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Abstract. The hardness of the shortest vector problem for lattices is a fundamen-
tal assumption underpinning the security of many lattice-based cryptosystems,
and therefore, it is important to evaluate its difficulty. Here, recent advances in
studying the hardness of problems in large-scale lattice computing have pointed
to need to study the design and methodology for exploiting the performance of
massive parallel computing environments. In this paper, we propose a lattice ba-
sis reduction algorithm suitable for massive parallelization. Our parallelization
strategy is an extension of the Fukase–Kashiwabara algorithm (J. Information
Processing, Vol. 23, No. 1, 2015). In our algorithm, given a lattice basis as input,
variants of the lattice basis are generated, and then each process reduces its lattice
basis; at this time, the processes cooperate and share auxiliary information with
each other to accelerate lattice basis reduction. In addition, we propose a new
strategy based on our evaluation function of a lattice basis in order to decrease the
sum of squared lengths of orthogonal basis vectors. We applied our algorithm to
problem instances from the SVP Challenge. We solved a 150-dimension problem
instance in about 394 days by using large clusters, and we also solved problem
instances of dimensions 134, 138, 140, 142, 144, 146, and 148. Since the previ-
ous world record is the problem of dimension 132, these results demonstrate the
effectiveness of our proposal.

Keywords: lattice basis reduction, parallelization, shortest vector problem, SVP
Challenge

1 Introduction

1.1 Background

Lattice-based cryptography is an attractive field of research, because it has
produced useful cryptographic schemes, for example, public-key cryptosystems,
functional encryption schemes, and fully homomorphic encryption schemes,
etc. [4,26,31,44,24,1,2,27,28,7,29,10,11,8,9,12], and these systems are believed to resist
quantum cryptanalysis. Their security has been proven under the computational hard-
ness assumption, and this assumption is related to the difficulty in solving the shortest
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vector problem (SVP) on a lattice. Therefore, it is important to show evidence of and to
estimate the hardness not only theoretically, but also practically.

There have been many studies reporting on algorithms to solve the SVP, and
the typical approaches are lattice basis reduction and enumerating lattice vectors.
Lattice basis reduction algorithms take a lattice basis as input and output another
lattice basis for the same lattice whose basis vectors are relatively shorter than
the input. Enumeration algorithms take a lattice basis as input and search for rel-
atively shorter lattice vectors than the basis vectors of the input. To evaluate the
computational hardness of SVP, it is important to improve the efficiency of algo-
rithms and implement high-performance solvers; here too, there have been many stud-
ies [36,33,49,47,48,13,37,14,21,16,30,17,23,15,46,34,20,38,39,6]. However, thanks to
recent advances in computing technologies, exploiting the performance of massively
parallel computing environment, for example, a cluster consists of many large comput-
ers, has become the most important strategy with which to evaluate the security of lattice
cryptosystems, and a methodology to solve the SVP is needed for it.

1.2 Our Contribution

In this paper, we propose a new lattice basis reduction algorithm suitable for paralleliza-
tion. Our proposal consists of a parallelization strategy and a reduction strategy.

Our parallelization strategy enables many parallel processes to reduce the lattice basis
cooperatively, so it can exploit the performance of parallel computing environments in
practice. This strategy is based on an idea proposed by Fukase and Kashiwabara in [20];
however, the parallel scalability of their algorithm is unclear with regard to massive
parallelization. To achieve parallel scalability, our strategy consists of two methods. The
first method is a procedure of generating different lattice bases for many processes. Our
experiments show that this method enables the processes to generate a huge number
of lattice vectors and that it works well even if the processes take the same lattice
basis. The second method is to use global shared storage to keep information on the
cooperative lattice basis reduction; this method enables many processes to share auxiliary
information for accelerating the lattice basis reduction with a small synchronization
overhead.

Our lattice basis reduction strategy enables us to efficiently obtain lattice bases with
a small sum of squared lengths of orthogonal basis vectors, which is related to finding
relatively short lattice vectors. Experiments and analyses are given by Fukase and
Kashiwabara in [20], as explained in Section 3.2, and Aono and Nguyen in [5]. Fukase
and Kashiwabara in [20] proposed a strategy to reduce this sum, but it is complicated.
To efficiently obtain a lattice basis that has a small sum of squared lengths, we propose
a new strategy based on an evaluation function of lattice bases.

We applied our algorithm to problem instances in the SVP Challenge, which is hosted
by Technische Universität Darmstadt [45]. We solved a problem instance of dimension
150 in about 394 days with four clusters, a world record. In addition, we solved problem
instances of dimensions 134, 138, 140, 142, 144, 146, and 148.
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1.3 Related Work

Kannan’s enumeration (ENUM) algorithm [33] is an exponential-time algorithm that
outputs the shortest or nearly shortest lattice vector of given lattice. ENUM and its vari-
ants are used as the main routine or subroutine to solve the shortest lattice vector problem
(SVP), as explained in Section 2.3. Thus, studying the ENUM algorithm is an important
research field, and several improvements have been proposed [16,30,17,23,38].

The Lenstra–Lenstra–Lovász (LLL) algorithm [36] is a lattice basis reduction al-
gorithm which takes a lattice basis and a parameter δ and produces a δ-LLL reduced
basis of the same lattice. The LLL algorithm is the starting point of many lattice basis
reduction algorithms and is a polynomial-time algorithm. Since the first basis vector
of the output basis is a relatively short lattice vector in the lattice in practice, the LLL
algorithm is also used as the main routine or subroutine of SVP algorithms. The Block
Korkin–Zolotarev (BKZ) algorithm [49] is a block-wise generalization of the LLL algo-
rithm, and it uses the ENUM algorithm as a subroutine. The BKZ algorithm generates
relatively shorter basis vectors than the LLL algorithm does. Studying LLL, BKZ, and
their variants is a popular topic of research and several improvements and extensions
have been reported [21,15,6,39].

Schnorr’s random sampling reduction (RSR) algorithm [47,48] is a probabilistic
lattice basis reduction algorithm. The RSR algorithm randomly generates lattice vectors.
The simple sampling reduction (SSR) algorithm [13,37,14] is an extension of the RSR
algorithm that analyzes the expected length of the lattice vectors to be generated. The
authors of SSR also presented several theoretical analyses of the RSR and their algorithm.

Our algorithm is based on the Fukase–Kashiwabara (FK) algorithm [20]. The FK
algorithm is an extension of the SSR algorithm. The authors of the FK algorithm refined
the calculation for the expected length of lattice vectors to be generated and showed that
the probability of finding short lattice vectors can be increased by reducing the sum of
squared lengths of orthogonal basis vectors. A brief introduction to the FK algorithm
is given in Section 3.2. Aono and Nguyen [5] presented a theoretical analysis of the
RSR algorithm and its extensions. They also gave a probabilistic perspective and a
comparison with [23].

With the aim of using parallel computation to solve the SVP, several researchers
proposed parallelized algorithms [16,30,17,46,34]. In particular, parallelized ENUM
algorithms on CPUs, GPUs, and FPGAs were investigated by [16], [30], and [17].
A parallelized SSR algorithm for GPUs was proposed in [46]. A design for an SVP
solver that exploits large-scale computing environments was proposed by [34]. In [34],
the authors integrated, tuned up, and parallel pruned the ENUM algorithm [23] into a
multicore-CPU and GPU implementation [30], and they extended this implementation by
using multiple CPUs and GPUs in the single program multiple data (SPMD) style [41].

Organization. Preliminaries are described in Section 2. We then give a brief intro-
duction to sampling reduction and the previous studies [47,48,37,20] in Section 3. An
overview of our parallelization strategy is presented in Section 4, and our proposal is
explained in detail in Section 5. Section 6 presents the results of applying our proposal
to the SVP Challenge and we conclude in Section 7.
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2 Preliminaries

2.1 Lattice

In this section, we introduce notations and definitions of the lattice
The set of natural numbers {0, 1, . . .} is denoted by N, and the sets of integers and

real numbers are denoted by Z and R, respectively. We denote an n-element vector
(or sequence) as x = (x1, . . . , xn) = (xi)ni=1. Let v = (v1, . . . , vn) ∈ Rn and u =
(u1, . . . , un) ∈ Rn be two n-dimensional vectors on R; we define the inner product of
v and u by ⟨v, u⟩ :=

∑n
i=1 viui . The length (Euclidean norm) of v, denoted by ∥v ∥, is√

⟨v, v⟩.
Let b1, . . . , bn ∈ Zn be n-dimensional linearly independent column (integral) vec-

tors. The (full rank) lattice L spanned by a matrix B = (b1, . . . , bn) is defined as the
set L = L(B) = {Bx | x ∈ Zn}. Such a B is called a lattice basis of L, and each
v ∈ L is called a lattice vector of L. Every lattice has infinitely many lattice bases except
n = 1; i.e., let U be an n-dimensional unimodular matrix over Z; then L(B) = L(BU),
so that BU is another basis of L if U is not the identity matrix. For a lattice ba-
sis B = (b1, . . . , bn), the corresponding (Gram–Schmidt) orthogonal basis vectors
b∗1, . . . , b

∗
n ∈ Rn are defined by b∗i = bi −

∑i−1
j=1 µB,i, j b

∗
j , where µB,i, j = ⟨bi, b∗j⟩ /∥b∗j ∥

2.
The determinant of L is denoted by det(L), and note that det(L) = ∏n

i=1∥b∗i ∥ for any
basis B = (b1, . . . , bn) of L.

Given a lattice basis B = (b1, . . . , bn) of a lattice L, the i-th orthogonal projection by
B, denoted by πB,i : Rn → span(b1, . . . , bi−1)⊥, is defined as πB,i(v) = v −∑i−1

j=1 v
∗
j b
∗
j ,

where v∗j = ⟨v, b∗j⟩ /∥b∗j ∥
2 ∈ R (for i = 1, πB,1 is the same as the identity map). Note

that ∥πB,i(v)∥2 =
∑n

j=i+1
(
⟨v, b∗j⟩ /∥b∗j ∥

)2. We define the i-th orthogonal complement
by B as LB,i := πB,i(L) = {πB,i(v) | v ∈ L}. We call ∥πB,i(v)∥ the orthogonal length
of v on LB,i; this is an important measurement in the context of lattice basis reduction.

2.2 Natural Number Representation

In this section, we explain the natural number representation (NNR) of a lattice vector.
In Schnorr’s algorithm [47], a lattice vector is represented by an n-dimensional sequence
consisting of 0s and 1s, where n is the dimension of the given lattice basis. The numbers
0 and 1 express the amount of aberration from the orthogonal point at each index, and
one can calculate a lattice vector from the lattice basis and this sequence. Moreover,
Buchmann and Ludwig [13,37,14] indicate that one can generalize 0, 1 to the natural
numbers 0, 1, 2, . . ., and calculate the expected value of squared lengths of the lattice
vectors generated from a sequence of natural numbers. Fukase and Kashiwabara [20]
call such a sequence of natural numbers a natural number representation (NNR), and
Aono and Nguyen [5] call it a tag (defined on the natural numbers). One can determine
a set of NNRs that has a small expected value of squared lengths for a given basis.
The following definitions and statements are basically reprinted from [20], but similar
descriptions are given in other papers [13,37,14,5].

Definition 1 (Natural Number Representation). Let B = (b1, . . . , bn) be a lattice
basis of the lattice L. Given a lattice vector v =

∑n
i=1 νib

∗
i ∈ L, the natural number
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representation (NNR) of v on B is a vector of n non-negative integers (n1, . . . , nn) ∈ Nn

such that −(ni + 1)/2 < νi ≤ −ni/2 or ni/2 < νi ≤ (ni + 1)/2 for all i = 1, . . . , n.

Theorem 1 ([20]). Let B = (b1, . . . , bn) be a lattice basis of the lattice L, and let
v =

∑n
i=1 νib

∗
i ∈ L. For any lattice vector v ∈ L, the NNR of v is uniquely determined,

and the map nB : L → Nn, which is given by nB(v) := (n1, . . . , nn), is a bijection.

Assumption 1 (Randomness Assumption [47,20,5]) Let v =
∑n

j=1 νj b
∗
j be a lattice

vector, and v has the NNR n = (n1, . . . , nn). The coefficients νj of v are uniformly
distributed in (−(n j + 1)/2,−n j/2] and (n j/2, (n j + 1)/2] and statistically independent
with respect to j.

The difference from the original randomness assumption [47,48] is that the NNRs are
generated by a procedure called the sampling algorithm and these NNRs belong to a
subset of {0, 1}n defined as

{(0, . . . , 0, nn−u, . . . , nn−1, 1) | nn−u, . . . , nn−1 ∈ {0, 1}},

where u is a positive integer parameter of the sampling algorithm.

Theorem 2 ([20]). Let B = (b1, . . . , bn) be a lattice basis of the lattice L, and let
n = (n1, . . . , nn) be an NNR. The expectation of the squared length of the corresponding
lattice vector v of n (namely, nB(v) = (n1, . . . , nn)) is:

E
[
∥v ∥2

]
=

1
12

n∑
i=1
(3n2

i + 3ni + 1)
b∗i 2

. (1)

Theorem 2 states that one can calculate the expected value of the squared length
of a generated lattice vector with given NNR in a given basis without calculating the
coordinates of the lattice vector. For a relatively reduced basis (the output of the LLL al-
gorithm, the BKZ algorithm, or other variants), the sequence (∥b∗1∥

2, ∥b∗2∥
2, . . . , ∥b∗n∥2)

tends to decrease with respect to the indices. Therefore, a short lattice vector tends to
have natural number 0 in first consecutive indices of the NNR, and natural numbers 1
and 2 appear in last consecutive indices in the NNR for any relatively reduced basis.

2.3 Shortest Vector Problem and SVP Challenge

Given a lattice basis B of a lattice L of dimension n, the shortest vector problem (SVP)
consists in finding the shortest non-zero vector v ∈ L. The SVP is NP-hard under
randomized reduction [3]. It is hard to find the shortest lattice vector in the lattice
when n is large. However, thanks to the Gaussian heuristic GH(L), the length of the
shortest lattice vector in L can be estimated as GH(L) :=

(
Γ(n/2 + 1) · det(L)

)1/n/√π,
where Γ is the gamma function [32,40]. The root Hermite factor of v and L is defined
by

(
∥v ∥ /det(L)1/n

)1/n. Given a lattice vector v, the corresponding root Hermite fac-
tor is used to make comparative measurements among different lattices, because it is
independent of the lattice basis [22,42].
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The security of lattice-based cryptosystems depends on the hardness of the lattice
problem. Therefore, it is important to study efficient algorithms for solving the SVP. Here,
a competition, called the SVP Challenge [45], was maintained by Technische Universität
Darmstadt since 2010. The SVP Challenge gives a problem instance generator that
produces SVP instances and hosts a ranking of registered lattice vectors as follows. A
submitted lattice vector v ∈ L is registered if one of the following conditions is satisfied:
no lattice vector is registered at the dimension of v and ∥v ∥ < 1.05 · GH(L), or v is
shorter than any other lattice vector of the same dimension. In this paper, for a lattice L,
we call a lattice vector v ∈ L a solution of L if ∥v ∥ < 1.05 · GH(L).

3 Brief Introduction to Sampling Reduction

Before explaining our algorithm, we briefly introduce the RSR algorithm and its exten-
sions [47,48,37,20].

3.1 Overview of Sampling Reduction

Here, we briefly introduce the RSR algorithm and its extensions [47,48,37,20] and
describe the parts that our algorithm shares with them.

First of all, we define the following notions and terminology.

Definition 2 (lexicographical order). Let B = (b1, . . . , bn) and C = (c1, . . . , cn) be
two lattice bases of the same lattice. We say that B is smaller thanC in the lexicographical
order if and only if ∥b∗j ∥ < ∥c∗j ∥, where j is the smallest index for which ∥b∗j ∥ and ∥c∗j ∥
are different.

Definition 3 (insertion index). Given a lattice vector v and a real number δ with
0 < δ ≤ 1, the δ-insertion index of v for B is defined by

hδ(v) = min
(
{i | ∥πB,i(v)∥2 < δ∥b∗i ∥2} ∪ {∞}

)
.

Note that the δ-insertion index is a parameterized notion of Schnorr [47,48].
The RSR algorithm and its extensions need a lattice reduction algorithm to reduce

a given lattice basis in lexicographical order, and the LLL and BKZ algorithms can be
used for this purpose. In this paper, we define this operation as follows.

Definition 4. Let v ∈ L be a lattice vector with ∥πB,i(v)∥ < δ∥b∗i ∥. We call the
following operation δ-LLL reduction of B at index i by v: generate an (n+1)×n matrix
M = (b1, . . . , bi−1, v, bi, . . . , bn), compute the δ-LLL reduced (full rank) lattice basis
B′ by using the LLL algorithm with input M , and output the resulting lattice basis.

As mentioned above, one can use another lattice reduction algorithm. In fact, the RSR
algorithm [47,48] uses the BKZ algorithm.

The RSR algorithm and its extensions consist of two major parts. The first part takes
a lattice basis B and a set of NNRs as input and generates a lattice vector that corresponds
to an NNR and B. It outputs a set of generated lattice vectors. In this paper, we call this
operation lattice vector generation. The second part performs lattice basis reduction. If
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the result of the lattice vector generation is a lattice vector v whose orthogonal length
is shorter than a orthogonal basis vector of B, in other words, whose δ-insertion index
is finite, B is reduced by using δ-LLL reduction of B at index hδ(v) by v. Note that
the lexicographical order of the resulting lattice basis of this part is smaller than the
input. To summarize the RSR algorithm and its extensions, alternately repeat the lattice
vector generation and the lattice basis reduction to reduce a given lattice basis. To solve
the SVP, these calculations are repeated until the length of the first basis vector of the
obtained lattice basis is less than 1.05 · GH

(
L(B)

)
, where B is the given lattice basis.

To reduce the lattice basis or solve the SVP efficiently, it is important to choose a
lattice vector as input for the lattice basis reduction from the result of the lattice vector
generation. Each previous study has its own selection rule. In the RSR algorithm, a lattice
vector v with hδ(v) ≤ 10 is chosen from the result of the lattice vector generation. In the
SSR algorithm, a lattice vector v with hδ(v) = 1 is chosen. Fukase and Kashiwabara [20]
introduce a rule to choose a lattice vector, called restricting reduction, as explained in
Section 3.2.

Ludwig [37] and Fukase and Kashiwabara [20] computed the expectation of the
squared length of the generated lattice vectors in the lattice vector generation. According
to the expectation value of squared length, their algorithm prepared lists of NNRs with 0,
1, and 2, and generated the corresponding lattice vectors from the lattice basis. Aono
and Nguyen [5] presented an algorithm to produce a set of better NNRs (in their terms,
tags).

3.2 Fukase–Kashiwabara Algorithm

As our algorithm is an extension of a parallelization strategy and uses the global shared
storage proposed by Fukase and Kashiwabara [20], we will briefly introduce their
proposal before explaining ours. Note that our algorithm does not use the restricting
reduction of their algorithm. We refer the reader to [20] for the details of the FK
algorithm.

Restricting Reduction. Ludwig [37] and Fukase and Kashiwabara [20] showed that one
can calculate the expected value of the squared lengths of the generated lattice vectors
for a lattice basis and a set of NNRs, and this expectation is proportional to the sum of
the squared lengths of the orthogonal basis vectors. Therefore, a nice reduction strategy
seems to reduce the lattice basis so as to decrease the sum of squared lengths, and hence,
such a strategy is considerable. Fukase and Kashiwabara [20] proposed a method for
decreasing the sum of squared lengths by introducing the restricting reduction index;
this strategy is briefly explained below.

To decrease the sum of squared lengths quickly, some application of a lattice vector
to the lattice basis is not good. Moreover, some application of a lattice vector which
decreases the sum of squared lengths is not the fast way to reach a very small sum of
squared lengths. To decrease the sum of squared lengths quickly, Fukase and Kashi-
wabara [20] used a restricting index. For an index ℓ, called the restricting reduction
index, the lattice basis is reduced at an index ℓ′ only after ℓ. In other words, the basis
vectors before ℓ are fixed. Let ℓ be 0 at the beginning of the program. As the main loops
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are executed, the restricting index is gradually increased according to some rule. When
the restricting index reaches a certain value, it is set to 0 again. By using the restricting
index, the sum of squared lengths of orthogonal basis vectors is decreased from first
consecutive indices.

Stock Vectors. Some lattice vectors may be useful even if they are not short enough
for reducing the lattice basis. For example, after reduction of the lattice basis at index i
by another lattice vector, a lattice vector v may be applied at index i + 1 or greater. In
addition, after changing the restricting index to 0, a lattice vector v may be applied to
the lattice basis if it was not used for reducing the lattice basis because of a previous
high restriction index. Therefore, lattice vectors that are relatively shorter than the i-th
orthogonal basis vector are stored in global shared storage, and each stored lattice vector
is associated with an orthogonal complement LB,i (namely, the place of the stored vector
is determined by the basis vectors b1, . . . , bi−1) in order to load and use it for reducing
the lattice basis by all the parallel running processes. Fukase and Kashiwabara [20] call
these stored vectors stock vectors.

Parallelization. A set of generated lattice vectors is determined from the lattice basis
and set of NNRs. Therefore, even if the sets of NNRs are the same, two different
lattice bases generate different sets of lattice vectors that have few vectors in common.
Fukase and Kashiwabara [20] utilized this heuristic approach with stock vectors to
generate a lot of lattice vectors and cooperate with each parallel running process. Given
a lattice basis, their algorithm generates different lattice bases except for first consecutive
indices from 1 and distributes each generated basis to each process. In other words, the
processes have lattice bases that have different basis vectors at last consecutive indices.
Since these lattice bases have a common orthogonal complement at first consecutive
indices, processes can share stock vectors associated with common basis vectors of
first consecutive indices, and since they have different basis vectors at last consecutive
indices, the generated lattice vectors could be different from each other.

Note that basis reduction is done by each process, and keeping first consecutive basis
vectors the same is difficult. Thus, some mechanism is required to keep first consecutive
basis vectors the same among all the processes. Fukase and Kashiwabara [20] proposed
a method by storing basis vectors as the stock vectors.

4 Overview of Our Parallelization Strategy

First, we briefly explain parallelization and the problems that make it hard to exploit the
performance of parallel computation. Then, we briefly describe our strategy.

4.1 Technical Hurdles and Brief Review of Parallelization Methodology

Several researchers have used parallel computation to solve the SVP. In particular, there
are three types of parallel algorithm for solving it.
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The first type is the divide-and-conquer approach for parallelizing the ENUM,
pruned ENUM, and sampling algorithms of lattice vectors [16,30,17,23,34,46]. Several
researchers [16,30,17,34] studied parallel ENUM algorithms based on this methodology.
This type of parallelization can be used to speed up the search for the shortest or a
relatively short lattice vector. However, it is hard to solve high-dimensional SVPs by
using this type of parallelization, which take an exponentially long time in practice.
Hence, this type of parallelization is out of the scope of this paper.

The second type is randomization of lattice bases to exploit the power of massively
parallel computing environments. The authors of reference [34] proposed an imple-
mentation to solve high-dimensional SVPs by exploiting massively parallel running
processes. Their implementation works as follows. For a given lattice basis, the method
generates a lot of lattice bases by multiplications with random unimodular matrices. The
generated lattice bases are distributed to the processes, and each process runs the BKZ
and pruned parallel ENUM algorithms. This method reduces a lot of lattice bases simul-
taneously, so the probability of finding a short lattice vector becomes higher. However,
each process works independently; therefore, the information for accelerating lattice
basis reduction is not shared among processes.

The third type of parallelization, proposed by Fukase and Kashiwabara [20], involves
alteration of last consecutive basis vectors, which is briefly explained in Section 3.2. For
a given lattice basis, their method generates a lot of lattice vectors from the given basis
and a set of NNRs in order to find lattice vectors with a shorter length than the given
orthogonal basis vectors. Their key idea consists of two heuristic approaches. Firstly,
each process executes lattice vector generation, which takes the same set of NNRs and
a different lattice basis as input in order to generate a different set of lattice vectors.
To generate many different lattice bases, each process computes the δ-LLL reduction
of a lattice basis of dimension n at last consecutive indices ℓ, ℓ + 1, . . . , n by using a
different lattice vector. Note that different lattice bases might be outputted for different
input lattice vectors. Secondly, if the processes have different lattice bases but same
first consecutive basis vectors with indices 1, 2, . . . , ℓ′, then useful lattice vectors, which
are contained in the same orthogonal complements (called stock vectors by Fukase and
Kashiwabara), could be shared among the processes in order to accelerate the lattice
basis reduction. Fukase and Kashiwabara proposed a parallelization strategy based on
these heuristics. However, they reported experimental results with only 12 or fewer
parallel processes. In fact, in our preliminary experiments of the parallelization strategy
of Fukase and Kashiwabara [20], we observed that many parallel running processes to
solve higher dimensional problems did not keep the same first consecutive basis vectors.
Since current massively parallel computing environments have many more physical
processing units (often, more than 100), we conclude that there is still room for scalable
massive parallelization.

The parallelization strategy in our algorithm is an extension of [20]. The key idea of
our method is explained next.

4.2 Key Idea of Our Parallelization Strategy

To reduce a lattice basis by utilizing the performance of a parallel computing environment
effectively, one needs a scalable parallelization strategy that keeps first consecutive
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indices’ basis vectors common but last consecutive indices’ basis vectors different on
the many lattice bases of the individual processes with a small synchronization penalty
in practice. To accomplish this, we extend the parallelization strategy of Fukase and
Kashiwabara [20]. Our strategy consists of two methodologies. The first enables each
process to generate a lattice basis variant which has different last consecutive indices’
basis vectors from those of other processes, and the second enables each process to share
first consecutive indices’ basis vectors. The rest of this section briefly explains our idea,
and Section 5.2 explains it in detail.

Our lattice basis reduction with process-unique information (e.g., process ID, MPI
rank, etc.) generates many lattice basis variants that have different last consecutive
indices’ basis vectors. In addition, each process generates a lot of lattice vectors to
reduce the lattice basis by using a given lattice basis and a set of NNRs. If there is a
lattice vector whose orthogonal length is relatively shorter than the orthogonal basis
vectors in first consecutive indices, the process stores it in the global shared storage
of stock vectors, by using the method proposed by Fukase and Kashiwabara [20], as
explained in Section 3.2. Thanks to the process-unique information, each process can
use this information as a seed for generating different lattice bases even if each process
takes the same lattice basis as input. During the reduction execution, the processes work
independently except for the access to the global shared storage and do not communicate
with each other. The most computationally expensive operation is generating a lot of
lattice vectors, and this operation is calculated in each process independently. Hence,
there is only a negligible synchronization penalty in practice.

As mentioned above regarding the second method, Fukase and Kashiwabara [20]
suggested that cooperation among parallel running processes can be enabled by sharing
first consecutive indices’ basis vectors. However, maintaining this situation without
incurring a painfully large synchronization cost is a difficult task when there are many
processes. Fukase and Kashiwabara [20] proposed to use global shared storage for stock
vectors, as explained in Section 3.2. However, it is unclear how their method can be
used to keep common basis vectors in first consecutive indices among many processes.
We propose a method to share the basis vectors in first consecutive indices by using
additional global shared storage. In our algorithm, each process has its own lattice basis.
In every loop, each process stores basis vectors in first consecutive indices of its own
lattice basis in this extra global shared storage; then it loads lattice vectors from the
storage and computes the smallest lattice basis in lexicographical order by using the
stored lattice vectors and their own lattice bases. Note that only first consecutive indices’
basis vectors are stored in the global storage. In this method, many processes cause
accesses to the global shared storage, and synchronization is required. However, the
synchronization penalty is practically smaller than that of communication among many
processes, and as mentioned above, the most computationally expensive operation is
generating lattice vectors.

5 Our Algorithm

The most important part of our proposal is the methodology of parallelization. We de-
signed and implemented our parallelization methodology in the single program multiple
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Input: A lattice basis B, process-unique information pui (regarded as an integer), two
sets S and S′ of natural number representations, integers ℓfc, ℓlc, and ℓlink, and
real values δstock, δ, δ′, δ′′, and Θ.

Output: A lattice basis B.
1 begin
2 loop begin
3 B′ ← B;
4 Reduce B by using Algorithm 2 with input parameters B, pui, S′, ℓfc, ℓlc,

δstock, δ, δ′ and δ′′ (explained in Section 5.2);
5 Generate a set of lattice vectors V from B and a set S of natural number

representations;
6 foreach v ∈ V do
7 if there exists an index i = hδstock (v) such that 1 ≤ i ≤ ℓfc then store v in the

global shared storage of stock vectors (explained in Section 3.2);
8 end
9 Reduce B by using our strategy with inputs lattice vectors from the global

shared storage of stock vectors and the parameter Θ (explained in Section 5.1);
10 Store the basis vectors of indices from 1 to ℓlink of B in the global shared

storage of link vectors (explained in Section 5.2);
11 Load the lattice vectors from the global shared storage of link vectors; then

generate the smallest lattice basis B′′ in lexicographical order by using loaded
link vectors and B; then replace B by B′′ (explained in Section 5.2);

12 if there exists a lattice vector v in the global shared storage of stock vectors and
B with ∥v ∥ < 1.05 · GH

(
L(B)

)
then output v and halt this process;

13 if B′ = B then halt this process and output B;
14 end
15 end

Algorithm 1: Main routine of our algorithm



12 Teruya, Kashiwabara, and Hanaoka

Input: A lattice basis B = (b1, . . . , bn), the process-unique information pui (regarded
as an integer), a set S′ of natural number representations, integers ℓfc, ℓlc, and
real values δstock, δ, δ′, and δ′′.

Output: A lattice basis B.
1 begin
2 δ′i ← δ

′ for i = ℓlc + 1, . . . , n where n is the dimension of given lattice;
3 loop begin
4 Generate a set of lattice vectors V from B and a set S′ of natural number

representations;
5 foreach v ∈ V do
6 if there exists an index i = hδstock (v) such that 1 ≤ i ≤ ℓfc then store v in the

global shared storage of the stock vectors (explained in Section 3.2);
7 end
8 Collect the lattice vectors V ′ = {v1, . . . , vN } that have a δ-insertion index at an

index i with ℓlc < i from V ;
9 B′ ← B;

10 loop begin
11 Find the lattice vector vi ∈ V ′ with j = hδ′j

(v) such that ℓlc < j ≤ n and

∥b∗j ∥
2 − ∥πB, j (vi)∥2 is maximum;

12 if vi is not found in line 11 then go to line 18;
13 Reduce B by δ-LLL reduction at the index j by vi ;
14 foreach k = ℓlc + 1, . . . , j − 1 do δ′

k
← δ′

k
− δ′′;

15 foreach k = j, . . . , n do δ′
k
← δ′;

16 if (i + pui) mod N = 0 then go to line 18;
17 end
18 if B = B′ then terminate this subroutine and output B;
19 end
20 end

Algorithm 2: Subroutine of our algorithm to generate lattice basis variants

data (SPMD) style [41]. Namely, each process executes the same program, but each pro-
cess has a different internal state from each other. Our parallelization is an extension of
the parallelization strategy and uses the global shared storage and stock vectors proposed
by Fukase and Kashiwabara [20], as explained in Section 3.2. In addition, it contains a
lattice basis reduction strategy based on our new evaluation function.

Our algorithm, listed in Algorithms 1 and 2, is based on the Fukase–Kashiwabara
(FK) algorithm [20]; in particular, its lattice basis reduction is similar to that method,
namely, by generating a lot of lattice vectors by using a lattice basis B and a set of natural
number representations (NNRs), as defined by Definition 1 in Section 2.2, and reducing
B to significantly decrease the sum of squared lengths of orthogonal basis vectors of B
by using the generated vectors.

Our method to generate a lot of lattice vectors from a lattice basis is similar to the
FK algorithm. Note that Aono and Nguyen [5] presented an algorithm to produce a set
of better NNRs (in their terms, tags), but we did not use it.
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The major differences from the FK algorithm are as follows: a parallelization strategy,
and a lattice basis reduction strategy based on our evaluation function in order to decrease
the sum of squared lengths significantly for each process. In Section 5.1, we show our
new lattice basis reduction strategy for each process. In Section 5.2, we describe our new
parallelization strategy. We explain how to choose parameters of our proposed algorithm
in Section 5.3.

5.1 Basis Reduction Strategy using Evaluation Function

As mentioned above, our algorithm is based on the FK algorithm [20]. FK algorithm
adopted restricting index as its lattice basis reduction method. But our algorithm uses a
following evaluation function of bases on lattice basis reduction. Our algorithm generates
a lot of lattice vectors by using a lattice basis B and a set of NNRs. Discovered relatively
shorter lattice vectors, called stock vectors, are stored in global shared storage [20], as
explained in Section 3.2. After generating these stock vectors, our algorithm uses them
to reduce B. Several stock vectors have the δ-insertion index at an index i for B, which
is defined in Section 2.1, so that there are several choices of stock vector that can reduce
B. Now we face the problem of deciding which stock vector is the best to reduce B. An
answer to this question is important for finding a solution efficiently.

However, based on our preliminary experiments with reducing higher dimensional
lattice bases, this is quite difficult problem. In order to manage to resolve this difficulty,
we introduce the following evaluation function Eval and a positive real number parameter
Θ less than 1 for the lattice basis B = (b1, . . . , bn):

Eval(B,Θ) =
n∑
i=1
Θ
i ∥b∗i ∥2. (2)

It uses the following strategy at line 9. Replace B by a lattice basis B which has the
minimum Eval(B,Θ), where B is computed by the δ-LLL reduction of B at index i
by v, which is a lattice vector from the global shared storage of stock vectors with
hδstock (v) = i ≤ ℓfc.

Now let us precisely describe what is difficulty and why we introduced Eval and Θ.
According to [13,37,14,20], the average squared lengths of lattice vectors generated by
B and the set of NNRs are proportional to the sum of squared lengths of orthogonal
basis vectors of B, explained in Section 2.2. In this way, the SVP can be solved by
searching for shorter lattice vectors and using the found lattice vector to reduce the
lattice basis. At this time, lattice basis reduction with a shorter lattice vector yields a
reduced lattice basis in the context of the lexicographical order, which is defined in
Section 2.1; however, the sum of the squared lengths of orthogonal basis vectors of
the resulting lattice basis becomes much larger in practice. Namely, there is a trade-off
between two reduction strategies (decreasing the lexicographical order and the sum of
squared lengths of orthogonal basis vectors). To resolve this dilemma, a method for
optimally choosing between these strategies is needed. However, as mentioned above, it
seems to be quite difficult because, to the best of our knowledge, basic theories allowing
this have not been developed in this research area. In order to manage this issue, we
decide to combine both strategies and this is the reason why we introduced Eval and Θ.
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The evaluation function Eval attempts to combine the lexicographical order and the
order defined by the sum of squared lengths with an adjustable parameter Θ. For a
lattice basis B, if Θ is close to 1, then Eval(B,Θ) considers that decreasing the sum of
squared lengths of the orthogonal basis vectors is more important, otherwise decreasing
the lexicographical order is more important. Eval balances the two orders and yields a
flexible and efficient basis reduction strategy for solving the SVP.

5.2 Parallelization Strategy

Now, we will explain parallelizing the computations method of our lattice reduction
algorithm. If the parallel processes have the same lattice basis and generate the same set
of lattice vectors, these parallel computations would be useless. As stated in Section 4,
we generate different lattice bases for each process. However, if parallel processes have
completely different lattice bases, the parallel computation cannot be cooperative.

Fukase and Kashiwabara [20] proposed a parallel computation method such that
the basis vectors in first consecutive indices are the same among the processes and the
basis vectors in last consecutive indices are different among the processes. Since the
basis vectors at last consecutive indices are different, the same set of natural number
representations generates a different set of lattice vectors. However, they did not describe
an effective parallel computation for more than 100 processes. We propose an effective
method for parallel computations, in which each process has same first consecutive basis
vectors but different last consecutive basis vectors. In our method, the computational
cost of synchronization is practically small. Our method consists of two parts: a part
in which each process has different last consecutive basis vectors, and method part in
which each process has common first consecutive basis vectors.

Lattice Basis Variants Generation. Here, we explain our new lattice reduction pro-
cedure with process-unique information in order to generate many lattice basis variants
that have different basis vectors in last consecutive indices. Each process executes this
procedure independently with process-unique information pui. The procedure is shown
in Algorithm 2.

The discontinue rule at line 16 in Algorithm 2 is important. This rule depends on
the process-unique information pui such that each process executes different lattice
basis reduction operations for last consecutive indices of the lattice basis. Thanks to this
procedure, a huge number of processes can generate many lattice basis variants even if
they have the same lattice basis without communicating with each other.

Cooperation between Many Processes. As mentioned above, one can make a large
amount of processes whose lattice bases have different basis vectors in last consecutive
indices. Since these processes have the same basis vectors in first consecutive indices
from 1, they utilize the stock vectors they have in common. Fukase and Kashiwabara [20]
proposed a method to keep this situation by using stock vectors, as explained in Sec-
tion 3.2; however, it is difficult to maintain for a large number of processes solving higher
dimensional problems without imposing a heavy synchronization penalty.
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We propose a method to solve the above problem. In it, all the processes share
additional global storage, and the basis vectors of the lattice basis possessed by each
process are stored in it in the same manner as stock vectors but with a different strategy
as explained next. We call the stored lattice vectors link vectors. When each process
has a new lattice basis, its basis vectors are stored as link vectors. After each process
loads link vectors from their storage, it uses them to reduce the lattice basis to the
smallest one in the lexicographical order. In this method, the synchronization penalty
(computational cost) consists of storing and loading link vectors from storage, but this
penalty is practically small.

Note that we can adjust the parameter δstock in such a way that quite a few stock vectors
are found in one process and one main loop evaluation, and we run around thousand
processes in parallel, each of which stores stock vectors independently. However, the
number of stored stock vectors at any given time is not that large, as we do not keep
all stock vectors. This is because old stock vectors are relatively longer than orthogonal
basis vectors possessed by running processes, and it is therefore not necessary to store
these, and we throw them away. This parameter adjustment is also explained in next
subsection. The same strategy was used for the link vectors.

5.3 Parameter Choice

Our algorithm takes a basis B and process-unique information pui with parameters ℓfc,
ℓlc, δ, δ′, δ′′, δstock, ℓlink, Θ, and two sets S and S′ of NNRs used in line 5 in Algorithm 1
and line 4 in Algorithm 2 as input. B is given by a user, and pui is given by a user or a
facility, e.g., MPI libraries and a job scheduler, but choosing the remaining parameters
is not trivial. We did not find an optimal choice of parameters because, to the best of
our knowledge, basic theories allowing this have not been developed. In this section, we
explain a method of parameter choice for our algorithm. Note that the concrete chosen
values of the parameters when we solved a 150-dimensional problem instance appear in
the next section.

More precisely, we observed intermediate values in the main loop of our algorithm
(lines 2-14 in Algorithm 1) with input a basis (e.g., 150-dimensional problem instance in
the SVP Challenge). The intermediate values which we observed are as follows: (1) The
number of found stock vectors. (2) The sum of squared lengths of the orthogonal basis
vectors. (3) The calculation times of the two lattice vector generations in the main loop
called at lines 4 and 5 in Algorithm 1.

We want that (1) is quite small because we are only interested in relatively short
lattice vectors, and adjusting this can be immediately done by decreasing δstock.

We adjust parameters ℓfc, ℓlc, ℓlink, andΘ to appropriate values such that the processes
running in parallel can keep a small value of (2) when reducing the basis. As mentioned
in Section 5.1, it is quite hard to determine the value of Θ, so that we choose and adjust
the parameters by observations regarding the performance and the intermediate values
of the main loop of our algorithm.

Regarding (3), we adjust ℓlc, δ, δ′, δ′′, the set S of NNRs at line 5 in Algorithm 1,
and the set S′ of NNRs at line 4 in Algorithm 2. Our algorithm has two subroutines
to generate lattice vectors by using S and S′ (in line 5 in Algorithm 1 and line 4 in
Algorithm 2), and they have different purposes. Since these lattice vector generations
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Table 1. Specifications of cluster system Oakleaf-FX to solve the 134-dimension SVP Challenge;
note that the units of “CPU frequency” and “Total RAM” are GHz and GB, respectively

CPU CPU frequency # of nodes Total # of cores Total RAM

SPARC64 IXfx 1.848 6 96 192

are the most costly parts of our algorithm, it is important to optimize the choices of S
and S′; however, these sets differ only in their size. Note that NNRs in S and S′ are
chosen by ascending order of expectation of squared lengths (shown in Theorem 2) of
generated lattice vectors with several bases.

The purpose of the lattice vector generation with S (at line 5 in Algorithm 1) is
finding relatively short lattice vectors, so the size of S should be large. The purpose of
the other lattice vector generation with S′ (at line 4 in Algorithm 2) is decreasing the
sum of squared length of orthogonal basis vectors and generating many lattice bases
variants as mentioned in Section 5.2 by repeatedly applying lattice reduction (e.g., the
LLL algorithm), so it is not necessary to choose the size of S′ as large.

Actually, we adjust the parameters ℓlc, δ, δ′, δ′′, and sizes of sets S and S′ in such a
way that the calculation times of two lattice vector generations with S and S′ are around
several minutes. More concretely, we chose the parameters such that the calculation
times are 5 minutes and 10 minutes, respectively, and the lattice vector generation with
S′ is repeatedly evaluated around 500 times per one Algorithm 2 evaluation on average
when we found a solution of a 150-dimensional problem instance of the SVP Challenge.

6 Application to SVP Challenge

The shortest vector problem (SVP) is an important problem because of its relation to the
security strength of lattice-based cryptosystems, and studying algorithms for solving it
is an important research topic. The SVP Challenge was started in 2010 [45] as a way
of advancing this research. The challenge provides a problem instance generator and
accepts submissions of discovered short lattice vectors. As mentioned in Section 2.3, a
submitted lattice vector of a lattice L is inducted into the hall-of-fame if its length is
less than 1.05 ·GH(L) and less than the lengths of other registered lattice vectors if they
exist for the same dimension.

6.1 Equipment

We applied our algorithm to the problems in the SVP Challenge. In this section, we
explain our equipment and results.

First, let us describe our equipment. We used four clusters, called Oakleaf-FX
(FX10), Chimera, ASGC, and Reedbush-U. The hardware specifications of these clus-
ters are summarized in Tables 1, 2, 3, and 4. The FX10 cluster included a customized
compiler, MPI library, and job scheduler. The Chimera, ASGC, and Reedbush-U clusters
included compilers, MPI libraries, and job schedulers. In particular, we used GCC ver-
sion 4.8.4, OpenMPI version 1.8.1, and Univa Grid Engine version 8.1.7 in the Chimera,
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Table 2. Specifications of cluster system Chimera to solve SVP Challenge instances of 138, 140,
142, 144, 146, 148, and 150 dimensions; note that the units of “CPU frequency” and “Total RAM”
are GHz and GB, respectively

CPU CPU frequency # of nodes Total # of cores Total RAM

Xeon E5540 2.53 80 640 6240
Xeon X5650 2.66 11 132 765

Xeon E5-2670 2.6 4 64 762
Xeon E5-2695 v3 2.3 2 56 256

Xeon E7-4870 2.4 1 80 4096
Grand Total 98 972 12 119

Table 3. Specifications of cluster system ASGC to solve 148 and 150-dimensions instances of
SVP Challenge; note that the units of “CPU frequency” and “Total RAM” are GHz and GB,
respectively

CPU CPU frequency # of nodes Total # of cores Total RAM

Xeon E5-2680 v2 2.8 5 100 640

Intel C++ Compiler version 14.0.2, Intel MPI Library version 4.1, and TORQUE ver-
sion 4.2.8 in the ASGC, and Intel C++ Compiler version 16.0.3, Intel MPI Library ver-
sion 5.1, and PBS Professional 13.1 in the Reedbush-U. Note that Hyper-Threading was
enabled and Turbo Boost was disabled in all nodes of Chimera, while Hyper-Threading
was disabled and Turbo Boost was disabled in all nodes of ASGC and Reedbush-U.
Note also that these clusters were shared systems, so all the processes were controlled
by the job schedulers. Now, let us briefly explain the pre-processing. Before executing
processes for our algorithm, the lattice basis of the input was pre-processed. We used
the BKZ algorithm implemented by fplll [50] to reduce components of the lattice basis
to small integers.

For each process when we solve the problem instances, the process-unique informa-
tion pui was given as the rank by the MPI libraries and job schedulers, namely, the pui
value ranged from 0 to m − 1, where m is the number of requested processes sent to the
MPI libraries and job schedulers.

6.2 Experimental Results

We used our algorithm to solve SVP Challenge problem instances of 134, 138, 140,
142, 144, 146, 148, and 150 dimensions with seed 0. We used FX10 to solve the 134-
dimensional instance, Chimera to solve the instances with 138–146 dimensions, and the
two clusters Chimera and ASGC to solve the 148-dimensional instance.

To solve the 150-dimensional instance, we used the following numbers of cores and
CPUs of the four clusters: (1) 28 cores of Xeon E5-2695 v3 and (2) 80 cores of Xeon
E7-4870 in the parts of Chimera, (3) 100 cores of Xeon E5-2680 v2 in ASGC, (4) 192
cores of SPARC64 IXfx per job in FX10, and (5) 864 cores of Xeon E5-2695 v4 per job
in Reedbush-U, for (1) 49 days, (2) 81 days, (3) 39 days, (4) 37 days, and (5) 188 days,
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Table 4. Specifications of cluster system Reedbush-U to solve the 150-dimensional instance of
the SVP Challenge; note that the units of “CPU frequency” and “Total RAM” are GHz and GB,
respectively

CPU CPU frequency # of nodes Total # of cores Total RAM

Xeon E5-2695 v4 2.1 24 864 5856

Table 5. Our experimental results for the SVP Challenge instances of dimensions 134, 138, 140,
142, 144, 146, 148, and 150, where “GH(L)” is the Gaussian heuristic of a given lattice L, “v”
in the column header indicates a solution of the corresponding row, the “Max. # of requested
processes” column shows the maximum number of requested processes sent to the job schedulers,
and the “Days to solve” column lists the wall-clock times to obtain each solution

Dimension ⌊GH(L)⌉ ⌊∥v ∥⌉ ∥v ∥
GH(L)

Max. # of
requested
processes

Days to
solve

Root
Hermite
factor

150 3090 3220 1.041 92 864 394 1.007 68
148 3070 3178 1.035 12 1000 256 1.007 69
146 3056 3195 1.045 34 1000 64 1.007 83
144 3025 3154 1.042 84 700 50 1.007 87
142 3003 3141 1.046 09 700 50 1.007 96
140 2991 3025 1.011 39 500 50 1.007 78
138 2972 3077 1.035 16 500 140 1.008 01
134 2927 2976 1.016 95 92 72 1.008 01

respectively. We did not use these computing nodes simultaneously. Therefore, the total
wall-clock time was about 394 days. Note that when we used the computing node (1),
we requested 24 processes for job schedulers and the other cases (2), (3), (4), and (5),
and the number of requested processes was the same as the number of cores.

When we found a solution of the 150-dimensional instance, tuned parameters of our
algorithm were as follows: ℓfc = 50, ℓlc = 50, δ = 0.9999, δ′ = 0.985, δ′′ = 0.0002,
δstock = 1.08, ℓlink = 50, and Θ = 0.93. The method we used to choose these parameters
is explained in Section 5.3.

We clarify the numbers of lattice vectors generated by the two subroutines in line 5
in Algorithm 1 with a set S of NNRs and in line 4 in Algorithm 2 with a set S′ of NNRs,
and the costs per generation when we solved the 150-dimensional problem and problems
with a smaller dimensions less than 150. The sizes of S and S′ are around 30 millions
NNRs and 50 thousands NNRs, respectively. Note that lines 3-19 in Algorithm 2 are
repeated until the termination condition in line 18 is satisfied, and the number of loops
is 500 on average. The calculation times of the lattice vector generations with S and S′

are around 5 minutes and 10 minutes, respectively. That is, the calculation time of these
generations per lattice vector is around 12-20 micro-seconds.

As mentioned in Section 5.2, it is not necessary to store all the stock vectors and link
vectors, because old stock vectors and link vectors are relatively longer, so that we threw
away old stock vectors and link vectors, and we cannot show the total size. The size of
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Fig. 1. Comparison of solved dimension and single thread calculation time in seconds of our
results and results in the SVP Challenge, where plotted boxes are our 8 results, the straight solid
line is fitted to our results, plotted circles are other 17 results of problems with dimensions greater
than or equal to 100 and specified overall calculation times, and the dotted line is fitted to these
results

the remaining stock vectors and link vectors is around 60 gigabytes. We estimate that
the total size of all the found stock vectors and link vectors is several hundred gigabytes
for solving the 150-dimensional problem.

Table 5 lists the details of our solutions. The solution of the 150-dimensional problem
is the current world record.

We show a comparison of solved dimension and single thread calculation time in
seconds of our results and the results from the SVP Challenge in Figure 1. In this figure,
plotted boxes are our 8 results, and plotted circles are other 17 results for problems with
dimensions greater than or equal to 100 and specified overall calculation times. It is clear
that our algorithm outperforms others. This is experimental evidence that our proposal
is effective at reducing higher-dimensional lattice bases and solving higher-dimensional
SVPs.

Additionally, we show fittings of our and the SVP Challenge results in Figure 1
obtained by fit function of GNU Plot version 5.2. As a result, we obtained the straight
solid line for our results and the dotted line for the other SVP Challenges results.
Note that these lines are expressed as f (x) = cax+b + d with four variables a, b, c, d.
Obtained values and asymptotic standard errors of a, b, c, d, and values of the root
mean square (RMS) of residuals by using fit are as follows: a = 1.002 87 ± 933.3,
b = 0.999 973 ± 7822, c = 1.168 33 ± 148.9, and d = 1.000 93 ± 2.948 × 1010, and the
value of RMS is 4.852 06 × 109 for the straight solid line, and a = 0.957 735 ± 843.9,
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b = 0.988 369 ± 5095, c = 1.146 25 ± 123.6, and d = 1.0004 ± 5.792 × 107, and the
value of RMS is 1.666 35 × 107 for the dotted line.

7 Conclusion

We proposed an algorithm suitable for parallel computing environments to reduce the
lattice basis and presented its results in the SVP Challenge.

Regarding the results in the SVP Challenge, we discovered solutions to problem
instances of dimensions 134, 138, 140, 142, 144, 146, 148, and 150, a world record
for the highest dimension. This is clear experimental evidence that our proposal is
effective at reducing the lattice basis and solving the SVP by using a parallel computing
environment.
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