
Making Public Key Functional Encryption
Function Private, Distributively

Xiong Fan1 Qiang Tang2

1 Cornell University, Ithaca, NY, USA. xfan@cs.cornell.edu
2 New Jersey Institute of Technology, Newark, NJ, USA. qiang@njit.edu

Abstract. We put forth a new notion of distributed public key functional
encryption. In such a functional encryption scheme, the secret key for
a function f will be split into shares skfi . Given a ciphertext ct that
encrypts a message x, a secret key share skfi , one can evaluate and
obtain a shared value yi. Adding all the shares up can recover the actual
value of f(x), while partial shares reveal nothing about the plaintext.
More importantly, this new model allows us to establish function privacy
which was not possible in the setting of regular public key functional
encryption. We formalize such notion and construct such a scheme from
any public key functional encryption scheme together with learning with
error assumption.

We then consider the problem of hosting services in the untrusted cloud.
Boneh, Gupta, Mironov, and Sahai (Eurocrypt 2014) first studied such
application and gave a construction based on indistinguishability obfusca-
tion. Their construction had the restriction that the number of corrupted
clients has to be bounded and known. They left an open problem how to
remove such restriction. We resolve this problem by applying our function
private (distributed) public key functional encryption to the setting of
hosting service in multiple clouds. Furthermore, our construction provides
a much simpler and more flexible paradigm which is of both conceptual
and practical interests.

Along the way, we strengthen and simplify the security notions of the
underlying primitives, including function secret sharing.

1 Introduction

Cloud computing has the advantages that the cloud servers provide infrastructure
and resources that can hold data, do computation for the clients, and even host
service on behalf of the individual vendor (also called service providers). Despite
those appealing features, major concerns of deploying such a computing paradigm
are the security and privacy considerations, as data owner does not have control
of the outsourced data.

Functional encryption [BSW11,O’N10] provides a powerful tool to enable
such versatile “outsourcing” without leaking the actual data. In particular, a
data owner can first encrypt his data x and store the ciphertext ct on the
cloud server, and then issue a secret key skf to the cloud for a functionality f

that the data owner would like the cloud to compute. Decrypting ct using skf
yields only f(x) and nothing else. For instance, the client would like to request
the cloud to apply a transformation T to all his files that satisfies a certain
condition described by a predicate P . This can be easily done by defining a
following function g(·), where g(x) = T (x), if P (x) = 1; otherwise, g(x) = x;
the data owner can simply send such a decryption key skg to the cloud and
enable the cloud to carry on the transformation given only the encrypted files.
Those mechanisms could potentially enable a very powerful paradigm shift in
computing. For example, content providers can simply focus on producing the
data while offloading all the content management and delivery functionalities to
the cloud provider. Concretely, Netflix streaming services have been migrated to
Amazon cloud [net]. In particular, Netflix could codify their algorithm (such as
the recommendation system) f to be skf and let Amazon cloud process all the
subscriber requests expressed as ciphertext.

In many cases, hiding data only is not enough for those applications, as
the function itself may already leak critical or proprietary information. In the
above example, other content providers such as Hulu also hosts their service
in the Amazon cloud [hul], the recommendation system might be one of the
competing advantages of those content vendors. If not protected properly, one
service provider has great interests to infer information about the competing
vendor’s proprietary program via the cloud. For this reason, function privacy
was first proposed by Shen, Shi, Waters in the setting of private key predicate
encryption in [SSW09]. It requires that a decryption key skf does not leak
anything about the function f .

It is easy to see that for a public key functional encryption, standard function
privacy cannot be possible as it is. Since the attacker who has a key skf , can
generate ciphertext on the fly, and thus obtain values of f(x1), . . . , f(xn) for the
plaintext x1, . . . , xn of his choices. As a result, majority of research along this line
have been carried in two paths: (i) study function privacy in the setting of private
key functional encryption such as the elegant work of Brakerski and Segev [BS15].
(ii) study weakened notion of function privacy by requiring that the function
comes from high-entropy distribution [AAB+13], and those are studied only in
special cases of identity based encryption [BRS13a] and subspace-membership
encryption [BRS13b]. 3

Private key functional encryption is very useful for data owner to do out-
sourcing, however it is not convenient for sharing applications in which multiple
clients may want to freely encode inputs, i.e., a public encryption operation is
needed. While putting entropy restriction on the functions is a natural choice for
feasibility of function privacy in specific scenarios, it is not clear how could the
weakened notion be applied in the general setting. In this paper, we are trying to
answer the following question:

Can we find a realistic model that allows us to approach function privacy for
general public key functional encryption?

3 Except the nice work of Agrawal et al.[AAB+13] which considered both above cases.

2

1.1 Our contributions

Circumventing impossibility via a distributed model. We initiate the
study of public key, distributed functional encryption. In such a cryptographic
primitive, the secret key of a function f will be split into shares skfi and distributed
to different parties. Given a secret key share, and a ciphertext ct that encrypts a
message x, one can evaluate locally using skfi and obtains Dec(skfi ,Enc(x)) = yi.
Once all the evaluation shares {y1, . . . , yn} are obtained, everyone can reconstruct
the actual evaluation f(x). This new model of distributed functional encryption
naturally generalizes the notion of threshold decryption to the setting of functional
encryption, and enables the joint efforts to recover an evaluation for a plaintext
from a ciphertext (i.e., computing f(x) from the ciphertext ct), and when the
number function shares are not enough, nothing will be revealed about f(x).

More interestingly, such a new model offers an opportunity to bypass the
impossibility of function privacy in the setting of public key functional encryption.
Intuitively, given only a share skfi (or multiple shares as long as it is below
the threshold), the adversary can only learn yi which may not be enough to
determine f(x). Formalizing such intuition, we give formal definitions of public
key distributed functional encryption, and transform any public key functional
encryption into a distributed version supporting both message privacy and func-
tion privacy via function secret sharing [BGI15,BGI16,KZ16]. Our construction
can be instantiated from any functional encryption together with Learning With
Error assumption [Reg05] where the construction of function secret sharing is
based on, and reconstruction from shares {y1, . . . , yn} can be done by simply
summing them up.

We remark here that our notion of distributed functional encryption is different
from the decentralized key generation of functional encryption [CGJS15]. The
latter mainly considers how to distribute the master key setup; while we consider
how to split each function into secret key shares, and use such a model as a basis
for studying function privacy. We also emphasize that the goal in this work is
to achieve results generically from functional encryption itself directly, instead
of from stronger primitives such as indistinguishability obfuscation (iO). With
the help of iO or its stronger variant, differing-inputs obfuscation, we know how
to construction multi-input functional encryption [GGG+14] and also function
secret sharing [KZ16], there might be alternative ways to construct distributed
public key functional encryption, which we will not explore in this paper.

Hosting service in multiple clouds securely and efficiently. One of the
most appealing and widely deployed applications of cloud computing is to hosting
service in the cloud. Boneh, Gupta, Mironov, and Sahai gave the first formal
study of such an application [BGMS15]. The security considerations in this
application scenario include protecting program (service) information and clients’
inputs against a untrusted cloud and protecting program (service) information
and authorization procedure against untrusted clients. Their construction relied
on indistinguishability obfuscation (iO), and had to restrict the number of
colluded/corrupted clients for both security. They left as an open problem how

3

to get rid of such a restriction. As one major application of our function private
functional encryption, we demonstrate how to tackle this challenge in the model
of hosting service in multiple clouds.

Let us elaborate via a concrete example: the popular augmented-reality game
Pokémon Go server was hosted at Google Cloud [pok]. The whole game as a
computer program is deployed in Google cloud servers, and players directly
interact with Google cloud to play the game once they are registered. The players
try to catch various level Poke Monsters depending on the locations. Thus the level
and location of the monsters contained in the game program need to be hidden.
At the same time, the business model for such a game is to sell virtual goods,
thus the program that hosts the service in the cloud will have to authenticate
those in-game equipments. If such function is not protected well, when the cloud
is corrupted, such authentication could either be bypassed or even completely
reaped. On the other hand, there were also huge number of security concerns
about the server collecting user private information when playing the game.

The above example highlights the need of securely hosting service in the cloud,
and the service may be provided to millions of clients. One simple observation we
would like to highlight in the paper is that our public key functional encryption
with function privacy is already very close to the powerful notion of virtual
black-box obfuscation (VBB) [BGI+01]. Taking a “detour” from using iO as
in [BGMS15] to using VBB, and then “instantiating” it using our functional
encryption yields a new way of securely hosting service in multiple clouds, and
enables us to achieve much stronger security notions that have no restriction on
the number of corrupted clients. From a high level, to host a service described as
a function f in the cloud, the service provider runs our distributed functional
encryption key generation algorithm and generates shares skfi for each cloud.

It is not hard to see from the above description, as our construction following
such a paradigm, we can easily extend the functionalities by encode the original
functionality f into other program g to support more advanced properties and
more complex access control.

Moreover, as our distributed functional encryption only relies on a regular
functional encryption instead of a general iO, this new paradigm may potentially
lead efficient constructions that can be actually instantiated. For example, if a
service provider only hosts a couple of functionalities in the cloud, we do not
have to use the full power of general functional encryption, instead we can use
the bounded collusion functional encryption [GVW12] which could be further
optimized for particular functions.

Last, as our reconstruction procedure only requires an addition, it gives
minimum overhead to the client.

Strengthened and simplified security models, and modular construc-
tions. We note that since the application of hosting service in the cloud is
complex, several underlying building blocks such as function secret sharing as
given are not enough for our applications. We carefully decoupled the complex
security notions of [BGMS15] which handles two properties for each notion. This
simplification helps us identify necessary enhancements of the security notions

4

of the underlying building blocks, which in turn, enables us to have a smooth
modular construction for the complex object.

Consider the security of the program against untrusted clouds when the
service is hosted in two clouds. A corrupted cloud has one share of the program,
on the mean time, the cloud may pretend to be a client and send requests to
the other cloud for service. This means that considering function privacy against
adversaries that has only partial shares is not enough. We should further allow
the adversary to query the rest of function shares to reconstruct values for a
bunch of points. The desired security notion now is that the adversary should
learn nothing more than the values she already obtained as above. For this reason,
we propose a CCA-type of definition for function privacy. To tackle this, we
revisited the security of function secret sharing and study a CCA-type of security
notion for it (the existing work only considered the CPA version).

Consider the security of the program against untrusted clients. Now a legiti-
mate client can send requests and get evaluated at arbitrary points. To ensure
the security of the program which comes from the function privacy in our con-
struction, it naturally requires a simulation style definition. While IND style of
function privacy was considered in most of previous works, even for private key
functional encryption [BS15], we propose to study a simulation based definition
with the CCA-type of enhancement mentioned above.

We show that the simple construction of function secret sharing from Spooky
Encryption [DHRW16] actually satisfies the stronger notions, and we can safely
apply it to construct our distributed functional encryption and eventually lead
to the secure service hosting in multiple clouds.

1.2 Related work

As mentioned above, despite the great potential of function privacy, our under-
standing of it is limited. Shen, Shi and Waters [SSW09] initiated the research
on predicate privacy of attribute-based encryption in private key setting. Boneh,
Raghunathan and Segev [BRS13a,BRS13b] initiated function privacy research
in public key setting. They constructed function-private public-key functional
encryption schemes for point functions (identity-based encryption) and for sub-
space membership (generalization of inner-product encryption). However, their
framework assumes that the functions come from a distribution of sufficient
entropy.

In an elegant work [AAB+15], Agrawal et al. presented a general framework
of security that captures both data and function hiding, both public key and
symmetric key settings, and show that it can be achieved in the generic group
model for Inner Product FE [KSW08]. Later, in the private-key setting, Brakerski
and Segev [BS15] present a generic transformation that yields a function-private
functional encryption scheme, starting with any non-function-private scheme for
a sufficiently rich function class.

In [BGMS15], Boneh et al. provide the first formalizations of security for a
secure cloud service scheme. They also provide constructions of secure cloud

5

service schemes assuming indistinguishability obfuscation, one-way functions,
and non-interactive zero-knowledge proofs.

2 Preliminaries

Notation. Let λ be the security parameter, and let ppt denote probabilistic
polynomial time. We say a function negl(·) : N→ (0, 1) is negligible, if for every
constant c ∈ N, negl(n) < n−c for sufficiently large n. We say two distributions
D1, D2 over a finite universe U are ε-close if their statistical distance 1

2 ||D1−D2||1
are at most ε, and denoted as D1 ≈ D2.

2.1 Signature Scheme

In this part, we recall the syntax and security definition of a signature scheme. A
signature scheme Σ = (Setup,Sign,Verify) can be described as

– (sk, vk) ← Setup(1λ): On input security parameter λ, the setup algorithm
outputs signing key sk and verification key vk.

– σ ← Sign(sk,m): On input signing key sk and message m, the signing algo-
rithm outputs signature σ for message m.

– 1 or 0 ← Verify(vk,m, σ): On input verification key vk, message m and
signature σ, the verification algorithm outputs 1 if the signature is valid.
Otherwise, output 0.

For the security definition of signature scheme, we use the following experiment
to describe it. Formally, for any ppt adversary A, we consider the experiment
ExptsigA (1λ):

1. Challenger runs Setup(1λ) to obtain (vk, sk) and sends vk to adversary A.
2. Adversary A sends signing queries {mi}i∈[Q] to challenger. For i ∈ [Q],

challenger computes σi ← Sign(sk,mi) and sends {σi}i∈[Q] to adversary A.
3. Adversary A outputs a forgery pair (m∗, σ∗).

We say adversary A wins experiment ExptsigA (1λ) if m∗ is not queried before and
Verify(vk,m∗, σ∗) = 1.

Definition 1 (Existential Unforgeability). We say a signature scheme Σ is

existentially unforgeable if no ppt adversary A can win the experiment ExptsigA (1λ)
with non-negligible probability.

2.2 Functional Encryption

We recall the syntax and ind-based security of functional encryption introduced
in [BSW11]. A functional encryption scheme FE for function ensemble F consists
of four algorithms defined as follows:

– (pp,msk) ← Setup(1λ): On input the security parameter λ, the setup algo-
rithm outputs public parameters pp and master secret key msk.

6

– skf ← Keygen(msk, f): On input the master secret key msk and a function f ,
the key generation algorithm outputs a secret key skf for function f .

– ct ← Enc(pp, µ): On input the public parameters pp and a message µ, the
encryption algorithm outputs a ciphertext ct.

– f(µ)← Dec(skf , ct): On input a secret key skf for function f and a ciphertext
ct for plaintext µ, the decryption algorithm outputs f(µ).

Definition 2 (Correctness). A functional encryption scheme FE is correct if
for any (pp,msk)← Setup(1λ), any f ∈ F , and µ ∈ domain(f), it holds that

Pr[Dec(Keygen(msk, f),Enc(pp, µ)) 6= f(µ)] = negl(λ)

where the probability is taken over the coins in algorithms Keygen and Enc.

Security Definition. We present the security of functional encryption scheme FE
for function ensemble F by first describing an experiment ExptFEA (1λ) between
an adversary A and a challenger in the following:

Setup: The challenger runs (msk, pp)← Setup(1λ) and sends pp to adversary
A.

Key query phase I: Proceeding adaptively, the adversary A submits function
fi ∈ F to challenger. The challenger then sends back skf ← Keygen(msk, fi)
to adversary A.

Challenge phase: The adversary submits the challenge pair (µ∗0, µ
∗
1), with

the restriction that fi(µ
∗
0) = fi(µ

∗
1) for all functions fi queried before. The

challenger first chooses a random bit b ∈ {0, 1} and sends back ct∗ ←
Enc(pp, µb) to adversary A.

Key query phase II: The adversary A may continue his function queries
fi ∈ F adaptively with the restriction that fi(µ

∗
0) = fi(µ

∗
1) for all function

queries fi.
Guess: Finally, the adversary A outputs his guess b′ for the bit b.

We say the adversary wins the experiment if b′ = b.

Definition 3 (Ind-based Data Privacy). A functional encryption scheme
FE = (Setup,Keygen,Enc,Dec) for a family of function F is secure if no ppt
adversary A can win the experiment ExptFEA (1λ) with non-negligible probability.

2.3 Spooky Encryption

We recall the definition of spooky encryption, introduced in [DHRW16] in this part.
A public key encryption scheme consists a tuple (Gen,Enc,Dec) of polynomial-
time algorithms. The key-generation algorithm Gen gets as input a security
parameter λ and outputs a pair of public/secret keys (pk, sk). The encryption
algorithm Enc takes as input the public key pk and a bit m and output a ciphertext
ct, whereas the decryption algorithm Dec gets as input the secret key sk and
ciphertext ct, and outputs the plaintext m. The basic correctness guarantee is
that Pr[Decsk(Enc(pk,m)) = m] ≥ 1− negl(λ), where the probability is over the

7

randomness of all these algorithms. The security requirement is that for any ppt
adversary (A1,A2) it holds that

Prb←{0,1}[(m0,m1)← A1(pk),A2(pk, ctb) = 1] ≤ 1

2
+ negl(λ)

where (pk, sk)← Gen(1λ), ctb ← Enc(pk,mb) and require |m0| = |m1|.

Definition 4 (Spooky Encryption). Let (Gen,Enc,Dec) be a public key en-
cryption and Eval be a polynomial-time algorithm that takes as input a (possibly
randomized) circuit C with n = n(λ) inputs and n outputs, C : ({0, 1}∗)n →
({0, 1}∗)n, and also n pairs of (public key, ciphertext), and outputs n ciphertext.

Let C be a class of such circuits, we say that Π = (Gen,Enc,Dec,Eval) is a
C-spooky encryption scheme if for any security parameter λ, any randomized
circuit C ∈ C, and any input x = (x1, ..., xn) for C, the following distributions
are close upto a negligible distance in λ

C(x1, ..., xn) ≈ SPOOK[C,x]
∆
=

{(Dec(sk1, ct′1), ...,Dec(skn, ct
′
n)) : (ct′1, ..., ct

′
n)← Eval(C, {(pki, cti)}i)}

where for i ∈ [n], (pki, ski)← Gen(1λ), cti ← Enc(pki,mi).

A special case of spooky encryption, named additive-function-sharing (AFS)
spooky encryption, allows us to take encryptions cti ← Enc(pki, xi) under n
independent keys of inputs x1, ..., xn to an n-argument function f , and produce
new ciphertext under the same n keys that decrypts to additive secret shares of
y = f(x1, ..., xn). Formally, the definition is the following

Definition 5 (AFS-Spooky). Let Π = (Gen,Enc,Dec,Eval) be a scheme where
(Gen,Enc,Dec) is a semantically secure public key encryption. We say Π is leveled
ε-AFS-spooky if Π satisfies

– If for any boolean circuit C computing an n-argument function f : ({0, 1}∗)n →
{0, 1}, and any input (x1, ..., xn) for C, it holds that

Pr[
n∑
i=1

yi = C(x1, ..., xn) : (ct′1, ..., ct
′
n)← Eval(C, {(pki, cti)}i)]

where for i ∈ [n], (pki, ski)← Gen(1λ), cti ← Enc(pki, xi), yi = Dec(ski, ct
′
i).

– Any n− 1 of the shares yi above are distributed ε-close to uniform.
– We say Π is leveled if the Gen algorithm receives an additional depth pa-

rameter 1d, and the conditions above hold only for circuit of depth upto
d.

Spooky Encryption with CRS. We say that (Gen,Enc,Dec,Spooky.Eval) is a C-
spooky encryption scheme with CRS, if Definition 4 and 5 are satisfied if we
allow all algorithms (and the adversary) to get as input also a public uniformly
distributed common random string.

8

In [DHRW16], the authors showed how to construction ε-AFS-Spooky En-
cryption with CRS from Learning With Error assumption (LWE) [Reg05]. Their
results can be summarized below:

Theorem 1 ([DHRW16]). Assuming the hardness of LWE assumption, there
exists a leveled ε-AFS-spooky encryption scheme.

3 Distributed Public Key FE with Function Privacy

In this section, we give a detailed study of distributed functional encryption
(DFE), and specifically a simplified DFE notion, n-out-of-n threshold functional
encryption. In an (n, n)-DFE scheme, during key generation, we split a secret key

corresponding to the function into n secret key shares {skfi }ni=1, and by running

partial decryption on skfi and a ciphertext ct, we can obtain a share si of f(x),
where ct is an encryption of message x. There is also a reconstruction process
that outputs f(x) on n shares {si}ni=1. We then define security, including function
privacy and data privacy, with respect to (n, n)-DFE.

To achieve a secure DFE satisfying our security definitions, we rely on a
building block, named function secret sharing [BGI15,BGI16]. We strengthen
the security definition of FSS in comparison with that in [BGI15,BGI16], and
show that a construction4 based on spooky encryption satisfies our generalized
security definition.

3.1 Syntax and Security Definition

We first describe the syntax DFE = (DFE.Setup,DFE.Keygen,DFE.Enc,DFE.PartDec,
DFE.Reconstruct):

– DFE.Setup(1λ, n,F): On input security parameter λ, threshold parameter
n and function ensemble F , the setup algorithm produces (pp,msk) for the
whole system.

– DFE.Keygen(f,msk): On input a function f ∈ F and the secret key ski of this

authority, the key generation algorithm outputs n secret key shares {skfi }i∈[n]
for the function f .

– DFE.Enc(pp,m): On input the public parameters pp and a message m, the
encryption algorithm outputs a ciphertext ct.

– DFE.PartDec(ct, skfi): On input a ciphertext ct and a secret key share skfi for
function f , the partial decryption algorithm outputs a decryption share si.

– DFE.Reconstruct(pp, {si}ni=1): On input the public parameters pp and decryp-
tion shares {si}ni=1 for the same ciphertext, the reconstruction algorithm
outputs f(m).

4 We remark that the construction was first sketched in [DHRW16]. Here we generalize
it and provide a formal security proof for the stronger notions.

9

Definition 6 (Correctness). An (n, n)-DFE scheme is correct if for any (pp,msk)←
DFE.Setup(1λ, 1n), any f ∈ F , and any m ∈ domain(f), it holds

Pr[DFE.Reconstruct(pp, {DFE.PartDec(ct, skfi)}ni=1) 6= f(m)] = negl(λ)

where ct ← DFE.Enc(pp,m), skfi ← DFE.Keygen(f,msk) and the probability is
taken over the coins in algorithms DFE.Keygen and DFE.Enc.

Security Definition of DFE. As mentioned before, we consider both the data
privacy and function privacy for DFE. For completeness, we give both IND-based
and simulation based notions for function privacy. As we know, simulation based
data privacy is infeasible [AGVW13], thus we only give a Ind based definition.
It would be an interesting open problem to consider an alternative model that
simulation based data privacy for functional encryption become feasible, e.g.,
[GVW12] The detailed definitions are below.

Definition 7 (Ind-based function privacy). We first describe an experiment
ExptDFE-func

A (1λ) between an adversary A and a challenger as follows:

– Setup: The challenger runs (msk, pp)← DFE.Setup(1λ, 1n) and sends pp to
adversary A.

– Key query phase I: Proceeding adaptively, the adversary A submits func-

tion fj ∈ F to challenger. The challenger then sends back {skfji }ni=1 ←
DFE.Keygen(msk, fj) to adversary A.

– Challenge phase: The adversary submits the challenge function pair (f∗0 , f
∗
1)

that are not queried before. The challenger first chooses a random bit b ∈ {0, 1}
and computes {skf

∗
b
i }i∈[n] ← DFE.Keygen(msk, f∗b). Then challenge selects

random n− 1 keys {skf
∗
b
i }i∈S and sends them to adversary A.

– Key query phase II: Proceeding adaptively, the adversary A continues
querying function fj ∈ F with the restriction that fj 6= f∗0 and fj 6= f∗1 . The

challenger then sends back {skfji }ni=1 ← DFE.Keygen(msk, fj) to adversary A.
– Guess: Finally, the adversary A outputs his guess b′ for the bit b.

We say the adversary wins the experiment if b′ = b.
A distributed functional encryption scheme Π for a family of function F is

function private if no ppt adversary A can win the experiment ExptDFE-func
A (1λ)

with non-negligible probability.

In the simulation-based definition of function privacy, we additionally allow
adversary to query oracle DFE.Dec(skf

∗

n , ·), where skf
∗

n is the only secret key
share for challenge function f∗ that is not given to adversary. We then show
that our sim-based function privacy implies ind-based function privacy as defined
above. The detail is as follows:

Definition 8 (Sim-based function privacy). Let Π be a distributed func-
tional encryption scheme for a function family F . Consider a ppt adversary

10

A = (A1,A2) and simulator S = (S1,S2,S3)5. We say the function secret sharing
scheme Π is simulation-secure if the following two distribution ensembles (over
the security parameter λ) are computationally indistinguishable:

Real Distribution:
1. (pp,msk)← DFE.Setup(1λ, n).

2. (f∗, τ)← ADFE.Keygen(msk,·)
1 (pp).

3. {skf
∗

i }ni=1 ← DFE.Keygen(msk, f∗).

4. α← ADFE.Keygen(msk,·),DFE.Dec(skf
∗

n ,·)
2 (pp, {skf

∗

i }
n−1
i=S , τ).

5. Output (pp, f∗, τ, α).

Ideal Distribution:
1. pp← S1(1λ, n).

2. (f∗, τ)← AS2(·)1 (pp).
3. {skf∗i }

n
i=1 ← S2(|f∗|).

4. α← AS2(·),S
f∗
3 (·)

2 (pp, {skf
∗

i }
n−1
i=1 , τ).

5. Output (pp, f∗, τ, α).

where on query ct = Enc(pp, x) made by adversary A2, simulator Sf
∗

3 (·) makes a
query to the oracle f∗.

Remark 1. We note that if a DFE construction satisfies sim-based function
privacy, then we can show that it also satisfies ind-based function privacy. The
challenger in the ind-based experiment ExptDFE-func

A (1λ) first uses simulation
S1(1λ, n) to generate pp. For key queries fi, challenger responses by computing
{skfij}nj=1 ← S2(fi). For challenge function (f∗0 , f

∗
1), the challenger chooses a

random bit b (let f∗ = f∗b) and computes {skf∗i }
n
i=1 ← S2(f∗). Then by sim-based

function privacy as defined above, the responses for key queries simulated by S2
are indistinguishable from real execution and the bit b is chosen from random,
thus we show that it also satisfies ind-based function privacy.

Next, we adapt the standard ind-based data privacy for a DFE scheme.

Definition 9 (Ind-based data privacy). We first describe an experiment
ExptDFE-data

A (1λ) between a challenger and an adversary A as below:

– Setup: The challenger runs (msk, pp)← DFE.Setup(1λ, 1n) and sends pp to
adversary A.

– Key query phase I: Proceeding adaptively, the adversary A submits func-

tion fj ∈ F to challenger. The challenger then sends back {skfji }ni=1 ←
DFE.Keygen(msk, fj) to adversary A.

– Challenge phase: Adversary submits the challenge message pair (m∗0,m
∗
1)

with the restriction that fi(m0) = fi(m1) for all queried fi. The challenger
first chooses a random bit b ∈ {0, 1} and computes ct ← DFE.enc(pp,mb).
Then send ct to adversary.

5 Looking ahead, we abuse the notation of S2 in the ideal distribution, by allowing it
taking two kinds of inputs: 1. the description of function f , 2. the size of function f .

11

– Key query phase II: The same as Key query phase I with the restriction
that the query fi satisfies fi(m0) = fi(m1).

– Guess: Finally, the adversary A outputs his guess b′ for the bit b.

We say the adversary wins the experiment if b′ = b.
A distributed functional encryption scheme Π for a family of function F is

data private if no ppt adversary A can win the experiment ExptDFE-data
A (1λ) with

non-negligible probability.

3.2 Building Block: Function Secret Sharing

A function secret sharing scheme provides a method to split this function into a
set of separate keys, where each key enable it to efficiently generate a share of
evaluation f(x), and yet each key individually does not reveal information about
the details of function f . In [BGI15,BGI16], Boyle et al. formalized the syntax
and security definition of function secret sharing. In this part, we first revisit the
definition of function secret sharing along with a new security definition.

Syntax and Security Definition A (n, n)-function secret sharing scheme for a
function family F consists of algorithms (FSS.Setup,FSS.ShareGen,FSS.Reconstruct)
described as follows:

– FSS.Setup(1λ, n,F): Given the security parameter λ, the parameter n of the
secret sharing system and the description of function family F , the setup
outputs the public parameters pp.

– FSS.ShareGen(pp, f): Given pp and a function f ∈ F , the share generation
algorithm outputs n shares of function f as {fi}ni=1.

– FSS.Reconstruct(pp, {fi(x)}ni=1): Given an input x, evaluating each function
share fi on x, we obtain n output shares {fi(x)}ni=1. The reconstruction
algorithm then aggregates all the share values {fi(x)}ni=1 and outputs f(x).

Definition 10 (Correctness). We say that an (n, n)-function secret sharing
scheme FSS for function family F is correct, if for any function f ∈ F , ∀x ∈
dom(f), pp← FSS.Setup(1λ, n,F), we have

f(x) = FSS.Reconstruct(pp, {fi(x)}ni=1)

where {fi}ni=1 ← FSS.ShareGen(pp, f).

Security definition of FSS. In [BGI15,BGI16], Boyle et al. proposed a ind-based
security definition. In their security definition, adversary is given n− 1 shares of
function fb, where fb is chosen randomly from (f0, f1) of adversary’s choice. It
requires that adversary cannot guess bit b correctly with overwhelming probability.
We enhance the security of FSS by modeling it as simulation-based CCA-type
one. More specifically, in additional to the n− 1 shares of challenge function f∗,
the adversary is given oracle access to the function share generation algorithm of
his choice (different from challenge function f∗). Moreover, the adversary is given

12

oracle access to the share that she is not holding for f∗. The security requires that
adversary cannot tell real execution from simulated one. The detailed definition
is below.

Definition 11 (CCA-type of Security, Sim-based). Let Π be a function
secret sharing scheme for a function family F . Consider a ppt adversary A =
(A1,A2) and simulator S = (S1,S2,S3)6. We say the function secret sharing
scheme Π is simulation-secure if the following two distribution ensembles (over
the security parameter λ) are computationally indistinguishable:

Real Distribution:

1. pp← FSS.Setup(1λ, n,F).

2. (f∗, τ)← AFSS.ShareGen(pp,·)
1 (pp)

3. {f∗i }ni=1 ← FSS.ShareGen(pp, f∗)

4. α← AFSS.ShareGen(pp,·),f∗n(·)
2 (pp, {f∗i }

n−1
i=1 , τ)

5. Output (pp, f∗, τ, α).

Ideal Distribution:

1. pp← S1(1λ, n,F).

2. (f∗, τ)← AS2(·)1 (pp).
3. {f∗i }

n−1
i=1 ← S2(|f∗|)

4. α← AS2(·),S
f∗
3 ({f∗i }

n−1
i=1 ,·)

2 (pp, {f∗i }
n−1
i=1 , τ).

5. Output (pp, f∗, τ, α).

where on query x made by adversary A2, simulator Sf
∗(·)

3 (·) makes a single query
to oracle f∗(·) on x.

FSS Construction. Let SP = (SP.Gen,SP.Enc,SP.Dec,SP.Eval) be a F-AFS-
spooky encryption as defined in Definition 4. To make the description simpler,
we add a temporary algorithm, f̂i(x)← LocalEval(f̂i, x), which locally evaluates

x using the i-th share f̂i. The construction of function secret sharing scheme
Π = (FSS.Setup,FSS.ShareGen,FSS.Reconstruct) for poly(λ)-depth circuit family
F is the following:

– FSS.Setup(1λ, n,F): The setup algorithm outputs public parameter pp = (n,F)
for the system.

– FSS.ShareGen(pp, f): On input a function f ∈ F , the share generation algo-
rithm first generates a n-out-of-n secret sharing {fi}ni=1 of the description of f ,
and for i ∈ [n] computes (SP.pki,SP.ski)← SP.Gen(1λ). Then for i ∈ [n], en-
crypt the description share using spooky encryption SP.Enc(pki, fi). Output the
i-th share of function f as fi = (SP.ski, {SP.pki}ni=1, {SP.Enc(SP.pki, fi)}ni=1).

6 Looking ahead, we overload the notation of S2 in the ideal distribution, by allowing
it to take two kinds of inputs: 1. the description of a function f ; 2. the size of a
function f .

13

– FSS.LocalEval(fi, x): On input the i-th share fi, which is composed of the
items (SP.ski, {SP.pki}ni=1, {SP.Enc(SP.pki, fi)}ni=1), and a value x, run the
spooky evaluation {ci}ni=1 = SP.Eval(Cx, {SP.Enc(SP.pki, fi)}ni=1), where the
circuit Cx(·) is defined as

Hardcode: value x. Input: {SP.Enc(SP.pki, fi)}ni=1.

1. Compute f̂ =
∑n

i=1 SP.Enc(SP.pki, fi).

2. Compute f̂(x).

Fig. 1. Description of function Cx(·)

Then output si = SP.Dec(SP.ski, ci).
– FSS.Reconstruct(pp, {si}ni=1): Given the n shares {si}ni=1 of function f(x), the

reconstruction algorithm outputs f(x) =
∑n
i=1 si.

Correctness Proof. The correctness of our FSS construction is proved using
properties of F-AFS-spooky encryption as defined in Definition 4.

Lemma 1. Our FSS construction described above is correct (c.f. Definition 10).

Proof. Assuming wlog that the evaluate algorithm is deterministic, we obtain the
same {ci}ni=1 = SP.Eval(Cx, {SP.Enc(SP.pki, fi)}ni=1) in algorithm FSS.LocalEval(f̂i, x),
for i ∈ [n]. By the correctness of F-AFS-spooky encryption as stated in Defini-
tion 4, we have

∑n
i=1 si = Cx({fi}ni=1) = f(x), where si = SP.Dec(SP.ski, ci).

Security Proof. In this part, we show that our construction of FSS is secure as
defined in Definition 11. Intuitively, for function queries other than the challenge
one, the simulation computes in the exactly same method as the real execution.
For the challenge function, we rely on the semantic security and psedurandomness
of n− 1 evaluations of challenge function shares on any input, provided by the
underlying spooky encryption to show the indistinguishability between real and
simulated executions. The proof detail is the following.

Theorem 2. Let SP be a secure F-AFS-spooky encryption as defined in Defini-
tion 4. Our construction of FSS described above is secure (c.f. Definition 11).

Proof. We first describe the simulation algorithm S = (S1,S2,S3) that are used
in the proof.

– S1(1λ, n,F): Run FSS.Setup(1λ, n,F) to obtain pp and output pp.
– S2(inp): On input inp = fi or inp = |f∗|:
• On input function fi, first look for (fi, {fij}nj=1) in local storage. If found,

output (fi, {fij}nj=1). Otherwise, compute {fij}nj=1 ← FSS.ShareGen(pp, fi)
and store (fi, {fij}nj=1) locally. Then output (fi, {fij}nj=1).

14

• On input size |f∗|, first choose n − 1 bit strings ti of size |f∗|. For i ∈ [n]
computes (SP.pki,SP.ski) ← SP.Gen(1λ). Then for i ∈ [n − 1], encrypt
the description share using spooky encryption cti ← SP.Enc(pki, ti), and
ctn ← SP.Enc(pki, 0

|f∗|). Output f∗j = (SP.skj , {SP.pki}ni=1, {cti}ni=1) for
j ∈ [n− 1].

– Sf
∗

3 ({f∗i }i∈S , x): On input n − 1 shares {f∗i }i∈S and x, for i ∈ S, compute
yi ← FSS.LocalEval(f∗i , x). Then call the oracle f on input x to obtain y =
f∗(x). Output yn = y −

∑
i∈S yi.

The view of adversary includes (pp, f∗, τ, α), where (τ, α) are states that incor-
porate adversary’s queries to FSS.ShareGen(pp, ·) (or S2) and f∗i/∈[S] (or S3). As

we described above, S1(1λ, n,F) computes FSS.Setup(1λ, n,F) as a subroutine,
so the output pp is identical in these two procedures. For each function query fi,
S2(fi) calls FSS.ShareGen(pp, fi) as a subroutine, so the output of S2(fi) is iden-
tical to that of FSS.ShareGen(pp, fi). For challenge function query S2(|f∗|), the
shares given to adversary are f∗j = (SP.skj , {SP.pki}ni=1, {cti}ni=1) for j ∈ [n− 1].
By the semantic security of underlying spooky encryption, ctn remains secure.
By the second property of spooky encryption (c.f. Definition 4), any n− 1 of the
shares yi above are distributed ε-close to uniform, where yi = FSS.LocalEval(f∗i , x)
for any x.

Lastly, on query x, in the real execution, adversary gets back yn = f∗n(x),
while in the ideal execution, he gets back yn = y −

∑
i∈S yi, where yi ←

FSS.LocalEval(f∗i , x). Also by property of spooky encryption as stated in Defini-
tion 5, the n− 1 shares {yi} are distributed ε-close to uniform. Thus, yn in the
ideal execution is a valid share and is identical to that in real execution.

3.3 Instantiation of DFE from FSS

Let FSS = (FSS.Setup,FSS.ShareGen,FSS.LocalEval,FSS.Reconstruct) be a func-
tion secret sharing scheme for function ensemble F , and FE = (FE.Setup,FE.Keygen,
FE.Enc,FE.Dec) be a functional encryption. The description of DFE scheme
DFE = (Setup,Keygen,Enc,PartDec,Reconstruct) is as follows:

– DFE.Setup(1λ, n): Run the FSS setup algorithm FSS.pp ← FSS..Setup(1λ, n)
and the FE setup algorithm (FE.pp,FE.msk) ← FE.Setup(1λ). Output the
public parameters pp and master secret key msk as

pp = (FSS.pp,FE.pp), msk = FE.msk

– DFE.Enc(pp,m): Run the FE encryption algorithm ct ← FE.Enc(FE.pp,m).
Output ciphertext ct.

– DFE.Keygen(msk, f): Given a function f ∈ F and msk, the key generation
algorithm first runs the share generation algorithm in FSS as {fi}ni=1 ←
FSS.ShareGen(FSS.msk, f), and then compute the key shares by running the

FE key generation as skfi ← FE.Keygen(FE.msk, Ci), for i ∈ [n], where the
function Ci(·) is defined as

15

Hardcode: function share fi Input: value x.

Compute and output ci = FSS.LocalEval(fi, x)

Fig. 2. Description of function Ci(·)

Output the secret key shares {skfi }ni=1.

– DFE.PartDec(ct, skfi): Given the i-th secret key share skfi , compute and output

si = FE.Dec(skfi , ct).
– DFE.Reconstruct(pp, {si}ni=1): Output the reconstructed result as f(m) =∑n

i=1 si.

Correctness Proof. The correctness proof of our DFE construction follows di-
rectly from the correctness of FSS and FE. First by the correctness of FSS
scheme FSS, the output of circuit Ci (c.f. Figure 3.3) satisfies

∑n
i=1 ci = f(m).

Secondly, by correctness of functional encryption scheme FE, the output of
si = FE.Dec(skif , ct), where skif is secret key for circuit Ci satisfies si = ci.
Therefore in DFE.Keygen(msk, f), we also get f(m) =

∑n
i=1 si.

Security Proof. In this part, we show that our construction of DFE satisfies
(sim-based) function privacy and data privacy as defined above. The function
privacy of our DFE construction mainly is based on the sim-based security of
FSS (c.f. Definition 11), thus in our proof below, we use the simulation algorithm
of FSS to setup the system and answer adversary’s queries. The data privacy of
our DFE construction directly follows the ind-based data privacy of underlying
functional encryption (c.f. Definition 3).

Theorem 3. Let FSS be function secret sharing scheme satisfying security as
defined in Definition 11, our construction of DFE described above is function
private (c.f. Definition 8).

Proof. We first describe the simulation algorithm S = (S1,S2,S3) based on the
simulation algorithms of FSS, (FSS.S1,FSS.S2) (as described in the proof of
Theorem 2), that are used in the proof.

– S1(1λ, n): Run the FSS simulated setup algorithm FSS.pp ← FSS.S1(1λ, n)
and the FE setup algorithm (FE.pp,FE.msk) ← FE.Setup(1λ). Send pp =
(FSS.pp,FE.pp) to adversary.

– S2(f): On input function query f , first look for (f, {skfi }ni=1) in local storage.

If found, send (fi, {skfi }ni=1) to adversary. Otherwise, S2 runs the simulation
algorithm FSS.S2(f) of FSS to obtain {fi}ni=1 as shares of function f . Then

for i ∈ [n], compute skfi ← FE.Keygen(msk, fi) and store (f, {skfi }ni=1) locally.

Send (f, {skfi }ni=1) to adversary.

– Sf
∗

3 ({skf
∗

i }
n−1
i=1 , ct): On input ciphertext query ct, first compute x = FE.Dec(skid, ct),

where skid ← FE.Keygen(msk, id) and id denotes the identity function. Then

for i ∈ [n− 1], compute si = FE.Dec(skf
∗

i , ct). Output sn = f(x)−
∑n−1
i=1 si.

16

In the following, we show, that adversary’s view (pp, f∗, τ, α), where (τ, α)
are states that incorporate adversary’s queries to DFE.Keygen (or S2) and

DFE.Dec(skf
∗

n , ·) (or S3), are indistinguishable in the two executions. As described
above, S1 computes the FSS simulated setup FSS.S1 and a real FE.Setup as sub-
routines, by the security of underlying FSS scheme, we have the distribution of
public parameters in real and ideal executions are statistically close. Similarly, by
the security of underlying FSS scheme, the function shares {fi}ni=1 ← FSS.S2(f)
computed in simulation S2(f) is indistinguishable from that in the real execution
DFE.Keygen(f), thus the responses for key queries in the real and ideal execu-

tions are indistinguishable. Lastly, the output sn = Sf
∗

3 ({skf
∗

i }
n−1
i=1 , ct), where

ct = FE.enc(pp, x), satisfies
∑n
i=1 si = f(x), where si = FE.Dec(skf

∗

i , ct) can be
computed by the adversary himself. In conclusion, the view of adversary in real
execution is indistinguishable from that in the ideal execution.

Theorem 4. Let FE be functional encryption scheme satisfying ind-based data
privacy as defined in Definition 3, our construction of DFE described above is
data private (c.f. Definition 9).

Proof. The ciphertext in our DFE construction is indeed a FE ciphertext, thus
by ind-based data privacy of FE scheme, our construction of DFE is data private.

4 Hosting Services Securely in Multiple Clouds

In [BGMS15], the authors consider a setting of hosting service in untrusted
clouds: there exist three parties: Service provider who owns a program and setups
the whole system, cloud server where the program is hosted, and arbitrary many
clients. Intuitively speaking, the service provider wants to host the program P on
a cloud server, and additionally it wants to authenticate clients who pay for the
service provided by program P . This authentication should allow a legitimate user
to access the program hosted on the cloud server and compute output on inputs
of his choice. Moreover, the program P could contain proprietary information,
thus needs to be kept confidential. The authors in [BGMS15] also require that
the scheme satisfies some essential properties:

Weak client: The amount of work performed by client should only depends
on the size of input and security parameter, but independent of the running
time of program P .

Delegation: The work performed by the service provider includes one-time
setup of the whole system and authentication clients. The amount of work
in one-time setup phase should be bounded by a fixed polynomial in the
program size, while the amount of work incurred in authentication should
only depend on the security parameter.

Polynomial slowdown: The running time of encoded program (running on
cloud server) is bounded by a fixed polynomial in the running time of program
P .

17

Boneh et al give a construction based on indistinguishability obfuscation, and
their construction suffers from a restriction that the number of corrupted clients
should be pre-fixed [BGMS15]. In this section, we generalize the above model by
distributing encoded program shares to multiple cloud servers and resolve the
open problem that to remove the restriction on number of corrupted clients from
[BGMS15].

In our Distributed Secure Cloud Service (DSCS) scheme, the service provider
generates a set of encoded program shares for program P , and then hosts each
encoded program share on one cloud server. Any authenticated users can access
the encoded program shares hosted multiple cloud servers and compute output
on inputs of his choice. We also require that our DSCS scheme satisfied the above
three properties.

4.1 Syntax and Security Definitions

The Distributed Secure Cloud Service scheme consists of algorithms DSCS =
(DSCS.Prog,DSCS.Auth,DSCS.Inp,DSCS.Eval,DSCS.Reconstruct) with details as
follows:

– DSCS.Prog(1λ, n, P): On input the security parameter λ, the threshold pa-
rameter n and a program P , it returns the distributed encoded program
{P̃i}ni=1 and a secret sk to be useful in authentication.

– DSCS.Auth(id, sk): On input the identity id of a client and the secret sk, it
produces an authentication token tokenid for the client.

– DSCS.Inp(tokenid, x): On input the authentication token tokenid and an input
x, it outputs an encoded input x̃ and α which is used by the client to later
decode the evaluated results.

– DSCS.Eval(P̃i, x̃): On input the encoded program P̃i and input x̃, it produces
the encoded distributed result ỹi = P̃i(x̃).

– DSCS.Reconstruct({P̃i(x̃)}ni=1): On input the evaluated result {P̃i(x̃)}ni=1, it
reconstructs the result P (x).

Similar to the analysis in [BGMS15], the procedure goes as follows: the service
provider first runs the procedure Prog(1λ, P) to obtain the distributed encoded
program {P̃i}ni=1 and the secret σ. Then for i ∈ [n], it will send P̃i to cloud
server i. Later, the service provider will authenticate users using σ. A client with
identity id, who has been authenticated, will encode his input using procedure
Inp(1λ, σid, x). The client will send x̃ to cloud i, for i ∈ [n]. For i ∈ [n], the cloud
will evaluate the program P̃i on encoded input x̃ and return the result Pi(x).
Finally, the client can run Reconstruct({Pi(x)}ni=1) to obtain the result P (x).

Security definitions. In [BGMS15], the authors consider two cases for security
definition, namely untrusted cloud security and untrusted client security. We
generalize their security definition to the DSCS setting. More specifically, we
decouple the case of untrusted cloud security into two subcases, program privacy
and input privacy in untrusted cloud security. And in untrusted client security,

18

we enhance it by allowing the set of corrupt clients colluding with some corrupt
servers. In various security definitions below, we assume that the service provider
is uncompromisd.

For program privacy in untrusted cloud case, the service provider first setup the
whole system based on program (P0, P1) submitted by adversary. In the system,
the adversary can corrupts a set of servers and also has access to authentication
and encoding oracles, but he cannot tell which program Pb is used to setup the
system. The only restriction here is that P0 and P1 are of the same size.

Definition 12 (Untrusted Cloud Security – Program Privacy). For the
program privacy case in untrusted cloud setting, we first describe the following
experiment Exptprog(1λ) between a challenger and adversary A:

– Setup: The adversary sends challenge programs (P0, P1) to challenger. The
challenger choose a random bit b ∈ {0, 1} and obtains the challenge en-
coded program ({P̃i}ni=1, sk) ← DSCS.Prog(1λ, n, Pb) and sends {P̃i}n−1i=1 to
adversary A.

– Query phase: Proceeding adaptively, the adversary A can submit the fol-
lowing two kinds of queries:

• Authentication query: A sends identity idi to challenger. The challenger
computes tokenidi ← DSCS.Auth(id, sk) and sends back tokenidi .
• Input query: A sends (x, id) to challenger. The challenger computes

ct← DSCS.Inp(tokenid, x), where tokenidi ← DSCS.Auth(id, sk). Then send
back ct.

– Guess: Finally, the adversary A outputs his guess b′ for the bit b.

We say the adversary wins the experiment if b′ = b.
A DSCS scheme is program private in untrusted cloud setting if no ppt

adversary A can win the experiment Exptprog(1λ) with non-negligible probability.

For input privacy in untrusted cloud security, the service provider first sets up
the whole system using program P submitted by adversary. Then in the system,
the adversary corrupts all servers, and additionally has access to authentication
oracles, but he cannot distinguish the encryption of two message (m0,m1), where
P (m0) = P (m1). Put simply, beyond the evaluation of program, he learns nothing
about the underlying message.

Definition 13 (Untrusted Cloud Security – Input Privacy). For the input
privacy case in untrusted cloud setting, we first describe the following experiment
Exptinp(1λ) between a challenger and adversary A:

– Setup: The adversary sends challenge program P to challenger. The chal-
lenger runs ({P̃i}ni=1, sk)← DSCS.Prog(1λ, n, P) and sends {P̃i}ni=1 to adver-
sary A.

– Authentication query phase I: Proceeding adaptively, the adversary A
sends identity idi to challenger. The challenger computes tokenidi ← DSCS.Auth(id, sk)
and sends back tokenidi .

19

– Challenge phase: Adversary submits the challenge message pair (m0,m1, id
∗)

with the constraint that P (m0) = P (m1). The challenger first chooses a
random bit b ∈ {0, 1} and computes ct ← DSCS.Inp(tokenid,mb), where
tokenid∗i ← DSCS.Auth(id∗, sk). Then send ct to adversary.

– Authentication query phase II: The same as Authentication query
phase I with the restriction that the query idi does not equal id∗ in the
challenge phase

– Guess: Finally, the adversary A outputs his guess b′ for the bit b.

We say the adversary wins the experiment if b′ = b.
A DSCS scheme is data private in untrusted cloud setting if no ppt adversary

A can win the experiment Exptinp(1λ) with non-negligible probability.

Remark 2. We note that in the above data privacy definition, the challenge phase
can be access multiple times as long as the query pair (m0,m1, id

∗
i) satisfies

P (m0) = P (m1), and challenger use the same random bit b in generating the
challenge ciphertext.

For untrusted client security, a collection of corrupt clients with the help of
a subset of corrupt servers do not learn anything beyond the program’s output
with respect to their identities on certain inputs of their choice, and if a client is
not authenticated, it learns nothing.

Definition 14 (Untrusted Client Security). Let DSCS be the secure Dis-
tributed Secure Cloud Service scheme as described above. We say the scheme
satisfies untrusted client security if the following holds. Let A be a ppt ad-
versary who corrupts ` clients I = {id1, . . . , id`}. Consider any program P , let
Q = poly(λ). The experiment described below requires one additional proce-
dure decode. Based on these two procedures, we define simulator S = (S1,S2).
Consider the following two experiments:

The experiment Real(1λ) is as follows:

1. ({P̃}ni=1, sk)← DSCS.Prog(1λ, n, P).
2. For all i ∈ [`], tokenidi ← DSCS.Auth(idi, sk).
3. For i ∈ [Q], A({P̃}n−1i=1) adaptively sends an encoding x̃i, using identity

id, and gets back response

ỹij = P̃j(xi)← DSCS.Eval(P̃j , x̃i),∀j ∈ [n]

4. Output ({P̃}n−1i=1 , {tokenidi}i∈[`], {ỹij}).

The experiment IdealP(1λ) is as follows:

1. {P̃ ′i}ni=1 ← S1(1λ, n).
2. For all i ∈ [`], tokenidi ← S2(idi)
3. For i ∈ [Q], A({P̃}n−1i=1) adaptively sends an encoding x̃i, using identity

id,
– If id /∈ I, then return ỹij = ⊥ for j ∈ [n].

20

– Otherwise, compute xi = decode(σ, x̃i). Then the simulator sends (id, xi)
to oracle P and obtains yi = P (id, xi). Simulator then sends shares
{yij}j∈[n] of yi to adversary A.

4. Output ({P̃}n−1i=1 , {tokenidi}i∈[`], {ỹij}).

Then we have Real(1λ)
c
≈ SimP(1λ).

4.2 Our DSCS Construction

Let DFE = (DFE.Setup,DFE.Keygen,DFE.Enc,DFE.PartDec,DFE.Reconstruct) be
a distributed functional encryption and Σ = (Σ.Setup, Σ.Sign, Σ.Verify) be an
existential unforgeable signature scheme. We describe our construction for DSCS
as follows:

– DSCS.Prog(1λ, n, P): First run

(DFE.pp,DFE.msk)← DFE.Setup(1λ, n), (Σ.sk, Σ.vk)← Σ.Setup(1λ)

Then let the augmented program Paug be

Hardcode: DFE.pp, Σ.vk and program P Input: signature σ, value x and id.

1. If Σ.Verify(σ, id, Σ.vk) = 0, output ⊥.
2. Compute and output P (x).

Fig. 3. Description of augmented program Paug

And compute {skPaug

i }ni=1 ← DFE.Keygen(DFE.msk, Paug). For i ∈ [n], define

the distributed encoded program P̃i
7 as

Hardcode: sk
Paug

i and algorithm DFE.Dec. Input: ciphertext ct.

Compute and output DFE.PartDec(sk
Paug

i , ct).

Fig. 4. Description of distributed encoded program P̃i

Output {P̃i}ni=1 and secret sk = (Σ.sk,DFE.pp).
– DSCS.Auth(id, sk): First parse sk = (Σ.sk,DFE.pp), and then compute σid ←
Σ.Sign(Σ.sk, id). Output tokenid = (σid,DFE.pp).

– DSCS.Inp(tokenid, x): First parse tokenid = (σid,DFE.pp), then compute ct←
DFE.Enc(DFE.pp, σid||x). Output ciphertext x̃ = ct.

– DSCS.Eval(P̃i, x̃): Compute and output ỹi = P̃i(x̃).
– DSCS.Reconstruct({ỹi}ni=1): Compute and output y = DFE.Reconstruct({ỹi}i∈[n]).
7 We note that the distributed encoded program P̃i does not require obfuscation

21

Correctness Proof. The correctness proof of our DSCS construction follows
directly from the correctness of underlying distributed functional encryption
scheme DFE and signature scheme Σ. As we described above, in the distributed
encoded program P̃i, it outputs ⊥ for an invalid signature, otherwise outputs

ỹi = DFE.PartDec(sk
Paug

i , ct), where ct = DFE.Enc(DFE.pp, σid||x). By correctness
of DFE, the output of DSCS.Reconstruct({ỹi}ni=1) is P (x).

Security Proof. In this part, we show that our DSCS construction satisfies
untrusted cloud security (program and data privacy) and untrusted client security
as defined above. Intuitively, the program privacy in untrusted cloud setting
can reduce to the ind-based function privacy of underlying DFE scheme, thus
in the proof we construction a reduction that reduces the program privacy
property to the ind-based function privacy of DFE scheme. The data privacy in
untrusted cloud setting can be based on ind-based data privacy of DFE scheme,
so similarly we show a reduction that bounds this two properties together. Lastly,
the untrusted client security is based on the sim-based function privacy of DFE
scheme. Therefore, we use the simulation algorithms of DFE to do the simulation
for our DSCS construction. The detailed proofs are as follows.

Theorem 5. Let distributed functional encryption DFE satisfy ind-based function
privacy (c.f. Definiton 7), then our DSCS construction described above satisfies
program privacy in untrusted cloud setting (c.f. Definition 12).

Proof. We describe a reduction B against the ind-based function privacy of under-
lying DFE scheme. If the adversary A can win the experiment ExptDFE-func

A (1λ) as
defined in Definition 7, then reduction B can also win the experiment Exptprog(1λ)
as defined in Definition 12. The description of reduction B is as follows:

– Setup: B interacts with the challenger of DFE to obtain DFE.pp and computes
(Σ.vk, Σ.sk)← Σ.Setup(1λ). Then B invokes adversary A to get the challenge
programs (P 0, P 1). Next, B sends the augmented program (P 0

aug, P
1
aug) (as

described in Figure 3) to the challenger of DFE, and the challenger sends

back {skP
b
aug

i }ni=1. Lastly, B sends {P̃i}n−1i=1 to adversary, where {P̃i}ni=1 are

constructed as in Figure 4 using {skP
b
aug

i }ni=1 as input.
– Identity query: On input identity query idi, B computes σid ← Σ.Sign(Σ.sk, id)

and sends back tokenid = (σid,DFE.pp) to adversary A.
– Input query: On input (x, id), B computes ct← DSCS.Inp(tokenid, x), where

tokenidi ← DSCS.Auth(id, sk). Then send back ct.
– Guess: B receives adversary A’s guess b′. And B outputs b′ as his guess for

the DFE experiment ExptDFE-func(1λ).

We now argue that the adversary’s view ({P̃i}n−1i=1 , {tokenid}, {ct}) in real exe-
cution is identical here as produced by reduction B. This follows obviously, as
{P̃i}ni=1 is generated in the same way with the help of the challenge of DFE,
tokenid is valid signature of identity id. The ciphertexts {ct} are generated in the
same way in both executions. Therefore, a correct guess b′ from adversary A is a
correct guess for experiment ExptDFE-func(1λ).

22

Theorem 6. Let distributed functional encryption DFE satisfy ind-based data
privacy (c.f. Definiton 9), then our DSCS construction described above satisfies
input privacy in untrusted cloud setting (c.f. Definition 13).

Proof. We describe a reduction B against the ind-based data privacy of underlying
DFE scheme. If the adversary A can win the experiment ExptDFE-data(1λ) as
defined in Definition 9, then reduction B can also win the experiment Exptinp(1λ)
as defined in Definition 13. The description of reduction B is as follows:

– Setup; B interacts with the challenger of DFE to obtain DFE.pp and computes
(Σ.vk, Σ.sk)← Σ.Setup(1λ). Then B invokes adversary A to get the program
P . Next, B sends the augmented program Paug (as described in Figure 3) to

the challenger of DFE, and the challenger sends back {skPaug

i }ni=1. Lastly, B
sends {P̃i}ni=1 to adversary, where {P̃i}ni=1 are constructed as in Figure 4.

– Authentication query phase I: On input identity query idi, B computes
σid ← Σ.Sign(Σ.sk, id) and sends back tokenid = (σid,DFE.pp) to adversary A.

– Challenge phase: On input (m0,m1, id
∗) from adversary, where P (m0) =

P (m1), B first computes σid∗ ← Σ.Sign(Σ.sk, id∗), and sends (m0||σid∗ ,m1||σid∗)
to challenger, and receives challenge ciphertext ct∗.

– Authentication query phase II: Same as Authentication query phase I.
– Guess: B receives adversary A’s guess b′. And B outputs b′ as his guess for

the DFE experiment ExptDFE-data(1λ).

We now argue that the adversary’s view ({P̃i}ni=1, {tokenid}, ct∗) in real execution
is identical here as produced by reduction B. This follows obviously, as {P̃i}ni=1 is
generated in the same way with the help of the challenge of DFE, tokenid is valid
signature of identity id. For the challenge ciphertext ct∗, since P ′(m0||σid∗) =
P ′(m1||σid∗), so the query (m0||σid∗ ,m1||σid∗) is a valid one. Therefore, a correct
guess b′ from adversary A is a correct guess for experiment ExptDFE-data(1λ).

Theorem 7. Let distributed functional encryption DFE satisfy sim-based func-
tion privacy (c.f. Definition 8) and Σ be an existential unforgeable signature
scheme (c.f. Definition 1), then our DSCS construction described above satisfies
untrusted client security (c.f. Definition 14).

Proof. Based on the simulation algorithms of distributed functional encryption
(DFE.S1,DFE.S2,DFE.S3) (c.f. Definition 8), we first describe the simulation
algorithms (S1,S2) and procedure decode as follows:

– S1(1λ, n): The simulation S1 first runs DFE.S1(1λ, n) to obtain DFE.pp, and
Σ.Setup(1λ) to obtain (Σ.vk, Σ.sk). Then S1 chooses a random program P ′

of the same size as P , and computes {skP
′
aug

i }ni=1 ← DFE.S2(P ′aug), where P ′aug
is the augmented program of P ′ (c.f. Figure 3). Then compute {P̃ ′i}ni=1 as
described in Figure 4 and send back {P̃ ′i}

n−1
i=1 to adversary.

– S2(idi): On input identity idi, S2 computes σidi ← Σ.Sign(Σ.sk, idi). Send back
tokenidi = (σidi ,DFE.pp).

23

– decode(x̃i, id): On input ciphertext x̃ and identity id, it first computes {skIndi }ni=1 ←
DFE.S2(Ind), where Ind denotes the identity function, i.e. Ind(x) = x, for
any x. Then compute xi||σid = DFE.Reconstruct(DFE.pp, {sj}nj=1), where

sj = DFE.PartDec(x̃i, sk
Ind
j) for j ∈ [n]. Output ⊥ if Σ.Verify(Σ.vk, id, σid) = 0.

Otherwise, choose n− 1 random values {yij}n−1j=1 , then query DFE.SP3 on input

(xi, {yij}n−1j=1) to get yin. Lastly, send back {yij}nj=1 back to adversary.

In the following, we show that adversary’s view ({P̃}n−1i=1 , {tokenidi}i∈[`], {ỹij})
in the two executions are indistinguishable. By the sim-based function pri-
vacy of DFE, {P̃}n−1i=1 in the two executions are indistinguishable. The tokens
({tokenidi}i∈[`] are computed identically in the two execution, thus they are in-
distinguishable in two executions. For query (x̃i, id), by the unforgeability of
signature scheme Σ, if the underlying plaintext of x̃i does not contain a valid
signature of id, then both executions output ⊥ for query (x̃i, id). Otherwise, by the
sim-based function privacy of DFE, the output {yij}nj=1 returned by simulation

DFE.SP3 is indistinguishable from that in the real execution. Therefore, we reach
the conclusion that our DSCS construction satisfies untrusted client security.

Additional properties. We remark that there are multiple additional proper-
ties we can consider for the application of hosting service in a cloud.

First, we can inherit the two extra properties of verifiability and persistent
memory mentioned briefly in [BGMS15]. The verifiability requires that the validity
of the results returned by the server can be checked, same as [BGMS15], we can
rely on the technology of verifiable computation [GHRW14]. Persistent memory
property is to consider the server can maintain a state for each client across
different invocations. We can do the same as in [BGMS15] except the client needs
to return the aggregated value back after each invocation.

Furthermore, we remark that as our construction is very simple and easy to
extend, we can further support many other properties as well. Here we only list
two examples. (i) Our current version and previous work [BGMS15] only puts
the authentication on the client, once authorized, the client can query the cloud
unlimitedly. If the service provider wants to post more fine grained control on
each input data, we can further enable this by embedding the access structure
into the function. (ii) We can further support client anonymity that the server
(even all of them collude) cannot recognize whether two queries are from the
same client. Currently, the client will submit the authentication token together
with the data. It is easy to see that if we replace the token with an anonymous
credential, we can have the additional anonymity.

5 Conclusion and Open Problems

We study the problem of public key functional encryption in a distributed model.
Such a model enables us to circumvent the impossibility of function privacy in
public key functional encryption. We formulated such a new primitive and gave a
construction from functional secret sharing, which can be obtained from learning

24

with error assumption. We showcased the power of our new primitive by applying
it to host services in multiple clouds.

One important observation of our distributed public key functional encryption
is that achieving function privacy in this alternative model yields the power of
virtual black-box obfuscation (essentially), which could potentially help circum-
vent other theoretic impossibilities in a distributed model. Another observation
that may benefit application is that our construction is generic that upgrades
any functional encryption. In some applications, we may only need a functional
encryption for a special class of functions, which could have efficient construc-
tions. This in turn yields potentially practical solutions for a class of important
problems, such as encrypted search [SSW09], and copyright protection [KT15].

We leave the exploration of those interesting questions as open problems.

References

AAB+13. Shashank Agrawal, Shweta Agrawal, Saikrishna Badrinarayanan, Abishek
Kumarasubramanian, Manoj Prabhakaran, and Amit Sahai. Functional
encryption and property preserving encryption: New definitions and positive
results. Cryptology ePrint Archive, Report 2013/744, 2013. http://eprint.
iacr.org/2013/744.

AAB+15. Shashank Agrawal, Shweta Agrawal, Saikrishna Badrinarayanan, Abishek
Kumarasubramanian, Manoj Prabhakaran, and Amit Sahai. On the practical
security of inner product functional encryption. In Jonathan Katz, editor,
PKC 2015, volume 9020 of LNCS, pages 777–798. Springer, Heidelberg,
March / April 2015.

AGVW13. Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck
Wee. Functional encryption: New perspectives and lower bounds. In Canetti
and Garay [CG13], pages 500–518.

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 1–18. Springer, Heidelberg, August 2001.

BGI15. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In
Oswald and Fischlin [OF15], pages 337–367.

BGI16. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Im-
provements and extensions. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM
CCS 16, pages 1292–1303. ACM Press, October 2016.

BGMS15. Dan Boneh, Divya Gupta, Ilya Mironov, and Amit Sahai. Hosting services
on an untrusted cloud. In Oswald and Fischlin [OF15], pages 404–436.

BRS13a. Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private identity-
based encryption: Hiding the function in functional encryption. In Canetti
and Garay [CG13], pages 461–478.

BRS13b. Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private subspace-
membership encryption and its applications. In Kazue Sako and Palash
Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages
255–275. Springer, Heidelberg, December 2013.

25

http://eprint.iacr.org/2013/744
http://eprint.iacr.org/2013/744

BS15. Zvika Brakerski and Gil Segev. Function-private functional encryption
in the private-key setting. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, TCC 2015, Part II, volume 9015 of LNCS, pages 306–324. Springer,
Heidelberg, March 2015.

BSW11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Defi-
nitions and challenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of
LNCS, pages 253–273. Springer, Heidelberg, March 2011.

CG13. Ran Canetti and Juan A. Garay, editors. CRYPTO 2013, Part II, volume
8043 of LNCS. Springer, Heidelberg, August 2013.

CGJS15. Nishanth Chandran, Vipul Goyal, Aayush Jain, and Amit Sahai. Functional
encryption: Decentralised and delegatable. Cryptology ePrint Archive,
Report 2015/1017, 2015. http://eprint.iacr.org/2015/1017.

DHRW16. Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky
encryption and its applications. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 93–122.
Springer, Heidelberg, August 2016.

GGG+14. Shafi Goldwasser, S Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan
Katz, Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-
input functional encryption. In Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, pages 578–602. Springer,
2014.

GHRW14. Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing
private RAM computation. In 55th FOCS, pages 404–413. IEEE Computer
Society Press, October 2014.

GVW12. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional
encryption with bounded collusions via multi-party computation. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417
of LNCS, pages 162–179. Springer, Heidelberg, August 2012.

hul. Hulu’s move into live television makes amazon a surprise winner. http:

//fortune.com/2017/08/15/hulu-live-tv-amazon-aws/.
KSW08. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption

supporting disjunctions, polynomial equations, and inner products. In
Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages
146–162. Springer, Heidelberg, April 2008.

KT15. Aggelos Kiayias and Qiang Tang. Traitor deterring schemes: Using bitcoin
as collateral for digital content. In Indrajit Ray, Ninghui Li, and Christopher
Kruegel:, editors, ACM CCS 15, pages 231–242. ACM Press, October 2015.

KZ16. Ilan Komargodski and Mark Zhandry. Cutting-edge cryptography through
the lens of secret sharing. In Eyal Kushilevitz and Tal Malkin, editors,
TCC 2016-A, Part II, volume 9563 of LNCS, pages 449–479. Springer,
Heidelberg, January 2016.

net. Completing the netflix cloud migration. https://media.netflix.com/en/

company-blog/completing-the-netflix-cloud-migration.
OF15. Elisabeth Oswald and Marc Fischlin, editors. EUROCRYPT 2015, Part II,

volume 9057 of LNCS. Springer, Heidelberg, April 2015.
O’N10. Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology

ePrint Archive, 2010:556, 2010.
pok. Bringing pokmon go to life on google cloud.

https://cloudplatform.googleblog.com/2016/09/

bringing-Pokemon-GO-to-life-on-Google-Cloud.html.

26

http://eprint.iacr.org/2015/1017
http://fortune.com/2017/08/15/hulu-live-tv-amazon-aws/
http://fortune.com/2017/08/15/hulu-live-tv-amazon-aws/
https://media.netflix.com/en/company-blog/completing-the-netflix-cloud-migration
https://media.netflix.com/en/company-blog/completing-the-netflix-cloud-migration
https://cloudplatform.googleblog.com/2016/09/bringing-Pokemon-GO-to-life-on-Google-Cloud.html
https://cloudplatform.googleblog.com/2016/09/bringing-Pokemon-GO-to-life-on-Google-Cloud.html

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84–93. ACM Press, May 2005.

SSW09. Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption
systems. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages
457–473. Springer, Heidelberg, March 2009.

27

	Making Public Key Functional Encryption Function Private, Distributively
	 Xiong Fan1 Qiang Tang2

