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Abstract. We propose SOFIA, the �rst MQ-based signature scheme
provably secure in the quantum-accessible random oracle model (QROM).
Our construction relies on an extended version of Unruh's transform for
5-pass identi�cation schemes that we describe and prove secure both in
the ROM and QROM.
Based on a detailed security analysis, we provide concrete parameters
for SOFIA that achieve 128-bit post-quantum security. The result is
SOFIA-4-128 with parameters carefully optimized to minimize signature
size and maximize performance. SOFIA-4-128 comes with an implemen-
tation targeting recent Intel processors with the AVX2 vector-instruction
set; the implementation is fully protected against timing attacks.
Keywords: Post-quantum cryptography, multivariate cryptography, 5-
pass identi�cation schemes, QROM, Unruh's transform, vectorized im-
plementation.

1 Introduction

At Asiacrypt 2016 [11], we presented a post-quantum signature scheme called
MQDSS, obtained by applying a generalized Fiat-Shamir transform to a 5-pass
identi�cation schemes (IDS) with security based on the hardness of solving a
system of multivariate quadratic equations (MQ problem). Unlike previousMQ
signature schemes, MQDSS comes with a reduction from a random instance
of MQ; it does not need additional assumptions on the hardness of related
problems like the Isomorphism of Polynomials (IP) [29] or MinRank [13,20].

Unfortunately, the security reduction of MQDSS is in the random oracle
model and highly non-tight, while our ultimate goal is (as stated in [11]) a scheme
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with a tight reduction fromMQ in the quantum random oracle model (QROM)
or even in the standard model. In this paper, we take a step closer towards such
a scheme. More speci�cally, we propose SOFIA, a digital signature scheme that
is provably EU-CMA secure in the QROM if theMQ problem is hard and allows
for a tight reduction in the ROM (albeit not in the QROM).

To achieve this, we start from Unruh's transform [33] for transforming Σ-
protocols to NIZK proofs (and signatures) in the QROM. The reason for a
di�erent transform comes from the inherent problems of the Fiat-Shamir trans-
form (and also the generalization to 5-pass schemes) in the QROM. Namely, the
proof technique introduced by Pointcheval and Stern [30] requires rewinding of
the adversary and adaptively programming the random oracle. Not only does
this cause problems in the QROM, but it also produces non-tight proofs in the
ROM. Unruh's transform avoids these problems by adopting and tweaking an
idea from Fischlin's transform [21] that solves the rewinding problem.

Recently, Kiltz, Loss, and Pan [27] considered a generalization of the Fiat-
Shamir transform to 5-pass schemes, and provided a tight reduction in the ROM.
However, the technique faces similar issues when it comes to the QROM such
as adaptive programming of the random oracles. Hence, no proof in the QROM
is known. Therefore, it is not applicable for SOFIA. In concurrent work, Kiltz,
Lyubashevsky, and Scha�ner [28] provide a viable alternative to Unruh's trans-
form in the QROM. The authors prove security of the Fiat-Shamir transform in
the QROM, using the additional assumption of �lossiness� of the IDS. While this
requires modi�cations in the IDS and re-parametrization of MQDSS, it seems
promising future work to see whether one can obtain a more e�cient scheme
with a QROM proof this way.

MQDSS builds on a 5-passMQ-based IDS from [31]. While [31] also intro-
duces a 3-pass IDS, we showed in [11] that the 5-pass scheme leads to smaller
signatures due to a smaller soundness error. Hence, we do not simply apply the
Unruh transform to the 3-pass IDS but extend it such that it applies to any
5-pass IDS with binary second challenge (named q2-IDS in [11]) and thus to the
MQ-based 5-pass IDS from [31]. We prove that the signature scheme resulting
from the application of the transform is post-quantum EU-CMA secure (PQ-
EU-CMA) in the QROM. This proof follows a two-step approach: We �rst give
a (tight) proof in the ROM, and then discuss the changes necessary to carry over
to the QROM. We then instantiate the construction with theMQ-based 5-pass
IDS by Sakumoto, Shirai, and Hiwatari [31] and provide various optimizations
particularly suited for this speci�c IDS. These optimizations almost halve the
size of the signature compared to the non-optimized generic transform.

We instantiate SOFIA with carefully optimized parameters aiming at the
128-bit post-quantum security level; we refer to this instance as SOFIA-4-128.
A comparison with MQDSS-31-64 from [11], which targets the same security
level, shows that the improvements in security guarantees come at a cost: with
123KiB, SOFIA-4-128 signatures are about a factor of 3 larger than MQDSS-
31-64 signatures and our optimized SOFIA-4-128 software takes about a factor
of 3 longer for both signing and veri�cation than the optimized one forMQDSS-
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31-64. However, likeMQDSS, SOFIA features extremely short keys; speci�cally,
SOFIA-4-128 public keys have 64 bytes and the secret keys have 32 bytes.
SOFIA is not the �rst concrete signature scheme with a proof in the QROM.

Notably, TESLA-2 [1] is a lattice-based signature scheme with a reduction in the
QROM, while Picnic-10-38 [10] is the result of constructing a signature scheme
from a symmetric primitive using the transform by Unruh [33] that was men-
tioned above. Relying on even more conservative assumptions, the hash-based
signature scheme SPHINCS-256 [6] has a tight proof in the standard model. Al-
though SOFIA-4-128 remains faster than SPHINCS-256 (which is, because of its
standard model assumptions, arguably the `scheme to beat'), we do signi�cantly
exceed its 40KiB signature size. Conversely, but on a similar note, SOFIA-4-
128 outperforms Picnic-10-38 both in terms of signing speed and signature size.
TESLA-2 remains the `odd one out' with its small signatures but much larger
keys; it strongly depends on context whether this is an upside or a problem. See
Table 3 for a numeric overview of the comparison.

Organization of the paper. Section 2 gives the necessary background on iden-
ti�cation schemes and signature schemes. Section 3 presents the extended Unruh
transform to support q2 identi�cation schemes. Section 4 revisits the 5-pass iden-
ti�cation scheme introduced in [31]. Section 5 introduces the SOFIA signature
scheme and �nally Section 6 explains our parameter choices for SOFIA-4-128
and gives details of our optimized implementation.

Availability of software.We place all software presented in this paper into the
public domain to maximize re-usability of our results. It is available for download
at https://joostrijneveld.nl/papers/sofia.

2 Preliminaries

In the following we provide basic de�nitions used throughout this work. We are
concerned with post-quantum security, i.e., a setting where honest parties use
classical computers but adversaries might have access to a quantum computer.
Therefore, we adapt some common security notions accordingly, modeling ad-
versaries as quantum algorithms.

Digital signatures. In this work we are concerned with the construction of
digital-signature schemes. Due to space limitations, we omit the standard def-
initions for digital signatures and their security. They are included in the full
version of the paper.

Identi�cation Schemes. An identi�cation scheme (IDS) is a protocol that
allows a prover P to prove its identity to a veri�er V. More formally:

De�nition 2.1 (Identi�cation scheme). An identi�cation scheme with se-
curity parameter k, denoted IDS(1k), is a triplet of PPT algorithms IDS =
(KGen,P,V) such that the key generation algorithm KGen is a probabilistic algo-
rithm that outputs a key pair (sk, pk), and P and V are interactive algorithms,
executing a common protocol. The prover P takes as input a secret key sk and
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the veri�er V takes as input a public key pk. At the conclusion of the protocol,
V outputs a bit b with b = 1 indicating �accept� and b = 0 indicating �reject�.

For correctness of an IDS, we require that for all (pk, sk)← KGen() we have
Pr [〈P(sk),V(pk)〉 = 1] = 1, where 〈P(sk),V(pk)〉 refers to the common execu-
tion of the protocol between P with input sk and V on input pk. We denote by
trans(〈P(sk),V(pk)〉) the transcript of messages exchanged during this execution.

In this work we are concerned with canonical 5-pass IDS, where the prover
and the veri�er exchange two challenges and replies. More formally:

De�nition 2.2 (Canonical 5-pass identi�cation schemes). Consider IDS =
(KGen,P,V), a 5-pass identi�cation scheme with two challenge spaces C1 and C2.
We call IDS a canonical 5-pass identi�cation scheme if the prover can be split
into three subroutines P = (P0,P1,P2) and the veri�er into three subroutines
V = (ChS1,ChS2,Vf) such that:
P0(sk) computes the initial commitment com sent as the �rst message and a state
state fed forward to P1. ChS1 computes the �rst challenge message ch1 ←R C1,
sampling at random from the challenge space C1. P1(state, ch1) computes the �rst
response resp1 of the prover (and updates the state state) given access to the state
and the �rst challenge. ChS2 computes the second challenge message ch2 ←R C2.
P2(state, ch2) computes the second response resp2 of the prover given access to
the state and the second challenge. Vf(pk, com, ch1, resp1, ch2, resp2) upon access
to the public key and the whole transcript outputs V's �nal decision.

Note that the state forwarded among the prover algorithms can contain all inputs
to previous prover algorithms if they are needed later. We also assume that the
veri�er keeps all sent and received messages to feed them to Vf.

We will consider a particular type of 5-pass identi�cation protocols where
the size of the two challenge spaces is restricted to q and 2.

De�nition 2.3 (q2 -Identi�cation scheme). A q2 -Identi�cation scheme IDS
with security parameter k ∈ N is a canonical 5-pass identi�cation scheme where
for the challenge spaces C1 and C2 it holds that |C1| = q and |C2| = 2. Moreover,
the probability that the commitment com takes a given value is ≤ 2−k, where the
probability is taken over the random choice of the input and the used randomness.

Our goal is to construct signature schemes from identi�cation schemes. It
is well known that passively secure identi�cation schemes su�ce for this. In
this setting, security is de�ned in terms of two properties: special soundness
and honest-veri�er zero-knowledge (HVZK). To prove security of our signature
scheme, we will make use of the existence of so called q2-extractor which is a
variant of special soundness.

De�nition 2.4 ((computational) PQ-HVZK). Let k ∈ N, IDS(1k) = (KGen,
P,V) an identi�cation scheme with security parameter k. We say that IDS is
computational post-quantum honest-veri�er zero-knowledge (PQ-HVZK) if there
exists a probabilistic polynomial time algorithm S, called the simulator, such that
for any polynomial time quantum algorithm A and (pk, sk)← KGen():
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Succpq−hvzk
IDS(1k)

(A) =

|Pr [1← A (sk, pk, trans(〈P(sk),V(pk)〉))]− Pr [1← A (sk, pk,S(pk))]| = negl(k) .

Intuitively it must be hard for any cryptographic scheme to derive a valid
secret key given a public key. To formally capture this intuition, we need to
de�ne what valid means. For this we de�ne the notion of a key relation.

De�nition 2.5 (Key relation). Let IDS be a q2-Identi�cation scheme and R
a relation. We say IDS has key relation R i� R is the minimal relation such that

∀(pk, sk)← KGen() : (pk, sk) ∈ R

Now that we have de�ned what valid means, we can de�ne key-one-wayness.

De�nition 2.6 (PQ-KOW). Let k ∈ N be the security parameter, IDS(1k) be a
q2-Identi�cation scheme with key relation R. We call IDS post-quantum key-one-
way (PQ-KOW) (with respect to key relation R) if for all quantum polynomial
time algorithms A,

Succpq−kow
IDS(1k)

(A) = Pr
[
(pk, sk)← KGen(), sk′ ← A(pk) : (pk, sk′) ∈ R

]
= negl(k)

In [11] it was shown that in general, for q2-Identi�cation Schemes, it is not
possible to e�ciently extract a matching secret key from two related transcripts
alone (as in the case of 3-pass schemes ful�lling special soundness). In order to
capture the nature of these schemes and provide su�cient conditions for e�cient
extraction, we proposed the de�nition of a q2-Extractor. In the following we give
a slightly re�ned de�nition that uses the notion of key relation to capture what
kind of secret key the extractor returns.

De�nition 2.7 (q2-Extractor). Let IDS(1k) be a q2-Identi�cation scheme with
key relation R. We say that IDS(1k) has a q2-Extractor if there exists a poly-
nomial time algorithm KIDS, the extractor, that, given a public key pk and four
valid transcripts with respect to pk

trans(1)= (com, ch1, resp1, ch2, resp2), trans(3)= (com, ch′1, resp
′
1, ch2, resp2),

trans(2)= (com, ch1, resp1, ch
′
2, resp

′
2), trans(4)= (com, ch′1, resp

′
1, ch

′
2, resp

′
2),

(1)

where ch1 6= ch′1 and ch2 6= ch′2, outputs a secret key sk such that (pk, sk) ∈ R
with non-negligible success probability in k.

3 From q2-IDS to signatures in the QROM

In [11], we showed that the Fiat-Shamir transform can be generalized to the
case of 5-pass IDS whose ChS2 is bounded to two elements. We showed that the
Pointcheval-Stern proof [30] can be extended to this case, and the obtained sig-
nature scheme can be shown EU-CMA secure in the random oracle model. This
result is further extended to any 2n+1 round identi�cation scheme that ful�lls a
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certain kind of special soundness in [15]. However, similar to the standard Fiat-
Shamir transform, these proofs rely on the forking lemma, which introduces two
serious problems in the post-quantum setting: rewinding of the adversary, and
adaptively programming the random oracle. While it is known how to deal with
the latter [33], the former seems to become a real show stopper [3]. The only
known way (at the time of writting4) to �x the Fiat-Shamir transform in the
QROM setting is using oblivious commitments [14], which are a certain kind of
trapdoor commitments, e�ectively avoiding rewinding at the cost of introducing
the necessity of a trapdoor function. This makes the solution not applicable in
our setting as there are no known trapdoor functions with a reduction from the
MQ-problem.

In [33], Unruh proposes a di�erent transform, based on Fischlin's trans-
form [21], that turns 3-pass zero-knowledge proofs into non-interactive ones
in the QROM. In addition, Unruh shows how to use his transform to obtain
a signature scheme. The transform essentially works by �unrolling� Fischlin's
transform and then applying a few tweaks. This works, as Fischlin's transform
already avoids rewinding. The basic idea is to let the signer generate several
transcripts for a commitment. This is iterated for several initial commitments.
Next, the signer �blinds� all responses in the transcripts by applying a length-
preserving hash. All the obtained data is hashed together with the public key
and the message to obtain a challenge vector. This challenge vector determines
one transcript per commitment that has to be unblinded, i.e., for which the
response must be included in the signature. The signature consists of all the
transcripts with �blinded� responses and the unblinded responses for the tran-
scripts identi�ed by the challenge vector. The reasoning behind the transform is
that without knowing the secret key, a forger cannot know su�ciently many valid
openings to be able to include all the challenged responses. On the other hand,
a security reduction can replace the length-preserving hash (modeled as QRO)
by an invertible function (e.g. a QPRP). That way, a reduction can �unblind�
the remaining responses in the signature by inverting the function. Now, it can
be argued that an adversary with non-negligible success probability must have
known several valid transcripts for at least one commitment. The unblinding
reveals those transcripts and they can be used to run the extractor.

Here, we show that a similar transform can be applied to 5-pass IDS with a
binary second challenge (i.e., q2-IDS). Basically, we treat the second challenge-
response round like the �rst. However, as we have a binary second challenge,
we ask that for each �rst challenge, a transcript for both values of the second
challenge is generated. The main di�erence between the security reduction of
Unruh's transform and our extension to q2-IDS is a more involved argument
to show that we get su�ciently many valid transcripts that follow the pattern
needed to extract a valid secret key. As this argument is essentially independent
of the RO, we �rst give a proof in the classical ROM. This also allows us to
show that the reduction is tight in the ROM. Afterwards we describe how things

4 Very recently, Kiltz et al. [28] proposed the use of �lossy� IDS which enabled them
to prove security of the Fiat-Shamir transform in the QROM.
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Sign(sk,M)

For j ∈ {1, . . . , r} do

(state(j), com(j)
)← P0(sk)

For i ∈ {1, . . . , t} do

ch
(i,j)
1 ←R ChS1 \ {ch(1,j)1 , . . . , ch

(i−1,j)
1 }

(state(i,j), resp
(i,j)
1 )← P1(state

(j)
, ch

(i,j)
1 )

cr
(i,j)
1 ← H1(resp

(i,j)
1 )

resp
(i,j,0)
2 ← P2(state

(i,j)
, ch2 = 0), resp

(i,j,1)
2 ← P2(state

(i,j)
, ch2 = 1)

cr
(i,j,0)
2 ← H2(resp

(i,j,0)
2 ), cr

(i,j,1)
2 ← H2(resp

(i,j,1)
2 )

transfull(j) := com(j)
,
{
ch

(i,j)
1 , cr

(i,j)
1 , (cr

(i,j,0)
2 , cr

(i,j,1)
2 )

}t

i=1

md← H
(
pk,M, {transfull(j)}rj=1

)
Read md as vector ((I1, B1), . . . , (Ir, Br))

transred(j) := com(j)
,
{
ch

(i,j)
1 , cr

(i,j)
1 , (cr

(i,j,0)
2 , cr

(i,j,1)
2 )

}t

i6=Ij,i=1

σ :=

(
md,

{
transred(j), ch

(Ij,j)

1 , resp
(Ij,j)

1 , resp
(Ij,j,Bj)

2 , cr
(Ij,j,¬Bj)

2

}r

j=1

)

Fig. 1. Signature generation

change in the QROM along the lines of Unruh's QROM proof. This is where the
reduction becomes loose. It remains an interesting open question whether this is
a fundamental issue with QROM reductions or the existing techniques are just
not su�ciently evolved, yet.

3.1 Extending Unruh's transform to q2-IDS

Let IDS = (KGen,P,V) be a q2-IDS, with P = (P0,P1,P2), V = (ChS1,ChS2,Vf),
and let r, t ∈ N be two parameters, where 2 6 t 6 q. Moreover let H1 :
{0, 1}|resp1| → {0, 1}|resp1|, H2 : {0, 1}|resp2| → {0, 1}|resp2|, and H : {0, 1}∗ →
{0, 1}dlog 2ter be hash functions, later modeled as random oracles. We de�ne
the following digital signature scheme (KGen,Sign,Vf). The key generation algo-
rithm just runs IDS.KGen(). Signature and veri�cation algorithms are given in
Figures 1 and 2.

For ease of exposition, we will use the notation T (j, i, b) for a string that
has the format of a transcript of the IDS (not necessarily a valid transcript),
corresponding to the j-th round of the non-interactive protocol, with i and b
being the indices of the corresponding challenges ch1 and ch2, i.e.

T (j, i, b) := (com(j), ch
(i,j)
1 , resp

(i,j)
1 , ch2 = b, resp

(i,j,b)
2 ),

where j ∈ {1, . . . , r}, i ∈ {1, . . . , t}, b ∈ {0, 1}.

3.2 PQ-EU-CMA-Security in the ROM

In the following, we �rst establish post-quantum security under key-only attacks
(PQ-KOA). More speci�cally, we will show that a successful KOA-forger A can
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Vf(pk, σ,M)

Read md as vector ((I1, B1), . . . , (Ir, Br))

For j ∈ {1, . . . , r} do

cr
(Ij,j)

1 ← H1(resp
(Ij,j)

1 ), cr
(Ij,j,Bj)

2 ← H2(resp
(Ij,j,Bj)

2 )

md′ ← H
(
pk,M, {transfull(j)}rj=1

)
Check that md′

?
= md

For j ∈ {1, . . . , r} do

Check that ch
(1,j)
1 , . . . ch

(t,j)
1 are all distinct

Check 1
?
= b← Vf(pk, com(j)

, ch
(Ij,j)

1 , resp
(Ij,j)

1 , Bj , resp
(Ij,j,Bj)

2 )

If all checks succeed, output success.

Fig. 2. Veri�cation

be used to extract a valid secret key for the underlying IDS. Afterwards, we will
extend the result to existential unforgeability under chosen message attacks.

PQ-KOW ⇒ PQ-KOA. The following lemma gives an exact relation between
the key-one-wayness of the identi�cation scheme and the security of the proposed
signature scheme under key-only attacks.

Lemma 3.1. Let k, t, r ∈ N be the parameters of the signature scheme from
Figures 1 and 2, using a q2-IDS that has a key relation R, a q2-extractor, and is
PQ-KOW secure. Let A be a quantum algorithm that implements a KOA forger
which given only the public key pk outputs a valid message-signature pair (M,σ)
with probability ε. Then, in the random oracle model there exists an algorithm
MA that given oracle access to any such A breaks the KOW security of IDS in
essentially the same running time as the given A and with success probability

ε′ ≥ ε− (qH + 1)2−r log
2t

t+1 . (2)

Moreover, MA only manipulates the random oracles H1,H2 and leaves H un-
touched.

Proof. We show how to construct such an algorithm MA. On input of an IDS
public key pk,MA �rst runs A(pk). Let EA be the event that A outputs a valid
message-signature pair (M,σ) with

σ =

(
md,

{
transred(j), ch

(Ij ,j)
1 , resp

(Ij ,j)
1 , resp

(Ij ,j,Bj)
2 , cr

(Ij ,j,¬Bj)
2

}r
j=1

)
.

Then EA implies that for every j ∈ {1, . . . , r}, T (j, Ij , Bj) is a valid transcript
of IDS and the Veri�er Vf accepts. Now, our goal is to use the q2-extractor to ex-
tract. This means, we need to obtain four valid transcripts T (j, i1, 0), T (j, i1, 1),
T (j, i2, 0), T (j, i2, 1) for some j ∈ {1, . . . , r}. To this end,MA simulates the ran-
dom oracles H1 and H2 for A in the common way. The important point is that
this wayMA learns all of A's queries together with the given responses. Hence,
when given A's forgery,MA can open all blinded responses in the signature.
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Now, MA will only fail to extract if among all the 2tr opened transcripts
of the signature, there are no four valid transcripts with the above pattern.
Consider the event E¬ext which describes this case.
E¬ext: ∀j ∈ {1, . . . , r}, and ∀i1, i2 ∈ {1, . . . , t}, i1 6= i2, at least one of

T (j, i1, 0), T (j, i1, 1), T (j, i2, 0), T (j, i2, 1) is not a valid transcript of the IDS.
We will upper bound Pr[(EA ∩ E¬ext)] and thereby lower bound MA's suc-

cess probability. Let (M,σ) be A's output under the event (EA ∩ E¬ext). First,
(M,σ) must be valid because of EA. Now, consider the set S¬ext of tuples(
pk,M, {transfull(j)}rj=1

)
, such that for every j ∈ {1, . . . , r} there is at most

one I∗j with T (j, I∗j , 0) and T (j, I
∗
j , 1) being valid transcripts of IDS. It is clear

that A's output under the event EA ∩ E¬ext must come from S¬ext. Indeed, if
a tuple does not satisfy the given condition, then there exist at least two in-
dices I∗j , I

∗∗
j such that T (j, I∗j , 0), T (j, I

∗
j , 1), T (j, I

∗∗
j , 0), T (j, I∗∗j , 1) are valid

transcripts of IDS, which is in contradiction to the event E¬ext.
Let

(
pk,M, {transfull(j)}rj=1

)
be such a tuple. Then the indexes that de�ne

the required openings in σ are obtained as the output of the random oracle H
on input of the tuple, i.e. ((I1, B1), . . . , (Ir, Br))← H

(
pk,M, {transfull(j)}rj=1

)
.

In order for the signature to pass veri�cation, for each j ∈ {1, . . . , r}, the
transcript T (j, Ij , Bj) must be valid. Given the conditions of E¬ext, for each
j ∈ {1, . . . , r}, there are at most t + 1 valid transcripts per j. Hence for the
entire ((I1, B1), . . . , (Ir, Br)) at most (t + 1)r possible values. Thus, the prob-
ability for the adversary to produce a valid signature from such a tuple is
(t+1)r

(2t)r = 2−r log
2t

t+1 .

Now let qH be the number of queries of the adversary to the oracle H. Then

Pr(EA ∩ E¬ext) ≤ (qH + 1)2−r log
2t

t+1 ,

as A can try at most qH tuples to obtain a valid signature and output a signature
based on a new tuple otherwise. Towards obtaining a bound on MA's success
probability, note thatMA succeeds in the event (EA ∩ ¬E¬ext), and

Pr(EA ∩ ¬E¬ext) = Pr(EA)− Pr(EA ∩ E¬ext) ≥ ε− (qH + 1)2−r log
2t

t+1 .

This proves the claimed bound. ut

PQ-KOA ⇒ PQ-EU-CMA. Given the above lemma, it su�ces to reduce
PQ-KOA to PQ-EU-CMA security to eventually prove PQ-EU-CMA security of
the proposed scheme, i.e. we have to show that we can answer an adversary's
signature queries without knowledge of a secret key. This is done in the following
lemma. Afterwards we can derive the main theorem of the section.

Lemma 3.2. Let k, t, r ∈ N be the parameters of the signature scheme from
Figures 1 and 2 above, using a q2-IDS that is PQ-HVZK. Let A be a quantum
algorithm that breaks the PQ-EU-CMA security of the signature scheme with
probability ε. Then, in the random oracle model there exists an algorithm MA
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that breaks the PQ-KOA security of the signature scheme in essentially the same
running time as A and with success probability

ε′ ≥ ε(1− qSignqH2−rk). (3)

Moreover, MA only manipulates the random oracle H and leaves H1,H2 un-
touched.

Proof. We show how to construct MA that on input a public key pk of the
signature scheme (which is also a public key for IDS), access to a HVZK-simulator
SIDS for IDS and the random oracles H1,H2,H, breaks the KOA security of
the signature scheme. The running time and success probability of MA are
essentially the same as that of A up to a negligible di�erence.

Upon receiving the public key pk,MA runs A(pk), simulating all signature
and random oracle queries for A. Whenever A queries H1 or H2, MA simply
forwards the query to his respective RO. For H, MA keeps a local list LH.
Whenever A queries H, MA �rst checks LH and returns the stored answer if
one exists. Otherwise, MA forwards the query to his oracle H and stores the
query together with the result in LH before returning the response. Whenever
A makes a signature query on a message M ,MA does the following:

1. Samples m̃d ←R {0, 1}dlog 2ter and interprets it as challenge string, i.e.,
((I1, B1), . . . , (Ir, Br)) := m̃d.

2. Runs the HVZK-simulator SIDS r times to obtain r valid transcripts of IDS:{
(com(j), ch

(Ij ,j)
1 , resp

(Ij ,j)
1 , ch

(j)
2 , resp

(Ij ,j,Bj)
2 )

}r
j=1

,

and uses them as the challenged transcripts T (j, Ij , Bj) for j ∈ {1, . . . , r}.
3. Blinds the responses resp

(Ij ,j)
1 and resp

(Ij ,j,Bj)
2 for every j ∈ {1, . . . , r}:

cr
(Ij ,j)
1 ← H1(resp

(Ij ,j)
1 ), cr

(Ij ,j,Bj)
2 ← H2(resp

(Ij ,j,Bj)
2 ).

4. For all j ∈ {1, . . . , r}, and all (i, b) ∈ {1, . . . , t} × {0, 1} \ {(Ij , Bj)}rj=1,

� samples a �rst challenge ch
(i,j)
1 ←R ChS1\{ch

(Ij ,j)
1 , ch

(1,j)
1 , . . . , ch

(i−1,j)
1 },

� samples fake responses resp
(i,j)
1 ←R RespS1, resp

(i,j,b)
2 ←R RespS2,,

� blinds the fake responses cr
(i,j)
1 ← H1(resp

(i,j)
1 ), cr

(i,j,b)
2 ← H2(resp

(i,j,b)
2 ),

� sets transfull(j) := com(j),
{
ch

(i,j)
1 , cr

(i,j)
1 , (cr

(i,j,0)
2 , cr

(i,j,1)
2 )

}t
i=1

.

5. Checks if there is already an entry for
(
pk,M, {transfull(j)}rj=1

)
in LH. If so,

MA aborts. Otherwise,MA stores
((

pk,M, {transfull(j)}rj=1

)
, m̃d

)
in LH.

6. Outputs the signature

σ =

(
md,

{
transred(j), ch

(Ij ,j)
1 , resp

(Ij ,j)
1 , resp

(Ij ,j,Bj)
2 , cr

(Ij ,j,¬Bj)
2

}r
j=1

)
,

where transred(j) := com(j),
{
ch

(i,j)
1 , cr

(i,j)
1 , (cr

(i,j,0)
2 , cr

(i,j,1)
2 )

}t
i6=Ij ,i=1

.
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Finally,MA outputs whatever A outputs.
Now, MA must succeed with probability at most di�ering from A's suc-

cess probability by a negligible additive term as long as it does not abort (to

be more precise, the term is rqSignSucc
pq−hvzk
IDS(1k)

(A)). This is the case because

otherwise A could be used to break the PQ-HVZK property of the used IDS.
All RO queries follow the correct distribution and so do the signatures. An
abort only occurs if A queried H before on the value for which MA wants to

program. The value has the form
(
pk,M, {transfull(j)}rj=1

)
with transfull(j) :=

com(j),
{
ch

(i,j)
1 , cr

(i,j)
1 , (cr

(i,j,0)
2 , cr

(i,j,1)
2 )

}t
i=1

. The {transfull(j)}rj=1 term has at

least rk bits of entropy as the commitments have at least k bits of entropy
according to the de�nition of q2-IDS and there is one commitment for each of
the r rounds. This is merely a very loose (but more than su�cient) lower bound
on the entropy as the blinded responses also add additional entropy. Hence, if
A makes a total of qH queries for H and qSign signature queries, an abort occurs
with probability Pr[abort] ≤ qSignqH2−rk.

Hence,MA succeeds with probability ε′ ≥ ε(1− qSignqH2−rk). ut

PQ-KOW ⇒ PQ-EU-CMA. Combining the two previous lemmas we obtain
the following theorem.

Theorem 3.3. Let k, t, r ∈ N be the parameters of the signature scheme from
Figures 1 and 2 above using a q2-IDS IDS that is PQ-HVZK and has a PQ-
q2-extractor. Let A be a PQ-EU-CMA forger that succeeds with probability ε.
Then, there exists an algorithmMA, that in the random oracle model breaks the
PQ-KOW security of IDS in essentially the same running time as A and with
success probability

ε′ ≥ ε− εqSignqH2−rk − (qH + 1)2−r log
2t

t+1 . (4)

Proof. Suppose there exists a PQ-EU-CMA forger A that succeeds with non-
negligible probability ε. We construct a PQ-KOW adversary C for the q2-IDS
as follows. C runs A(pk), to construct a key-only forger MA as in Lemma 3.2,
that succeeds with probability (3). Now as in Lemma 3.1, C can extract a valid
secret key sk, in approximately the same time, and with only negligibly smaller
probability (see (2)). This concatenation of the two reductions is possible as the
reduction from Lemma 3.2 only manipulates random oracle H, while the one
from 3.1 only touches H1,H2. In total the success probability of C is exactly (4),
and the running time of C is essentially the same as that of A. ut

3.3 PQ-EU-CMA security in the QROM

We now show that with only slight changes, the two lemmas above also hold
in the QROM. We do this in reverse order, starting with the PQ-KOA to PQ-
EU-CMA reduction as it is the easier case. As already the QROM proofs in
Unruh's work which we build on are non-tight, we only give our arguments in
the asymptotic regime.
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PQ-KOA ⇒ PQ-EU-CMA.We will �rst revisit the reduction from PQ-KOA
to PQ-EU-CMA. We show the following lemma:

Lemma 3.4. Let k, t, r ∈ N be the parameters of the signature scheme from
Figures 1 and 2 above, using a q2-IDS that is PQ-HVZK. Let A be a quantum
algorithm that breaks the PQ-EU-CMA security of the signature scheme with
probability ε. Then, in the quantum-accessible random oracle model there exists
a quantum algorithm MA that breaks the PQ-KOA security of the signature
scheme in essentially the same running time as A and with success probability

ε′ ≥ ε(1− negl(k)). (5)

Moreover, MA only manipulates the random oracle H and leaves H1,H2 un-
touched.

Proof (Sketch). The proof in the ROM above also applies in the QROM with
essentially a single change. The queries to H1 and H2 are still just forwarded
byMA without interaction. This works without any issues in the QROM given
that MA is now a quantum algorithm (which is unavoidable in the QROM).
The only issue is the way MA handles H. It is not possible anymore for MA
to learn A's queries to H and thereby not possible to abort. However, we only
added the abort condition above for clarity: in the classical caseMA could also
simply always program H. Then A's success probability might change if MA
programmed on an input previously queried by A. However, we still obtain the
same bound on the probability. In the QROM, Unruh showed in [33, Corollary 11]
that this adaptive programming only negligibly changes A's success probability
(the exact argument for our speci�c case is exactly the one made in the �rst
game hop of the proof of Theorem 15 in [33]). From this it follows that MA's
success probability still only negligibly deviates from that of A. ut

PQ-KOW ⇒ PQ-KOA. Now we revisit the reduction from PQ-KOW to PQ-
KOA in the quantum-accessible ROM. While we still do this in the asymptotic
regime, we make the parts of the reduction loss explicit which depend on the
parameters r, t of the scheme. This is to support parameter selection in later
sections.

Lemma 3.5. Let k, t, r ∈ N be the parameters of the signature scheme from
Figures 1 and 2 above, using a q2-IDS that has a key relation R, a q2-extractor,
and is PQ-KOW secure. Let A be a quantum algorithm that implements a KOA
forger which given only the public key pk outputs a valid message-signature pair
(M,σ) with probability ε. Then, in the quantum-accessible random oracle model
there exists a quantum algorithm MA that given oracle access to any such A
breaks the KOW security of IDS in essentially the same running time as the
given A and with success probability

ε′ ≥ ε− 2(qH + 1)2−(r log
2t

t+1 )/2. (6)

Moreover, MA only manipulates the random oracles H1,H2 and leaves H un-
touched.
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Proof (Sketch). A QROM version of our proof is obtained by essentially following
the proof of Lemma 17 in [33]. The changes in the proof above are as follows.
First, MA cannot learn A's RO queries to H1 and H2 by simulating these the
classical way, anymore. Instead,MA simulates these oracles using one quantum
PRP (QPRP) per oracle with a random secret key per QPRP. QPRPs exist as
shown in [38] and they are quantum indistinguishable from random functions.
Now, MA can open the blinded responses in the signature by inverting the
QPRP using the secret key. Second, the analysis of Pr(EA ∩ E¬ext) changes. As
we have shown, the probability of a tuple from E¬ext to lead to a valid signature is
2−r log

2t
t+1 . We can now follow the analysis in [33] that reduces distinguishing the

constant zero function from a Bernoulli distributed boolean function to �nding a
tuple in E¬ext that leads to a valid signature. Thereby we get the claimed bound:

Pr(EA ∩ E¬ext) ≤ 2(qH + 1)2−(r log
2t

t+1 )/2. ut

PQ-KOW ⇒ PQ-EU-CMA. Putting the above two lemmas together allows
us to state the following theorem.

Theorem 3.6. Let k, t, r ∈ N be the parameters of the signature scheme above
using a q2-IDS IDS that is computational honest-veri�er zero-knowledge and has
a q2-extractor. Let A be a PQ-EU-CMA forger that succeeds with probability
ε. Then, there exists a quantum algorithm MA, that in the quantum-accessible
random oracle model breaks the PQ-KOW security of IDS in essentially the same
running time as A and with success probability

ε′ ≥ (ε− 2(qH + 1)2−(r log
2t

t+1 )/2)(1− negl(k)).

4 The Sakumoto-Shirai-Hiwatari 5-pass IDS scheme

In [31], Sakumoto, Shirai, and Hiwatari proposed two new identi�cation schemes,
a 3-pass and a 5-pass IDS, based on the intractability of theMQ problem. Un-
like previous public key schemes, their solution provably relies only on theMQ
problem (and the security of the commitment scheme), and not on other related
problems in multivariate cryptography such as the Isomorphism of Polynomials
(IP) [29], the related Extended IP [17] and IP with partial knowledge [32] prob-
lems or the MinRank problem [13,20]. Let us quickly recall theMQ problem.

De�nition 4.1 (MQ problem (search version)). Let m,n, q ∈ N, x =
(x1, . . . , xn) and let MQ(n,m,Fq) denote the family of vectorial functions F :
Fnq → Fmq of degree 2 over Fq:

MQ(n,m,Fq)={F(x) = (f1(x), ..., fm(x))|fs(x)=
∑
i,j

a
(s)
i,j xixj +

∑
i

b
(s)
i xi|ms=1}.

An instanceMQ(F,v) of theMQ (search) problem is de�ned as:
Given F ∈MQ(n,m,Fq),v ∈ Fmq �nd, if any, s ∈ Fnq such that F(s) = v.
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The decisional version of the MQ problem is NP -complete [23]. It is widely
believed that the MQ problem is intractable even for quantum computers in
the average case, i.e., that there exists no polynomial-time quantum algorithm
that given F←RMQ(n,m,Fq) and v = F(s) (for random s←R Fnq ) outputs a
solution s′ to theMQ(F,v) problem with non-negligible probability.

We will later also need theMQ relation RMQ which is the relation ofMQ
instances and solutions:

De�nition 4.2 (MQ relation). TheMQ relation is the binary relation:
RMQ(m,n,q) ⊆ (MQ(n,m,Fq)×Fmq )×Fnq : ((F,v), s) ∈ RMQ(m,n,q) i� F(s) = v.

We will omit m,n, q whenever they are clear from the context.
In [31], Sakumoto, Shirai, and Hiwatari propose a clever splitting technique,

using the so-called polar form of the function F which is the function G(x,y) =
F(x + y) − F(x) − F(y). Using the polar form and its bilinearity, it becomes
possible to split a secret into two shares, such that none of the shares on its
own leaks anything about the secret. From this result, they showed how to
construct zero knowledge arguments of knowledge for the MQ problem, using
a statistically hiding and computationally binding commitment scheme. They
present a 3- and a 5-pass protocol with di�ering performance properties. Later,
in [11], the security properties of the 5-pass scheme were reexamined to provide
the minimal requirements for Fiat-Shamir type signatures from 5-pass IDS. For
completeness and better readability we provide the description of the 5-pass IDS,
together with the properties that we will use.

Let (pk, sk) = ((F,v), s) ∈ RMQ be the public and private keys of the prover.
Without loss of generality, let the elements from Fq be α1, . . . , αq. The 5-pass
IDS from [31] is given in Figure 3.

Theorem 4.3. The 5-pass identi�cation scheme from [31] (see Fig. 3)
1. is computationally PQ-HVZK when the commitment scheme Com is com-

putationally hiding,
2. has key relation RMQ(m,n,q),
3. is PQ-KOW if theMQ search problem is hard on average, and
4. has a q2-Extractor if the commitment scheme Com is computationally bind-

ing against quantum polynomial time algorithms.

A stronger result of the �rst statement in the classical case was shown in [31],
namely that the 5-pass IDS is statistically honest-veri�er zero-knowledge when
the commitment scheme Com is statistically hiding. Relaxing the requirements
of Com to computationally hiding, weakens the result to computationally HVZK,
since now, it is possible to distinguish (albeit only with negligible probability)
whether the commitment was produced in a valid run of the protocol. This easily
transfers to the post-quantum setting, if Com is computationally hiding against
quantum PPT algorithms.

The second statement holds by construction. The third statement follows
from the second. The q2-Extractor essentially follows from a proof in [11]. In [11]
the existence of a q2-Extractor was proven under the condition that the com-
mitment scheme is computationally binding. The proof shows that there exists
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P(pk, sk) V(pk)

//setup

r0, t0 ←R Fn
q , e0 ←R Fm

q

r1 ← s− r0

//commit

c0 ← Com(r0, t0, e0)

c1 ← Com(r1,G(t0, r1) + e0) com = (c0, c1) //challenge 1
I ←R {1, . . . , q}

//first response ch1 = I

t1 ← αIr0 − t0

e1 ← αIF(r0)− e0 resp1 = (t1, e1) //challenge 2

ch2 ←R {0, 1}
//second response ch2

If ch2 = 0, resp2 ← r0

Else resp2 ← r1
resp2 //verify

If ch2 = 0, parse resp2 = r0, check

c0
?
= Com(r0, αIr0 − t1, αIF(r0)− e1)

Else, parse resp2 = r1, check

c1
?
= Com(r1, αI(v− F(r1))−G(t1, r1)− e1)

Fig. 3. The 5-pass IDS by Sakumoto, Shirai, and Hiwatari

a PPT algorithm that given four valid transcripts of the IDS with the correct
pattern always either extracts a secret key or outputs two valid openings for the
commitment. Hence, as long as the used commitment scheme achieves the tra-
ditional de�nition of computationally binding also against quantum polynomial
time algorithms, the 5-pass IDS from [31] has a q2-Extractor (as the probability
to output two valid openings must be negligible).

5 Instantiation from the Sakumoto-Shirai-Hiwatari

5-pass IDS

In the previous sections, we have de�ned a signature scheme as the result of
a transformed q2-IDS scheme. Here, we de�ne it instantiated with the 5-pass
identi�cation scheme proposed in [31].

5.1 SOFIA

We de�ne the signature scheme in generic terms by describing the required pa-
rameters and the functions KGen, Sign and Vf, and defer giving concrete pa-
rameters m,n, r, t and Fq for a speci�c security parameter k to the next section,
where we also instantiate the pseudorandom generators (PRGs) and extendable
output functions (XOFs). For now, we only need to �x 2 6 t 6 q elements of the
�eld Fq. Without loss of generality, we denote them by α1, . . . , αt.

Key generation. The SOFIA key generation algorithm formally just samples
aMQ relation. Practically, the algorithm is realized as shown in Figure 4. The
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KGen()

sk←R {0, 1}k

SF, s, Srte ← PRGsk(sk),F← XOFF(SF), v ← F(s)

pk := (SF,v)

Return (pk, sk)

Fig. 4. SOFIA key generation

secret key is used as a seed to derive the following values: SF, a seed from which
the system parameter F is expanded; s, the secret input to the MQ function;

Srte, a seed that is used to sample all vectors r
(i)
0 , t

(i)
0 and e

(i)
0 . Note that Srte

is not yet needed during key generation, but is required during signing.

Signature generation. For the signing procedure, we assume as input a mes-
sageM ∈ {0, 1}∗ and a secret key sk. The signing procedure is given in Figure 5.
Note that the scheme de�nition includes several optimizations to reduce the
signature size. We discuss these later in this section.

Sign(sk,M)

SF, s, Srte ← PRGsk(sk), F← XOFF(SF)

pk := (SF,F(s))

r
(1)
0 , . . . , r

(r)
0 , t

(1)
0 , . . . , t

(r)
0 , e

(1)
0 , . . . , e

(r)
0 ← PRGrte(Srte,M)

For j ∈ {1, . . . , r} do

r
(j)
1 ← s

(j) − r
(j)
0

c
(j)
0 ← Com(r

(j)
0 , t

(j)
0 , e

(j)
0 ), c

(j)
1 ← Com(r

(j)
1 ,G(t

(j)
0 , r

(j)
1 ) + e

(j)
0 )

com(j)
:= (c

(j)
0 , c

(j)
1 )

For i ∈ {1, . . . , t} do

t
(i,j)
1 ← αir

(j)
0 − t

(j)
0 , e

(i,j)
1 ← αiF(r

(j)
0 )− e

(j)
0

resp
(i,j)
1 := (t

(i,j)
1 , e

(i,j)
1 ), cr

(i,j)
1 ← H1(resp

(i,j)
1 )

resp
(j,0)
2 := r

(j)
0 , resp

(j,1)
2 := r

(j)
1

cr
(j,0)
2 ← H2(resp

(j,0)
2 ), cr

(j,1)
2 ← H2(resp

(j,1)
2 )

transfull(j) := (com(j)
,
{
cr

(i,j)
1

}t

i=1
, cr

(j,0)
2 , cr

(j,1)
2 )

md← H
(
pk,M, {transfull(j)}rj=1

)
((I1, B1), . . . , (Ir, Br))← XOFtrans(md)

transred(j) := (c
(j)
¬Bj

,
{
cr

(i,j)
1

}t

i6=Ij,i=1
, cr

(j,¬Bj)

2 )

Return

(
md,

{
transred(j), αIj

, resp
(Ij,j)

1 , resp
(j,Bj)

2

}r

j=1

)

Fig. 5. SOFIA signature generation

The signer begins by e�ectively performing KGen() to obtain pk and F, and
then iterates through r rounds of the transformed identi�cation scheme to obtain
the transcript. He then uses this as input for XOFtrans to derive a sequence
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of indices ((I1, B1), . . . , (Ir, Br)), which e�ectively dictate the responses that
should be included unblinded in the signature.

Veri�cation. Upon receiving a messageM , a signature σ, and a public key pk =
(SF,v), the veri�er begins by obtaining the system parameter F and parsing the
signature σ as de�ned by its construction in Sign(). The veri�cation routine that
follows is listed in Figure 6.

Vf(pk, σ,M)

F← XOFF(SF)

((I1, B1), . . . , (Ir, Br))← XOFtrans(md)

For j ∈ {1, . . . , r} do

cr
(Ij,j)

1 ← H1(resp
(Ij,j)

1 ), cr
(Ij,Bj)

2 ← H2(resp
(Ij,Bj)

2 )

For j ∈ {1, . . . , r} do
If Bj = 0 then

r
(j)
0 := resp

(Ij,Bj)

2

c
(j)
0 ← Com(r

(j)
0 , αIj

r
(j)
0 − t

(Ij,j)

1 , αIj
F(r

(j)
0 )− e

(Ij,j)

1 )

Else

r
(j)
1 := resp

(Ij,Bj)

2

c
(j)
1 ← Com(r

(j)
1 , αIj

(v− F(r
(j)
1 ))−G(t

(Ij,j)

1 , r
(j)
1 )− e

(Ij,j)

1 )

md′ ← H
(
pk,M, {transfull(j)}rj=1

)
Return md′ = md

Fig. 6. SOFIA signature veri�cation

Optimizations. There are several optimizations that can be applied to signa-
tures resulting from a transformed q2-IDS. Some of them are speci�c for SOFIA
and some are more general; similar and related optimizations were suggested
in [33], [11] and [10].

Excluding unnecessary blindings. The signature contains blindings of all com-

puted responses, as well as a selection of opened responses resp
(Ij ,j)
1 and resp

(j,Bj)
2 .

It is redundant to include the values cr
(Ij ,j)
1 and cr

(j,Bj)
2 , as these can be recom-

puted based on the opened responses. This optimization was actually proposed
in the generic Unruh transform [33], and applies to any construction similar to
Unruh's and ours. However, for the veri�er to know which responses were actu-
ally opened, they must be able to reproduce the indices ((I1, B1), . . . , (Ir, Br)),
which are derived from the transcript, and without the blinded responses, this
transcript is incomplete. To solve this circular dependency, we could include
the selected indices in the signature. However, for typical parameters (see Sec-
tion 6.1), we can do this more e�ciently by breaking XOFtrans into two parts,
composing it of a hash function over the transcript H and an extendable output
function XOFIB to derive the indices from the hash output. We then include

H
(
pk,M, {transfull(j)}rj=1

)
as part of the signature, so that the veri�er can re-

construct the indices, blind the corresponding responses, construct transfull, and
recompute the same hash for comparison.
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Fixed challenge-space de�nition. Following the generic description of the signa-
ture, the selected α(i,j) are included in the signature. Depending on the speci�c
choice of t and q, it may be more e�cient to include the challenges α(i,j) that
were not selected. However, there is no reason not to take this a step further and
simply �x a challenge space ChS1 of t elements. That way, all the α's from ChS1
will be selected and there is no need to include them in the signature. This not
only reduces the signature size, but also simpli�es the implementation.

Excluding unnecessary second responses. The underlying IDS from [31] has a
speci�c property, namely that the second responses do not depend on the previ-
ous state (that is, on the �rst challenge and response). Therefore, regardless of
the value of α, the second responses are always the same. For this reason, they
need to be included only once per commitment (rather than repeating the same
value t times). Combined with the previous optimization, this implies that one
of the second responses will be opened, and the other will be included blinded.

Omitting commitments. The check that the veri�er performs for each round

consists of recomputing c
(j)
Bj
, and comparing it to one of the commits supplied

by the signer. Similar to the above, and as already suggested in [31], the signer
can omit the commits that the veri�er will recompute. A hash over all commits
could be included instead, which the veri�er can reconstruct using the commits

c
(j)
Bj

he recomputes and the commits c
(j)
¬Bj

the signer includes. However, it turns
out that this hash is not necessary either: as these commitments are part of the
transcript and the veri�er is already checking the correctness of the transcript
as per the �rst optimization, the correctness of the recomputed commitments is
implicitly checked when comparing the two hashes md and md′.

No need for additional randomness in the commitments. Commitments must be
randomized in order for them to be hiding. This is typically done by including

a randomization string. In our case, r
(j)
0 , t

(j)
0 and e

(j)
0 are all randomly chosen,

already providing su�cient randomness in both c
(j)
0 and c

(j)
1 .

While constructing this scheme, we attempted several other variations. No-
tably, we explored opening for multiple α-challenges, but that led to no im-
provement in the number of rounds, and, in some cases, to a contradiction of the
zero-knowledge property. Variants that employ a form of internal parallelization
by committing to multiple values for t0 do reduce the number of rounds, but
increase the size of the transcript disproportionately.

Altogether, the above optimizations are crucial: they add up to around
126KiB, more than halving the signature size of the scheme that results from
the transform.

5.2 Security of SOFIA

In Section 3 we described an extension of Unruh's transform to q2-IDS and have
proven that it provides PQ-EU-CMA security in the QROM for any underlying
q2-IDS with a q2-extractor, the HVZK property, and PQ-key-one-wayness. This,
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of course, implies that this transform can immediately be applied to the 5-pass
MQ IDS from [31], to give anMQ signature secure in the QROM.

As discussed in the previous subsection, some optimizations can signi�cantly
improve the performance of the scheme. They deviate from the generic construc-
tion, however, causing a need for some changes in the security proof. Fortunately,
only minor changes are required. We specify the following theorem.

Theorem 5.1. Let k ∈ N be the security parameter. The signature scheme
SOFIA is post-quantum existentially unforgeable under adaptive chosen message
attacks in the quantum-accessible random oracle model if the following conditions
are satis�ed:

� The search version of theMQ problem is intractable in the average case,
� the hash functions H, H1, H2 as well as the extendable output functions
XOFF and XOFtrans are modeled as quantum-accessible random oracles,

� the commitment function Com is computationally binding and computation-
ally hiding against quantum adversaries, and has O(k) bits of output entropy,

� the pseudorandom generators, PRGrte, PRGsk have outputs computationally
indistinguishable from random for any polynomial-time quantum adversary.

Proof. First let's consider a signature scheme obtained by applying the optimiza-
tions from the previous section on the signature scheme from Figures 1 and 2. We
will refer to it as the optimized scheme throughout this proof. We will show that
this optimized scheme is PQ-EU-CMA secure, if the underlying q2-IDS satis�es
the conditions from Theorem 4.3. We will assume some additional properties of
the IDS, that represent a special case of q2-IDS schemes. The optimized scheme
is characterized by the following optimizations.

� We �x the challenge space ChS1 to t elements. Note that this change does
not in�uence the security arguments at all.

� We assume that the underlying IDS of the optimized scheme is such that
the second response does not depend on the �rst challenge and response, but
only on the second challenge and the initial output by the prover P0. In this
case, in the signature generation, instead of calculating the second response

as resp
(i,j,ch2)
2 ← P2(state

(i,j), ch2) for every i ∈ {1, . . . , t}, we calculate it

once per round as resp
(j,ch2)
2 ← P2(state

(j), ch2). The full transcript is now

{transfull(j)}rj=1, with transfull(j) = com(j),
{
ch

(i,j)
1 , cr

(i,j)
1

}t
i=1

, (cr
(j,0)
2 , cr

(j,1)
2 ).

The reduced transcript transred(j) that is included in the signature is in�u-
enced similarly.

� Assuming that the underlying IDS is such that com = (c0, c1), we omit from
the signature the commitment cch2 that the veri�er recomputes, depend-
ing on the challenge ch2. This alters the content of transred(j) but not of
transfull(j).

It is straight forward to verify that Lemma 3.1 (and in the QROM, Lemma 3.5)
still hold for the optimized scheme. We only removed duplicate information from
the signature, which the reduction can recompute. The exact probability of abort
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in Lemma 3.2 might change as we remove some values from {transfull(j)}rj=1,
maybe reducing its entropy. However, the given bound does not change as it
only depends on the amount of entropy coming from the commitments, which
remains unchanged. Thus, the claims of Lemma 3.2 remain valid.

Next, recall (cf. Theorem 4.3) that, under the assumption of intractability of
theMQ problem on average, and assuming computationally binding and com-
putationally hiding properties of Com, the 5-pass IDS from [31] is PQ-KOW,
is HVZK, and has a q2-Extractor. Furthermore, it satis�es the particular prop-
erties that the optimized scheme above requires. Thus applying the optimized
transform on the Sakumoto-Shirai-Hiwatari 5-pass IDS scheme, we obtain a PQ-
EU-CMA secure signature (cf. Theorems 3.3 and 3.6).

To complete the proof, we note that using a standard game hopping argu-
ment, it is straightforward to show that the success probability of a PQ-EU-
CMA adversary against SOFIA is negligibly close to the success probability of
a PQ-EU-CMA adversary against the optimized scheme from the Sakumoto-
Shirai-Hiwatari 5-pass IDS scheme when the outputs of PRGrte and PRGsk are
post-quantum computationally indistinguishable from random. ut

6 SOFIA-4-128

Having described the scheme in general terms, we now provide concrete pa-
rameters that allow us to specify a speci�c instance, which we will refer to as
SOFIA-4-128. We present an optimized software implementation and list the re-
sults, in particular in comparison to MQDSS-31-64. All benchmarks mentioned
below were obtained on a single core of an Intel Core i7-4770K (Haswell) CPU,
following the standard practice of disabling TurboBoost and hyper-threading.
We compiled the code using gcc 4.9.2-10, with -O3 and -march=native.

6.1 Parameters

The previous section assumed a number of parameters and functions. Notably,
we must de�ne Fq, the �eld in which we perform the arithmetic, and n and m,
the number of variables and equations de�ning theMQ problem. The number

of rounds r is determined by t (i.e. the number of responses resp
(i,j)
1 , bounded

by q in SOFIA) and the targeted security level, using Theorem 3.6.
ForMQDSS-31-64, the choice of F31 was motivated by the fact that it brings

the soundness error close to 1
2 while providing convenient characteristics for fast

implementation [11]. For SOFIA-4-128, our primary focus is on optimizing for
signature size while still maintaining e�ciency. To do so, we compute signature
sizes for a wide range of candidates, and investigate several in more detail by
implementing and measuring the resultingMQ evaluation functions. In particu-
lar, we look at the results ofMQ(128, 128,F4),MQ(96, 96,F7) andMQ(72, 72,
F16), and compare to MQ(64, 64, F31) from [11]. Of these, MQ(128, 128, F4)
is the decisive winner, resulting in the smallest signatures while still providing
decent performance. This is also the minimum amongst all candidate systems
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we looked at � it is not merely beating F7 and F16, but also less common options
such as F5 and F8. See Table 2 for benchmarks of single evaluation functions and
the related signature sizes. Note that, as the number of rounds r does not depend
on the choice of Fq but merely on t, the signing time scales proportionally.

Parameters for MQ(m,n, Fq). A straightforward method for solving sys-
tems of m quadratic equations in n variables over Fq is by performing exhaus-
tive search on all possible qn values for the variables, and testing whether they
satisfy the system. Currently, [9] provide the fastest enumeration algorithm for
systems over F2, needing 4 log n · 2n operations. The techniques from [9] can be
extended to other �elds Fq with the same expected complexity of Θ(logq n · qn).

In addition, there exist algebraic techniques that analyze the properties of
the ideal generated by the given polynomials. The most important are the algo-
rithms from the F4/F5 family [18,19,4,8], and the variants of the XL algorithm
[12,16,36,35]. Although di�erent in description, the two families bear many sim-
ilarities, which results in similar complexity [37].

In the Boolean case, today's state of the art algorithms BooleanSolve [5]
and FXL [35], provide improvement over exhaustive search, with an asymptotic
complexity of Θ(20.792n) and Θ(20.875n) for m = n, respectively. Practically,
the improvement is visible for polynomials with more than 200 variables. A
very recent algorithm, the Crossbred algorithm [26] over F2, is likely to further
improve the asymptotic complexity, as the authors report that it passes the
exhaustive search barrier already for 37 Boolean variables. Unfortunately, at the
time of writing, the preprint does not include a detailed complexity analysis
that we can use (the authors of [26] con�rmed that the complexity analysis is
an ongoing work, and will soon be made public).

The current best known algorithms, BooleanSolve [5], FXL [35,36], the Cross-
bred algorithm [26] and the Hybrid approach [8] all combine algebraic techniques
with exhaustive search. This immediately allows for improvement in their quan-
tum version using Grover's quantum search algorithm [25], provided the cost of
running them on a quantum computer does not diminish the gain from Grover.
Unfortunately, the current literature lacks analysis of the quantum version of
these algorithms. To the best of our knowledge, a detailed analysis has only
been done for pure enumeration using Grover's search [34], showing that a sys-
tem of n equations in n variables can be solved using Θ(n · 2n/2) operations.

In what follows we will analyze the complexity of the quantum versions of
the Hybrid approach and BooleanSolve, and use the results as a reference point
in choosing parameters for MQ(m,n,Fq) that provide 128 bit post-quantum
security. A similar analysis can be made using the algorithms from the XL family.

First of all, we note that m = n is the best choice in terms of hardness
of the MQ problem. Indeed, if there are more equations than variables, they
provide more information about the solution, so �nding one becomes easier. On
the other hand, if there are more variables than equations, we can simply �x
n−m variables and reduce the problem to a smaller one, with m variables.

Let F = (f1, . . . , fm), fi ∈ Fq[x1, . . . , xn]. Without loss of generality, the
equation system that we want to solve is F(x) = 0.
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The main complexity in both the Hybrid approach and BooleanSolve comes
from performing linear algebra on a Macaulay matrix MacD(F) of degree D
(with rows formed by the coe�cients of monomials of ufi of maximal degree
D). The degree D should be big enough so that a Gröbner basis of the ideal
generated by the polynomials can be obtained by performing linear algebra on
the Macaulay matrix. The smallest suchD is called the degree of regularityDreg,
and for semi-regular systems (which is a very plausible assumption for randomly
generated polynomials) it is given by Dreg(n,m) = 1 + deg(HSq(t)), where

HSq(t) =

[
(1− t2)m

(1− t)n

]
+

, for q > 2, and HS2(t) =

[
(1 + t)n

(1 + t2)m

]
+

,

and the + subscript denotes that the series has been truncated before the �rst
non-positive coe�cient. Since Dreg determines the size of the matrix, and thus
the complexity of the linear algebra performed on it, both algorithms �rst �x k
among the n variables in order to reduce the complexity of the costliest compu-
tational step. Now the linear algebra step is instead performed on MacDreg (F̃),

where F̃ = (f̃1, . . . , f̃m) and f̃i(x1, . . . , xn−k) = fi(x1, . . . , xn−k, an−k+1, . . . , an),
for some (an−k+1, . . . , an) ∈ Fk2 . The value of k is chosen such that the overall
complexity is minimized.

Given the linear algebra constant 2 6 ω 6 3, the complexity of the Hybrid
approach for solving systems of n equations in n variables over Fq is

CHyb(n, k) = Guess(q, k) · CF5(n− k, n), (7)

where CF5(n,m) = Θ

((
m

(
n+Dreg(n,m)− 1

Dreg(n,m)

))ω)
, is the complexity of

computing a Gröbner basis of a system of m equations in n variables, m > n,
using the F5 algorithm [19], Guess(q, k) = logq(k)q

k in the classical case and

Guess(q, k) = logq(k)q
k/2 in the quantum case using Grover's algorithm. Here,

we assume a rather optimistic factor of logq(k) in the quantum case, i.e., it is
the same as in the classical case, as opposed to the factor k from [34].

In the case of F2, the BooleanSolve algorithm performs better than the Hy-
brid approach. It reduces the problem to testing the consistency of a related
linear system

u ·MacDreg
(F̃) = (0, . . . , 0, 1) (8)

If the system is consistent, then the original system does not have a solution. This
allows for pruning of all the inconsistent branches corresponding to some a ∈ Fk2 .
A simple exhaustive search is then performed on the remaining branches. It can
be shown that the running time of the algorithm is dominated by the �rst part
of the algorithm in both the classical and the quantum version, although in the
quantum case the di�erence is not as big, as a consequence of the reduced com-
plexity of the �rst part. Therefore, for simplicity, we omit the exhaustive search
on the remaining branches from our analysis. The complexity of the Boolean-
Solve algorithm is given by

CBool(n, k) = Guess(2, k) · Ccons(MacDreg
(F̃)), (9)
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where Guess(2, k) is de�ned the same as in the Hybrid approach, and

Ccons(MacDreg
(F̃)) = Θ(N2 log2N log logN), N =

Dreg(n−k,n)∑
i=0

(
n

i

)
is the complexity of testing consistency of the matrix (8), using the sparse linear
algebra algorithm from [24].

Table 1 below provides estimates of the minimum requirements for 128 bit
post-quantum security of MQ(n, n,Fq) with regards to BooleanSolve and the
Hybrid Approach using Grover's search, as well as plain use of Grover's search.
In the estimates we used ω = 2.3, which is smaller than the best known value
ω = 2.3728639 [22]. We provide the optimal number of �xed variables in brackets,
where actually this number does not equal the number of variables in the initial
system. When this is the case, the optimal strategy is to simply use Grover (�x
all variables), which we denote with G. Note that since any system of n variables
over F2s can be e�ciently transformed into a system of sn variables over F2, we
have scaled the results for BooleanSolve for larger F2s accordingly.

F2 F3 F4 F5 F7 F8

BooleanSolve 221 (200) / 111 / / 56
Hybrid G G G G G 84 (57)
Grover 251 158 126 108 90 84

F11 F13 F16 F17 F31 F32

BooleanSolve / / 28 / / 14
Hybrid 77 (51) 73 (43) 69 (40) 69 (40) 61 (30) 60 (21)
Grover 73 68 63 62 51 51

Table 1. Lower bound on number of variables n for 128 bit post quantum security
against the quantum versions of Hybrid approach [8] and BooleanSolve [5]. In
brackets is the number of �xed variables. G denotes that the best strategy is to
�x all variables, i.e. plain Grover search.

As mentioned earlier, a new algebraic method for equations over F2, the
Crossbred algorithm, was proposed very recently [26]. The main idea of this ap-
proach is to �rst perform some operations on the Macaulay matrix of degree
Dreg(n − k, n) of the given system, and �x variables only afterwards. In par-
ticular, the algorithm �rst tries to �nd enough linearly independent elements
in the kernel of a submatrix of MacDreg(n−k,n), corresponding to monomials of
specialized degree in the variables that will later remain in the system (i.e. will
not be �xed). These can then be used to form new polynomials in the n− k re-
maining variables of total small degree d, which added to Macd(F̃) will result in
working with a much smaller Macaulay matrix. The advantage here comes from
using sparse linear algebra algorithms on MacDreg(n−k,n) for the �rst part and
dense linear algebra only on the smaller Macaulay matrix in the second part. An
external specialization of variables is also possible, but this does not bring any
improvement classically, and we have veri�ed for some parameters (including
ours) that this is the case also quantumly. Even more, the algorithm can be split
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into two distinct parts: thus, the �rst part, that is more memory demanding
can always be performed on a classical computer, and the second part which
can make use of Grover's algorithm can be performed on a quantum computer.
Since [26] does not contain a complexity analysis, we refrain from claiming exact
security requirements based on the quantum version of the algorithm. Neverthe-
less, following the description of the algorithm we have estimated the security of
our chosen instance MQ(128, 128,F4). We analyzed both the quantum version
of the algorithm over F2 as described in [26] and the quantum version over F4.

In both cases, as long as the number of the remaining n − k variables is
small, the sparse linear algebra part takes much less time, since in this case
Dreg(n − k, n) is also small. It turns out that actually it is more e�cient to
work with a MacD, with D > Dreg(n − k, n), but not too large so that the
cost of the �rst part becomes signi�cant. The complexity thus, is dominated by
enumeration of k variables in a system in n variables of degree D over F4, and
checking whether the obtained system has a valid solution. Clearly, a quantum
version of this part using Grover can quadraticly speed up the enumeration,
however there will be some additional cost for the Grover oracle.

Our analysis showed that for our parameters, the version over F4 is much
more e�cient. Not counting the evaluation cost of the polynomials and any addi-
tional cost of the Grover oracle, the quantum algorithm againstMQ(128, 128,F4)
takes at least 2117 operations for the best found trade-o� of parameters of the
algorithm. Very likely, the additional cost we did not take into account would be
much bigger than 211 operations. In total, we can safely assume that a system
of 128 variables over F4 provides 128-bit security against the quantum version of
Crossbred algorithm. We will include a more detailed analysis for the quantum
version once a classical complexity analysis of [26] is available.

Number of rounds r and blinded responses t per round. The choice
of t provides a trade-o� between size and speed; a larger t implies a smaller
error, resulting in less rounds, but more included blinded responses per round
(the additional computational cost of which is insigni�cant). Interestingly, t = 3
provides the minimal size, followed by t = 4, and, only then, t = 2. The decrease
in rounds quickly diminishes, making t = 3 and t = 4 the most attractive choices.
Note that t is naturally bounded by q, making these the only options for F4.

cyclesb
size

t = 3, r = 438
size

t = 4, r = 378

MQ(128, 128,F4) 21 412 123.22 KiB 129.97 KiB

MQ(96, 96,F7) 36 501 129.00 KiBa 136.20 KiBa

MQ(72, 72,F16) 25 014 136.91 KiB 144.73 KiB

MQ(64, 64,F31) 6 616[11] 149.34 KiBa 158.15 KiBa

a Assumes optimally packing the elements of Fq, which may not be practical.
b For single evaluation. In practice, batching provides a speedup. See Sec. 6.2.

Table 2. Benchmarks for varying parameter sets
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Given the above considerations (and with a prospect of some convenience of
implementation), we select the parameters n = m = 128, q = 4 and t = 3. For
a security level of 128 bits post-quantum security, it follows from Theorem 3.6

that we must select r such that 2−(r log
2t

t+1 )/2 < 2−128. This implies r = 438.

Required functions. Before being able to implement the scheme, we must
still de�ne several of the functions we have assumed to exist. In particular, we
need: a string commitment function Com; pseudorandom generators PRGsk and
PRGrte; extendable output functions XOFF and XOFIB ; permutation functions
H1 and H2; and a cryptographic hash function H.

We instantiate the extendable output functions, the string commitment func-
tions, the permutations and the hash function with SHAKE-128 [7]. This applies
trivially, except for XOFIB , of which the output domain is a series of ternary
and binary indices (as t = 3). We resolve this by applying rejection sampling to
the output of SHAKE-128 to derive the ternary challenges. Note that this does
not enable a timing attack, as the input to SHAKE-128 is public. For XOFF,
we achieve a signi�cant speedup by dividing its output in four separate pieces,
generating each of them with a domain-separated call to cSHAKE-128 [7]. For
the application of H to the public key, the message and the transcript, collision
resilience is achieved by absorbing the transcript into the SHAKE-128 state �rst,
as the included randomness prevents internal collisions.

We also instantiate PRGrte and PRGsk with SHAKE-128, but note that im-
plementations can make di�erent choices without breaking compatibility. In fact,
for the optimized Haswell implementation discussed in the next section, we in-
stantiate PRGrte with AES in counter mode, using the AES-NI instruction set.

6.2 Implementation

As part of this work, we provide a C reference implementation and an imple-
mentation optimized for AVX2. The focus of this section is the evaluation of
the MQ function, given the abovementioned parameter set MQ(128, 128,F4).
The rest of the scheme depends on fairly straight-forward operations (such as
multiplying vectors of F4 elements by a constant scalar) and applications of ex-
isting implementations of AES-CTR and SHAKE-128 The used AES-CTR and
SHAKE-128 implementations are in the public domain and run in constant time.

Before discussing the computation, we note that the chosen parameters lend
themselves to a very natural data representation. Throughout the entire scheme,
we interpret 256 bit vectors as vectors of 128 bitsliced F4 elements: the low
128 bits make up the lower bits of the two-bit elements, and the high 128 bits
make up the higher bits of each element. This makes operations such as scalar
multiplication very convenient in C code, as this can be easily expressed as logical
operations on bit sequences, but provides an even more important bene�t for
AVX2 assembly code. Notably, one vector of F4 elements �ts exactly into one
256 bit vector register, with the lower bits now �tting into the low lane and
the higher bits into the high lane. Whereas other parameter sets could result in
having to consider crossing the lanes, in this case the separation is very natural.
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When sampling elements in F4 from the output of SHAKE-128 or AES-CTR,
we can freely interpret the random data to be in bitsliced representation. Simi-
larly, we include the elements in the signature in this representation, as signature
veri�cation enjoys precisely the same bene�ts. Throughout the entire scheme,
there is no point at which we need to actually perform a bitslicing operation.

As a side e�ect of this choice of representation, it is very natural to perform
theMQ evaluation in constant time. While bigger underlying �elds might have
implied approaches based on lookup tables, for vectors over F4 it is much faster
to perform the evaluation using bitsliced �eld arithmetic.

Evaluating MQ. For a given input x, we split the evaluation into two phases:
computing all quadratic monomial terms xixj , and composing them to evaluate
the quadratic polynomials.

Computing the quadratic terms. To perform the �rst step, we use a similar ap-
proach as was used in [11]. It can be viewed as a combination of their approach
for F2 and for F31, as we now operate on a single register that contains all input
elements, but view each lane as 16 separate single-byte registers. Using vpshufb

instructions, the elements can be easily arranged such that all multiplications
can be performed using only a minimal number of rotations. We used the script
from [11] as a starting point to generate the arrangement.

A bitsliced multiplication in F4 can be e�ciently performed using only a few
logical operations. The inputs to these multiplications are a register containing
x and a register containing some rotated arrangement of x. However, some of
these operations require the low and high lanes of the vector registers to inter-
act, which is typically costly. As x is constant, we speed up these multiplications
by rewriting them as shown below, and presetting two registers that contain
[xhigh|xhigh] and [xhigh ⊕ xlow|xlow], respectively. Note that all of these opera-
tions are not performed on single bits, but rather on 128 bit vector lanes. The
multiplication of 128 elements then requires only two vpand instructions, one
vperm instruction, and a vpxor to combine the results.

chigh = (ahigh ∧ (blow ⊕ bhigh))⊕ (alow ∧ bhigh)
clow = (alow ∧ blow)⊕ (ahigh ∧ bhigh)

Multiplying, and accumulating results. We focus on two approaches to perform
the second and most costly part of the evaluation, in which all of the above
monomials need to be multiplied with coe�cients from F and summed into
the output vector. They are best described as iterating either `horizontally' or
`vertically' through the required multiplications. For the vertical approach, we
iterate over all5 registers of monomials, broadcasting each of the monomials to

5 There are n·(n+1)
2

= 8256 such monomials, which results in 64 1
2
256-bit sequences.

We round up to 65 by zeroing out half of the high and half of the low lane. To still
get results that are compatible with implementations on other platforms, we create
similar gaps in the stream of random values used to construct F, ensuring that the
same random elements are still used for the same coe�cients.
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each of the 128 possible positions (using rotations), before multiplying with a
sequence of coe�cients from F and adding into an accumulator. Alternatively,
we iterate over the output elements in the outer-most loop. For each output
element, we iterate over all registers of monomials, perform the multiplications
and horizontally sum the results by making use of the popcnt instruction.

Intuitively, the latter approach may seem like more work (notably because it
requires more loads from memory), but in practice it turns out to be faster for our
parameters. The main reason for this is that by maintaining multiple separate
accumulators, loaded monomials can be re-used while still maintaining chains of
logic operations that operate on independent results (as the accumulators are
only joined together later), which leads to highly e�cient scheduling.

For both cases, delaying part of the multiplication in F4 provides a signi�cant
speedup. This is done by computing both [x̂high ∧ fhigh|x̂low ∧ flow] and [x̂low ∧
fhigh|x̂high ∧ flow], with f from F and x̂ a sequence of quadratic monomials, and
accumulating these results separately. After accumulating, all multiplications
and reductions can be completed at once, eliminating the duplicate operations
that would otherwise be performed for each of the 65 multiplications.

EvaluatingMQ instances in parallel. As each of the coe�cients in F is used
only once, loading these elements from memory causes a considerable burden.
Since F is constant for each evaluation, however, a signi�cant speedup can be
achieved by processing multiple instances of theMQ function in parallel. This
applies in particular to the vertical approach, as its critical section leaves some
registers unused. Horizontally, there is a trade-o� with registers used for parallel
accumulators, but there is still considerable gain from parallelizing evaluations.

For SOFIA-4-128, the signer evaluates r = 438 instances of F and its polar
form G on completely independent inputs, which can be trivially batched.

Parallel SHAKE-128 and cSHAKE-128. As will be apparent in the next sec-
tion, many cycles are spent computing the Keccak permutation (as part of either
SHAKE-128 or cSHAKE-128). Some of the main culprits are the commitments,
the blinding of responses and the expansion of F. While the Keccak permuta-
tion does not provide internal parallelism, it is straightforward to compute four
instances in parallel in a 256 bit vector register. This allows us to seriously speed
up the many commitments and blindings, as these are all fully independent and
can be grouped together across rounds. Deriving F can be parallelized by split-
ting it in four domain-separated cSHAKE-128 calls operating on the same seed,
as was alluded to in Section 6.1.

Benchmarks. Evaluating the MQ function horizontally in batches of three
turns out to give the fastest results, measuring in at 17 558 cycles per evaluation.
Evaluating vertically costs 18 598 cycles. The cost for evaluating the polar form
is not signi�cantly di�erent, di�ering by approximately a hundred cycles from
regular MQ. Generating the monomial terms xiyj + xjyi is somewhat more
costly, but this is countered by the fact that the linear terms cancel out.

To generate a signature, we spend 21 305 472 cycles. Of this, 15 420 520 cycles
can be attributed to evaluatingMQ, and 43 954 to AES-CTR. The remainder is
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almost entirely accounted for by the various calls to SHAKE-128 and cSHAKE-

128 for the commitments, blindings and randomness expansion. In particular,
expanding F costs 1 120 782 cycles. Note, however, that if many signatures are
to be generated, this expansion only needs to be done once and F can be kept in
memory across subsequent signatures. Veri�cation costs 15 492 686 cycles, and
key generation costs 1 157 112; key generation is dominated by expansion of F.

The keys of SOFIA-4-128 are very small by nature, with the secret key
consisting of only a single 32 byte seed, and the 64 byte public key being made
up of a seed and a singleMQ output.

The natural candidate for comparison isMQDSS-31-64 [11]. WhileMQDSS
has a proof in the ROM, we focus further comparison on post-quantum schemes
that have proofs in the QROM or standard model. See Table 3, below; as
mentioned in the introduction, we include SPHINCS-256 [6] (standard model),
Picnic-10-38 [10] (QROM) and TESLA-2 [2] (QROM). Since [2] does not imple-
ment the TESLA-2 parameter set, we include TESLA-1 (ROM) for context.

|σ|
(bytes)

|pk|, |sk|
(bytes)

keygen
(cycles)

signing
(cycles)

veri�cation
(cycles)

SOFIA-4-128 a 126 176 64 32 1 157 112 21 305 472 15 492 686

MQDSS-31-64a 40 952 72 64 1 826 612 8 510 616 5 752 612

SPHINCS-256b 41 000 1056 1088 3 237 260 51 636 372 1 451 004

Picnic-10-38c,d 195 458 64 32 ≈36 000 ≈112 716k ≈58 680 000
TESLA-1a 2 444 11 653k 6 769k ?e 143 402 231 19 284 672

TESLA-2f ≥4.0kg ≥21 799kg ≥7 700kg ?f ?f ?f

a Benchmarked on an Intel Core-i7-4770K (Haswell). b Benchmarked on an Intel Xeon
E3-1275 (Haswell). c Benchmarked on an Intel Core-i7-4790 (Haswell). d Converted
from milliseconds at 3.6GHz. e The benchmarks in [2] omit key generation. In [10], a
measurement of approximately 173 billion cycles is reported for the preceding TESLA-
768 [1] scheme, which uses a similar key generation operation but is instantiated with
smaller parameters. f The TESLA-2 parameter set is not implemented in [2]; no
benchmarks are available. g �Sizes are theoretic sizes for fully compressed keys and

signatures� [2].

Table 3. Benchmark overview

References

1. E. Alkim, N. Bindel, J. Buchmann, and O. Dagdelen. TESLA: tightly-secure
e�cient signatures from standard lattices. Cryptology ePrint Archive, Report
2015/755, 2015.

2. E. Alkim, N. Bindel, J. Buchmann, Ö. Dagdelen, E. Eaton, G. Gutoski, J. Krämer,
and F. Pawlega. Revisiting TESLA in the quantum random oracle model. Interna-
tional Workshop on Post-Quantum Cryptography � PQCRYPTO 2017, vol. 10346
of LNCS, 143�162. Springer, 2017.

28



3. A. Ambainis, A. Rosmanis, and D. Unruh. Quantum attacks on classical proof
systems: The hardness of quantum rewinding. FOCS 2014, 474�483. 2014.

4. M. Bardet, J. Faugère, and B. Salvy. On the complexity of the F5 Gröbner basis
algorithm. Journal of Symbolic Computation, 70:49�70, 2015.

5. M. Bardet, J. Faugère, B. Salvy, and P. Spaenlehauer. On the complexity of solving
quadratic boolean systems. Journal of Complexity, 29(1):53�75, 2013.

6. D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Pa-
pachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-O'Hearn. SPHINCS:
practical stateless hash-based signatures. Advances in Cryptology � EUROCRYPT

2015, vol. 9056 of LNCS, 368�397. Springer, 2015.
7. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The Keccak reference,

2011.
8. L. Bettale, J. Faugère, and L. Perret. Solving polynomial systems over �nite �elds:

improved analysis of the hybrid approach. Proceedings of the 37th International

Symposium on Symbolic and Algebraic Computation � ISSAC '12, 67�74. ACM,
2012.

9. C. Bouillaguet, H.-C. Chen, C.-M. Cheng, T. Chou, R. Niederhagen, A. Shamir,
and B.-Y. Yang. Fast exhaustive search for polynomial systems in F2. Cryp-

tographic Hardware and Embedded Systems � CHES 2010, vol. 6225 of LNCS,
203�218. Springer, 2010.

10. M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger, D. Sla-
manig, and G. Zaverucha. Post-quantum zero-knowledge and signatures from
symmetric-key primitives. Cryptology ePrint Archive, Report 2017/279, 2017.

11. M.-S. Chen, A. Hülsing, J. Rijneveld, S. Samardjiska, and P. Schwabe. From 5-
passMQ-based identi�cation toMQ-based signatures. Advances in Cryptology �

ASIACRYPT 2016, vol. 10032 of LNCS, 135�165. Springer, 2016.
12. N. Courtois, E. Klimov, J. Patarin, and A. Shamir. E�cient algorithms for solving

overde�ned systems of multivariate polynomial equations. Advances in Cryptology

� EUROCRYPT 2000, vol. 1807 of LNCS, 392�407. Springer, 2000.
13. N. T. Courtois. E�cient zero-knowledge authentication based on a linear algebra

problem MinRank. Advances in Cryptology � ASIACRYPT 2001, vol. 2248 of
LNCS, 402�421. Springer, 2001.

14. Ö. Dagdelen, M. Fischlin, and T. Gagliardoni. The Fiat�Shamir transformation
in a quantum world. Advances in Cryptology - ASIACRYPT 2013, vol. 8270 of
LNCS, 62�81. Springer, 2013.

15. Ö. Dagdelen, D. Galindo, P. Véron, S. M. El Yous� Alaoui, and P.-L. Cayrel.
Extended security arguments for signature schemes. Designs, Codes and Cryptog-

raphy, 78(2):441�461, 2016.
16. C. Diem. The XL-algorithm and a conjecture from commutative algebra. Advances

in Cryptology � ASIACRYPT 2004, vol. 3329 of LNCS, 323�337. Springer, 2004.
17. J. Ding, L. Hu, B.-Y. Yang, and J.-M. Chen. Note on design criteria for rainbow-

type multivariates. Cryptology ePrint Archive, Report 2006/307, 2006.
18. J.-C. Faugère. A new e�cient algorithm for computing Gröbner bases (F4). Journal

of Pure and Applied Algebra, 139:61�88, 1999.
19. J.-C. Faugère. A new e�cient algorithm for computing Gröbner bases without re-

duction to zero (F5). Proceedings of the 2002 International Symposium on Symbolic

and Algebraic Computation � ISSAC '02, 75�83. ACM, 2002.
20. J.-C. Faugère, F. Levy-dit-Vehel, and L. Perret. Cryptanalysis of MinRank. Ad-

vances in Cryptology � CRYPTO 2008, vol. 5157 of LNCS, 280�296. Springer,
2008.

29



21. M. Fischlin. Communication-e�cient non-interactive proofs of knowledge with
online extractors. Advances in Cryptology � CRYPTO 2005, vol. 3621 of LNCS,
152�168. Springer, 2005.

22. F. L. Gall. Powers of tensors and fast matrix multiplication. Proceedings of the

39th International Symposium on Symbolic and Algebraic Computation � ISSAC

'14, 296�303. ACM, 2014.
23. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, 1979.
24. M. Giesbrecht, A. Lobo, and B. D. Saunders. Certifying inconsistency of sparse

linear systems. Proceedings of the 1998 International Symposium on Symbolic and

Algebraic Computation � ISSAC '98, 113�119. 1998.
25. L. K. Grover. A fast quantum mechanical algorithm for database search. Pro-

ceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing

� STOC '96, 212�219. ACM, 1996.
26. A. Joux and V. Vitse. A crossbred algorithm for solving boolean polynomial

systems. Cryptology ePrint Archive, Report 2017/372, 2017.
27. E. Kiltz, J. Loss, and J. Pan. Tightly-secure signatures from �ve-move identi�ca-

tion protocols. Advances in Cryptology � ASIACRYPT 2017: 23rd International

Conference on the Theory and Applications of Cryptology and Information Secu-

rity, Hong Kong, China, December 3-7, 2017, Proceedings, Part III, 68�94. Springer
International Publishing, Cham, 2017.

28. E. Kiltz, V. Lyubashevsky, and C. Scha�ner. A concrete treatment of �at-shamir
signatures in the quantum random-oracle model. Cryptology ePrint Archive, Re-
port 2017/916, 2017.

29. J. Patarin. Hidden �eld equations (HFE) and isomorphisms of polynomials (IP):
Two new families of asymmetric algorithms. Advances in Cryptology � EURO-

CRYPT '96, vol. 1070 of LNCS, 33�48. Springer, 1996.
30. D. Pointcheval and J. Stern. Security proofs for signature schemes. Advances in

Cryptology � EUROCRYPT '96, vol. 1070 of LNCS, 387�398. Springer, 1996.
31. K. Sakumoto, T. Shirai, and H. Hiwatari. Public-key identi�cation schemes based

on multivariate quadratic polynomials. Advances in Cryptology � CRYPTO 2011,
vol. 6841 of LNCS, 706�723. Springer, 2011.

32. E. Thomae. About the Security of Multivariate Quadratic Public Key Schemes.
Ph.D. thesis, Ruhr-University Bochum, Germany, 2013.

33. D. Unruh. Non-interactive zero-knowledge proofs in the quantum random oracle
model. Advances in Cryptology � EUROCRYPT 2015, vol. 9056 of LNCS, 755�784.
Springer, 2015.

34. B. Westerbaan and P. Schwabe. Solving binary MQ with grover's algorithm.
Security, Privacy, and Advanced Cryptography Engineering, vol. 10076 of LNCS.
Springer, 2016.

35. B. Yang and J. Chen. Theoretical analysis of XL over small �elds. Information

Security and Privacy, vol. 3108 of LNCS, 277�288. Springer, 2004.
36. B.-Y. Yang and J.-M. Chen. All in the XL family: Theory and practice. Information

Security and Cryptology � ICISC 2004, 67�86. Springer, 2005.
37. J. Y.-C. Yeh, C.-M. Cheng, and B.-Y. Yang. Operating Degrees for XL vs. F4/F5

for Generic MQ with Number of Equations Linear in That of Variables. Num-

ber Theory and Cryptography: Papers in Honor of Johannes Buchmann on the

Occasion of His 60th Birthday, 19�33. Springer, 2013.
38. M. Zhandry. A note on quantum-secure PRPs. Cryptology ePrint Archive, Report

2016/1076, 2016.

30


	SOFIA: MQ-based signatures in the QROM
	 Ming-Shing Chen  and Andreas Hülsing  and Joost Rijneveld  and Simona Samardjiska  and Peter Schwabe  

