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Abstract. In this work we study speed-ups and time–space trade-offs
for solving the shortest vector problem (SVP) on Euclidean lattices based
on tuple lattice sieving.
Our results extend and improve upon previous work of Bai–Laarhoven–
Stehlé [ANTS’16] and Herold–Kirshanova [PKC’17], with better com-
plexities for arbitrary tuple sizes and offering tunable time–memory trade-
offs. The trade-offs we obtain stem from the generalization and combi-
nation of two algorithmic techniques: the configuration framework intro-
duced by Herold–Kirshanova, and the spherical locality-sensitive filters
of Becker–Ducas–Gama–Laarhoven [SODA’16].
When the available memory scales quasi-linearly with the list size, we
show that with triple sieving we can solve SVP in dimension n in time
20.3588n+o(n) and space 20.1887n+o(n), improving upon the previous best
triple sieve time complexity of 20.3717n+o(n) of Herold–Kirshanova. Us-
ing more memory we obtain better asymptotic time complexities. For
instance, we obtain a triple sieve requiring only 20.3300n+o(n) time and
20.2075n+o(n) memory to solve SVP in dimension n. This improves upon
the best double Gauss sieve of Becker–Ducas–Gama–Laarhoven, which
runs in 20.3685n+o(n) time when using the same amount of space.

Keywords: lattice-based cryptography, shortest vector problem (SVP),
nearest neighbor algorithms, lattice sieving

1 Introduction

Lattice-based cryptography. Over the past few decades, lattice-based cryptog-
raphy has emerged as a prime candidate for developing efficient, versatile, and
(potentially) quantum-resistant cryptographic primitives; e.g. [Reg05,ADPS16].
The security of these primitives relies on the hardness of certain lattice prob-
lems, such as finding short lattice vectors. The fastest known method for solving
many hard lattice problems is to use (a variant of) the BKZ lattice basis reduc-
tion algorithm [Sch87,SE94], which internally uses an algorithm for solving the
so-called Shortest Vector Problem (SVP) in lower-dimensional lattices: given a
description of a lattice, the Shortest Vector Problem asks to find a shortest non-
zero vector in this lattice. These SVP calls determine the complexity of BKZ,
and hence an accurate assessment of the SVP hardness directly leads to sharper
security estimates and tighter parameter choices for lattice-based primitives.



Algorithms for solving SVP. Currently, state-of-the-art algorithms for solving
exact SVP can be classified into two groups, based on their asymptotic time and
memory complexities in terms of the lattice dimension n: (1) algorithms requir-
ing super-exponential time (2ω(n)) and poly(n) space; and (2) algorithms requir-
ing both exponential time and space (2Θ(n)). The former includes a family of
so-called lattice enumeration algorithms [Kan83,FP85,GNR10], which currently
perform best in practice and are used inside BKZ [Sch87,CN11]. The latter class
of algorithms includes lattice sieving [AKS01,NV08,MV10], Voronoi-based ap-
proaches [AEVZ02,MV10,Laa16] and other techniques [BGJ14,ADRS15]. Due
to the superior asymptotic scaling, these latter techniques will inevitably out-
perform enumeration in sufficiently high dimensions, but the large memory re-
quirement remains a major obstacle in making these algorithms practical.

Heuristic SVP algorithms. In practice, only enumeration and sieving are cur-
rently competitive for solving SVP in high dimensions, and the fastest variants of
both algorithms are based on heuristic analyses: by making certain natural (but
unproven) assumptions about average-case behavior of these algorithms, one can
(1) improve considerably upon worst-case complexity bounds, thus narrowing the
gap between experimental and theoretical results; and (2) apply new techniques,
supported by heuristics, to make these algorithms even more viable in practice.
For enumeration, heuristic analyses of pruning [GNR10,AN17] have contributed
immensely to finding the best pruning techniques, and making these algorithms
as practical as they are today [LRBN]. Similarly, heuristic assumptions for siev-
ing [NV08,MV10,Laa15a,BDGL16] have made these algorithms much more prac-
tical than their best provable counterparts [PS09,ADRS15].

Heuristic sieving methods. In 2008, Nguyen–Vidick [NV08] were the first to
show that lattice sieving may be practical, proving that under certain heuristic
assumptions, SVP can be solved in time 20.415n+o(n) and space 20.208n+o(n).
Micciancio–Voulgaris [MV10] later described the so-called GaussSieve, which is
expected to have similar asymptotic complexities as the Nguyen–Vidick sieve,
but is several orders of magnitude faster in practice. Afterwards, a long line of
work focused on locality-sensitive techniques succeeded in further decreasing the
runtime exponent [WLTB11,ZPH13,BGJ14,Laa15a,LdW15,BL16].

Asymptotically the fastest known method for solving SVP is due to Becker–
Ducas–Gama–Laarhoven [BDGL16]. Using locality sensitive filters, they give
a time–memory trade-off for SVP in time and space 20.292n+o(n), or in time
20.368n+o(n) when using only 20.208n+o(n) memory. A variant can even solve SVP
in time 20.292n+o(n) retaining a memory complexity of 20.208n+o(n), but that
variant is not compatible with the Gauss Sieve (as opposed to the Nguyen–
Vidick sieve) and behaves worse in practice.

Tuple lattice sieving. In 2016, Bai–Laarhoven–Stehlé [BLS16] showed that one
can also obtain trade-offs for heuristic sieving methods in the other direction:
reducing the memory requirement at the cost of more time. For instance, with
a triple sieve they showed that one can solve SVP in time 20.481n+o(n), using
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20.189n+o(n) space. Various open questions from [BLS16] were later answered by
Herold–Kirshanova [HK17], who proved some of the conjectures from [BLS16],
and greatly reduced the time complexity of the triple sieve to 20.372n+o(n). An
open question remained whether these complexities were optimal, and whether
it would be possible to obtain efficient time–memory trade-offs to interpolate
between classical ‘double’ sieving methods and tuple lattice sieving.

1.1 Contributions

Results. In this work, we study both how to further speed up tuple lattice
sieving, and how to obtain the best time–memory trade-offs for solving SVP
with sieving3. Our contributions include the following main results:

1. For triple sieving, we obtain a time complexity of 20.3588n+o(n) with a mem-
ory complexity of 20.1887n+o(n). This improves upon the previous best asymp-
totic time complexity of 20.3717n+o(n) of Herold–Kirshanova [HK17], and
both the time and memory are better than the Gauss sieve algorithm of
Becker–Ducas–Gama–Laarhoven [BDGL16], which runs in time 20.3685n+o(n)

and memory 20.2075n+o(n).
2. For triple sieving with arbitrary time–memory trade-offs, we obtain the

trade-off curve depicted in Fig. 1, showing that our triple sieve theoreti-
cally outperforms the best double Gauss sieve up to a memory complexity
of 20.2437n+o(n) (the intersection point of yellow and blue curves). For in-
stance, with equal memory 20.2075n+o(n) as a double sieve, we can solve SVP
in time 20.3300n+o(n), compared to the previous best 20.3685n+o(n) [BDGL16].

3. For larger tuple sizes (i.e., k ≥ 3), in the regime when the space complexity is
restricted to the input-sizes as considered by Bai–Laarhoven–Stehlé [BLS16]
and Herold–Kirshanova [HK17], we improve upon all previous results. These
new asymptotics are given in Table 3 on page 25.

4. Our experiments on lattices of dimensions 60 to 80 demonstrate the practica-
bility of these algorithms, and highlight possible future directions for further
optimizations of tuple lattice sieving.

Techniques. To obtain these improved time–memory trade-offs for tuple lattice
sieving, this paper presents the following technical contributions:

1. We generalize the configuration search approach, first initiated by Herold–
Kirshanova [HK17], to obtain optimized time–space trade-offs for tuple lat-
tice sieving (Sect. 3).

2. We generalize the Locality-Sensitive Filters (LSF) framework of Becker–
Ducas–Gama–Laarhoven [BDGL16], and apply the results to tuple lattice

3 All our results are also applicable when we solve the closest vector problem (CVP)
via sieving as was done in [Laa16]. Asymptotic complexities for CVP are the same
as for SVP.
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Fig. 1: Trade-offs for k = 2, 3, 4. Memory-exponents are on the X-axis, time-
exponents are on the Y -axis. That means that for x = m, y = t, an algorithm will
be of time-complexity 2t·n+o(n) and of memory-complexity 2m·n+o(n). Left-most
points represent time and memory complexities for k-tuple sieving optimized for
memory, right-most points represent complexities optimized for time.

Fig. 2: Our runtime improvements for k-tuple lattice sieving over previous works
for 3 ≤ k ≤ 8 when we optimize for memory. For the k = 2 case, note that the
results from [HK17] that use ConfExt with T = 20.292n+o(n) cannot be applied
to the Gauss-Sieve, but only to the NV-Sieve, which performs much worse in
practice. Our results work for the Gauss-Sieve. See Sect. 4.2 for details.
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sieving (Sect. 4). As an independent side result, we obtain explicit asymp-
totics for LSF for the approximate near neighbor problem on the sphere.4

3. We combine both techniques to obtain further improved asymptotic results
compared to only using either technique (Sect. 5).

The remainder of the introduction is devoted to a high-level explanation of
these techniques, and how they relate to previous work. We first introduce the
approximate k-list problem. It serves as a useful abstraction of the tuple lattice
sieving problem for which our results are provable – the results only become
heuristic when applying them to tuple lattice sieving.

1.2 Approximate k-list problem

The approximate k-list problem is the central computational problem studied in
this paper. We denote by Sn−1 ⊂ Rn the (n − 1)-dimensional unit sphere. We

use soft-Õ notation, e.g. Õ(2n) means that we suppress sub-exponential factors.

Definition 1 (Approximate k-list problem). Given k lists of i.i.d. uni-
formly random vectors L1, . . . , Lk ⊂ Sn−1 and a target norm t ∈ R, we are
asked to find k-tuples (x1, . . . ,xk) ∈ L1×· · ·×Lk such that ‖x1 + · · ·+xn‖ ≤ t.

We do not necessarily require to output all the solutions.
This problem captures the main subroutine of lattice sieving algorithms and

allows us to describe precise, provable statements without any heuristic assump-
tions: all our results for the approximate k-list problem in the remainder of this
paper are unconditional. In these application to lattice sieving, the lists will be
identical (i.e., |L1| = . . . = |Lk|) and the number of such k-tuples required to be

output will be Õ(|L1|).
To translate our results about the approximate k-list problem to lattice siev-

ing, one needs to make additional heuristic assumptions, such as that the lists of
lattice points appearing in sieving algorithms can be thought of as i.i.d. uniform
vectors on a sphere (or a thin spherical shell). This essentially means that we
do not ‘see’ the discrete structure of the lattice when we zoom out far enough,
i.e. when the list contains very long lattice vectors. When the vectors in the
list become short, we inevitably start noticing this discrete structure, and this
heuristic assumption becomes invalid. Although experimental evidence suggests
that these heuristic assumptions quite accurately capture the behavior of lattice
sieving algorithms on random lattices, the results in the context of lattice sieving
can only be proven under these additional (unproven) assumptions.

Under these heuristic assumptions, any algorithm for the approximate k-list
problem with t < 1 and |L1| = . . . = |Lk| = |Lout| will give an algorithm for
SVP with the same complexity (up to polynomial factors). We dedicate Sect. 6
to such a SVP algorithm.

4 The main difference with the works [ALRW17,Chr17], published after a preliminary
version of some of these results [Laa15b], is that those papers focused on the case of
list sizes scaling subexponentially in the dimension. Due to the application to lattice
sieving, here we exclusively focus on exponential list sizes.
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1.3 Generalized configuration search

By a concentration result on the distribution of scalar products of x1, . . . ,xk ∈
Sn−1 previously shown in [HK17], the approximate k-list problem (Def. 1) can
be reduced to the following configuration problem:

Definition 2 (Configuration problem). Given k lists of i.i.d. uniform vec-
tors L1, . . . , Lk ⊂ Sn−1 and a target configuration given by Ci,j’s, find a 1−o(1)-
fraction of k-tuples (x1, . . . ,xk) ∈ L1 × · · · ×Lk s.t. all pairs (xi,xj) in a tuple
satisfy given inner-product constraints: 〈xi , xj〉 ≈ Ci,j.

We consider this problem only for k and Ci,j ’s fixed. The approximation sign ≈
in Def. 2 above is shorthand for |〈xi , xj〉 − Ci,j | ≤ ε for some small ε > 0, as
we deal with real values. This approximation will affect our asymptotical results
as Õ(2cn+ν(ε)n) for some ν(ε) that tends to 0 as we let ε → 0. Eventually, ν(ε)

will be hidden in the Õ-notation and we usually omit it.
We arrange these constraints into a k × k real matrix C – the Gram matrix

of the xi’s – which we call a configuration. The connection to the k-list problem
becomes immediate once we notice that a k-tuple (x1, . . . ,xk) with 〈xi , xj〉 ≈
Ci,j ,∀i, j, produces a sum vector whose norm satisfies ‖

∑
i xi‖2 =

∑
i,j Ci,j .

Consequently, solving the configuration problem for an appropriate configu-
ration C with

∑
i,j Ci,j ≤ t2 will output a list of solutions to the Approximate

k-list problem. The result [HK17, Theorem 1] shows that this will in fact return
almost all solutions for a certain choice of Ci,j , i.e., k-tuples that form short
sums are concentrated around one specific set of inner product constraints Ci,j .

The main advantage of the configuration problem is that it puts pair-wise
constraints on solutions, which significantly speeds up the search. Moreover, C
determines the expected number of solutions via a simple but very useful fact:
the probability that a uniform i.i.d. tuple (x1, . . . ,xk) satisfies C is for fixed C, k
given by (up to poly(n) factors) det(C)n/2 [HK17, Theorem 2]. Hence, if our goal

is to output |L| tuples, given |L|k possible k-tuples from the input, we must have

|L|k · det(C)n/2 = |L|. Now there are two ways to manipulate this equation. We
can either fix the configuration C and obtain a bound on |L| (this is precisely
what [HK17] does), or vary C and deduce the required list-sizes for a given C.
The latter option has the advantage that certain choices of C may result in a
faster search for tuples. In this work, we investigate the second approach and
present the trade-offs obtained by varying C.

Let us first detail on trade-offs obtained by varying the target configura-
tion C. In [HK17], lattice sieving was optimized for memory with the optimum
attained at to the so-called balanced configuration C (a configuration is called
balanced if Ci,j = −1/k,∀i 6= j). Such a configuration maximizes det(C), which
in turn maximizes the number of k tuples that satisfy C. Hence, the balanced
configuration minimizes the size of input lists (remember, in lattice-sieving we
require the number of returned tuples be asymptotically equal to the input list
size) and, hence, gives one of two extreme points of the trade-off.

Now assume we change the target configuration C. As the result, the number
of returned tuples will be exponentially smaller than in the balanced case (as
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the value for det(C) decreases, the probability that a random k-tuple satisfies C
decays by a factor exponential in n). To maintain the requirement on the size of
the output, we need to increase the input lists. However, the search for tuples
that satisfy C becomes faster for some choices of C. A choice for C with the
fastest search gives another extreme point of the trade-off. In Sect. 3, we analyze
the algorithm for the configuration problem and explain why certain C’s result
in faster algorithms. For small k, we give explicit time–memory trade-off curves.

1.4 Generalized locality-sensitive filters

Our second contribution improves the running time for the configuration search
using a near neighbor method called spherical locality-sensitive filtering (LSF),
first introduced in the context of lattice sieving in [BDGL16]. This method was
later shown to be optimal for other applications in [ALRW17,Chr17].

LSF is an algorithm which receives on input a (typically large) set of points,
a so-called query point usually not from the set, and a target distance d. It
returns all points from the set that are within target distance d from the query
point (the metric can be any, in our case, it will be angular). The aim of LSF is
to answer many such queries fast by cleverly preprocessing this set so that the
time of preprocessing is amortized among many query points. Depending on the
choice of preprocessing, LSF may actually require more memory than the size
of the input set. This expensive preprocessing results in faster query complexity,
and the whole algorithm can be optimized (either for time or for memory) when
we know how many query points we have.

In the application to tuple lattice sieving, we make use of the locality-sensitive
filtering technique of [BDGL16] to speed up the configuration search routine.
Time–memory trade-offs offered by LSF naturally translate to time–memory
trade-offs for configuration search and, hence, for sieving.

There are several ways we can make use of LSF. First, we can apply LSF
to the balanced configuration search and remain in the minimal memory regime
(i.e., the memory bound for the LSF data structure is upper-bounded by the
input list sizes). Interestingly, even in such a restricted regime we can speed up
the configuration search and, in turn, asymptotically improve lattice sieving. Sec-
ondly, we allow LSF to use more memory while keeping the target configuration
balanced. This has the potential to speed up the query cost leading to a faster
configuration search. We can indeed improve k-tuple sieving in this regime for
k = 2, 3, 4. In Sect. 4 we give exact figures in both aforementioned LSF scenarios.

1.5 Combining both techniques

Finally, we can combine LSF with changing the target configuration C. We search
for an optimal C taking into account that we exploit LSF as a subroutine in the
search for tuples satisfying C. Essentially, if we write out all the requirements on
input/output list sizes and running time formulas, the search for such optimal C
becomes a high-dimensional optimization problem (the number of variables to
optimize for is of order k2). Here, ‘optimal’ C may either mean the configuration
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that minimizes time, or memory, or time given a bound on memory. When we
optimize C for time, we obtain exponents given in Table 1. Interestingly, for
k = 2, 3, k-tuple sieve achieves the ‘time=memory’ regime.

Tuple size (k) 2 3 4 5 6

Time 0.2925 0.3041 0.3395 0.3459 0.4064

Space 0.2925 0.3041 0.2181 0.2553 0.2435

Table 1: Asymptotic complexities when using LSF and arbitrary configura-
tions, when optimizing for time. I.e., we put no restriction on memory, but
using more memory than stated in the table does not lead to a faster algorithm.

To obtain trade-off curves for k = 2, 3, 4, we set-up an optimization problem
for several memory bounds and find the corresponding solutions for time. The
curves presented in Fig. 1 are the best curve-fit for the obtained (memory, time)
points. The right-most diamond-shaped points on the curves represent k-tuple
algorithms when optimized for time (Table 1). The left-most are the points when
we use the smallest possible amount of memory for this tuple size (see Table 3
in Sect. 4 for exact numbers). The curves do not extend further to the left since
the k-tuple search will not succeed in finding tuples if the starting lists will be
below a certain bound.

Already for k = 4, the optimization problem contains 27 variables and non-
linear inequalities, so we did not attempt to give full trade-off curves for higher
k’s. We explain the constraints for such an optimization problem later in Sect. 5
and provide access to the Maple program we used. Extreme points for larger k’s
are given in Table 1 and Table 3 in Sect. 4.

1.6 Open problems

Although this work combines and optimizes two of the most prominent tech-
niques for tuple lattice sieving, some open questions for future work remain,
which we state below:

– As explained in [Laa16], sieving (with LSF) can also be used to solve CVPP
(the closest vector problem with preprocessing) with time–memory trade-
offs depending on the size of the preprocessed list and the LSF parameters.
Tuple sieving would provide additional trade-off parameters in terms of the
tuple size and the configuration to search for, potentially leading to better
asymptotic time–memory trade-offs for CVPP.

– Similar to [LMvdP15], it should be possible to obtain asymptotic quantum
speed-ups for sieving using Grover’s algorithm. Working out these quantum
trade-offs (and potentially finding other non-trivial applications of quantum
algorithms to tuple sieving) is left for future work.
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– An important open problem remains to study what happens when k is super-
constant in n. Unfortunately, our analysis cruicially relies on k being fixed,
as various subexponential terms depend on k.

2 Preliminaries

We denote vectors by bold letters, e.g., x. In this paper we consider the `2-norm
and denote the length of a vector x by ‖x‖. We denote by Sn−1 ⊂ Rn the (n−1)-
dimensional unit sphere. For any square matrix C ∈ Rk×k and I ⊂ {1, . . . , k},
we denote by C[I] the |I| × |I| submatrix of C obtained by restricting to the
rows and columns indexed by I.

Lattices. Given a basis B = {b1, . . . , bd} ⊂ Rn of linearly independent vectors,

the lattice generated by B, denoted L(B), is given by L(B) := {
∑d
i=1 λibi : λi ∈

Z}. For simplicity of exposition, we assume d = n, i.e. the lattices considered are
full rank. One of the central computational problems in the theory of lattices
is the shortest vector problem (SVP): given a basis B, find a shortest non-zero
vector in L(B). The length of this vector, known as the first successive minimum,
is denoted λ1(L(B)).

The fastest (heuristic) algorithms for solving SVP in high dimensions are
based on lattice sieving, originally described in [AKS01] and later improved in
e.g. [NV08,PS09,MV10,Laa15a,LdW15,BL16,BDGL16]. These algorithms start
by sampling an exponentially large list L of 2`n (long) lattice vectors. The points
from L are then iteratively combined to form shorter and shorter lattice points
as xnew = x1 ± x2 ± · · · ± xk for some k.5 The complexity is determined by the
cost to find k-tuples whose combination produces shorter vectors.

In order to improve and analyze the cost of sieving algorithms, we consider
the following problem, adapted from [HK17], generalizing Def. 1.

Definition 3 (Approximate k-list problem[HK17]). Given k lists L1, . . . ,
Lk of respective exponential sizes 2`1n, . . . , 2`kn whose elements are i.i.d. uni-
formly random vectors from Sn−1, the approximate k-list problem consists of find-
ing 2`outn k-tuples (x1, . . . ,xk) ∈ L1 × · · · ×Lk that satisfy ‖x1 + · · ·+ xk‖ ≤ t,
using at most M = Õ(2mn) memory.

We are interested in the asymptotic complexity for n → ∞ with all other pa-
rameters fixed. Note that the number of solutions to the problem is concen-
trated around its expected number and since we only want to solve the problem
with high probability, we will work with expected list sizes throughout. See Ap-
pendix A in the full version [HKL] for a justification. We only consider cases

where m ≥ `out and where the expected number of solutions is at least Ω̃(2`outn).
Part of our improvements over [HK17] comes from the fact that we consider the
case where the total number of solutions to the approximate k-list problem is

5 For the approximate k-list problem, we stick to all + signs. This limitation is for
analysis only, does not affect asymptotics and is easy to solve in practice.
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exponentially larger than 2`outn. By only requiring to find an exponentially small
fraction of solutions, we can focus on solutions that are easier to find.

In the applications to sieving, we care about the case where `1 = . . . = `k =
`out and t = 1. Allowing different `i is mostly done for notational consistency with
Def. 5 below, where different `i’s naturally appear as subproblem in a recursive
analysis of our algorithm.

2.1 Configurations and concentration results

One of the main technical tools introduced by [HK17] is so-called configurations.
We repeat their definitions and results here, adapted to our case.

Definition 4 (Configuration [HK17, Definition 2]). The configuration C =
Conf(x1, . . . ,xk) of k points x1, . . . ,xk from the n-sphere is defined to be the
Gram matrix of the xi, i.e. Ci,j := 〈xi , xj〉.

The connection between the approximate k-list problem and configurations is as
follows: the configuration of a k-tuple x1, . . . ,xk determines the length ‖

∑
i xi‖:∥∥∑

i

xi
∥∥2

=
∑
i,j

Ci,j = 1tC1 , (1)

where 1 is a column vector of 1’s. So a k-tuple is a solution to the approximate
k-list problem if and only if their configuration satisfies 1tC1 ≤ t2. Let

C = {C ∈ Rk×k | C symmetric positive semi-definite, Ci,i = 1}
Cgood = {C ∈ C | 1tC1 ≤ t2}

be the set of all possible configuration resp. of the configurations of solutions.
We call the latter good configurations.

Following [HK17], rather than only looking for k-tuples that satisfy ‖
∑
i xi‖ ≤

t, we look for k-tuples that additionally satisfy a constraint on their configuration
as in the following problem (generalizing Def. 2)

Definition 5 (Configuration problem[HK17]). Let k ∈ N, let m > 0, let
ε > 0, and suppose we are given a target configuration C ∈ C . Given k lists
L1, . . . , Lk of respective exponential sizes 2`1n, . . . , 2`kn whose elements are i.i.d.
uniform from Sn−1, the k-list configuration problem asks to find a 1−o(1) fraction

of all solutions using at most M = Õ(2mn) memory, where a solution is a k-tuple
x1, . . . ,xk with xi ∈ Li such that |〈xi , xj〉 − Ci,j | ≤ ε for all i, j.

Clearly, solving the configuration problem for any good configuration C yields
solutions to the approximate k-list problem. If the number of solutions to the
configuration problem is large enough, this is then sufficient to solve the approx-
imate k-list problem. The number of expected solutions for a given configuration
C can be easily determined from the distribution of Conf(x1, . . . ,xk) for i.i.d.
uniform xi ∈ Sn−1. For this we have
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Theorem 1 (Distribution of configurations[HK17]). Let x1, . . . ,xk be in-
dependent uniformly distributed from Sn−1 with n > k. Then their configuration
C = Conf(x1, . . . ,xk) follows a distribution with density function

µ = Wn,k · det(C)
1
2 (n−k)dC1,2 . . . dCn−1,n , (2)

where Wn,k = Ok(n
1
4 (k2−k)) is an (explicitly known) normalization constant that

only depends on n and k.

This implies that we need to solve the configuration problem for any good con-
figuration such that

∏
i |Li| · (detC)n/2 = Ω̃(2`outn).

In [HK17], the authors ask to find essentially all solutions to the approximate
k-list problem. For this, they solve the configuration problem for a particular
target configuration C, such that the solutions to the configuration problem for
C comprise a 1−o(1)-fraction of the solutions to the approximate k-list problem.
C has the property that all non-diagonal entries are equal; such configurations
are called balanced. In the case t = 1, we have Ci,j = − 1

k for i 6= j.
By contrast, we are fine with only finding enough solutions to the approxi-

mate k-list problem. This relaxation allows us to consider other, non-balanced,
configurations.

2.2 Transformation

In our application, we will have to deal with lists L whose elements are not
uniform from Sn−1. Instead, the elements x ∈ L have prescribed scalar products
〈vi , x〉 with some points v1, . . . ,vr.

Fig. 3: Taking a vector x1 ∈ L1 and applying filtering to L2, . . . , Lk ⊂ Sn−1

w.r.t. x1 fixes the distances between x1 and all the vectors from L2, . . . , Lk that

‘survive’ the filtering. All filtered vectors (i.e., vectors from L
(1)
2 , . . . , L

(1)
k ) can

be considered as vectors from Sn−2 – a scaled sphere of one dimension less.

The effect of these restriction is that the elements x ∈ L are from some
(shifted, scaled) sphere of reduced dimension Sn−1−r, cf. Fig. 3. We can ap-
ply a transformation (Transform in Alg. 1 below), eliminating the shift and

11



rescaling. This reduces the situation back to the uniform case, allowing us to
use recursion. Note that we have to adjust the target scalar products to account
for the shift and scalings. A formal statement with formulas how to adjust the
scalar products is given by Lemma 3 in Appendix B in the full version [HKL].

3 Generalized configuration search

Now we present our algorithm for the Configuration problem (Def. 5). We depict
the algorithm in Fig. 4. Its recursive version is given in Alg. 1.

L1 L2 L3
. . . Lk

x1

Filter1,2 Filter1,3 Filter1,k

L
(1)
2 L

(1)
3 . . . L

(1)
k

x2

Filter2,3 Filter2,k

L
(2)
3 L

(2)
k

Fig. 4: Our algorithm for the Configuration problem. Procedures Filteri,j receive
on input a vector (e.g. x1), a list of vectors (e.g. L2), and a real number Ci,j -

the target inner product. It creates another shorter list (e.g. L
(1)
2 ) that contains

all vectors from the input list whose inner product with the input vector is
within some small ε from the target inner product. Time–memory trade-offs
are achieved by taking different values Ci,j ’s for different i, j. In particular,
an asymptotically faster k-list algorithm can be obtained by more ‘aggressive’
filtering to the left-most lists on each level. In other words, for fixed i, the value
Ci,j is the largest (in absolute value) for j = i+ 1.

The algorithm receives on input k lists L1, . . . , Lk of exponential (and po-
tentially different) sizes and the target configuration C ∈ Rk×k. It outputs a list
Lout of tuples x1, . . . ,xk ∈ L1 × · · · × Lk s.t. |〈xi , xj〉 − Ci,j | ≤ ε for all i, j.

The algorithm processes the lists from left to right (see Fig. 4). Namely, for

each x1 ∈ L1, it creates lists L
(1)
2 , . . . , L

(1)
k by applying a filtering procedure

12



Algorithm 1 Recursive algorithm for the configuration problem

Input: L1, . . . , Lk− lists of vectors from Sn−1, Ci,j = 〈xi ,xj〉 ∈ Rk×k− Gram matrix,
ε > 0 - fudge-factor.
Output: Lout− list of k-tuples (x1, . . . ,xk) ∈ L1 × · · · × Lk, s.t. |〈xi , xj〉 − Cij | ≤ ε
for all i, j.

1: function SolveConfigurationProblem(L1, . . . , Lk, ε, Ci,j ∈ Rk×k)
2: Lout ← ∅
3: if k = 1 then
4: Lout ← L1

5: else
6: for all x1 ∈ L1 do
7: for all j = 2 . . . k do
8: Lf

j ← Filter(x1, Lj , C1,j , ε) . Create all filtered lists

9: L′j , C
′ ← Transform(x1, L

f
j , C, i) . Remove the dependency on x1

10: L̂← SolveConfigurationProblem(L′2, . . . L
′
k, ε, C[2..k],[2..k])

11: for all x ∈ L̂ do
12: Lout ← Lout ∪ {(x1,x)} . Append x to all tuples that contain x1

13: return Lout

1: function Filter(v, L, c, ε)
2: L′ ← ∅
3: for all x ∈ L do
4: if |〈x , v〉 − c| ≤ ε then
5: L′ ← L′ ∪ {x}
6: return L′

1: function Transform(v, L, C, i) . Changes the ith row of C

2: L′ ← ∅
3: Transform all Ci,j to C′j,k for j, k > i as follows:

C′j,k =
1√

(1− C2
i−1,j)(1− C2

i−1,k)
(Cj,k − Ci−1,j · Ci−1,k)

(see Lemma 3 in Appendix B of the full version for justification).
4: for all x ∈ L do
5: x⊥ ← x− 〈x , v〉v
6: L′ ← L′ ∪

{
x⊥

‖x⊥‖

}
7: return L′, C′
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w.r.t. x1 to these k − 1 lists L2, . . . , Lk. This filtering takes as input a vector, a

list Lj , and target inner-product C1,j for all j ≥ 2. Its output L
(1)
j contains all

the vectors xj from Lj that satisfy |〈x1 , xj〉 − C1,j | ≤ ε for some small fixed

ε > 0. Note the upper index of L
(1)
j : it denotes the number of filterings applied

to the original list Lj .
Applying filtering to all k − 1 lists, we obtain k − 1 new lists that contain

vectors with a fixed angular distance to x1 (see Fig. 3). Now our task is to find

all the k−1 tuples (x2, . . . ,xk) ∈ L(1)
2 , . . . , L

(1)
k that satisfy C[2 . . . k]. Note that

this is almost an instance of the (k − 1) configuration problem, except for the
distribution of the filtered elements. To circumvent this issue we apply to all
elements of filtered lists the transformation described in Lemma 2 (Appendix B,
full version [HKL]), where our fixed x1 plays the role of v.

It is easy to see that the time needed for the transformation is equal to the
size of filtered lists and thus, asymptotically irrelevant. Finally, we can apply the
algorithm recursively to the k − 1 transformed lists.

Note that the transformation is merely a tool for analysis and the algorithm
can easily be implemented without it. We only need it for the analysis of the
LSF variant in Sect. 4.

3.1 Analysis

In this section we analyse the complexity of Alg. 1. Speed-ups obtained with
Nearest Neighbor techniques are discussed in the next section. In this ‘plain’
regime, the memory complexity is completely determined by the input list sizes.
Applying filtering can only decrease the list sizes. Recall that k is assumed to
be a fixed constant. Further, as our algorithm is exponential in n and we are
only interested in asymptotics, in our analysis we ignore polynomial factors, i.e.
computations of inner-products, summations, etc.

Our main objective is to compute the (expected) size of lists on each level
(by the term ‘level’ we mean the number of filterings applied to a certain list or,

equivalently, the depth of the recursion). We are interested in |L(j)
i | - the size of

list Li after application of j filterings. For the input lists, we set L
(0)
i := Li.

Once we know how the list-sizes depend on the chosen configuration C, it
is almost straightforward to conclude on the running time. Consider the jth

recursion-level. On this level, we have j points (x1, . . . ,xj) fixed during the

previous recursive calls and the lists L
(j−1)
j+1 , . . . , L

(j−1)
k of (possibly) different

sizes which we want to filter wrt. xj . Asymptotically, all filterings are done in

time maxj+1≤i≤k
∣∣L(j−1)
i

∣∣. This process will be recursively called as many times

as many fixed tuples (x1, . . . ,xj) we have, namely,
∏j
r=1

∣∣L(r−1)
r

∣∣ times (i.e., the
product of all left-most list-sizes). Hence, the cost to create all lists on level j
can be expressed as

Tj =

j∏
r=1

∣∣L(r−1)
r

∣∣ · max
j+1≤i≤k

{∣∣L(j−1)
i

∣∣, 1}. (3)
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In the above formula, considering the maximum between a filtered list and 1
takes care about the lists of size 0 or 1 (i.e., the exponent for the list-sizes might
be negative). Assume on a certain level all filtered lists contain only one or no
elements in expectation. Technically, to create the next level, we still need to
check if theses lists are indeed empty or not. This also means that the level
above – the one that created these extremely short lists – takes more time than
the subsequent level.

Finally, the total running time of the algorithm is determined by the level j
for which Tj is maximal (we refer to such a level as dominant):

T = max
1≤j≤k

[ j∏
r=1

∣∣L(r−1)
r

∣∣ · max
j+1≤i≤k

∣∣L(j−1)
i

∣∣]. (4)

Note that we do not need to take into account using lists of expected sizes ≤ 1.
As mentioned above, creating these lists takes more time than using them.

In the following lemma, we use the results of Thm. 1 to determine |L(j)
i | for

0 ≤ j ≤ i − 1, 1 ≤ i ≤ k. We denote by C[1 . . . j, i] the (j + 1) × (j + 1) the
submatrix of C formed by restricting its columns and rows to the set of indices
{1, . . . , j, i}.

Lemma 1. During a run of Alg. 1 that receives on input a configuration C ∈
Rk×k and lists L1, . . . , Lk, the intermediate lists L

(j)
i for 1 ≤ i ≤ k, i−1 ≤ j ≤ k

are of expected sizes

E
[∣∣L(j)

i

∣∣] = |Li| ·
(

det(C[1 . . . j, i])

det(C[1 . . . j])

)n/2
. (5)

Proof. The list L
(j)
i is created when we have the tuple (x1, . . . ,xj) fixed. The

probability for such a tuple to appear is det(C[1 . . . j])n/2. Moreover, the prob-
ability that we ever consider a tuple (x1, . . . ,xj ,xi) for any xi ∈ Li is given
by (det(C[1 . . . j, i]))n/2. The result follows when we take the latter probability
conditioned on the event that (x1, . . . ,xj) is fixed.

Using the result of Thm. 1 once again, we obtain the expected number of the
returned tuples, i.e. the size of Lout.

Corollary 1. Alg. 1 receiving on input a configuration C ∈ Rk×k and the lists
L1, . . . , Lk of respective sizes 2`1n, . . . , 2`kn, outputs |Lout| solutions to the con-
figuration problem, where

E [|Lout|] = 2(
∑k

i `i)·n · (detC)n/2. (6)

In particular, if all k input lists are of the same size |L| and the output list size
is required to be of size |L| as well (the case of sieving), we must have

|L| = (detC)−
n

2(k−1) . (7)
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Proof. The statement follows immediately from the total number of k-tuples and
the fact that the probability that a random k-tuple has the desired configuration
is (up to polynomial factors) (detC)n/2 (see Thm. 1).

We remark that our Alg. 1 outputs all k-tuples that satisfy a given configu-
ration C. This is helpful if one wants to solve the k-list problem using the output
of Alg. 1. All one needs to do is to provide the algorithm with the lists L1, . . . , Lk
and a configuration C, such that according to Eq. (6), we expect to obtain 2`out

k-tuples. Furthermore, we require 1tC1 ≤ t2, so C ∈ Cgood and every solution to
the configuration problem is a solution to the k-list problem.

Note also that the k-list problem puts a bound M on the memory used by
the algorithm. This directly translates to the bound on the input lists for the
configuration problem (recall that filtering only shrinks the lists).

The above discussion combined with Lemma 1 yields the next theorem, which
states the complexity of our algorithm for the k-list problem.

Theorem 2. Alg. 1 is expected to output |Lout| = 2`out solutions to the k-list
problem in time T provided that the input L1, . . . , Lk and C ∈ Cgood satisfy
Eq. (6) and maxi |Li| ≤M , where T is (up to polynomial factors) equal to

max
1≤j≤k

[
j∏
r=1

|Lr|
(

detC[1 . . . r]

detC[1 . . . r − 1]

)n
2
· max
j+1≤i≤k

|Li|
(

det(C[1 . . . j − 1, i])

det(C[1 . . . j − 1])

)n
2
]

(8)

Note that we miss exponentially many solutions to the k-list problem, yet
for the configuration search, we expect to obtain all the tuples that satisfy the
given target configuration C. This loss can be compensated by increased sizes
of input lists. Since the running time T (see Eq. (8)) depends on C and on the
input list-sizes in a rather intricate manner, we do no simplify the formula for
T , but rather discuss an interesting choice for input parameters in case k = 3.

3.2 Case of interest: k = 3

The case k = 3 is the most relevant one if we want to apply our 3-list algorithm
to SVP sieving algorithms (see Sect. 6 for a discussion on the k-Gauss sieve
algorithm for SVP). In [HK17], the k-sieve algorithm was proved to be the most
time-efficient when k = 3 among all the non-LSF based algorithms. In particular,
a 3-sieve was shown to be faster than non-LSF 2-sieve.

To be more concrete, the 3-list problem (the main subroutine of the 3-Gauss
sieve) can be solved using the balanced configuration search (i.e., Ci,j = −1/3
for i 6= j) in time Tbal = 20.396n requiring memory M = 20.1887n. Up to poly(n)
factors these numbers are also the complexities of the 3-Gauss sieve algorithm.
The main question we ask is whether we can reduce the time T at the expense
of the memory M?

If we take a closer look at the time complexity of the 3-Configuration search
for the balanced C, we notice that among the two levels – on the first level we

filter wrt. x1 ∈ L1, on the second wrt. x2 ∈ L(1)
2 – the second one dominates.
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In other words, if we expand Eq. (8), we obtain T = max{T1 = 20.377n, T2 =
20.396n} = T2. We denote by Ti the time needed to create all lists on the ith level
(see Eq. (3)). Hence, there is potential to improve T by putting more work on
the first level hoping to reduce the second one.

This is precisely what our optimization for T,M , and configuration C sug-
gests: (1) increase the input list sizes from 20.1887n to 20.1895n, and (2) use more
‘aggressive’ filtering on the first level to balance out the two levels. We spend

more time creating L
(1)
2 and L

(1)
3 as the input lists became larger, but the filtered

L
(1)
2 , L

(1)
3 are shorter and contain more ‘promising’ pairs. With the configura-

tion C given below, the time complexity of the 3-Configuration search becomes
T = max{T1 = T2} = 20.3789n with input and output list sizes equal to 20.1895n.
We remark that in our optimization we put the constraint that |Lout| = |L1|.

C =

 1 −0.3508 −0.3508
−0.3508 1 −0.2984
−0.3508 −0.2984 1

 .

In fact, for k = 3, . . . , 8, when we optimize for time (cf. Table 2), the same
phenomenon occurs: the time spent on each level is the same. We conjecture
that such a feature of the optimum continues for larger values of k, but we did
not attempt to prove it.

3.3 Trade–off curves

Now we demonstrate time-memory trade-offs for larger values of k. In Fig. 5 we
plot the trade-off curves obtained by changing of the target configuration C. For
each 3 ≤ k ≤ 7, there are two extreme cases on each curve: the left-most points
describe the algorithm that uses balanced configuration. Here, the memory is
as low as possible. The other endpoint gives the best possible time complexity
achievable by a change of the target configuration (the right-most points on the
plot). Adding more memory will not improve the running time. Table 2 gives
explicit values for the time-optimized points.

Tuple size (k) 2 3 4 5 6 7 8

Time 0.4150 0.3789 0.3702 0.3707 0.3716 0.3722 0.3725

Space 0.2075 0.1895 0.1851 0.1853 0.1858 0.1861 0.1862

Table 2: Asymptotic complexities for arbitrary configurations when optimiz-
ing for time. These are the right-most points for each k on the time–memory
trade-off curve from Fig. 5.
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Fig. 5: Time–memory trade-offs for k = 3, . . . , 7 and for arbitrary configura-
tions. Similar to Fig. 1, the complexities are on a logarithmic scale. The left-most
points give complexities for the configuration search in case of balanced configu-
rations. The right-most point indicates the lowest time. Increasing memory even
further will not result in improved running times.

4 Generalized locality-sensitive filters

In our Alg. 1, a central sub-problem that arises is that of efficient filtering: given
c, x1 and a list Lj , find all xj ∈ Lj such that 〈xj ,x1〉 ≈ c, where c is determined
by the target configuration. Note that, by using Lemma 3 (Appendix B, full
version), we may assume that the points in Lj are uniform from some sphere of
dimension n− o(n). To simplify notation, we ignore the o(n)-term, since it will
not affect the asymptotics. For notational reasons6, we shall assume c ≥ 0; the
case c ≤ 0 is equivalent by changing x1 to −x1.

So far, we solved the problem of finding all such xj in time |Lj |. However,
better algorithms exist if we preprocess Lj . This leads to the following problem:

Definition 6 (Near neighbor on the sphere). Let L consist of N points
drawn uniformly at random from Sn−1, and let c ≥ 0. The c-near neighbor
problem is to preprocess L such that, given a query vector q ∈ Sn−1, one can
quickly find points p ∈ L with 〈p , q〉 ≥ c.

Depending on the magnitude of N there is a distinction between the near
neighbor problem for sparse data sets (N = 2o(n)) and for dense data sets
(N = 2Θ(n)). In many applications of near neighbor searching one is interested
in sparse data sets, and various lower bounds matching upper bounds have been
derived for this regime [OWZ14,AIL+15,ALRW17,Chr17]. For our purposes, we
are only interested in dense data sets.

6 The literature is concerned with finding points that are close to each other (corre-
sponding to c > 0) rather than points that are far apart (corresponding to c < 0).
Note that in our applications, we typically would obtain c < 0.
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The target scalar product c corresponds to a target angular distance φ =
arccos c and we want to find points in a spherical cap centered around q with
angular distance φ. With c ≥ 0, we have φ < 1

2π, so we are really concerned with
near neighbors. In order to simplify incorporating our results for LSF into the
configurations framework, we analyze and express everything in terms of scalar
products rather than angular distances. This allows us to use Eq. (2) to express
the involved complexities.

Let us denote the data structure resulting from the preprocessing phase by
D. In algorithms for the near neighbor problem, we are interested in time and
memory complexities of both preprocessing and of querying and also in the
size of D. Spending more resources on preprocessing and using more space will
generally reduce the time complexity of querying.

In our applications, we may want to modify the list L by adding/removing
vectors in between queries, without having to completely rebuild all of D. So we
assume that D is built up by processing the x ∈ L one element at a time and
updating D. We therefore analyze the preprocessing cost in terms of the cost to
update D when L changes by one element.

Spherical locality-sensitive filters. To solve the near neighbor problem on the
sphere, [BDGL16] introduced spherical locality-sensitive filters, inspired by e.g.
the spherical cap LSH of [AINR14]. The idea is to create a data structure D of
many filter buckets, where each bucket Bu contains all vectors from L which are
α-close to a filter vector u, where u is typically not from L, but drawn uniformly
at random from Sn−1. Here, two vectors u,p are considered α-close iff 〈u,p〉 ≥ α.
Let F be the set of all such chosen u’s. Ideally, one generates |F | � 1 of these
buckets, each with u ∈ F chosen independently and uniformly at random from
Sn−1. We build up the data structure by processing the elements x ∈ L one by
one and updating D each time, as mentioned above. This means that for each
update, we need to find all u ∈ F that are α-close to a given x.

If we then want to find points x ∈ L that are c-close to a given query point
q, we first find all u ∈ F that are β-close to x for some β. Then we search
among those buckets Bu for points x ∈ Bu that are c-close to x. The idea here
is that points in Bu for u close to q have a higher chance to be close to q than
a random point from L. The algorithm is detailed in Alg. 2.

Structured filters. In the above idea, one has to find all u ∈ F that are close
to a given point x. A naive implementation of this would incur a cost of |F |,
which would lead to an impractically large overhead. To surmount this prob-
lem, a small amount of structure is added to the filter vectors u, making them
dependent: small enough so that their joint distribution is sufficiently close to
|F | independent random vectors, but large enough to ensure that finding the
filter vectors that are close to x can be done in time (up to lower-order terms)
proportional to the number of such close filters vectors. This is the best one can
hope for. This technique was later called “tensoring” in [Chr17], and replaced
with a tree-based data structure in [ALRW17]. For further details regarding this
technique we refer the reader to [BDGL16]; below, we will simply assume that
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Algorithm 2 Algorithm for spherical locality-sensitive filtering

Parameters: α, β, c, F
D and L are kept as global state, modified by functions below. D = {Bu | u ∈ F}.
Insert and Remove modify L and D. We assume that D and L are constructed
by calling Insert repeatedly. Initially, all Bu and L are empty.
Query(q) outputs x ∈ L that are c-close to q.

1: function Insert(x) . Add x to L and update D
2: L← L ∪ {x}
3: for all u ∈ F s.t. 〈u , x〉 ≥ α do
4: Bu ← Bu ∪ {x}

1: function Remove(x) . Remove x from L and update D
2: L← L \ {x}
3: for all u ∈ F s.t. 〈u , x〉 ≥ α do
4: Bu ← Bu \ {x}

1: function Query(q) . Find x ∈ L with 〈x , q〉 ≥ c
2: PointsFound← ∅
3: for all u ∈ F s.t. 〈u , q〉 ≥ β do
4: for all x ∈ Bu do
5: if 〈x , q〉 ≥ c then
6: PointsFound← PointsFound ∪ {x}
7: return PointsFound

filter vectors are essentially independent, and that we can solve the problem
of finding all u ∈ F close to given point with a time complexity given by the
number of solutions.

Complexity. Let us now analyze the complexity of our spherical locality-sensitive
filters and set the parameters α and β. For this we have the following theorem:

Theorem 3 (Near neighbor trade-offs). Consider Alg. 2 for fixed target
scalar product 0 ≤ c ≤ 1, fixed 0 ≤ α, β ≤ 1 and let L be a list of i.i.d. uniform
points from Sn−1, with |L| exponential in n. Then any pareto-optimal7 parame-
ters satisfy the following restrictions:

|L| (1− α2)n/2 = 1

αc ≤ β ≤ min
{α
c
,
c

α

} (9)

Assume these restrictions hold and that |F | is chosen as small as possible while
still being large enough to guarantee that on a given query, we find all c-close
points except with superexponentially small error probability. Then the complexity
of spherical locality-sensitive filtering is, up to subexponential factors, given by:

7 This means that we cannot modify the parameters α, β in a way that would reduce
either the preprocessing or the query cost without making the other cost larger.
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• Bucket size: The expected size of each bucket is 1.
• Number of buckets: The number of filter buckets is

|F | = (1− c2)n/2

(1 + 2cαβ − c2 − α2 − β2)n/2
.

• Update time: For each x ∈ L, updating the data structure D costs time
TUpdate = |F | · (1− α2)n/2

• Preprocessing time: The total time to build D is TPreprocess = |F |.
• Memory used: The total memory required is |F |, used to store D.
• Query time: After D has been constructed, each query takes time
TQuery = |F | · (1− β2)n/2.

Note that the formulas for the complexity in the theorem rely on Eqns. (9) to
hold. As the proof of this theorem (mainly the conditions for pareto-optimality) is
very technical, we defer it to Appendix D (see full version [HKL]). In the following
Rmk. 1, we only discuss the meaning of the restrictions that are satisfied in the
pareto-optimal case and sketch how to derive the formulas. After that, we discuss
what the extreme cases for β mean in terms of time/memory trade-offs.

Remark 1. Using Thm. 1, for a given point u and uniformly random x ∈ Sn−1,
the probability that 〈u ,x〉 ≈ α is given by (1−α2)n/2, ignoring subexponential
factors throughout the discussion. So the expected size of the filter buckets is
|L| (1− α2)n/2 and the first condition ensures that this size is actually 1.

If the expected bucket size was exponentially small, we would get a lot of
empty buckets. Since F needs to have a structure that allows to find all u ∈ F
close to a given point quickly, we cannot easily remove those empty buckets.
Consequently, the per-query cost would be dominated by looking at (useless)
empty buckets. It is strictly better (in both time and memory) to use fewer, but
more full buckets in that case. Conversely, if the buckets are exponentially large,
we should rather use more, but smaller buckets, making D more fine-grained.

Now consider a “solution triple” (x, q,u), where q is a query point, x ∈ L is
a solution for this query and u ∈ F is the center of the filter bucket used to find
the solution. By definition, this means 〈x,q〉 ≥ c, 〈x,u〉 ≥ α and 〈q ,u〉 ≥ β. The
second set of conditions from Eq. (9) imply that these 3 inequalities are actually
satisified with (near-)equality whp. Geometrically, it means that the angular
triangle formed by a triple q,x,u in a 2-dimensional S2 with these pairwise
inner products has no obtuse angles.

The required size of |F | is determined by the conditional probability P = 1
|F |

that a triple (x,u, q) has these pairwise scalar products, conditioned on 〈x ,q〉 ≈
c. Using Thm. 1, this evaluates to

P = Pr
u∈Sn−1

[〈x , u〉 ≈ α, 〈q , u〉 ≈ β | 〈x , q〉 ≈ c] =

(
det
( 1 α β
α 1 c
β c 1

))n/2
(det( 1 c

c 1 ))
n/2

.

Taking the inverse gives |F |. The other formulas are obtained even more easily by
applying Thm. 1: the probability that a point x ∈ L is to be included in a bucket
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Bu is (1 − α2)n/2, giving the update cost (using the structure of F ). Similarly
for the per-query cost, we look at |F | (1 − β2)n/2 buckets with |L| (1 − α2)n/2

elements each. Using |L| (1− α2) = 1 then gives all the formulas.

Note that Theorem 3 offers some trade-off. With |L| and c given, the parameter
α is determined by the condition (1−α2)n/2 |L| = 1. The complexities can then
be expressed via β, which we can chose between c · α and either α/c or c/α.

For β = c ·α, we have (up to subexponential terms) |F | = 1
(1−α2)n/2 = |L|, so

the update cost is subexponential. The memory complexity is only Õ(|L|), which

is clearly minimal. The query complexity is at Õ(|L| (1 − c2α2)n/2). Increasing
β increases both the time complexity for updates and the memory complexity
for D, whereas the query complexity decreases. If α ≤ c, we can increase β up to
β = α

c . At that point, we have subexponential expected query complexity. The
total complexity of preprocessing is given by 1

(1−α2/c2)n/2 .

If α ≥ c, we may increase β up to c
α . At that point, we obtain a query

complexity of |L| (1− c2)n/2. This is equal to the number of expected solutions
to a query, hence the query complexity is optimal. The preprocessing cost is equal
to |L| (1 − c2)n/2(1 − α2/c2)−n/2. Increasing β further will only make both the
query and preprocessing costs worse. Note that, if the total number of queries is
less than 1

(1−β2
max)n/2 with βmax = min{αc ,

c
α}, it does not make sense to increase

β up to βmax even if we have arbitrary memory, as the total time of preprocessing
will exceed the total time of all queries. In the special case where the number of
queries |Q| is equal to the list size |L|, preprocessing and total query costs are
equal for α = β. This latter choice corresponds to the case used in [BDGL16].

In the LSH literature, the quality of a locality sensitive hash function is usu-
ally measured in terms of update and query exponents ρu resp. ρq. Re-phrasing
our results in these quantities, we obtain the following corollary:

Corollary 2. Let c > 0, corresponding to an angular distance φ = arccos c,
0 < φ < 1

2π and consider the c-near neighbor problem on the n-dimensional

unit sphere for dense data sets of size N = 2Θ(n). Then, for any value of γ
with c ≤ γ ≤ min{ 1

c ,
c

1−N−2/n }, spherical locality sensitive filtering solves this
problem with update and query exponents given by:

ρu = log
( sin2 φ

sin2 φ− (1−N−2/n)(1− 2γ cosφ+ γ2)

)
/ log(N2/n)− 1

ρq = log
( (1− γ2 + γ2N−2/n) sin2 φ

sin2 φ− (1−N−2/n)(1− 2γ cosφ+ γ2)

)
/ log(N2/n)

The data structure requires N1+ρu+o(1) memory, can be initialized in time N1+ρu+o(1)

and allows for updates in time Nρu+o(1). Queries can be answered in time Nρq+o(1).

Proof. This is just a restatement of Thm. 3 with γ := β/α, plugging in α2 =
1−N−2/n and cosφ = c.
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4.1 Application to the configuration problem

We now use spherical locality-sensitive filtering as a subroutine of Alg. 1, sepa-
rately replacing each naive Filteri,j subroutine of Alg. 1 resp. Fig. 4 by spherical
locality-sensitive filtering. In this application, in each near neighbor problem the
number of queries is equal to the list size. We caution that in Alg 1, the lists for
which we have to solve a c-near neighbor problem were obtained from the initial
lists by restricting scalar products with known points. This changes the distri-
bution, which renders our results from Thm. 3 not directly applicable. In order
to obtain a uniform distribution on a sphere, we use Transform in Alg. 1, jus-
tified by Lemma 3 (Appendix B in the full version [HKL]), to perform an affine
transformation on all our point. This transformation affects scalar products and,
as a consequence, the parameter c in each near neighbor problem is not directly
given by ±Ci,j .

For the case of the k-sieve with the balanced configuration Ci,j = − 1
k for

i 6= j, the parameter c used in the replacement of Filteri,j is given by 1
k+1−i ,

as a simple induction using Lemma 3 (full version) shows.
Using LSF changes the time complexities as follows: recall the time complex-

ity is determined by the cost to create various sublists L
(i)
j as in Sect. 3.1, where

L
(i)
j is obtained from the input list Lj by applying i filterings. These filterings

and L
(i)
j depend on the partial solution x1, . . . ,xi. The cost Ti,j to create all

instances (over all choices of x1, . . . ,xi) of L
(i)
j is then given by (cf. Eq. (3))

Ti,j =

i−1∏
r=1

∣∣L(r−1)
r

∣∣ · (TPreprocess,i,j +
∣∣L(i−1)
i

∣∣ · TQuery,i,j

)
,

where TPreprocess,i,j and TQuery,i,j denote the time complexities for LSF when

replacing Filteri,j . Here, xi ∈ L(i−1)
i takes the role of the query point.

Applying LSF to this configuration gives time/memory trade-offs depicted
in Fig. 6. Optimizing for time yields Table 4 and for memory yields Table 3.
Note that for k ≥ 5, there is no real trade-off. The reason for this is as follows:
for large k and balanced configuration, the running time is dominated by the

creation of sublists L
(i)
j with large i. At these levels, the list sizes L

(i)
j have already

shrunk considerably compared to the input list sizes. The memory required even
for time-optimal LSF at these levels will be below the size of the input lists.
Consequently, increasing the memory complexity will not help. We emphasize
that for any k > 2, the memory-optimized algorithm has the same memory
complexity as [HK17], but strictly better time complexity.

4.2 Comparison with Configuration Extension

There exists a more memory-efficient variant [BGJ14] of the LSF techniques
than described above, which can reach optimal time without increasing the mem-
ory complexity. Roughly speaking, the idea is to immediately process the filter
buckets after creating them and never storing them all. However, even ignoring
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Fig. 6: Trade-offs for k = 2, 3, 4. Analogous to Figure 1, the axes are on a loga-
rithmic scale. The exact values for the left-most points for each curve (optimized
for memory) are given in Table 3. The right-most points (optimized for time)
are given in Table 4.

subexponential overhead, this variant has two limitations: Firstly, we need to
know all query points q ∈ Q in advance. This makes it unsuitable for the top
level (which is the only level for k = 2) in the Gauss Sieve, because we build
up the list L vector by vector. Secondly, in this variant we obtain the solutions
(q,x) with q ∈ Q, 〈q ,x〉 ≈ c in essentially random order. In particular, to obtain
all solutions x for one given query point q, there is some overhead8. Note that,
due to the structure of Alg. 1, we really need the solutions for one query point
after another (except possibly at the last level). So the memory-less variant does
not seem well-suited for our algorithm for k > 2.

A generalization of memory-efficient LSF to k > 2 was described in [HK17]
under the name configuration extension and applied to sieving. However, due to
the second limitation described above, they achieve smaller speed-ups than we
do for k > 2.

5 Combining both techniques

In the previous sections we showed how to obtain time–memory trade-offs by
either (1) changing the target configuration C (Sect. 3), or (2) using locality-
sensitive filters for the balanced configuration (Sect. 4). An obvious next step

8 E.g. we could first output the solutions for all query points and sort these solutions
wrt. the query point, but that requires storing the set of all solutions for all queries
and increases the memory complexity.
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Tuple size (k) 2 3 4 5 6 7 8

Time ([HK17]) 0.415 0.3962 0.4240 0.4534 0.4738 0.5088 0.5398

Time (with LSF) 0.3685 0.3588 0.3766 0.4159 0.4497 0.4834 0.5205

Space 0.2075 0.1887 0.1723 0.1587 0.1473 0.1376 0.1293

Table 3: Asymptotic complexities when using LSF with the balanced/any
configuration, when optimizing for memory: we keep the memory equal to
the input list sizes. The running time for k = 2 with LSF is equal to the one
obtained in [BDGL16]. Without LSF, the runtime exponent 0.4150 for k = 2
was first shown in [NV08]. Note that, when optimizing for memory, we implicitly
restrict to the balanced configuration, because this minimizes the input list size.

Tuple size (k) 2 3 4 5 6 7 8

Time (with LSF) 0.3685 0.3307 0.3707 0.4159 0.4497 0.4834 0.5205

Space 0.2075 0.2092 0.1980 0.1587 0.1473 0.1376 0.1293

Table 4: Asymptotic complexities when using LSF with the balanced config-
uration, when optimizing for time (i.e. using the largest amount of memory
that still leads to better time complexities). With this we can obtain improved
time complexities for our k-list algorithm for k = 2, 3, 4. Starting from k = 5,
giving more memory to LSF without changing the target configuration does not
result in an asymptotically faster algorithm.

would be to try to combine both techniques to obtain even better results, i.e. by
solving the configuration problem for an arbitrary target configuration C using
LSF as a subroutine. The memory complexity will be either dominated by the
input list sizes (which are determined by C from the condition that the output
list size equals the input list sizes) or by the filter buckets used for LSF.

To obtain time–space trade-offs for sieving, we optimize over all possible
configurations C with

∑
i,j Ci,j ≤ 1 and parameters βi,j used in each application

of LSF. We used MAPLE [M] for the optimization. To obtain the complete
trade-off curve, we optimized for time while prescribing a bound on memory,
and varying this memory bound to obtain points on the curve. Note that the
memory-optimized points are the same as in Sect. 4.1, since we have to keep C
balanced – in a memory-restricted regime, LSF only gives the same improvement
as combining LSF with arbitrary target configurations. However, as soon as the
memory bound is slightly larger, we already observe that this combination of
both techniques leads to results strictly better than ones produced by using
neither or only one of the two techniques.

The resulting trade-off curves are depicted in Fig. 1 for k = 2, 3, 4. The same
curves for k = 3, 4 are also depicted in Fig. 7, where the trade-offs are compared
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to using either a modified configuration (without LSF) or LSF (with a balanced
configuration). The time-optimal points for fixed k are given in Table 1.

In general, for small k we can gain a lot by using LSF, whereas for large k,
most of the improvement comes from changing the target configuration. Note also
that the trade-offs obtained by combining both techniques are strictly superior
to using only either improvement.

(a) k = 3

(b) k = 4

Fig. 7: Trade-offs for k = 3, 4 with different improvements: changing the target
configuration, LSF, or both.

6 Tuple Gauss sieve

So far we have been concerned with the algorithm for the configuration problem
and how it can be used to solve the approximate k-list problem. Here we explain
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how our algorithm for the k-list problem can be used as a subroutine within
k-tuple lattice sieving. We only give a high-level overview here. A more detailed
description, including pseudo-code can be found in Appendix C in [HKL].

Lattice sieving algorithms have two flavors: the Nguyen-Vidick sieve [NV08]
and the Gauss sieve [MV10]. Since in practice the latter outperforms the former,
we concentrate on Gauss sieve. However, our approach can be used for both.

The algorithm receives on input a lattice represented by a basis B ∈ Rn×n
and outputs a vector v ∈ L(B) s.t. ‖v‖ = λ1(L(B)). During its run, the Gauss
Sieve needs to efficiently sample (typically long) points v ∈ L(B), whose direc-
tion is nearly uniformly distributed.

After preprocessing the basis by an L3 reduction, we can use Klein’s sampling
procedure [Kle00], which outputs vectors of length 2n ·λ1(L(B)) in poly(n) time.

In the Gauss Sieve, we keep a set S of vectors and try to perform as many
k-reductions on S as possible. By this, we mean that we look for k-tuples
(x1, . . . ,xk) ∈ S with 0 < ‖x1 ± · · · ± xk‖ < max{x1, . . . ,xk} and we replace
the vector of maximal length by the (shorter) sum. To find such k-tuples, we use
Alg. 1 for the configuration problem for an appropriately chosen configuration
C. If no k-tuples from S satisfy C, we enlarge S by sampling a new vector.

To avoid checking whether the same k-tuples satisfies C multiple times, we
separate S = L ∪Q into a list L and a queue Q. The list L contains the lattice
vectors that we already checked: we maintain that no k-tuples from L satisfy C.
The queue Q contains vectors that might still be part of a k-tuple satisfying C.

Due to our splitting of S, we may assume that one of the vectors in the
k-tuples is from Q. In fact, we can just repeatedly call Alg. 1 on lists L1 = {p},
L2 = . . . = Lk = L for p ∈ Q and perform k-reductions on the solutions.

Whenever we sample or modify a vector, we have to move it into Q; if no
more reduction is possible with L1 = {p}, L2 = . . . = Lk, we move p from Q
into L. If Q is empty, this signals that we have to sample a new vector.

Since the length of the vectors in S keeps decreasing, we hope to eventually
find the shortest vector. We stop the search when the length of the shortest
element of the list (i.e., the shortest lattice vector found) is equal to the first
successive minimum, λ1(B). Since we usually do not know the value of λ1(B)
exactly, we use some heuristics: in practice [MLB15], we stop once we found a
lot of k-tuples where the k-reduction would give a zero vector.

6.1 Gauss Sieve with k = 3 in practice

We ran experiments with the 3-Gauss sieve algorithm with the aim to com-
pare balanced and non-balanced configuration search. We used a Gauss-sieve
implementation developed by Bai, Laarhoven, and Stehlé in [BLS16] and by
Herold-Kirshanova in [HK17].

As an example, we generated 5 random (in the sense of Goldstein-Mayer
[GM06]) 70-dimensional lattices and preprocessed them with β-BKZ reduction
for β = 10. Our conclusions are the following:

– The unbalanced configuration C given above indeed puts more work to the
(asymptotically) non-dominant first level than the balanced configuration
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n
|Ci,j | = 0.32 |Ci,j | = 0.333 |Ci,j | = 0.3508

level 1 level 2 T/sec level 1 level 2 T/sec level 1 level 2 T/sec

60 4.8 ·108 1.7 ·108 5.6 ·102 5.8 ·108 1.2 ·108 6.0 ·102 7.2 ·108 2.1 ·108 7.3 ·102

62 9.4 ·108 3.5 ·108 1.3 ·103 1.1 ·109 6.7 ·108 2.7 ·103 1.4 ·109 1.4 ·108 3.4 ·103

64 1.7 ·109 6.8 ·108 3.4 ·103 2.1 ·109 4.6 ·108 5.0 ·103 2.7 ·109 2.7 ·108 5.6 ·103

66 3.0 ·109 1.5 ·109 5.2 ·103 3.9 ·109 8.7 ·108 2.1 ·104 5.1 ·109 5.1 ·108 1.5 ·104

68 6.0 ·109 2.5 ·109 1.4 ·104 7.3 ·109 1.6 ·109 1.1 ·104 9.6 ·109 9.5 ·108 2.7 ·104

70 1.1 ·1010 4.9 ·109 3.0 ·104 1.4 ·1010 3.2 ·109 3.6 ·104 1.8 ·1010 1.8 ·109 4.9 ·104

72 2.1 ·1010 9.4 ·109 4.8 ·104 2.6 ·1010 6.1 ·109 7.2 ·104 – – –

74 3.9 ·1010 1.8 ·1010 1.3 ·105 4.7 ·1010 1.1 ·1010 1.4 ·105 6.4 ·1010 6.2 ·109 1.9 ·105

76 7.0 ·1010 3.4 ·1010 2.7 ·105 8.6 ·1010 2.1 ·1010 3.1 ·105 – – –

Table 5: Running times of triple lattice sieve for 3 different target configurations
Ci,j . All the figures are average values over 5 different Goldstein-Mayer lattices
of dimension n. Columns ‘level 1’ show the number of inner-products computed
on the first level of the algorithm (it corresponds to the quantity |L|2), columns
‘level 2’ count the number of inner-product computed in the second level (in
corresponds to |L| · |L(1)|2). The third columns T shows actual running times in
seconds.

does. We counted the number of inner products (applications of filterings)
on the first and on the seconds levels for each of the 5 lattices. As the
algorithm spends most of its time computing inner-products, we think this
model reasonably reflects the running time.

The average number of inner-product computations performed on the upper-
level increases from 1.39·1010 (balanced case) to 1.84·1010 (unbalanced case),
while on the lower (asymptotically dominant) level this number drops down
from 3.23 · 109 to 1.82 · 109.

– As for the actual running times (when measured in seconds), 3-Gauss sieve
instantiated with balanced configuration search outperforms the sieve with
the unbalanced C given above on the dimensions up to 74. We explain this
by the fact that the asymptotical behavior is simply not visible on such small
dimensions. In fact, in our experiments the dominant level turns out to be the
upper one (just compare the number of the inner-products computations in
Table 5). So in practice one might want to reverse the balancing: put more
more work on the lower level than on the upper by again, changing the
target configuration. Indeed, if we relax the inner-product constraint to 0.32
(in absolute value), we gain a significant speed-up compared with balanced
1/3 and asymptotically optimal 0.3508.
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