
Towards Characterizing Securely Computable
Two-Party Randomized Functions

Deepesh Data? and Manoj Prabhakaran
Dept. of Computer Science & Engineering
Indian Institute of Technology Bombay

Abstract. A basic question of cryptographic complexity is to combina-
torially characterize all randomized functions which have information-
theoretic semi-honest secure 2-party computation protocols. The corre-
sponding question for deterministic functions was answered almost three
decades back, by Kushilevitz [Kus89]. In this work, we make progress
towards understanding securely computable randomized functions. We
bring tools developed in the study of completeness to bear on this prob-
lem. In particular, our characterizations are obtained by considering
only symmetric functions with a combinatorial property called simplicity
[MPR12].
Our main result is a complete combinatorial characterization of ran-
domized functions with ternary output kernels, that have information-
theoretic semi-honest secure 2-party computation protocols. In particu-
lar, we show that there exist simple randomized functions with ternary
output that do not have secure computation protocols. (For determinis-
tic functions, the smallest output alphabet size of such a function is 5,
due to an example given by Beaver [Bea89].)
Also, we give a complete combinatorial characterization of randomized
functions that have 2-round information-theoretic semi-honest secure 2-
party computation protocols.
We also give a counter-example to a natural conjecture for the full char-
acterization, namely, that all securely computable simple functions have
secure protocols with a unique transcript for each output value. This
conjecture is in fact true for deterministic functions, and – as our results
above show – for ternary functions and for functions with 2-round secure
protocols.

1 Introduction

Understanding the nature of secure multiparty computation has been a key
problem in modern cryptography, ever since the notion was introduced. While
this has been a heavily researched area, some basic problems have remained
open. In this work we explore the following fundamental question:

Which randomized functions have information-theoretic semi-honest se-
cure 2-party computation protocols?

? This work was done while the author was a Ph.D. student at the Tata Institute of
Fundamental Research in Mumbai.

The corresponding question for deterministic functions was answered almost
three decades back, by Kushilevitz [Kus89] (originally, restricted to symmetric
functions, in which both parties get the same output). The dual question of which
functions are complete, initiated by Kilian [Kil88], has also been fully resolved,
for semi-honest [MPR12] and even active security [KMPS14]. However, the above
question itself has seen little progress since 1989.

In this work, we make progress towards understanding securely computable
randomized functions. (Throughout this paper, security will refer to information-
theoretic semi-honest security.) We bring tools developed in the study of com-
pleteness to bear on this problem. In particular, our characterizations are ob-
tained by considering only symmetric functions with a combinatorial property
called simplicity [MPR12]. (As shown in [MPR12], a function is semi-honest se-
curely computable if and only if it is simple, and a related function called its
“kernel” – which is always a simple function – is securely computable.)

One may start off by attempting to generalize the result of Kushilevitz
[Kus89] so that it applies to randomized functions as well. This characterization
showed that any securely computable deterministic function has a secure proto-
col in which the two parties take turns to progressively reveal more and more
information about their respective inputs – by restricting each input to smaller
and smaller subsets – until there is exactly enough information to evaluate the
function. However, a naïve generalization of this result fails for randomized func-
tions, as it is possible for a securely computable function to have every output
value in the support of every input combination; thus the input spaces cannot
be shrunk at all during a secure protocol.

A more fruitful approach would be to consider the protocol for deterministic
functions as partitioning the output space at each step, and choosing one of the
parts. This is indeed true when considering deterministic functions which are
simple. Such a protocol results in a unique transcript for each output value. An
a priori promising conjecture would be that every securely computable simple
function – deterministic or randomized – has such a unique-transcript protocol.
Unfortunately, this conjecture turns out to be false.

However, for small output alphabets, we can prove that this conjecture holds.
Indeed, we show that the exact threshold on the alphabet size where this con-
jecture breaks down is 4. When the output alphabet size of a simple function is
at most 3, we give a combinatorial characterization of secure computability; our
characterization implies that such functions do have unique-transcript secure
protocols. We also characterize simple functions which have two-round secure
protocols, which again turn out to all have unique-transcript protocols.

We leave the full characterization as an important open problem.

Our Results
– Our main result is a complete combinatorial characterization of randomized

functions with ternary output kernels, that have information-theoretic semi-
honest secure 2-party computation protocols. In particular, we show that there
exist simple randomized functions with ternary output that do not have se-
cure computation protocols. (For deterministic functions, the smallest output

2

alphabet size of such a function is 5, due to an example given by Beaver
[Bea89].)

– We also give a complete combinatorial characterization of randomized func-
tions that have 2-round information-theoretic semi-honest secure 2-party com-
putation protocols.

– We also give a counter-example to a natural conjecture for the full charac-
terization, namely, that all securely computable simple functions have secure
protocols with a unique transcript for each output value. This conjecture is
in fact true for deterministic functions, and – as our results above show – for
ternary functions and for functions with 2-round secure protocols.

1.1 Technical Overview

Prior work [MPR12,MPR13] lets us focus on symmetric functions: A randomized
function F is securely realizable if and only if it is “isomorphic” – i.e., essentially
equivalent, up to sampling additional local outputs – to a symmetric function
G called its kernel, and G itself has a secure protocol; see Theorem 3. Further
the kernel of F is easy to find and explicitly defined in Definition 2. Hence the
problem of characterizing secure computability of general randomized functions
reduces to the problem of characterizing secure computability of randomized
functions which are kernels. Such functions are symmetric and simple (a sym-
metric function G is simple, if Pr[G(x, y) = z] = ρ(x, z) · σ(y, z) for some fixed
functions ρ : X ×Z → R+ and σ : Y ×Z → R+, where X and Y are Alice’s and
Bob’s input domains and Z is their common output domain). As such, we work
with symmetric and simple functions.

Characterizing Ternary-Kernel Functions. Our main result could be stated as
follows:

Theorem 1. If a randomized function F has a kernel G with an output alphabet
of size at most 3, then F is securely computable if and only if F is simple and
there is some ordering of G’s output alphabet Z as (z1, z2, z3) and two functions
q : X → [0, 1] and r : Y → [0, 1], such that one of the following holds:

Pr[G(x, y) = z1] = q(x)

Pr[G(x, y) = z2] = (1− q(x)) · r(y)

Pr[G(x, y) = z3] = (1− q(x)) · (1− r(y))

or
Pr[G(x, y) = z1] = r(y)

Pr[G(x, y) = z2] = (1− r(y)) · q(x)

Pr[G(x, y) = z3] = (1− r(y)) · (1− q(x))

Note that if the first set of conditions holds, there is a secure protocol in
which Alice either sends z1 as the output to Bob (with probability q(x)) or asks
Bob to pick the output; if Bob is asked to pick the output he sends back either
z2 as the output (with probability r(y)) or z3 otherwise. If the second condition
holds there is a symmetric protocol with Bob making the first move.

Surprisingly, these are the only two possibilities for G to have a secure proto-
col. To prove this, however, takes a careful analysis of the linear-algebraic con-
straints put on a protocol by the security definition and the fact that the function

3

is simple. We start by observing that a secure protocol for a symmetric simple
function must have a simulator that can simulate the transcript of an execution
merely from the output (rather than the corrupt party’s input and the output).1
Then, supposing that the first message in the protocol is a single bit sent by
Alice, we identify that there is a quantity independent of either party’s input,
denoted by φ(z), that gives the probability of the first message being 0, condi-
tioned on the output being z. Specifying these quantities, φ(z) at each round
fully specifies the protocol. We show that

∑
z∈Z Pr[G(x, y) = z] · φ(z) = q(x),

a quantity independent of y. By carefully analyzing the constraints arising from
these equations, we prove Theorem 1.

Characterizing Functions Having 2-Round Protocols. Our second result is as
follows:

Theorem 2. A function F has a 2-round secure protocol iff its kernel has a
2-round unique-transcript protocol.

Observe that F has a 2-round secure protocol iff its kernel has one too, as F is
isomorphic to its kernel and a secure protocol for a function can be transformed
to one for an isomorphic function without changing the communication involved.
What needs to be proven is that if the kernel (or any symmetric simple function)
has a 2-round secure protocol, then it has a 2-round unique-transcript protocol.
We do this by identifying an equivalence relation among the outputs, such that
any 2-round protocol with (say) Alice making the first move will have Alice’s
input only influencing which equivalence class of the output is chosen, and then
Bob’s input influences which output is chosen, given its equivalence class.

1.2 Related Work

There has been a large body of work regarding the complexity of secure multi-
party and 2-party computation. [MPR13] surveys many of the important results
in the area. Kushilevitz [Kus89] gave a combinatorial characterization of securely
computable two-party deterministic functions (with perfect security), along with
a generic round-optimal secure protocol for functions that satisfy the character-
ization condition. This was later extended to statistical security and also to
security against active corruption [MPR09,KMQR09].

Among randomized functions in which only Bob gets any output, simple
functions have a deterministic kernel corresponding to a function of Alice’s input
alone, and hence are always securely computable. This observation was already
made by Kilian [Kil00]. Recently, Data [Dat16] considered the same problem
with a probability distribution on the inputs, and gave communication-optimal
protocols in different security settings.
1 This is not true for every symmetric function. For instance, in a semi-honest secure
protocol for XOR, the transcript must necessarily reveal both parties’ inputs, but
this cannot be simulated from the output without knowing one party’s input. A
function like XOR is not simple, though it is isomorphic to one.

4

2 Preliminaries

A general randomized function is denoted by a conditional probability distribu-
tion pZAZB |XY , where X,Y, ZA, ZB take values in finite alphabets X ,Y,ZA,ZB ,
respectively. In a protocol for computing this function, when Alice and Bob
are given inputs x ∈ X and y ∈ Y, respectively, they should output zA ∈
ZA and zB ∈ ZB respectively, such that (zA, zB) is distribute according to
pZAZB |X=x,Y=y.

Notation. We shall consider various discrete random variables (inputs, outputs,
protocol messages). We denote the probability mass function of a random vari-
able U by pU . For random variables (U, V), we denote the conditional probability
mass function of U conditioned on V by pU |V . [n] denotes the set {1, · · · , n}.

Protocols. We consider computationally unbounded two-party protocols, with-
out any setup. Such a protocol Π is fully defined by the input and output do-
mains, the next message functions and the output functions for Alice and Bob.
Let (X ,ZA,nextAΠ , outAΠ) and (Y,ZB ,nextBΠ , outBΠ) denote the input domain,
output domain, the next message function and the output function, for Alice
and Bob, respectively. The functions are all potentially randomized. nextAΠ and
nextBΠ output the next message given the transcript so far and the local input.
(Note that in the information-theoretic setting, protocols need not maintain lo-
cal state.) Similarly, outAΠ and outBΠ map the transcript and local input to a
local output in ZA and ZB , respectively.

In running a protocol, Alice and Bob are first given inputs x ∈ X and y ∈ Y,
respectively. Then they take turns sending messages to each other according to
their next message functions, and in the end (recognizable by both parties) each
party produces an output according to its output function. We assume that the
protocol terminates with probability one after a finite number rounds.

Running a protocol induces a distribution over the set of all possible (com-
plete) transcripts,M. The protocol Π induces a conditional probability distri-
bution PrΠ [m|x, y], for every input x ∈ X , y ∈ Y and every m ∈ M. Suppose
that m = (m1,m2, . . . ,) is the transcript generated by Π when parties have
inputs x and y, where mi’s, for odd i, are sent by Alice, and mi’s, for even i,
are sent by Bob. Note that during the execution of a protocol, a message sent
by any party is determined by its input and all the messages it has exchanged
so far; and conditioned on these two, the message is independent of the other
party’s input. Using this we can write PrΠ [m|x, y] = α(m,x)β(m, y), where
α(m,x) = Πi:i is oddPrΠ [mi|m<i, x], and β(m, y) = Πi:i is evenPrΠ [mi|m<i, y].

Secure Protocols. Throughout this paper security refers to information-theoretic
semi-honest security. We restrict ourselves to finite functions and perfect secu-
rity. We remark that all our results can be extended to statistical security, as we
shall show in the full version.

5

Definition 1. A protocol Π for computing a function pZAZB |XY , with tran-
script space M, is said to be (perfectly semi-honest) secure iff there exist func-
tions S1 : M × X × ZA → [0, 1] and S2 : M × Y × ZB → [0, 1] such that
PrΠ [m|x, y, zA, zB] = S1(m,x, zA) = S2(m, y, zB) for all m ∈M and x, y, zA, zB
such that pZAZB |XY (zA, zB |x, y) > 0.

Kernel and Simple Functions. Maji et al. [MPR12] simplified the secure compu-
tation of a general randomized function pZAZB |XY to secure computation of a
symmetric randomized function pZ|XY . For that they defined weighted charac-
teristic bipartite graph of a randomized function pZAZB |XY as G(pZAZB |XY) =
(V,E,wt), where
– V = (X × ZA) ∪ (Y × ZB),
– E = {((x, zA), (y, zB)) : pZAZB |XY (zA, zB |x, y) > 0}, and
– the weight function wt:(X × ZA)× (Y × ZB)→ [0, 1] is defined as

wt((x, zA), (y, zB)) :=
pZAZB |XY (zA, zB |x, y)

|X | × |Y|
.

Note that if ((x, zA), (y, zB)) /∈ E, then wt((x, zA), (y, zB)) = 0.

Let k be the number of connected components in the above-defined graph. We
say that G(pZAZB |XY) = (V,E,wt) is a product distribution graph, if there exist
probability distributions p over X ×ZA, q over Y ×ZB , and c over [k], such that
for all (x, zA) ∈ X ×ZA and (y, zB)×Y ×ZB , if ((x, zA), (y, zB)) lies in the jth
connected component of G(pZAZB |XY) = (V,E,wt), then wt((x, zA), (y, zB)) =
p(x, zA) · q(y, zB)/cj , otherwise wt((x, zA), (y, zB)) = 0.

Definition 2 (Kernel – Common-information in a randomized function [MPR12]).
The kernel of a randomized function pZAZB |XY is a symmetric randomized func-
tion, which takes x and y from the parties and samples (zA, zB) according to
pZAZB |X=x,Y=y. Then it outputs to both parties the connected component of
G(pZAZB |XY) which contains the edge ((x, zA), (y, zB)).

Note that the kernel of pZAZB |XY is a symmetric randomized function. We de-
note it by pZ|XY , where the alphabet of Z is Z = {z1, z2, . . . , zk}, where k is the
number of connected components in G(pZAZB |XY). The kernel pZ|XY is defined
as follows: for every j ∈ [k], pZ|XY (zj |x, y) :=

∑
(zA,zB) pZAZB |XY (zA, zB |x, y),

where summation is taken over all (zA, zB)’s such that ((x, zA), (y, zB)) lies in the
jth connected component in G(pZAZB |XY). The following theorem was proved in
[MPR12].

Theorem 3. [MPR12, Theorem 3] A randomized function pZAZB |XY is securely
computable if and only if G(pZAZB |XY) is a product distribution graph and the
kernel of pZAZB |XY is securely computable.

Theorem 3 reduces secure computablity of pZAZB |XY to secure computability
of the kernel of pZAZB |XY and a simple combinatorial check on pZAZB |XY (which
is to check whether the weighted characteristic bipartite graph of pZAZB |XY is
a product distribution graph or not).2

2 There are other easier checks; see [MPR12, Lemma 1] for details.

6

Definition 3. A symmetric randomized function pZ|XY is said to be simple if
there exist two functions ρ : X ×Z → R+ and σ : Y ×Z → R+ such that for all
x ∈ X , y ∈ Y, and z ∈ Z, pZ|XY (z|x, y) = ρ(x, z) · σ(y, z).

Here R+ denotes the set of non-negative real numbers. For deterministic
functions, instead of R+, one can take {0, 1} in the above definition.

Remark 1. The original definition of a simple function given in [MPR12] seems
to be different from our definition. There it was defined for a general randomized
function pZAZB |XY , which defined simplicity in terms of isomorphism between
a function and its kernel, whereas we defined simplicity for symmetric functions
only. Since isomorphic functions are essentially equivalent – up to sampling ad-
ditional local ouptuts – and the kernel of a general randomized function is a
symmetric function, our definition of simplicity is equivalent to the one given in
[MPR12].

Note that the Kernel of a securely computable randomized function pZAZB |XY
is a simple function. As shown in [MPR12], a secure protocol for the kernel can be
transformed to one for the original function itself, and vice versa, without chang-
ing the communication involved. Thus we shall focus on characterizing secure
computability for kernel functions, which are all symmetric, simple functions.

The combinatorial definition of simplicity above will be crucially used in our
analysis. Indeed, the factorization property clarifies otherwise obscure connec-
tions and elusive constraints.

For protocols for simple and symmetric functions, the output can be written
as a function merely of the transcript and we can simulate the transcript just
based on the (common) output, without needing either party’s input. We prove
the following lemma in Appendix A.

Lemma 1. If Π is a perfectly semi-honest secure protocol for a simple symmetric
function pZ|XY , then there are (deterministic) functions outΠ : M → Z and
S :M→ [0, 1] such that for all x ∈ X , y ∈ Y, z ∈ Z and m ∈M,

outAΠ(m,x) = outBΠ(m, y) = outΠ(m) if PrΠ [m|x, y] > 0,

PrΠ [m|x, y, z] = S(m, z) if pZ|XY (z|x, y) > 0.

Note that above, if z 6= outΠ(m), S(m, z) = PrΠ [m|x, y, z] = 0. By writing
µ(m) = S(m, outΠ(m)) we have the following: for all x ∈ X , y ∈ Y, z ∈ Z s.t.
pZ|XY (z|x, y) > 0, and all m ∈M, we have

PrΠ [m|x, y, z] =

{
µ(m) if outΠ(m) = z

0 otherwise.
(1)

Thus, for each z ∈ Z (such that for some (x, y), pZ|XY (z|x, y) > 0), µ defines a
probability distribution over {m ∈M : outΠ(m) = z}. Also, since PrΠ [m|x, y] =
PrΠ [m, z|x, y], for z = outΠ(m), and PrΠ [m, z|x, y] = PrΠ [m|x, y, z]·PrΠ [z|x, y] =
µ(m) · pZ|XY (z|x, y) we have, for all x ∈ X , y ∈ Y,m ∈M,

PrΠ [m|x, y] = µ(m) · pZ|XY (outΠ(m)|x, y). (2)

7

A Normal Form for pZ|XY . For a symmetric randomized functionality pZ|XY ,
we define the relation x ≡ x′ for x, x′ ∈ X to hold, if ∀y ∈ Y, z ∈ Z, p(z|x, y) =
p(z|x′, y); similarly we define y ≡ y′ for y, y′ ∈ Y. We define z ≡ z′ for z, z′ ∈ Z,
if there exists a constant c > 0 such that ∀x ∈ X , y ∈ Y, p(z|x, y) = c · p(z′|x, y).
We say that pZ|XY is in normal form if x ≡ x′ ⇒ x = x′, y ≡ y′ ⇒ y = y′, and
z ≡ z′ ⇒ z = z′.

It is easy to see that any pZ|XY can be transformed into one in normal form
pZ∗|X∗Y ∗ with possibly smaller alphabets, so that pZ|XY is securely computable
if and only if pZ∗|X∗Y ∗ is securely computable. We will assume in this paper that
pZ|XY is in normal form.

For the ease of notation, in this paper we often denote a randomized function
pZ|XY by an equivalent function f , such that f(x, y, z) = pZ|XY (z|x, y), for every
x ∈ X , y ∈ Y, z ∈ Z. We may use f and pZ|XY interchangeably.

Unique-Transcript Protocols. A unique transcript protocol Π for a symmetric
function is one in which each output z ∈ Z has a unique transcript that can result
in it: i.e., for every z ∈ Z, there is at most one m ∈M such that outΠ(m) = z.
Such a protocol is always a secure protocol for the function it computes (and
has a deterministic simulator, which when given an output z assigns probability
1 to the unique transcript m such that outΠ(m) = z).

It follows from [Kus89] that every securely computable simple determin-
istic function has a unique-transcript secure protocol. The subset of securely
computable simple randomized functions that we characterize also have unique-
transcript protocols. However, we shall show an example of a securely com-
putable function (just outside the sets we characterize) which does not have any
unique-transcript protocol. Understanding such functions remains the next step
in fully characterizing securely computable randomized functions.

3 Characterization of Functions up to Ternary Output
Alphabet

As mentioned earlier, we shall represent a randomized function pZ|XY by an
equivalent function f : X ×Y ×Z → [0, 1], such that f(x, y, z) = pZ|XY (z|x, y).
For a simple function f , we shall write f = (ρ, σ) where f(x, y, z) = ρ(x, z) ·
σ(y, z). Note that for every x ∈ X , y ∈ Y we have

∑
z∈Z f(x, y, z) = 1.

3.1 Compact Representation of Secure Protocols

We assume, w.l.o.g., that both Alice and Bob send only binary messages to each
other in every round, and only one party sends a message in one round. Suppose
Π is a protocol that securely computes a simple function f = (ρ, σ). In this
section we consider protocols of an arbitrary number of rounds, and so, w.l.o.g.,
we assume that in Π Alice and Bob take turns exchanging single bits and that
Alice sends the first message in Π.

8

Let q : X → [0, 1] be such that, Alice, given an input x chooses 0 as her
first message with probability q(x) (and 1 with probability 1− q(x)). We define
Π(0) to be the protocol, with input spaces X (0) = {x ∈ X : q(x) > 0} and Y, in
which Alice’s first message is redefined to be 0 with probability 1 for every input
x ∈ X (0); otherwise Π(0) has identical next message and output functions as Π.
Let f (0) be the function computed by Π(0): i.e., f (0)(x, y, z) = PrΠ(0) [z|x, y] for
all x ∈ X (0), y ∈ Y, z ∈ Z. f (1) is defined symmetrically.

Claim 1. There exists a function φ : Z → [0, 1] such that for all x ∈ X , y ∈ Y,

q(x) =
∑

z∈Z
φ(z)f(x, y, z). (3)

Further, f (0)(x, y, z) = φ(z)
q(x) · f(x, y, z), for all x ∈ X (0), y ∈ Y, z ∈ Z.

Proof. We define
φ(z) :=

∑

m:m1=0,
outΠ(m)=z

µ(m), (4)

where µ(m) is as defined in (1). Here m1 denotes the first bit in the transcript
m. Note that we have φ(z) ∈ [0, 1] because for each z, µ defines a probability
distribution overMz := {m : outΠ(m) = z} and φ(z) sums up the probabilities
for a subset ofMz.

To see that φ satisfies the claim, note that
∑
z∈Z φ(z)f(x, y, z) =

∑
m:m1=0 µ(m)·

f(x, y, outΠ(m)). Now, from (2), µ(m) · f(x, y, outΠ(m)) = PrΠ [m|x, y]. Hence,
∑

z∈Z
φ(z)f(x, y, z) =

∑

m:m1=0

PrΠ [m|x, y] = q(x).

Also, for all x ∈ X (0), y ∈ Y, z ∈ Z,

f (0)(x, y, z) =
∑

m:
outΠ(m)=z

PrΠ(0) [m|x, y] =
∑

m:m1=0,
outΠ(m)=z

PrΠ [m|x, y]

q(x)
=

∑

m:m1=0,
outΠ(m)=z

µ(m)
f(x, y, z)

q(x)

=
f(x, y, z)

q(x)
φ(z).

Note that since µ(m) is the probability of the transcript being m given
that the output is outΠ(m), (4) gives that for every z ∈ Z, φ(z) = Pr[m1 =
0|outΠ(m) = z], i.e., the probability of the first message being 0, conditioned on
the output being z. It follows from Claim 1 that a secure protocol is completely
and compactly described by the values of (φ(z))z∈Z similarly defined in every
round.

Remark 2. If φ(z) = c for all z ∈ Z, then q(x) = c for all x ∈ X (because∑
z∈Z f(x, y, z) = 1 for all (x, y)). Further, if c > 0, f (0) = f , and if c < 1,

f (1) = f . This corresponds to a protocol in which Alice sends an inconsequential
first message, which neither depends on her input, nor influences the output.
Hence, if Π is round-optimal, it cannot be the case that φ(z) = c for all z ∈ Z.

9

Note that (3) holds for every y ∈ Y. Hence, we obtain
∑

z∈Z

(
f(x, y, z)− f(x, y′, z)

)
φ(z) = 0 ∀x ∈ X , y, y′ ∈ Y. (5)

For each x ∈ X , this gives a system of |Y| − 1 equations, by choosing a fixed
y ∈ Y and all y′ ∈ Y \ {y} (one may write the equations resulting from other
choices of y, y′ as linear combinations of these |Y| − 1 equations).

3.2 Binary Output Alphabet

Theorem 4. If f : X × Y × Z → [0, 1] is a simple function with |Z| = 2, then
f is securely computable.

Proof. In fact, we can prove a stronger statement: if f is as above, then f(x, y, z)
is either independent of x or independent of y (or both). In that case, clearly f
is securely computable by a protocol in which one party computes the output
and sends it to the other party.

Since f is simple, we have f(x, y, z) = ρ(x, z) · σ(y, z), for all x ∈ X , y ∈
Y, z ∈ Z. Since |Z| = 2, we let Z = {0, 1}, and abbreviate ρ(x, z) as ρz(x)
and σ(y, z) as σz(y) (for z ∈ {0, 1}). Note that we have the following system of
equations:

ρ0(x)σ0(y) + ρ1(x)σ1(y) = 1 ∀(x, y) ∈ X × Y (6)

We consider 3 cases:

Case 1: ∃x, x′ ∈ X , x 6= x′, ρ0(x)ρ1(x′) 6= ρ0(x′)ρ1(x). In this case, one can
solve the system in (6) to get two values s0, s1 such that σ0(y) = s0 and σ1(y) =

s1 for all y ∈ Y. (Concretely, s0 = ρ1(x′)−ρ1(x)
∆ and s1 = ρ0(x)−ρ0(x′)

∆ , where
∆ = ρ0(x)ρ1(x′)− ρ0(x′)ρ1(x) 6= 0.) Hence f(x, y, z) = ρ(x, z) · sz, depends only
on x.

Case 2: ∀x, x′ ∈ X , ρ0(x)ρ1(x′) = ρ0(x′)ρ1(x), and ∃x ∈ X , ρ0(x) = 0. In this
case we shall show that, ∀x′ ∈ X , ρ0(x′) = 0. Hence the function is the constant,
deterministic function, with f(x, y, 0) = 0 for all (x, y).

Let x be such that ρ0(x) = 0. Since ρ0(x)σ0(y) + ρ1(x)σ1(y) = 1 (for any
y ∈ Y), we have ρ1(x) 6= 0. Then, since ∀x′ ∈ X , ρ0(x)ρ1(x′) = ρ0(x′)ρ1(x), we
have 0 = ρ0(x′)ρ1(x) which implies ρ0(x′) = 0, as claimed.

Case 3: ∀x, x′ ∈ X , ρ0(x)ρ1(x′) = ρ0(x′)ρ1(x), and ∀x ∈ X , ρ0(x) 6= 0. In this

case, ∀x, x′ ∈ X , ρ1(x)
ρ0(x) = ρ1(x′)

ρ0(x′) = θ, say. Then, from (6), we have that ∀x ∈
X , y ∈ Y, ρ0(x) = 1

σ0(y)+θσ1(y) and ρ1(x) = θ
σ0(y)+θσ1(y) . Since the RHS in these

two expressions do not depend on x, there are constants r0, r1 such that for all
x ∈ X , ρ0(x) = r0 and ρ1(x) = r1. Hence f(x, y, z) = rz · σ(y, z), depends only
on y.

10

3.3 Ternary Output Alphabet

To prove Theorem 1, we can focus on kernel functions, or simple symmetric
functions. Let Z = {z1, z2, z3}. For a given symmetric function f with Z as its
output alphabet, we define two binary functions f̂i and fi, for any i ∈ [3], as
follows:

1. Output alphabet of f̂i is {zi, z∗}. For every x ∈ X , y ∈ Y, we define f̂i(x, y, zi) :=

f(x, y, zi) and f̂i(x, y, z∗) :=
∑
j 6=i f(x, y, zj).

2. Output alphabet of fi is Z\{zi}. For every x ∈ X , y ∈ Y for which f(x, y, zi) <
1, we define, fi(x, y, zj) := f(x, y, zj)/(1 − f(x, y, zi)), for j ∈ [3] \ {i}. If
f(x, y, zi) = 1 for some x ∈ X , y ∈ Y, we leave fi(x, y, zi) undefined.

Note that if for some x̃ ∈ X , f(x̃, y, zi) = 1,∀y ∈ Y, then we need not define fi
for this particular x̃, because f(x̃, y, zj) = 0,∀j 6= i and for all y ∈ Y. Similarly,
if for some ỹ ∈ Y, f(x, ỹ, zi) = 1,∀x ∈ X , then we need not define fi for this
particular ỹ, because f(x, ỹ, zj) = 0,∀j 6= i and for all x ∈ X . In the following,
when we say that fi is securely computable, it must be defined for all inputs.

Theorem 5. Suppose f is simple and in normal form. Then, f is securely
computable if and only if there exists an i ∈ [3] such that both f̂i and fi are
simple.

Remark 3. Since f̂i and fi are binary functions, being simple implies that they
are functions of only one party’s input (see proof of Theorem 4). Theorem 1
follows by considering the different possibilities of which party’s input they can
each depend on.

Remark 4. In the case of functions with a binary output alphabet, we proved in
Subsection 3.2 that if a function is simple, it is securely computable. However,
Theorem 5 lets us show that this is not true in general (see in Section 5.1).

Proof of Theorem 5. If |X | = 1 or |Y| = 1, then the theorem is trivially true.
So, in the following we assume that |X |, |Y| ≥ 2. First we show the only if (⇒)
part, and then the if (⇐) part.

⇒: Suppose f is securely computable. Since f is simple, we can write f(x, y, z) =
ρ(x, z)σ(y, z). Fix a round-optimal secure protocol Π for f . Below, we assume
that Alice sends the first message in Π (the case when Bob sends the first mes-
sage being symmetric). Let φ be as in Claim 1. Since Π is round-optimal, as
discussed in Remark 2,

∃i, j ∈ [3] s.t. φ(zi) 6= φ(zj). (7)

For i ∈ [3] and x ∈ X , y, y′ ∈ Y, we define

∇fx,y,y
′

i := f(x, y, zi)− f(x, y′, zi). (8)

11

It follows from (5) and (8) that, ∀x ∈ X , y, y′ ∈ Y:

∇fx,y,y
′

1 φ(z1) +∇fx,y,y
′

2 φ(z2) +∇fx,y,y
′

3 φ(z3) = 0. (9)

Since
∑
z∈Z f(x, y, z) = 1 holds for every x ∈ X , y ∈ Y, we have that

∑3
i=1∇f

x,y,y′

i =

0, for every x ∈ X and y, y′ ∈ Y. Using this to replace ∇fx,y,y
′

3 in (9), we can
write, ∀x ∈ X , y, y′ ∈ Y:

∇fx,y,y
′

1 (φ(z1)− φ(z3)) +∇fx,y,y
′

2 (φ(z2)− φ(z3)) = 0 (10)

(and two similar equations, replacing ∇fx,y,y
′

1 and ∇fx,y,y
′

2 , respectively).
We define a function typef : X × Y × Y → T, which classifies (x, y, y′) into

one of 5 possible types in the set T = {T1,T2:1,T2:2,T2:3,T3}, depending on for
which i, ∇fx,y,y

′

i = 0:

1. typef (x, y, y′) = T1 if ∇fx,y,y
′

1 = ∇fx,y,y
′

2 = ∇fx,y,y
′

3 = 0.
2. typef (x, y, y′) = T2:i if ∇fx,y,y

′

i = 0 and ∀j ∈ [3] \ {i}, ∇fx,y,y
′

j 6= 0.
3. typef (x, y, y′) = T3 if ∀i ∈ [3], ∇fx,y,y

′

i 6= 0.

Note that since
∑3
i=1∇f

x,y,y′

i = 0, it cannot be the case that exactly one of
∇fx,y,y

′

i 6= 0.
We define the type of f itself as the set:

T (f) := {τ ∈ T : ∃(x, y, y′) s.t. typef (x, y, y′) = τ}. (11)

We prove several claims regarding T (f) before showing that f̂i and fi are simple.
In proving these claims, we shall use the fact that f is simple, is in normal-form,
and |X |, |Y| > 1.

Claim 2. T3 /∈ T (f).

Proof. For the sake of contradiction, suppose there exists (x, y, y′) such that
typef (x, y, y′) = T3. Consider any x′ ∈ X \ {x}. From (10), we have

∇fx,y,y
′

1 (φ(z1)− φ(z3)) +∇fx,y,y
′

2 (φ(z2)− φ(z3)) = 0

∇fx
′,y,y′

1 (φ(z1)− φ(z3)) +∇fx
′,y,y′

2 (φ(z2)− φ(z3)) = 0

We shall show that ∇fx,y,y
′

1 ∇fx
′,y,y′

2 6= ∇fx,y,y
′

2 ∇fx
′,y,y′

1 . Then, the above system
can be uniquely solved for φ(z1) − φ(z3) and φ(z2) − φ(z3), to yield 0 as the
solution in each case. That is, φ(z1) = φ(z2) = φ(z3), contradicting (7).

To complete the proof, we argue that ∇fx,y,y
′

1 ∇fx
′,y,y′

2 6= ∇fx,y,y
′

2 ∇fx
′,y,y′

1 .

Suppose not. Then, ∇f
x′,y,y′
1

∇fx,y,y
′

1

=
∇fx

′,y,y′
2

∇fx,y,y
′

2

= θ, say (the denominators being non-

zero, since typef (x, y, y′) = T3). Then,
∇fx

′,y,y′
3

∇fx,y,y
′

3

=
−∇fx

′,y,y′
1 −∇fx

′,y,y′
2

−∇fx,y,y
′

1 −∇fx,y,y
′

2

= θ. Invok-

ing the simplicity of f , we get that ∀j ∈ [3], ρ(x,zj)
ρ(x′,zj)

= θ. However, since for any
y we have

∑
j ρ(x, zj)σ(y, zj) =

∑
j ρ(x′, zj)σ(y, zj), we get θ = 1. Then, x ≡ x′,

contradicting the normal form of f . This completes the proof.

12

Claim 3. There can be at most one i ∈ [3] such that T2:i ∈ T (f).

Proof. For the sake of contradiction, suppose typef (x, y, y′) = T2:j , and typef (x̃, ỹ, ỹ′) =
T2:k, for j 6= k. We consider the case j = 1, k = 2, as the other cases are sym-
metric. Now, typef (x, y, y′) = T2:1, implies that ∇fx,y,y

′

i = 0 only for i = 1 and
hence, by (10), we have ∇fx,y,y

′

2 (φ(z2)− φ(z3)) = 0, and so φ(z2) = φ(z3). Sim-
ilarly, typef (x̃, ỹ, ỹ′) = T2:2 implies that φ(z1) = φ(z3). Thus we have φ(z1) =
φ(z2) = φ(z3), contradicting (7).

Claim 4. If from some x ∈ X and distinct y, y′ ∈ Y, typef (x, y, y′) = T1, then
there exists x′ ∈ X such that typef (x′, y, y′) 6= T1.

Proof. Since typef (x, y, y′) = T1, we have that for all j ∈ [3], f(x, y, zj) =
f(x, y′, zj). Since f is in normal form, y 6≡ y′, and hence there exists x′ ∈ X such
that for some j ∈ [3], f(x′, y, zj) 6= f(x′, y′, zj). Hence typef (x′, y, y′) 6= T1.

Claim 5. Suppose T (f) = {T1,T2:i} for some i ∈ [3]. Then, if for some x ∈ X ,
and distinct y, y′ ∈ Y, typef (x, y, y′) = T1, then for all ỹ ∈ Y, f(x, ỹ, zi) = 1.

Proof. By Claim 4, we have x′ such that typef (x′, y, y′) 6= T1; since T (f) =
{T1,T2:i}, we have typef (x′, y, y′) = T2:i. Then, for both values of j 6= i in [3],
we have f(x′, y, zj) 6= f(x′, y′, zj).

Invoking the simplicity of f , we have that for j 6= i, ρ(x′, zj)(σ(y, zj) −
σ(y′, zj)) 6= 0, but ρ(x, zj)(σ(y, zj)− σ(y′, zj)) = 0. Hence ρ(x, zj) = 0 for j 6= i.
That is, for all ỹ ∈ Y, f(x, ỹ, zj) = 0 for j 6= i and hence f(x, ỹ, zi) = 1.

From the above claims, we have two possibilities for T (f): either {T2:i} or
{T1,T2:i} for some i ∈ [3]. Then we shall prove that f̂i and fi are simple.
Note that both these functions are binary functions. For our case where f has a
minimal-round protocol with Alice sending the first bit, and with |X |, |Y| > 1,
we show that this means that f̂i is a function of only Alice’s input, and fi is a
function of only Bob’s input.

Claim 6. If T (f) ⊆ {T1,T2:i}, then f̂i is simple.

Proof. We have that for all (x, y, y′),∇fx,y,y
′

i = 0, i.e., ρ(x, zi)(σ(y, zi)−σ(y′, zi)) =

0. Now, if ρ(x, zi) = 0 for all x, then f̂i is a constant function with f̂i(x, y, zi) = 0

and f̂i(x, y, z∗) = 1. Otherwise, there is some x ∈ X such that ρ(x, zi) 6= 0. Hence
for all y, y′ we have σ(y, zi) = σ(y′, zi) = s, say. Then f̂i(x, y, zi) = ρ(x, zi) · s,
which is independent of y. Thus, in either case, f̂i is simple.

Claim 7. If T (f) ⊆ {T1,T2:i}, then fi(x, y, z) is simple.

Proof. Recall that fi has input spaces Xi and Y, where Xi = {x ∈ X : ∃y ∈
Y s.t. f(x, y, zi) < 1}. We shall prove that for all x, x′ ∈ Xi and y ∈ Y,
fi(x, y, zj) = fi(x

′, y, zj) for j 6= i.
By Claim 5, for all x ∈ Xi and distinct y, y′ ∈ Y, typef (x, y, y′) 6= T1, and

hence typef (x, y, y′) = T2:i. Therefore, for all x ∈ Xi and j 6= i, ρ(x, zj) 6= 0.

13

Let {j, ̄} = [3] \ {i}. Now,

fi(x, y, zj) =
f(x, y, zj)

1− f(x, y, zi)
=

ρ(x, zj)σ(y, zj)

ρ(x, zj)σ(y, zj) + ρ(x, z̄)σ(y, z̄)
=

σ(y, zj)

σ(y, zj) + γ(x)σ(y, z̄)
,

where γ(x) :=
ρ(x,z̄)
ρ(x,zj)

. Here we have used the fact that ρ(x, zj) 6= 0 for all x ∈ Xi.
Thus to prove the claim, it is enough to show that γ(x) = γ(x′) for all x, x′ ∈ Xi.

For any x ∈ Xi, as mentioned above, for any distinct y, y′ ∈ Y, we have
typef (x, y, y′) = T2:i, which implies that ∇fx,y,y

′

j + ∇fx,y,y
′

̄ = −∇fx,y,y
′

i = 0.
That is,

ρ(x, zj)(σ(y, zj)− σ(y′, zj)) + ρ(x, z̄)(σ(y, z̄)− σ(y′, z̄)) = 0.

Writing the above equation for any x, x′ ∈ Xi, if ρ(x, zj)ρ(x′, z̄) 6= ρ(x, z̄)ρ(x′, zj),
we will be able to solve that (σ(y, zj)−σ(y′, zj)) = (σ(y, z̄)−σ(y′, z̄)) = 0. But
this implies that ∇fx,y,y

′

j = ∇fx,y,y
′

̄ = 0 (for any x ∈ Xi), contradicting the fact
that typef (x, y, y′) 6= T1 for all x ∈ Xi and distinct y, y′ ∈ Y. Thus we should
have ρ(x, zj)ρ(x′, z̄) = ρ(x, z̄)ρ(x′, zj), or (dividing by ρ(x, zj) · ρ(x′, zj) 6= 0),
γ(x) = γ(x′).

Taken together, the above claims prove the only if (⇒) part of Theorem 5.

⇐: Let i ∈ [3] be such that f̂i and fi are simple, and therefore, securely
computable. A 2-round secure protocol for f is as follows. If both f̂i and fi
are independent of x or y (or both), then clearly f is securely computable by a
protocol in which one party computes the output and sends it to the other party.
The only interesting case is when f̂i is independent of y and fi is independent of
x (the other case when f̂i is independent of x and fi is independent of y being
symmetric): Alice picks j ∈ {i, ∗} with probability f̂i(x, y1, zj) and sends j to
Bob. If j = i, both Alice and Bob output zi with probability 1; otherwise, Bob
picks k ∈ [3] \ {i} with probability fi(x1, y, zk) and sends k to Alice. Now both
Alice and Bob output zk with probability 1. It is clear from the definitions of f̂i
and fi that the output from this protocol is correctly distributed. It is easy to see
that this is a unique-transcript protocol, and therefore, is perfectly private.

4 Functions with 2-Round Secure Protocols

We prove the following theorem which, when applied to the kernel of a given
function, implies Theorem 2.

Theorem 6. A simple symmetric function pZ|XY with X,Y, Z over alphabets
X ,Y,Z, has a two-round protocol with Alice making the first move iff there exists
a surjective map g : Z → W to some set W and probability distributions pW |X
and pZ|WY where W is over the alphabet W, such that pZ|WY (z|w, y) = 0 if
w 6= g(z), and for all x ∈ X , y ∈ Y, z ∈ Z,

pZ|XY (z|x, y) = pW |X(g(z)|x) · pZ|WY (z|g(z), y).

14

In that case, pZ|XY has a unique-transcript secure protocol in which Alice sends
w sampled according to pW |X=x and Bob sends back z according to pZ|W=w,Y=y.

Proof. It is easy to see that if g, pW |X , pZ|WY as in the statement exist, then the
protocol described is indeed a unique-transcript protocol for pZ|XY : its output
is distributed correctly, and since pZ|WY (z|w, y) = 0 if w 6= g(z), the only
transcript resulting in the output z is of the form (g(z), z). A unique-transcript
protocol is always a secure protocol since the transcript can be simulated from
the output by a (deterministic) simulator.

We prove the other direction below. Suppose we are given a two-round pro-
tocol Π0 for pZ|XY , with the two messages denoted by a and b. Then, we can
construct a secure protocol Π in which Bob computes the second message b as
before, but sends out z = outΠ0

(a, b), and both Alice and Bob output z: clearly
Π has the same output as Π0 and is also secure since the transcript of Π can
be simulated from a (simulated) transcript of Π0 by applying a deterministic
function to it.

Π is defined by probability distributions PrΠ [a|x] and PrΠ [z|a, y]. For con-
venience, we define α(a, x) := PrΠ [a|x] and β(a, z, y) := PrΠ [z|a, y]. Also, since
pZ|XY is simple, let us write pZ|XY (z|x, y) = ρ(x, z) · σ(y, z).

Before proceeding further, note that for a transcript m = (a, z), from (2), we
have

PrΠ [m|x, y] = µ(m)ρ(x, z)σ(y, z) = α(a, x)β(a, z, y).

If PrΠ [m|x, y] > 0 for some x, y, then by considering the above equality for (x, y)
as well as (x′, y), and dividing the latter by the former (which is non-zero), we
get that for all x′ ∈ X ,

ρ(x′, z)

ρ(x, z)
=
α(a, x′)

α(a, x)
. (12)

We define an equivalence relation ≡ over Z as follows:

z1 ≡ z2 if ∃c > 0,∀x ∈ X , ρ(x, z1) = cρ(x, z2).

We let W be the set of equivalence classes of ≡, and define g : Z → W which
maps z to its equivalence class. Thus, z1 ≡ z2 iff g(z1) = g(z2). We also define a
function h that maps the first message a in a transcript to an element in W, as
follows:

h(a) = g(z) if ∃x, y s.t. PrΠ [a, z|x, y] > 0.

For h to be well-defined, we need that each a has a unique value h(a) that satisfies
the above condition. Suppose z1, z2 ∈ Z are such that PrΠ [a, z1|x1, y1] > 0 and
PrΠ [a, z2|x2, y2] > 0 (from some (x1, y1), (x2, y2) ∈ X ×Y). By applying (12) to
these, we get that for all x′ ∈ X

ρ(x′, z1)

ρ(x1, z1)
=
α(a, x′)

α(a, x1)
and

ρ(x′, z2)

ρ(x2, z2)
=
α(a, x′)

α(a, x2)
.

Hence ∀x′ ∈ X , ρ(x′, z2) = cρ(x′, z1), where c := ρ(x2,z2)α(a,x1)
α(a,x2)ρ(x1,z1) . All the factors in

c are positive (as they appear in PrΠ [a, z1|x1, y1] ·PrΠ [a, z2|x2, y2] > 0), and also
independent of x′. Thus z1 ≡ z2 and g(z1) = g(z2), making h(a) well defined.

15

pW |X is defined as follows: given x, sample a as in Π, and output w = h(a).
That is, pW |X(w|x) =

∑
a:h(a)=w α(a, x). Finally, we define pZ|WY as follows:

given w, we argue that we can reverse sample a without access to x (so that
w = h(a)), and then use the protocol Π to sample z from (a, y). That is, we
define a distribution over a given w, by the probability

η(a,w) :=

{
α(a,x)∑

a′:h(a′)=w α(a′,x) if h(a) = w

0 otherwise,

where any x ∈ X such that
∑
a′:h(a′)=w α(a′, x) > 0 is used. This is well de-

fined because, by (12), switching from x to x′ amounts to multiplying both
the numerator and the denominator by the same factor (namely, ρ(x

′,z)
ρ(x,z) for any

z ∈ g−1(w)). Then, pZ|WY (z|w, y) =
∑
a η(a,w)β(a, z, y). We verify that, when

w = g(z),

pW |X(w|x) · pZ|WY (z|w, y) =


 ∑

a:h(a)=w

α(a, x)



(∑

a

η(a,w)β(a, z, y)

)

=
∑

a

α(a, x)β(a, z, y) = PrΠ [z|x, y] = pZ|XY (z|x, y).

5 Complexity of Randomized Functions

We point out a couple of complexity aspects in which randomized functions differ
from deterministic functions. This also points to the difficulty in characterization
of securely computable functions in the case of randomized functions.

5.1 Smaller Simple Functions which are not Securely Computable

It is well-known that simple functions are not all securely computable, even for
deterministic functions, with a first example given by Beaver [Bea89], with an
output alphabet of size 5. This turns out to be the smallest output alphabet for
a simple deterministic function that is not securely realizable.

But for randomized functions, we see a higher level of complexity arising even
with an output size of 3. In Figure 1 we show an example of a simple function
with ternary output alphabet that is not securely computable, i.e., it does not
satisfy the characterization given in Theorem 5.

5.2 Limits of Unique-Transcript Protocols

It follows from Section 3 that all securely computable randomized functions with
a ternary output kernel can be computed using unique-transcript protocols. Also,

16

y1 y2
z1 z2 z3 z1 z2 z3

x1

z1 2/9 5/18
z2 4/9 2/9
z3 1/3 1/2

x2

z1 1/3 5/12
z2 5/12 5/24
z3 1/4 3/8

Fig. 1 This function is not securely computable as it does not satisfy the condition from

Theorem 5. However, it is simple, with the functions ρ and σ given by
z1 z2 z3

x1 1/3 2/3 1
x2 1/2 5/8 3/4

and
z1 z2 z3

y1 2/3 2/3 1/3
y2 5/6 1/3 1/2

.

it follows from Section 4 that all randomized functions securely computable by
two-round protocols are in fact securely computable using two-round unique-
transcript protocols. Also, the characterization by Kushilevitz [Kus89] showed
that all securely computable deterministic functions have unique-transcript se-
cure protocols. Thus one may reasonably suspect that all securely computable
functions have unique-transcript secure protocols.

However, we show that in some sense, the above results give the limits of
unique-transcript protocols: If we go just beyond the above conditions – namely,
ternary output, 2-round computable, deterministic – then we can indeed find
securely computable functions that do not have any unique-transcript secure
protocol. In Appendix B, we demonstrate a simple randomized function with an
output alphabet of size 4, securely computable by a 3-round protocol, such that
it has no unique-transcript secure protocols.

Acknowledgments

Deepesh Data’s research was supported in part by a Microsoft Research India
Ph.D. Fellowship. Manoj Prabhakaran wishes to thank Hemanta Maji and Amit
Sahai for an earlier collaboration on the same problem. The observation in Sec-
tion 5.2 was made (using a different example) during that work as well.

References

Bea89. Donald Beaver. Perfect privacy for two-party protocols. In Joan Feigen-
baum and Michael Merritt, editors, Proceedings of DIMACS Workshop on
Distributed Computing and Cryptography, volume 2, pages 65–77. American
Mathematical Society, 1989. 1, 3, 16

17

Dat16. Deepesh Data. Secure computation of randomized functions. In IEEE
International Symposium on Information Theory, ISIT 2016, Barcelona,
Spain, July 10-15, 2016, pages 3053–3057, 2016. 4

Kil88. Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages
20–31. ACM, 1988. 2

Kil00. Joe Kilian. More general completeness theorems for secure two-party com-
putation. In Proc. 32th STOC, pages 316–324. ACM, 2000. 4

KMPS14. Daniel Kraschewski, Hemanta K. Maji, Manoj Prabhakaran, and Amit Sa-
hai. A full characterization of completeness for two-party randomized func-
tion evaluation. In Advances in Cryptology - EUROCRYPT 2014 - 33rd
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings,
pages 659–676, 2014. 2

KMQR09. Robin Künzler, Jörn Müller-Quade, and Dominik Raub. Secure computabil-
ity of functions in the IT setting with dishonest majority and applications
to long-term security. In Reingold [Rei09], pages 238–255. 4

Kus89. Eyal Kushilevitz. Privacy and communication complexity. In FOCS, pages
416–421. IEEE, 1989. 1, 2, 4, 8, 17

MPR09. Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Complexity of
multi-party computation problems: The case of 2-party symmetric secure
function evaluation. In Reingold [Rei09], pages 256–273. 4

MPR12. Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. A unified char-
acterization of completeness and triviality for secure function evaluation.
In Progress in Cryptology - INDOCRYPT 2012, pages 40–59, 2012. 1, 2, 3,
6, 7

MPR13. Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Complexity of
multi-party computation functionalities. In Manoj Prabhakaran and Amit
Sahai, editors, Secure Multi-Party Computation, volume 10 of Cryptology
and Information Security Series, pages 249–283. IOS Press, 2013. 3, 4

Rei09. Omer Reingold, editor. Theory of Cryptography, 6th Theory of Cryptogra-
phy Conference, TCC 2009, San Francisco, CA, USA, March 15-17, 2009.
Proceedings, volume 5444 of Lecture Notes in Computer Science. Springer,
2009. 18

A Security for Simple Symmetric Functions

In this section we prove Lemma 1.

Proof of Lemma 1. Firstly, by perfect correctness, for any x, y, we require that
with probability one, outAΠ(m,x) = outBΠ(m, y), where m is produced by Π on
input (x, y). Suppose there is an x0 ∈ X , y0 ∈ Y such that PrΠ [m|x0, y0] > 0.

Since we can write PrΠ [m|x, y] = α(m,x)β(m, y), we have α(m,x0)β(m, y0) >
0. Also, for all x such that α(m,x) > 0, we have a positive probability of Π pro-
ducing m on input (x, y0) and hence we must have outAΠ(m,x) = outBΠ(m, y0)
with probability 1 (which requires them to be deterministic). Similarly, for all y
such that β(m, y) > 0, we have outBΠ(m, y) = outAΠ(m,x0) with probability 1.
Letting outΠ(m) := outAΠ(m,x0) = outBΠ(m, y0) (which must be deterministic),
we have that outAΠ(m,x) = outBΠ(m, y) = outΠ(m) if PrΠ [m|x, y] > 0.

18

Now we prove the second part. Note that since Π computes pZ|XY , we have
that for all x, y, z, PrΠ [z|x, y] = pZ|XY (z|x, y). Consider any x, y, z such that
pZ|XY (z|x, y) > 0. For all m such that outΠ(m) 6= z, we can set S(m, z) = 0.
So, suppose outΠ(m) = z. Then

PrΠ [m|x, y, z] =
PrΠ [m, z|x, y]

PrΠ [z|x, y]
=

PrΠ [m|x, y]

pZ|XY (z|x, y)
=
α(m,x)β(m, y)

ρ(z, x)σ(z, y)
,

where we wrote PrΠ [m, z|x, y] = PrΠ [m|x, y] (since z = outΠ(m)), PrΠ [m|x, y] =
α(m,x)β(m, y) (since Π is a protocol) and pZ|XY (z|x, y) = ρ(z, x)σ(z, y) (since
pZ|XY is a simple function). Using the security guarantee for a symmetric func-
tion (Definition 1, with zA = zB = z), we get

S1(m,x, z) = S2(m, y, z) =
α(m,x)

ρ(z, x)
· β(m, y)

σ(z, y)
.

Now, fixing (m, z) as above, consider all (x, y) such that pZ|XY (z|x, y) > 0. If the
above expression is 0 for all choices of (x, y), then we can simply set S(m, z) = 0.
Otherwise, there is some x such that S1(m,x, z) 6= 0. Then, considering the above
expression for that x, we get that β(m,y)

σ(z,y) equals a quantity that is independent of
y (and hence is a function of (m, z) alone). Similarly, by considering S2(m, y, z),
we get that α(m,x)

ρ(z,x) is a function of (m, z) alone. Hence we have

S1(m,x, z) = S2(m, y, z) = S(m, z).

B Example for Section 5.2

Theorem 7. There exists a randomized function that can be securely com-
puted using a 3-round protocol, but cannot be securely computed using a unique-
transcript protocol with any number of rounds.

Proof. Consider the simple randomized function pZ|XY given in Figure 2. This
can be securely computed, and a 3-round protocol for that is given in Figure 3.
Note that this protocol is not unique-transcript. First we show that the protocol
given in Figure 3 is secure, i.e., it is correct and perfectly private; and later we
show that no unique-transcript protocol can securely compute this function with
any number of rounds.

Correctness: It follows from the fact that for every x, y, z, pZ|XY (z|x, y) is
equal to the sum of the probabilities on different paths leading to leaves labelled
as z, where probability of a path is equal to the product of the probabilities
(corresponding to the particular x and y) appearing on the edges along that
path.

19

y1 y2
z1 z2 z3 z4 z1 z2 z3 z4

x1

z1 2/9 5/18
z2 31/108 31/216
z3 17/108 17/216
z4 1/3 1/2

x2

z1 1/3 5/12
z2 31/360 31/720
z3 119/360 119/720
z4 1/4 3/8

Fig. 2 This simple randomized function pZ|XY is securely computable by a 3 round
protocol (given in Figure 3) that is not unique-transcript, but cannot be securely com-
puted using any unique-transcript protocol (with any number of rounds).

Privacy: Consider an arbitrary k ∈ [4]. We need to show that for any tran-
script m, p(m|xi, yj , zk) must be the same for every i, j ∈ [2], k ∈ [4]. This
trivially holds for every z ∈ Z \ {z2, z3}, because there is a unique path from
root to the leaf corresponding to z, which means that output being z itself deter-
mines the whole transcript. But for z2 and z3 there are two possible transcripts.
Fix any z ∈ {z2, z3}, say, z2; a similar argument holds for z = z3 as well. There
are two transcripts (m11,m22,m31) and (m12,m23,m33) for z2, implying two
distinct paths. In order to show that the protocol is perfectly private, we need to
show that p(m11,m22,m31|xi, yj , z2) is the same for all i, j ∈ [2]. It can be easily
verified that this is indeed the case, which implies that the protocol described
in Figure 3 is perfectly private.

Now we show that no unique-transcript protocol (with any number of rounds)
can securely compute A := pZ|XY . Note that in a unique-transcript protocol,
during any round, the party who is sending a message makes a partition of the
output alphabet, and sends the other party the part (i.e., the reduced output
alphabet) in which the output should lie. We show below that neither Alice nor
Bob can make a partition in the first round itself. This implies that no unique-
transcript protocol exists for securely computing A with any number of rounds.

– Alice cannot partition Z: Suppose, to the contrary, that Alice can partition
Z in the first round; and, assume, w.l.o.g., that Alice makes two parts Z =
Z1] Z2.
Letmi, i = 1, 2 denote the message that Alice sends to Bob in order to restrict
the output to Zi, i = 1, 2. This implies that pM1|XY Z(m1|xi, yj , z ∈ Z1) = 1
and pM1|XY Z(m2|xi, yj , z ∈ Z2) = 1, for every i, j ∈ {1, 2}. We show below
that if Alice partitions Z = Z1] Z2, then the following must hold for every
i ∈ {1, 2}:

∑

z∈Z1

pZ|XY (z|xi, y1) =
∑

z∈Z1

pZ|XY (z|xi, y2), (13)

20

y1 y2

z1 z2 z3 z4 z1 z2 z3 z4

x1

z1 2/9 0 0 0 5/18 0 0 0
z2 0 31/108 0 0 0 31/216 0 0
z3 0 0 17/108 0 0 0 17/216 0
z4 0 0 0 1/3 0 0 0 1/2

x2

z1 1/3 0 0 0 5/12 0 0 0
z2 0 31/360 0 0 0 31/720 0 0
z3 0 0 119/360 0 0 0 119/720 0
z4 0 0 0 1/4 0 0 0 3/8

Am11

p(m11) =

(
1/3 if X = x1

1/2 if X = x2

y1 y2

z1 z2 z3 z1 z2 z3

x1

z1 2/3 0 0 5/6 0 0
z2 0 1/9 0 0 1/18 0
z3 0 0 2/9 0 0 1/9

x2

z1 2/3 0 0 5/6 0 0
z2 0 1/45 0 0 1/90 0
z3 0 0 14/45 0 0 7/45

A11

m12

p(m12) =

(
2/3 if X = x1

1/2 if X = x2

y1 y2

z2 z3 z4 z2 z3 z4

x1

z2 3/8 0 0 3/16 0 0
z3 0 1/8 0 0 1/16 0
z4 0 0 1/2 0 0 3/4

x2

z2 3/20 0 0 3/40 0 0
z3 0 7/20 0 0 7/40 0
z4 0 0 1/2 0 0 3/4

A12
m21

p(m21) =

(
2/3 if Y = y1

5/6 if Y = y2

y1 y2

z1 z1

x1 z1 1 1

x2 z1 1 1

A21

m22

p(m22) =

(
1/3 if Y = y1

1/6 if Y = y2

y1 y2

z2 z3 z2 z3

x1
z2 1/3 0 1/3 0
z3 0 2/3 0 2/3

x2
z2 1/15 0 1/15 0
z3 0 14/15 0 14/15

A22

m23

p(m23) =

(
1/2 if Y = y1

1/4 if Y = y2

y1 y2

z2 z3 z2 z3

x1
z2 3/4 0 3/4 0
z3 0 1/4 0 1/4

x2
z2 3/10 0 3/10 0
z3 0 7/10 0 7/10

A23

m24

p(m24) =

(
1/2 if Y = y1

3/4 if Y = y2

y1 y2

z4 z4

x1 z4 1 1

x2 z4 1 1

A24

m31

p(m31) =

(
1/3 if X = x1

1/15 if X = x2

y1 y2

z2 z2

x1 z2 1 1

x2 z2 1 1

A31

m32

p(m32) =

(
2/3 if X = x1

14/15 if X = x2

y1 y2

z3 z3

x1 z3 1 1

x2 z3 1 1

A32

m33

p(m33) =

(
3/4 if X = x1

3/10 if X = x2

y1 y2

z2 z2

x1 z2 1 1

x2 z2 1 1

A33

m34

p(m34) =

(
1/4 if X = x1

7/10 if X = x2

y1 y2

z3 z3

x1 z3 1 1

x2 z3 1 1

A34

1

Fig. 3 This describes a 3-round protocol for securely computing pZ|XY , denoted by ma-
trix A, where the first message is sent by Alice. This protocol is not unique-transcript:
both A11 and A12 have z2, z3 in common, and that is highlighted in red color. The
meaning of the probabilities on the edges is as follows: If Alice’s input is x1, then she
sends m11 as the first message with probability 1/3 and m12 as the first message with
probability 2/3. If Alice’s input is x2, then she sends m11 as the first message with
probability 1/2 and m12 as the first message with probability 1/2. If Alice sends m11,
then the problem reduces to securely computing A11, and if Alice sends m12, then
the problem reduces to securely computing A12. Suppose Alice reduces the problem to
A11. Now it is Bob’s turn to send a message. If Bob’s input is y1, he sends m21 with
probability 2/3 and m22 with probability 1/3, and so on ... In the end, at the leaf nodes
there is only one possible zi to output, and they output that element with probability
1.

21

∑

z∈Z2

pZ|XY (z|xi, y1) =
∑

z∈Z2

pZ|XY (z|xi, y2). (14)

It can be easily verified that the matrix A does not satisfy the above two
conditions for any non-trivial and disjoint Z1, Z2, which is a contradiction:
since Z = Z1] Z2 and |Z| = 4, one of the following must hold: (i) either
|Z1|=1 or |Z2|=1, or (ii) either |Z1|=2 or |Z2|=2. This verification can be
done easily even exhaustively. We show (13) and (14) below. In the following,
i belongs to {1, 2}.

pM1|XY (m1|xi, y1) =
∑

z∈Z1

pM1Z|XY (m1, z|xi, y1) +
∑

z∈Z2

pM1Z|XY (m1, z|xi, y1)

=
∑

z∈Z1

pZ|XY (z|xi, y1) pM1|XY Z(m1|xi, y1, z)︸ ︷︷ ︸
= 1

+
∑

z∈Z2

pZ|XY (z|xi, y1) pM1|XY Z(m1|xi, y1, z)︸ ︷︷ ︸
= 0

=
∑

z∈Z1

pZ|XY (z|xi, y1) (15)

Similarly we can show the following:

pM1|XY (m1|xi, y2) =
∑

z∈Z1

pZ|XY (z|xi, y2), (16)

pM1|XY (m2|xi, y1) =
∑

z∈Z2

pZ|XY (z|xi, y1), (17)

pM1|XY (m2|xi, y2) =
∑

z∈Z2

pZ|XY (z|xi, y2). (18)

Since Alice sends the first message, which means that the Markov chain
M1 −X − Y holds. This implies that pM1|XY (mj |xi) = pM1|XY (mj |xi, y1) =
pM1|XY (mj |xi, y2) for every j ∈ {1, 2}. Now comparing (15) & (16) gives (13),
and (17) & (18) gives (14).

– Bob cannot partition Z: Switching the roles of Alice and Bob with each-
other in the above argument and using the fact that for every partition Z =
Z1] Z2, the matrix A does not satisfy the following two conditions, we can
prove that Bob also cannot partition Z. In the following, i belongs to {1, 2}.

∑

z∈Z1

pZ|XY (z|x1, yi) =
∑

z∈Z1

pZ|XY (z|x2, yi),

∑

z∈Z2

pZ|XY (z|x1, yi) =
∑

z∈Z2

pZ|XY (z|x2, yi).

This completes the proof of Theorem 7.

22

	Towards Characterizing Securely Computable Two-Party Randomized Functions

