
correlated: most of them are products of ti and zj , where both ti and zj do
appear at other positions. Thus, to prove the well-formedness of such a vector,
we have to solve two sub-problems: (i) proving that a secret integer z is an
element of the set {−1, 0, 1}; (ii) proving that a secret integer y is the product
of secret integers t ∈ {0, 1} and z ∈ {−1, 0, 1}. Furthermore, these sub-protocols
must be compatible and extendable, so that we can additionally prove that the
same t and z satisfy other relations.
Technique for proving that z ∈ {−1, 0, 1}. For any integer a, let us denote by
[a]3 the integer a′ ∈ {−1, 0, 1} such that a′ = a mod 3. For integer z ∈ {−1, 0, 1},
we define the 3-dimensional vector enc3(z) as follows:

enc3(z) =
(
[z + 1]3, [z]3, [z − 1]3

)> ∈ {−1, 0, 1}3.
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Namely, enc3(−1) = (0,−1, 1)>, enc3(0) = (1, 0,−1)> and enc3(1) = (−1, 1, 0)>.

Now, for any integer e ∈ {−1, 0, 1}, define the permutation πe that transforms
vector v = (v(−1), v(0), v(1))> ∈ Z3 into vector

πe(v) = (v([−e−1]3), v([−e]3), v([−e+1]3))>.

We then observe that, for any z, b ∈ {−1, 0, 1}, the following equivalence
holds.

v = enc3(z) ⇐⇒ πe(v) = enc3([z + e]3). (3)

In the framework of Stern’s protocol, the above technique in fact allows us
to prove knowledge of z ∈ {−1, 0, 1}, where z may satisfy other relations. To
do this, we first extend z to v = enc3(z). Then, to show that v is a well-
formed extension, we pick a uniformly random e

$←− {−1, 0, 1}, and send πe(v)
to the verifier. Thanks to the equivalence observed in (3), when seeing that
πe(v) = enc3([z + e]3), the verifier should be convinced that v = enc3(z), which
implies that z ∈ {−1, 0, 1}. Meanwhile, since e acts as a “one-time pad”, the value
of z is completely hidden from the verifier. Furthermore, to prove that z satisfies
other relations, we can use the same “one-time pad” e at other appearances of z.
An example of that is to prove that z is involved in a product t · z, which we
now present.

Technique for proving that y = t · z. For any b ∈ {0, 1}, we denote by b the
bit 1− b. The addition operation modulo 2 is denoted by ⊕.

For any t ∈ {0, 1} and z ∈ {−1, 0, 1}, we construct the 6-dimensional integer
vector ext(t, z) ∈ {−1, 0, 1}6 as follows:

ext(t, z) =
(
t · [z+1]3, t · [z+1]3, t · [z]3, t · [z]3, t · [z−1]3, t · [z−1]3

)>
.

Now, for any b ∈ {0, 1} and e ∈ {−1, 0, 1}, we define the permutation ψb,e(·)
that transforms vector

v =
(
v(0,−1), v(1,−1), v(0,0), v(1,0), v(0,1), v(1,1))> ∈ Z6

into vector

ψb,e(v) =
(
v(b,[−e−1]3), v(b,[−e−1]3), v(b,[−e]3), v(b,[−e]3), v(b,[−e+1]3), v(b,[−e+1]3))>.

We then observe that the following equivalence holds for any t, b ∈ {0, 1} and
any z, e ∈ {−1, 0, 1}.

v = ext(t, z) ⇐⇒ ψb,e(v) = ext( t⊕ b, [z + e]3 ). (4)

Example 1. Let t = 1 and z = −1. Then we have

v = ext(t, z) = (0, 0, 0,−1, 0, 1)> = (v(0,−1), v(1,−1), v(0,0), v(1,0), v(0,1), v(1,1))>.
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Suppose that b = 0 and e = 1, then

ψb,e(v) = (v(0,1), v(1,1), v(0,−1), v(1,−1), v(0,0), v(1,0))> = (0, 1, 0, 0, 0,−1)>,

which is equal to ext(1, 0) = ext(1⊕ 0, [−1 + 1]3).

In the framework of Stern’s protocol, the above technique will be used to
prove that y = t · z, as follows. We first extend y to v = ext(t, z). Then, to prove
that v is well-formed, we sample b $←− {0, 1}, e $←− {−1, 0, 1}, and demonstrate
to the verifier that ψb,e(v) = ext( t ⊕ b, [z + e]3 ). Thanks to the equivalence
observed in (4), the verifier should be convinced that v is well-formed, implying
that the original integer y does have the form t · z. Meanwhile, the random
integers b, e essentially act as “one-time pads” that perfectly hide the values of
t and z, respectively. Moreover, if we want to prove that the same t, z appear
elsewhere, we can use the same b, e at those places.

Next, we will describe the somewhat straightforward generalizations of the
above two core techniques, which enable us to prove knowledge of vector z ∈
{−1, 0, 1}m as well as vector of the form (2). Based on the above discussions, one
can see that the target is to obtain equivalences similar to (3) and (4), which
are useful in Stern’s framework.
Proving that z ∈ {−1, 0, 1}m. For any vector a ∈ Zm, we will also use the
notation [a]3 to denote the vector a′ ∈ {−1, 0, 1}m such that a′ = a mod 3.

For z = (z1, . . . , zm)> ∈ {−1, 0, 1}m, we define the following extension:

enc(z) =
(

enc3(z1) ‖ . . . ‖ enc3(zm)
)
∈ {−1, 0, 1}3m.

For any vector e = (e1, . . . , em)> ∈ {−1, 0, 1}m, we define the permutationΠe
that acts as follows. When applied to vector v = (v1‖ . . . ‖vm) ∈ Z3m consisting
of m blocks of size 3, it transforms v into vector:

Πe(v) =
(
πe1(v1)‖ . . . ‖πem(vm)

)
.

It then follows from (3) that the following holds for any z, e ∈ {−1, 0, 1}m.

v = enc(z) ⇐⇒ Πe(v) = enc([z + e]3). (5)

Handling a “mixing” vector. We now tackle the “mixing” vector discussed
earlier, i.e.,

y =
(

z ‖ t0 · z ‖ . . . ‖ tcd−1 · z
)
.

For any z = (z1, . . . , zm)> ∈ {−1, 0, 1}m and t = (t0, . . . , tcd−1)> ∈ {0, 1}cd ,
we define vector mix(t, z) ∈ {−1, 0, 1}3m+6mcd of the form:(

enc(z) ‖ ext(t0, z1) ‖ . . . ‖ ext(t0, zm) ‖ . . . ‖ ext(tcd−1, z1) ‖ . . . ‖ ext(tcd−1, zm)
)
,
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which is an extension of vector y. Next, for b = (b0, · · · , bcd−1)> ∈ {0, 1}cd
and e = (e1, . . . , em) ∈ {−1, 0, 1}m, we define the permutation Ψb,e that acts as
follows. When applied to vector

v =
(
v−1 ‖ v0,1 ‖ . . . ‖ v0,m ‖ . . . ‖ vcd−1,1 ‖ . . . ‖ vcd−1,m

)
∈ Z3m+6mcd ,

where block v−1 has length 3m and each block vi,j has length 6, it transforms v
into vector

Ψb,e(v) =
(
Πe(v−1)‖ ψb0,e1(v0,1)‖ . . . ‖ψb0,em(v0,m)‖ . . . ‖

ψbcd−1,e1(vcd−1,1)‖ . . . ‖ψbcd−1,em(vcd−1,m)
)
.

Then, observe that the following desirable equivalence holds for all t,b ∈ {0, 1}cd
and z, e ∈ {−1, 0, 1}m.

v = mix(t, z) ⇐⇒ Ψb,e(v) = mix( t⊕ b, [z + e]3 ). (6)

3.2 Zero-Knowledge Protocol for the Ducas-Micciancio Signature

We now present our statistical ZKAoK of a valid message-signature pair for the
Ducas-Micciancio signature scheme. Let n, q,m, k,m, `, β, d, c0, . . . , cd as speci-
fied in Section 2.3. The protocol can be summarized as follows.

– The public input consists of

A,F0 ∈ R1×m
q ; A[0], . . . ,A[d] ∈ R1×k

q ; F,F1 ∈ R1×`
q ; u ∈ Rq.

– The prover’s secret input consists of message p ∈ Rq and signature (t, r,v),
where {

t = (t0, . . . , tc1−1, . . . , tcd−1 , . . . , tcd−1)> ∈ {0, 1}cd ;
r ∈ Rm; v = (s‖z) ∈ Rm+k; s ∈ Rm; z ∈ Rk;

– The prover’s goal is to prove in zero-knowledge that ‖r‖∞ ≤ β, ‖v‖∞ ≤ β,
and that the equation

A · s + A[0] · z +
d∑
i=1

A[i] · t[i] · z = F · y + u (7)

holds for
{
t[i] =

∑ci−1
j=ci−1

tj ·Xj
}d
i=1 and

y = rdec (F0 · r + F1 · rdec(p)) ∈ R`. (8)

Our strategy is to reduce the considered statement to an instance of the
abstract protocol from Section 2.4. The reduction consists of 2 steps.
Decomposing-Unifying. In the first step, we will employ the decomposi-
tion techniques from Section 2.2 together with the notations rot and τ from
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Section 2.1 to transform equations (7) and (8) into one equation of the form
M0 · w0 = u mod q, where M0,u are public, and the coefficients of vector w0
are in the set {−1, 0, 1}.

Let s? = τ(rdecβ(s)) ∈ {−1, 0, 1}nmδβ , z? = τ(rdecβ(z)) ∈ {−1, 0, 1}nkδβ
and r? = τ(rdecβ(r)) ∈ {−1, 0, 1}nmδβ . Then, we observe that, equation (7) is
equivalent to,

[rot(A[0]) ·Hk,β ] · z? +
d∑
i=1

ci−1∑
j=ci−1

[rot(A[i] ·Xj) ·Hk,β ] · tj · z∗ +

[rot(A) ·Hm,β ] · s? − [rot(F)] · τ(y) = τ(u) mod q,

and equation (8) is equivalent to

[rot(F0) ·Hm,β ] · r? + [rot(F1)] · τ(rdec(p))− [H] · τ(y) = 0 mod q.

Now, using basic algebra, we can manipulate the two derived equations: re-
arranging the secret vectors and combining them, as well as concatenating the
public matrices (namely, those written inside [ · ]) accordingly. As a result, we
obtain an unifying equation of the form:

M0 ·w0 = u mod q,

where u = (τ(u) ‖ 0) ∈ Z2n
q and M0 are public, and w0 = (w1 ‖ w2), with{

w1 = (z? ‖ t0 · z? ‖ . . . ‖ tcd−1 · z?) ∈ {−1, 0, 1}(kδβ+cdkδβ)n;
w2 = (s? ‖ r? ‖ τ(y) ‖ τ(rdec(p))) ∈ {−1, 0, 1}(mδβ+`)2n.

Extending-Permuting. In this second step, we will transform the equation
M0 · w0 = u mod q obtained in the first step into an equation of the form
M ·w = u mod q, where the secret vector w satisfies the conditions required by
the abstract protocol. In the process, we will employ the techniques introduced
in Section 3.1.

Specifically, we extend the blocks of vector w0 = (w1‖w2) as follows.

w1 7→ w′1 = mix
(
t, z?

)
∈ {−1, 0, 1}L1 ; (9)

w2 7→ w′2 = enc(w2) ∈ {−1, 0, 1}L2 .

Then we form vector w = (w′1‖w′2) ∈ {−1, 0, 1}L, where

L = L1 + L2; L1 = (kδβ + 2cdkδβ)3n; L2 = (mδβ + `)6n.

At the same time, we insert suitable zero-columns to matrix M0 to obtain matrix
M ∈ Z2n×L

q such that M ·w = M0 ·w0.
Up to this point, we have transformed the considered relations into one e-

quation of the desired form M · w = u mod q. We now specify the set VALID
that contains the obtained vector w, the set S and permutations {Γφ : φ ∈ S},
such that the conditions in (1) hold.
Define VALID as the set of all vectors v′ = (v′1‖v′2) ∈ {−1, 0, 1}L, satisfying the
following:
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– There exist t ∈ {0, 1}cd and z? ∈ {−1, 0, 1}nkδβ such that v′1 = mix(t, z?).
– There exists w2 ∈ {−1, 0, 1}(mδβ+`)2n such that v′2 = enc(w2).

Clearly, our vector w belongs to this tailored set VALID.
Now, let S = {0, 1}cd × {−1, 0, 1}nkδβ × {−1, 0, 1}(mδβ+`)2n, and associate

every element φ = (b, e, f) ∈ S with permutation Γφ that acts as follows. When
applied to vector v? = (v?1‖v?2) ∈ ZL, where v?1 ∈ ZL1 and v?2 ∈ ZL2 , it trans-
forms v? into vector

Γφ(v?) =
(
Ψb,e(v?1) ‖ Πf (v?2)

)
.

Based on the equivalences observed in (5) and (6), it can be checked that VALID,
S and Γφ satisfy the conditions specified in (1). In other words, we have reduced
the considered statement to an instance of the abstract protocol from Section 2.4.

The interactive protocol. Given the above preparations, our interactive pro-
tocol works as follows.

– The public input consists of matrix M and vector u, which are built from
A, (A[0], . . . ,A[d], F,F0,F1, u), as discussed above.

– The prover’s witness is vector w ∈ VALID, which is obtained from the original
witnesses (p, t, r,v), as described above.

Both parties then run the protocol of Figure 1. The protocol uses the KTX
string commitment scheme COM, which is statistically hiding and computation-
ally binding under the (R)SIS assumption. We therefore obtain the following
result, as a corollary of Theorem 1.

Theorem 2. Assume that COM is a statistically hiding and computationally
binding string commitment scheme. Then the protocol described above is a sta-
tistical ZKAoK of a valid message-signature pair for the Ducas-Micciancio signa-
ture scheme, with perfect completeness, soundness error 2/3 and communication
cost Õ(λ).

Proof. For simulation, we simply run the simulator of Theorem 1. As for ex-
traction, we invoke the knowledge extractor of Theorem 1 to obtain a vector
w′ ∈ VALID such that M · w′ = u mod q. Then, by “backtracking” the trans-
formations being done, we can extract from w′ a satisfying witness (p′, t′, r′,v′)
for the considered statement.

The perfect completeness, soundness error and communication cost of the
protocol directly follow from those of the abstract protocol in Section 2.4. In
particular, the communication cost is:

O(L·log q) = O
(
(kδβ+2cdkδβ)3n·log q+(mδβ+`)6n·log q

)
= O(n·log4 n) = Õ(λ),

for the setting of parameters for the Ducas-Micciancio signature in Section 2.3.
ut
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4 Constant-Size Group Signatures from Lattices

In Section 4.1, we recall the syntax, correctness and security requirements of
the (partially) dynamic group signatures, as in the model of Bellare, Shi and
Zhang [5]. In Section 4.2, we describe our main zero-knowledge argument, which
will be used as a building block in our group signature scheme constructed in
Section 4.3.

4.1 Dynamic Group Signatures

In this section, we recall the syntax, correctness and security definitions of
the (partially) dynamic group signatures, as put forward by Bellare, Shi and
Zhang [5]. A dynamic group signature scheme involves a trusted party who gen-
erates the initial keys, an authority named issuer, an authority named opener
and a set of users who are potential group members. The scheme consists of the
following polynomial-time algorithms.

GKg(λ): Given the security parameter λ, the trusted party runs this algorithm
to generate a triple (gpk, ik, ok). The issue key ik is given to the issuer, the
opening key ok is given to the opener and the group public key gpk is made
public.

UKg(λ): A user who intends to be a group member runs this algorithm to obtain
a personal key pair (upk, usk). It is assumed that upk is public.

〈Join, Iss〉: This is an interactive protocol run by the issuer and a user. If it
completes successfully, the issuer registers this user to the group and this
user becomes a group member. The final state of the Join is the secret signing
key gski while the final state of the Iss is the registration information reg[i]
stored in the registration table reg.

Sign(gpk, gski,M): A group member, using his group signing key gski, runs this
algorithm to obtain a signature Σ on message M .

Verify(gpk,M,Σ): This algorithm outputs 1/0 indicating whether or not Σ is a
valid signature on message M , with respect to the group public key gpk.

Open(gpk, ok, reg,M,Σ): Given gpk, a message-signature pair (M,Σ) and ok,
the opener, who has read-access to the registration table reg, runs this al-
gorithm to obtain a pair (i,Πopen), where i ∈ N ∪ {⊥}. In case i = ⊥,
Πopen = ⊥.

Judge(gpk,M,Σ, i, upki, Πopen): This algorithm outputs 1/0 to check whether or
not Πopen is a proof that i produced Σ, with respect to the group public key
gpk and message M .

Now we recall the correctness and security definitions of dynamic group signa-
tures below.
Correctness requires that for any signature generated by honest group members,
the following should hold: the signature should be valid; the opening algorithm,
given the message and signature, should correctly identify the signer; the proof
returned by the opening algorithm should be accepted by the judge.
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Full Anonymity requires that it is infeasible to recover the identity of a signer
from a signature, even if the adversary is given access to the opening oracle. As
pointed out by [4,5], it is sufficient that the adversary is unable to distinguish
which of two signers of its choice signed a targeted message of its choice.
Traceability requires that every valid signature should be traced to some group
member and the opener is able to generate a proof accepted by the judge.
Non-frameability requires that the adversary is unable to generate a proof, which
is accepted by the judge, that an honest user generated a valid signature unless
this user really did generate this signature.

Formal definitions of correctness and security requirements are available in
the full version.

4.2 The Underlying Zero-Knowledge Argument System

Before describing our group signature scheme in Section 4.3, let us first present
the statistical ZKAoK that will be invoked by the signer when generating group
signatures. The protocol is an extension of the one for the Ducas-Micciancio sig-
nature from Section 3.2, for which the prover additionally convinces the verifier
of the following two facts.

1. He knows a secret key x ∈ Rm corresponding to the public key p ∈ Rq,
which satisfies ‖x‖∞ ≤ 1 and B ·x = p. Here, B ∈ R1×m

q is a public matrix.

2. He has correctly encrypted the vector rdec(p) ∈ R` to a given ciphertext
(c1,1, c1,2, c2,1, c2,2) ∈ (R`q)4, under public key (a,b1,b2) ∈ (R`q)3. To this
end, he proves that equations

ci,1 = a · gi + ei,1, ci,2 = bi · gi + ei,2 + bq/4c · rdec(p), (10)

hold for B-bounded randomness g1, g2 ∈ R, and e1,1, e2,1, e1,2, e2,2 ∈ R`.

As the transformations for the “Ducas-Micciancio layer” have been estab-
lished in Section 3.2, in the following, we only specify the transformations with
respect to the newly appeared relations.

We will first apply the decomposition techniques in Section 2.2 to the secret
objects.

– Let x? = τ(x) ∈ {−1, 0, 1}nm.
– For i ∈ {1, 2}, compute g?i = τ(rdecB(gi)) ∈ {−1, 0, 1}nδB .
– For i ∈ {1, 2}, compute e?i,1 = τ(rdecB(ei,1)) and e?i,2 = τ(rdecB(ei,2)). Note

that they are vectors in {−1, 0, 1}n`δB .

Then the equation B · x = p can be translated as

[rot(B)] · x? − [H] · τ(rdec(p)) = 0n mod q. (11)
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Meanwhile, let a = (a1, . . . , a`)>, {bi = (bi,1, . . . , bi,`)>}i=1,2, then equations
in (10) can be rewritten as, for i = 1, 2, rot(a1) ·HB

...
rot(a`) ·HB

 · g?i + [H`,B ] · e?i,1 = τ(ci,1) mod q; (12)

 rot(bi,1) ·HB

...
rot(bi,`) ·HB

 · g?i + [H`,B ] · e?i,2 + bq/4c · τ(rdec(p)) = τ(ci,2) mod q. (13)

Before proceeding further, let us recall that, in the protocol for the Ducas-
Micciancio signature from Section 3.2, at the end of the Decomposing-Unifying
step, we did combine the secret objects into vectors w1,w2 of the form:{

w1 = (z? ‖ t0 · z? ‖ . . . ‖ tcd−1 · z?) ∈ {−1, 0, 1}(kδβ+cdkδβ)n;
w2 = (s? ‖ r? ‖ τ(y) ‖ τ(rdec(p))) ∈ {−1, 0, 1}(mδβ+`)2n.

Since vector τ(rdec(p)) has been counted as a block of vector w2, we now combine
the newly appeared secret vectors in equations (11), (12), (13) into vector

w3 =
(

x? ‖ g?1 ‖ g?2 ‖ e?1,1 ‖ e?1,2 ‖ e?2,1 ‖ e?2,2
)
∈ {−1, 0, 1}nm+2nδB+4n`δB ,

and let w4 = (w2‖w3) ∈ {−1, 0, 1}L′4 , for L′4 = (mδβ+`)2n+nm+2nδB+4n`δB .
Next, we extend w4 to vector w′4 = enc(w4) ∈ {−1, 0, 1}L4 , where L4 = 3L′4,

and form the vector
w̃ =

(
w′1‖w′4

)
∈ {−1, 0, 1}L̃,

where w′1 = mix
(
t, z?

)
∈ {−1, 0, 1}L1 is the “mixing vector” obtained in (9), and

L̃ = L1 + L4.
We remark that, by suitably concatenating/extending the matrices and vec-

tors derived from the public input, we can obtain public matrix M̃ and public
vector ũ such that M̃ · w̃ = ũ mod q. Having obtained this desired equation, we
now proceed as in Section 3.2.

Define ṼALID as the set of all vectors v′ = (v′1‖v′4) ∈ {−1, 0, 1}L̃, satisfying
the following:

– There exist t ∈ {0, 1}cd and z? ∈ {−1, 0, 1}nkδβ such that v′1 = mix(t, z?).
– There exists w4 ∈ {−1, 0, 1}L′4 such that v′4 = enc(w4).

It can be seen that vector w̃ belongs to ṼALID.
Now, let S̃ = {0, 1}cd × {−1, 0, 1}nkδβ × {−1, 0, 1}L′4 , and associate every

element φ = (b, e, f) ∈ S with permutation Γ̃φ that acts as follows. When applied
to vector v? = (v?1‖v?4) ∈ ZL̃, where v?1 ∈ ZL1 and v?2 ∈ ZL4 , it transforms v?
into vector

Γ̃φ(v?) =
(
Ψb,e(v?1) ‖ Πf (v?4)

)
.
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Based on the equivalences observed in (5) and (6), it can be checked that ṼALID,
S̃ and Γ̃φ satisfy the conditions specified in (1). In other words, we have reduced
the considered statement to an instance of the abstract protocol from Section 2.4.

The interactive protocol. Given the above preparations, our interactive pro-
tocol works as follows.

– The public input consists of matrix M̃ and vector ũ, which are built from
A, (A[0], . . . ,A[d], F,F0,F1, u), and B, c1,1, c1,2, c2,1, c2,2, a,b1,b2, as
discussed in Section 3.2 and above.

– The prover’s witness is vector w̃ ∈ ṼALID, which is obtained from the original
witnesses (p, t, r,v,x, g1, g2, e1,1, e2,1, e1,2, e2,2), as described in Section 3.2
and above.

Both parties then run the protocol of Figure 1. The protocol uses the KTX
string commitment scheme COM, which is statistically hiding and computation-
ally binding under the (R)SIS assumption. We therefore obtain the following
result, as a corollary of Theorem 1.

Theorem 3. Assume that COM is a statistically hiding and computationally
binding string commitment scheme. Then the protocol described above is a statis-
tical ZKAoK for the considered statement, with perfect completeness, soundness
error 2/3 and communication cost Õ(λ).

Proof. For simulation, we simply run the simulator of Theorem 1. As for ex-
traction, we invoke the knowledge extractor of Theorem 1 to obtain a vector
w̃′ ∈ ṼALID such that M̃ · w̃′ = ũ mod q. Then, by “backtracking” all the
transformations being done, we can extract from vector w̃′ a satisfying witness
(p′, t′, r′,v′,x′, g′1, g′2, e′1,1, e′2,1, e′1,2, e′2,2) for the considered statement.

The perfect completeness, soundness error and communication cost of the
protocol directly follow from those of the abstract protocol in Section 2.4. In
particular, the communication cost is:

O(L̃ · log q) = O
(
(kδβ + cdkδβ)n · log q+ ((mδβ + `)n+nm+nδB +n`δB) · log q

)
,

which is of order O(n · log4 n) = Õ(λ), for the setting of parameters we use in
the group signature scheme of Section 4.3. ut

4.3 Description of Our Scheme

In the description below, the Ducas-Micciancio signature scheme [20,21] as de-
scribed in Section 2.3 is used to design a group signature scheme for (partially)
dynamic groups. Group public key consists of three parts: (i) a verification key
from the Ducas-Micciancio signature scheme, (ii) two public keys of an extended
version of LPR encryption scheme [47] and (iii) a public matrix B for users to
generate their short secret vectors together with public syndromes as user key
pairs. The issue key is the corresponding signing key of the verification key while
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the opening key is any one of the corresponding secret keys of the two public
keys.

When a user joins the group, it first generates a short vector together with
a public syndrome using matrix B. It then interacts with the issuer. The issuer
signs the public syndrome of this user using the issue key. If the interaction
completes successfully, the user obtains a signature on his syndrome from the
issuer while the issuer registers this user to the group.

Once registered as a group member, the user can sign messages on behalf of
the group. When signing a message, it first encrypts the public syndrome twice
using the two public keys. The user then generates a ZKAoK of his syndrome,
of the signature on the syndrome obtained from the issuer, of the short vector
corresponding to his syndrome and of randomness used in the encryptions of
the syndrome. This ZKAoK protocol is repeated κ = ω(log λ) times to achieve
negligible soundness error and made non-interactive via Fiat-Shamir transfor-
m [22]. The signature then consists of the NIZKAoK Πgs and the two ciphertexts
of the syndrome. Note that the ZK argument together with double encryption
enables CCA-security of the underlying encryption scheme, which is known as
the Naor-Yung transformation [51]. This enables full anonymity of our group
signature scheme.

When one needs to know the validity of a signature, one simply verifies Πgs.
In case of dispute, the opener can decrypt the syndrome using his opening key.
To prevent corrupted opening, the opener is required to generate a NIZKAoK of
correct opening Πopen. Only when Πopen is a valid proof, will the judger accept
the opening result. Details of the scheme are described below.

GKg(λ): Given the security parameter λ, the trusted party proceeds as follows.
– Choose parameter n = O(λ) being a power of 2, and modulus q = Õ(n4),

where q = 3k for some positive integer k. Let R = Z[X]/(Xn + 1) and
Rq = R/qR.
Also, let ` = blog q−1

2 c+ 1, m ≥ 2dlog qe+ 2, and m = m+ k.
– Choose integer d and sequence c0, . . . , cd as described in Section 2.3.
– Choose integer bounds β = Õ(n), B = Õ(n5/4), and let χ be a B-

bounded distribution over R.
– LetHFS : {0, 1}∗ → {1, 2, 3}κ, where κ = ω(log λ), be a collision-resistant

hash function, to be modelled as a random oracle in the Fiat-Shamir
transformations [22].

– Let COM be the statistically hiding and computationally binding com-
mitment scheme from [30], to be used in our zero-knowledge argument
systems.

– Draw a uniformly random matrix B ∈ R1×m
q .

– Generate verification key

A,F0 ∈ R1×m
q ; A[0], . . . ,A[d] ∈ R1×k

q ; F,F1 ∈ R1×`
q ; u ∈ Rq

and signing key R ∈ Rm×kq for the Ducas-Micciancio signature scheme,
as described in Section 2.3.
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– Initialize the Naor-Yung double-encryption mechanism [51] with an ex-
tended version of the LPR encryption scheme [47] that allows to en-
crypt {−1, 0, 1} ring vectors of length `. Specifically, sample s1, s2 ←↩ χ,
e1, e2 ←↩ χ`, a $←− R`q, and compute

b1 = a · s1 + e1 ∈ R`q; b2 = a · s2 + e2 ∈ R`q.

Set the public parameter pp, the group public key gpk, the issue key ik and
the opening key ok as follows:

pp = {n, q, k,R,Rq, `,m,m, χ, d, c0, . . . , cd, B, β, κ,HFS,COM,B},

gpk = {pp,A, {A[j]}dj=0,F,F0,F1, u,a,b1,b2},

ik = R, ok = (s1, e1).

The trusted party then makes gpk public and sends ik to the issuer and ok
to the opener.
Assume that after receiving ik from the trusted party, the issuer initializes
his internal state S = 0 and the registration table reg.

UKg(gpk): The user samples x ∈ Rm, whose coefficients are uniformly random
in the set {−1, 0, 1}. Then he computes p = B · x ∈ Rq. Set upk = p and
usk = x.

〈Join, Iss〉: When receiving the joining request from a user with public key upk =
p, the issuer verifies that upk was not previously used by a registered user,
and aborts if this is not the case. Otherwise, he proceeds as follows.
– Set the tag t = (t0, t1 . . . , tcd−1)> ∈ Td, where S =

∑cd−1
j=0 2j · tj , and

compute At = [A|A[0] +
∑d
i=1 t[i]A[i]] ∈ R

1×(m+k)
q .

– Using the signing key R, generate a Ducas-Micciancio signature (t, r,v)
on message rdec(p) ∈ R` - whose coefficients are in {−1, 0, 1}. As de-
scribed in Section 2.3, one has r ∈ Rm, v ∈ Rm+k and{

At · v = F · rdec(F0 · r + F1 · rdec(p)) + u,

‖r‖∞ ≤ β, ‖v‖∞ ≤ β.
(14)

The issuer then sends the triple (t, r,v) to the user. The latter sets his group
signing key as gsk = (t, r,v,x) while the former stores reg[S] = p and
updates S to S + 1.

Sign(gpk, gski,M): To sign a message M ∈ {0, 1}∗ using gsk = (t, r,v,x), the
group member who has public key p ∈ Rq proceeds as follows.
– Encrypt the ring vector rdec(p) ∈ R`q with coefficients in {−1, 0, 1} twice.

Namely, for each i ∈ {1, 2}, sample gi ←↩ χ, ei,1 ←↩ χ`, and ei,2 ←↩ χ`
and compute

ci = (ci,1, ci,2)
=
(
a · gi + ei,1, bi · gi + ei,2 + bq/4c · rdec(p)

)
∈ R`q ×R`q.
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– Generate a NIZKAoK Πgs to demonstrate the possession of a valid tuple

ζ = (t, r,v,x, p, g1, g2, e1,1, e2,1, e1,2, e2,2) (15)

such that
(i) The conditions from (14) hold.

(ii) c1 and c2 are both correct encryptions of rdec(p) with B-bounded
randomness g1, e1,1, e1,2 and g2, e2,1, e2,2, respectively.

(iii) ‖x‖∞ ≤ 1 and B · x = p.
This is done by running the argument system described in Section 4.2.
The protocol is an extension of the one for the Ducas-Micciancio sig-
nature from Section 3.2, in which the prover additionally proves state-
ments (ii) and (iii). The protocol is repeated κ = ω(log λ) times to
achieve negligible soundness error and made non-interactive via Fiat-
Shamir heuristic [22] as a triple Πgs = ({CMTi}κi=1,CH, {RSPi}κi=1)
where CH = HFS(M, {CMTi}κi=1, ξ) with

ξ = (A,A[0], . . . ,A[d],F,F0,F1, u,B,a,b1,b2, c1, c2) (16)

– Output the group signature Π = (Πgs, c1, c2).

Verify(gpk,M,Σ): Given the inputs, this algorithm proceeds as follows.
1. Parse Σ as Σ =

(
{CMTi}κi=1, (Ch1, . . . , Chκ), {RSP}κi=1, c1, c2

)
.

If (Ch1, . . . , Chκ) 6= HFS
(
M, {CMTi}κi=1, ξ

)
, then return 0, where ξ is

as in (16).
2. For each i ∈ [κ], run the verification phase of the protocol in Section 4.2

to check the validity of RSPi with respect to CMTi and Chi. If any of
the conditions does not hold, then return 0.

3. Return 1.
Open(gpk, ok, reg,M,Σ): Let ok = (s1, e1) and Σ = (Πgs, c1, c2). This algorith-

m then does the following.
1. Use s1 to decrypt c1 = (c1,1, c1,2) as follows.

(a) It computes

p′′ = c1,2 − c1,1 · s1

bq/4c .

(b) For each coeffcient of p′′,
– if it is closer to 0 than to −1 and 1, then round it to 0;
– if it is closer to −1 than to 0 and 1, then round it to −1;
– if it is closer to 1 than to 0 and −1, then round it to 1.

(c) Denote the rounded p′′ as p′ ∈ R`q with coefficients in {−1, 0, 1}.
(d) Let p′ ∈ Rq such that τ(p′) = H · τ(p′). Recall that H ∈ Zn×n`q is

the decomposition matrix for elements of Rq (see Section 2.2).
2. If reg does not include an entry p′, then return (⊥,⊥).
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3. Otherwise, generate a NIZKAoK Πopen to demonstrate the possession of
a tuple (s1, e1,y) ∈ Rq ×R`q ×R`q

‖s1‖∞ ≤ B; ‖e1‖∞ ≤ B; ‖y‖∞ ≤ dq/10e;
a · s1 + e1 = b1;
c1,2 − c1,1 · s1 = y + bq/4c · rdec(p′).

(17)

We remark that conditions in (17) involve only linear secret objects with
bounded norms, and can be handled using the Stern-like techniques from
Sections 3.2 and 4.2. As a result, we can obtain a statistical ZKAoK for
the considered statement. The protocol is repeated κ = ω(log λ) times
to achieve negligible soundness error and made non-interactive via the
Fiat-Shamir heuristic as a triple ΠOpen = ({CMTi}κi=1,CH, {RSP}κi=1),
where

CH = HFS
(
{CMTi}κi=1,a,b1,M,Σ, p′

)
∈ {1, 2, 3}κ. (18)

4. Output (p′, ΠOpen).
Judge(gpk,M,Σ, p′, Πopen): If Verify algorithm outputs 0, then this algorithm

returns 0. Otherwise, this algorithm then verifies the argument ΠOpen w.r.t.
common input (a,b1,M,Σ, p′), in a similar manner as in algorithm Verify.
If Πopen does not verify, then return 0; otherwise, return 1.

4.4 Analysis of the Scheme

Efficiency. We first analyze the efficiency of the scheme described in Sec-
tion 4.3, with respect to security parameter λ.

– The public key gpk has bit-size O(λ · log2 λ) = Õ(λ).
– The signing key gski has bit-size O(λ · log2 λ) = Õ(λ).
– The size of a signature Σ is dominated by that of the Stern-like NIZKAoK
Πgs, which is O(L̃ · log q) · ω(log λ), where L̃ denotes the bit-size of a vector
w̃ ∈ ṼALID as described in Section 4.2. Recall O(L̃ · log q) = O(λ · log4 λ).
As a result, Σ has bit-size O(λ · log4 λ) · ω(log λ) = Õ(λ).

– The Stern-like NIZKAoK Πopen has bit-size O(λ · log3 λ) · ω(log λ) = Õ(λ).

Correctness. The correctness of the above group signature scheme relies on
the following facts: (i) the underlying argument systems to generate Πgs and
Πopen are perfectly complete; (ii) the underlying encryption scheme, which is an
extended version of LPR encryption scheme [47] is correct.

Specifically, for an honest user, when he signs a message on behalf of the
group, he is able to demonstrate the possession of a valid tuple ζ of the form (15).
With probability 1, Πgs is accepted by the Verify algorithm, which is implied by
the perfect completeness of the argument system to generate Πgs. As for the
correctness of the Open algorithm, note that
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c1,1 − c1,2 · s1 = b1 · g1 + e1,2 + bq/4c · rdec(p)− (a · g1 + e1,1) · s1

= (a · s1 + e1) · g1 + e1,2 + bq/4c · rdec(p)− (a · g1 + e1,1) · s1

= e1 · g1 + e1,2 − e1,1 · s1 + bq/4c · rdec(p)

where ‖e1‖∞ ≤ B, ‖s1‖∞ ≤ B, ‖g1‖∞ ≤ B, ‖e1,1‖∞ ≤ B, ‖e1,2‖∞ ≤ B. Recall
B = Õ(n5/4) and q = Õ(n4). Hence we have:

‖e1 · g1 + e1,2 − e1,1 · s1‖∞ ≤ 2n ·B2 +B = Õ(n3.5) ≤
⌈ q

10
⌉

= Õ(n4).

With probability 1, the rounding procedure described in the Open algorithm
recovers rdec(p) and hence outputs p, which is the actual signer. Thus the opener
is able to identify the signer of a signature and hence correctness of the Open
algorithm holds.

As the opener correctly recovers rdec(p) and p, it possesses a valid tuple
(s1, e1,y) satisfying conditions in (17). It then follows from the perfect com-
pleteness of the argument system to generate Πopen, the judge will accept the
opening result outputted by the opener and hence correctness of the Judge al-
gorithm holds.
Security. In Theorem 4, we prove that our scheme satisfies the security require-
ments of the Bellare, Shi and Zhang’s model [5]. For the proof of non-framebility,
we will use the following simple lemma.

Lemma 2. Let B ∈ R1×m
q , where m ≥ 2dlog qe+ 2. If x is a uniformly random

element of Rm such that ‖x‖∞ ≤ 1, then with probability at least 1− 2−n, there
exists another x′ ∈ Rm such that ‖x′‖∞ ≤ 1 and B · x = B · x′ ∈ Rq.

Proof. Note that there are in total 3nm elements x ∈ Rm such that ‖x‖∞ ≤ 1.
Among them, there exist at most qn − 1 elements that do not have x′ such
that B · x = B · x′. Hence, the probability that a uniformly random x has a
corresponding x′ for which B · x = B · x′ is at least

3nm − qn + 1
3nm = 1− qn − 1

3nm > 1− qn

2nqn = 1− 2−n.

ut

Theorem 4. Assume that the Stern-like argument systems used in Section 4.3
are simulation-sound. Then, in the random oracle model, the given group signa-
ture scheme satisfies full anonymity, traceability and non-frameability under the
RLWE and RSIS assumptions.

In the random oracle model, the proof of Theorem 4 relies on the following facts:

1. The Stern-like zero-knowledge argument systems being used are simulation-
sound;

24



2. The underlying encryption scheme, which is an extended version of the LPR
encryption scheme [47], via the Naor-Yung transformation [51], is IND-CCA
secure;

3. The variant of Ducas-Micciancio signature scheme described in Section 2.3
with at most polynomial number of signature queries is existentially unforge-
able against adaptive chosen message attacks [20,21];

4. For a properly generated user key pair (x, p), it is infeasible to find x′ ∈ Rmq
such that ‖x′‖∞ ≤ 1, x′ 6= x and B · x′ = p.

The proof of Theorem 4 is established by Lemmas 3-5 given below.

Lemma 3. Assume that the RLWEn,`,q,χ problem is hard. Then the given group
signature scheme is fully anonymous in the random oracle model.

The detailed proof of Lemma 3 is available in the full version.

Lemma 4. Assume that the RSIS∞
n,m,q,Õ(n2)

problem is hard. Then the given
group signature scheme is traceable in the random oracle model.

Proof. We prove traceability by contradiction. Suppose that A succeeds with
non-negligible advantage ε. Then we build a PPT algorithm B that, with non-
negligible probability, breaks the unforgeability of the Ducas-Micciancio signa-
ture scheme from Section 2.3, which is based on the hardness of the RSIS∞

n,m,q,Õ(n2)
problem. It then follows that our construction is traceable.

When given the verification key of the Ducas-Micciancio signature scheme,
the simulator B runs the experiment Exptrace

GS,A(λ) faithfully. B can answer all or-
acle queries made by A except when A queries the send to issuer SndToI oracle
or add user AddU oracle. However, B can resort to his oracle queries of the sig-
nature scheme. In these two cases, B enrolls the corresponding user to the group.
When A halts, it outputs (M∗, Π∗gs, c∗1, c∗2). With non-negligible probability ε, A
wins the experiment. Parse Π∗gs = ({CMT∗i }κi=1,CH∗, {RSP∗i }κi=1). Let

ξ∗ = (A,A[0], . . . ,A[d],F,F0,F1, u,B,a,b1,b2, c∗1, c∗2).

Then CH∗ = HFS
(
M∗, {CMT∗i }κi=1, ξ

∗) and RSP∗i is a valid response w.r.t.
CMT∗i and CH∗i for i ∈ [κ] by the fact that A wins and hence (Π∗gs, c∗1, c∗2) is a
valid signature on message M∗.

We claim that A had queried
(
M∗, {CMT∗i }κi=1, ξ

∗) to the hash oracle HFS
with overwhelming probability. Otherwise, the probability of guessing correctly
the value of HFS

(
M∗, {CMT∗i }κi=1, ξ

∗) is at most 3−κ, which is negligible. There-
fore, with probability ε′ = ε− 3−κ, A had queried the hash oracle HFS. Denote
by θ∗ ∈ {1, 2, . . . , QH} the index of this specific query, where QH is the total
number of hash queries made by A.

Algorithm B then runs at most 32 ·QH/ε′ executions of A. For each new run,
it is exactly the same as the original run until the point of θ∗-th query to the hash
oracleHFS. From this point on, B replies A’s hash queries with uniformly random
and independent values for each new run. This guarantees that the input of θ∗-th
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query A made to HFS is the tuple
(
M∗, {CMT∗i }κi=1, ξ

∗) for each new run while
the output of this hash query is uniformly random and independent for each new
run. To this point, by the forking lemma of Brickell et al. [13], with probability
≥ 1/2, B obtains 3-fork involving the same tuple

(
M∗, {CMT∗i }κi=1, ξ

∗) with
pairwise distinct hash values CH(1)

θ∗ ,CH(2)
θ∗ ,CH(3)

θ∗ ∈ {1, 2, 3}κ and corresponding
valid responses RSP(1)

θ∗ , RSP(2)
θ∗ , RSP(3)

θ∗ . A simple calculation shows that with
probability 1 − ( 7

9 )κ, we have {CH(1)
θ∗,j ,CH(2)

θ∗,j ,CH(3)
θ∗,j} = {1, 2, 3} for some j ∈

{1, 2, . . . , κ}.

Therefore, RSP(1)
θ∗,j , RSP(2)

θ∗,j , RSP(3)
θ∗,j are 3 valid responses for all the chal-

lenges 1, 2, 3 w.r.t. the same commitment CMT∗j . Since COM is computationally
binding, B is able to extract the witness

t∗ ∈ Td; r∗ ∈ Rmq ; v∗ ∈ Rm+k
q ; p∗ ∈ R`q,

such that ‖r∗‖∞ ≤ β, ‖v∗‖∞ ≤ β, ‖p∗‖∞ ≤ 1 and

At∗ · v∗ = F · rdec(F0 · r∗ + F1 · p∗) + u,

and c∗1, c∗2 are correct encryptions of p∗.
Since A wins the game, either we have (i) the Open algorithm outputs (⊥,⊥)

or (ii) the Open algorithm output (p′, Π∗open) with p′ 6= ⊥ but the Judge algorithm
rejects the opening result.

Case (i) implies that, if c∗1 is decrypted to p′ and p′ ∈ Rq such that τ(p′) =
H · τ(p′) ∈ Znq , then p′ is not in the registration table. From the extraction,
we know that c∗1 will be decrypted to p∗ by the correctness of our encryption
scheme. Therefore, the intermediate opening result p′ is equal to p∗. On the
other hand, the fact that p′ is not in the registration table implies that B did
not enroll p′ to the group, that is, B did not query p′ to his challenger when
A made the AddU oracle queries or SndToI oracle queries. To summarize, B did
not query signature on p′ and B extracts a signature (t∗, r∗,v∗) on p∗ = p′
such that τ(p′) = H · τ(p′). Therefore (p∗, t∗, r∗,v∗) is a valid forgery of the
Ducas-Micciancio signature scheme.

Case (ii) implies that, if c∗1 is decrypted to p′ and p′ ∈ Rq such that
τ(p′) = H · τ(p′) ∈ Znq , then p′ is in the registration table and Π∗open gener-
ated by B is not accepted by the Judge algorithm. From the extraction, we know
that c∗1 will be decrypted to p∗ by the correctness of our encryption scheme.
Therefore, the intermediate opening result p′ is equal to p∗. On the other hand,
we claim that rdec(p′) 6= p′ = p∗. Otherwise, rdec(p′) = p′ = p∗, then B pos-
sesses valid witness to generate the proof Π∗open. By the perfect completeness
of the underlying argument system generating Π∗open, it will be accepted by the
judge algorithm with probability 1. This is a contradiction and hence we obtain
rdec(p′) 6= p′ = p∗. Recall that in the 〈Join, Iss〉 algorithm, the issuer only gener-
ates signature on rdec(p′). So B only queries the signature on rdec(p′) and hence
(p∗, t∗, r∗,v∗) is a valid forgery of the Ducas-Micciancio signature scheme.
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Therefore, with probability at least 1
2 · (ε − 3−κ)(1 − ( 7

9 )κ), which is non-
negligible, B breaks the unforgeability of the Ducas-Micciancio signature scheme.
This concludes the proof.

ut

Lemma 5. Assume that the RSIS∞n,m,q,1 problem is hard. Then the given group
signature scheme is non-frameable in the random oracle model.

Proof. We prove non-frameability by contradiction. Suppose that A succeeds
with non-negligible advantage ε. Then we build a PPT algorithm B that solves
a RSISn,m,q,1 instance B ∈ R1×m

q with non-negligible probability.
After B is given a RSIS instance matrix B, it runs the experiment Expnf

GS,A
faithfully. B can answer all the oracle queries made by A since B knows all the
keys. When A halts, it outputs (M∗, Π∗gs, c∗1, c∗2, p∗, Π∗open). With non-negligible
probability ε, A wins the experiment.

The fact that A wins the game implies (M∗, Π∗gs, c∗1, c∗2) is a valid message-
signature pair that was not queried before. By the same extraction technique as
in Lemma 4, we can extract witness x′ ∈ Rmq and p′ ∈ R`q such that x′,p′ have
coefficients in {−1, 0, 1}, B ·x′ = p′ with τ(p′) = H · τ(p′) and c∗1, c∗2 are correct
encryptions of p′. By the correctness of the encryption scheme being used, c∗1
will be decrypted to p′.

The fact that A wins the game also implies (p∗, Π∗open) is accepted by the
Judge algorithm. It follows from the soundness of the argument system used
to generate Π∗open that c∗1 will be decrypted to rdec(p∗). Therefore, we have
p′ = rdec(p∗) and hence p′ = p∗. Note that A wins the game also implies that
p∗ is an honest user with gsk 6= ⊥ and A did not query the user secret key x∗
that corresponds to p∗. Thus we obtain: B · x′ = p′ = p∗ = B · x∗, where x∗ has
coefficients in {−1, 0, 1}. By Lemma 2, x′ 6= x∗ with probability at least 1/2. In
the case they are not equal, we obtain a non-zero vector y = x′ − x∗ such that
B · y = 0 and ‖y‖∞ = 1.

Therefore, with probability at least 1
2 · (ε− 3−κ)(1− ( 7

9 )κ) · 1
2 , which is non-

negligible, B solves a RSISn,m,q,1 instance B ∈ R1×m
q . This concludes the proof.

ut
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