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Abstract. This paper suggests to use rounded Gaussians in place of
discrete Gaussians in rejection-sampling-based lattice signature schemes
like BLISS or Lyubashevsky’s signature scheme. We show that this distri-
bution can efficiently be sampled from while additionally making it easy
to sample in constant time, systematically avoiding recent timing-based
side-channel attacks on lattice-based signatures.

We show the effectiveness of the new sampler by applying it to BLISS,
prove analogues of the security proofs for BLISS, and present an im-
plementation that runs in constant time. Our implementation needs no
precomputed tables and is twice as fast as the variable-time CDT sam-
pler posted by the BLISS authors with precomputed tables.

Keywords: Post-quantum cryptography, lattice-based cryptography, sig-
natures, Gaussian sampling, BLISS, constant-time implementations.

1 Introduction

Lattice-based cryptography is a promising candidate for post-quantum cryptog-
raphy. A key reason for this – especially from an applied point of view – is that
it is known how to construct efficient signature and encryption/key-exchange
schemes from lattice assumptions. As both primitives are needed for many appli-
cations this is an advantage as it allows for code reuse and relying on one sort of
cryptographic hardness assumptions instead of two. For all other well-established
candidate areas of post-quantum cryptography we only know how to construct ef-
ficient and confidence-inspiring signatures or encryption/key-exchange schemes.

In this work we take a look at lattice-based signature schemes. The most
efficient lattice-based signature scheme with a security reduction from standard
lattice problems today is BLISS (Bimodal Lattice Signature Scheme) [11], de-
signed by Ducas, Durmus, Lepoint and Lyubashevsky. BLISS is one of the few
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post-quantum schemes of which there already exists a production-level imple-
mentation. BLISS (or rather its subsequent improvement BLISS-b [10] by Ducas)
is available in the open-source IPsec Linux library strongSwan [24].

BLISS builds on Lyubashevsky’s signature scheme [16] which initiated the
use of rejection sampling to make the signature distribution independent of the
used secret key. In the most basic version of these schemes, a discrete Gaussian
vector is added to a vector that depends on the secret key. The resulting vector
follows a discrete Gaussian distribution that is shifted by a vector that depends
on the secret key. To avoid leaking the secret key, a rejection step is executed
that ensures that the output distribution is independent of the secret key, i.e.
the outputs follow again a centered discrete Gaussian distribution.

The use of discrete Gaussian vectors to blind secrets is a very common
approach in lattice-based cryptography. However, it is not trivial to sample
from a discrete Gaussian efficiently. Over the last few years, many works have
been published that deal with efficient sampling routines for discrete Gaus-
sians, see e.g. [8,21,11,12,19]. Despite the number of publications, none achieved
constant-time sampling. At CHES 2016, Groot-Bruinderink, Hülsing, Lange, and
Yarom [7] demonstrated that these sampling methods enable a cache attack on
BLISS which recovers the secret key after less than 5000 signatures. While the
attack is only implemented for two samplers, the appendix of the full version sur-
veys other efficient samplers and shows for each of them that they have similar
issues.

In [7], the authors already discuss straightforward approaches for achieving
constant-time implementations of discrete Gaussian samplers, such as determin-
istically loading entire tables into cache or fixing the number of iterations for
some functions by introducing dummy rounds. While such approaches might
work for encryption schemes such as [5], signatures require much wider Gaus-
sians to achieve security. Hence, the impact on efficiency of applying these coun-
termeasures is larger, effectively rendering their use prohibitive.

A different way to deal with such attacks is to complicate the attack. Such a
heuristic approach was proposed by Saarinen [22]. However, this approach does
not fix the vulnerability, as shown by Pessl [18]; this only makes it harder to
exploit it. In consequence, it starts a cat-and-mouse game of attack and fix.

Our contribution. To stop such a cat-and-mouse game before it fully starts,
this work deals with ways to systematically fix the vulnerability. We propose to
take a completely different approach by replacing discrete Gaussians by a dif-
ferent distribution, namely the rounded Gaussian distribution. This distribution
shares the benefits of the discrete Gaussians that (slightly) shifted distributions
are relatively close to centered distributions. However, the security analysis of
using rounded Gaussians in Lyubashevsky’s scheme and in BLISS is somewhat
more involved than for discrete Gaussians as the probability density function of
rounded Gaussians is the integral of a continuous Gaussian. Our main theoretical
contribution is a proof that it is safe to replace the discrete Gaussian distribu-
tion by a rounded Gaussian distribution in these schemes, while the resulting
rejection rates are identical.
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As the name suggests, sampling from a rounded Gaussian is done by sampling
from a continuous Gaussian and rounding the result to an integer. The Box-
Muller method is an efficient way of computing samples of continuous Gaussians
starting from uniformly random numbers, and all steps leading to rounded Gaus-
sian samples are efficiently and easily computed in constant time. We present
a constant-time implementation of rounded Gaussians suitable for the BLISS-I
parameter set and show that it is more than twice as fast as a sampler based on
cumulative distribution tables (CDT) as implemented by the authors of BLISS.
The CDT sampler uses large precomputed tables to speed up sampling. Note
that the CDT sampler is exactly the one that [7] broke at CHES 2016. Using
rounded Gaussians brings better speed and better security. Another benefit of
rounded Gaussians is that they can use the Box-Muller sampler (see Section 4.1)
which naturally does not require any precomputed tables, hence can work with
a small code base, and furthermore is extremely easy to implement.

We conclude our work with our second theoretical contribution – a proof
that using rounded Gaussians, sampled using our Box-Muller implementation
is secure. For this we provide a detailed analysis of the new sampler. We study
the difference between (perfect) rounded Gaussians and implementations with
finite precision p using statistical distance and Rényi divergence. We also com-
pare the asymptotic results using these different measures. We instantiate the
calculation for BLISS parameters and the precision achieved by our Box-Muller
implementation to derive bounds on the allowable number of signatures per key
pair.

Related work. Rounded Gaussians are not a new distribution, in fact they
have been used in the initial proposals for learning with errors, but were re-
placed by discrete Gaussians to make proofs and protocols easier (the sum of
two discrete Gaussians is a discrete Gaussian). See, e.g. Regev [20, p.90] for
an overview of distributions and [9] for an analysis of wrapped rounded Gaus-
sians. Encryption schemes can be secure with narrow non-Gaussian distributions
(NTRU/Frodo/New Hope) but signatures are much harder to protect, need much
wider distributions (larger parameter σ), seemed to need discrete Gaussians, and
so far were analyzed only for discrete Gaussians.

The work in this paper is based on Smeets masters thesis [23]. After a first
version of our paper was circulated we became aware of a recent paper by Mic-
ciancio and Walter [17] which has a new proposal to perform sampling of discrete
Gaussians in constant time. The target of our paper is very different: Showing
that rounded Gaussians can efficiently be sampled in constant time and that
their use in signature schemes is safe.

Acknowledgements. The authors would like to thank Jacob Appelbaum for
discussions about the implementation; Daniel J. Bernstein for help with the im-
plementation, benchmarking, and many useful discussions; Leo Ducas for discus-
sions about replacing discrete Gaussians in lattice-based signatures; and Marko
Boon for discussions about the standard deviation of the rounded Gaussian dis-
tribution.
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2 Preliminaries

Vectors, considered as column vectors, will be written in bold lower case let-
ters; matrices will be written in upper case bold letters. For a vector a =
(a1, a2, . . . , an) ∈ Rn, the Euclidean norm is defined by ‖a‖ =

√∑n
i=1 a

2
i . The

∞-norm is defined by ‖a‖∞ = max (|a1|, |a2|, . . . , |an|). The Hamming weight
wt(a) is the number of non-zero positions in a. For two vectors a = (a1, a2, . . . , an)
and b = (b1, b2, . . . , bn), both in Rn, denote the inner product by 〈a,b〉 =∑n
i=1 aibi.
In this paper we will be concerned with (discrete) probability functions. For

a distribution h, we denote by x
$←− h that x is sampled according to h. For a

set S we denote by s
$←− S that s ∈ S is sampled uniformly at random from S.

We now cover some background on Gaussian distributions and signature
schemes. We follow Lyubashevsky [16] closely and take definitions from there
with minor modifications. Many lattice-based schemes use rejection sampling to
massage one distribution to fit another. The following m-dimensional version
which samples once from the provided distribution and outputs with a certain
probability depending on both the target distribution and the sample is copied
from Lemma 4.7 of the full ePrint version of [16].

Lemma 2.1 (Rejection Sampling). Let V be an arbitrary set, and h : V → R
and f : Zm → R be probability distributions. If gv : Zm → R is a family of
probability distributions indexed by v ∈ V with the property

∃M ∈ R : ∀v ∈ V : Pr[Mgv(z) ≥ f(z); z
$←− f ] ≥ 1− ε,

then the distribution of the output of the following algorithm A:

1: v
$←− h

2: z
$←− gv

3: output (z,v) with probability min
(

f(z)
Mgv(z)

, 1
)

is within statistical distance ε/M of the distribution of the following algorithm
F :

1: v
$←− h

2: z
$←− f

3: output (z,v) with probability 1/M .

Moreover, the probability that A outputs something is at least (1− ε)/M .

2.1 Discrete Gaussian Distribution

The discrete Gaussian distribution is based on the continuous Gaussian distri-
bution. The definition of the continuous Gaussian distribution, also called the
Normal distribution, is given by:

Definition 2.1. The continuous Gaussian distribution over Rm centered at some
v ∈ Rm with standard deviation σ is defined for x ∈ Rm as the (joint) density

ρmv,σ(x) =
(

1√
2πσ2

)m
e
−‖x−v‖2

2σ2 .
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When v = 0, we simply write ρmσ (x). The definition of the discrete Gaussian
distribution is given by:

Definition 2.2. The discrete Gaussian distribution over Zm centered at some
v ∈ Zm with parameter σ is defined for x ∈ Zm as Dm

v,σ(x) = ρmv,σ(x)/ρmσ (Zm),
where ρmσ (Zm) =

∑
z∈Zm ρ

m
σ (z).

Note that the discrete Gaussian distribution is defined over all length-m
integer vectors in Zm. However, samples with large entries have negligible prob-
ability. Implementations need to provision for the maximal size of coefficients
and table-based sampling schemes would require a lot of storage to cover rarely
used values and still not cover all possibilities. Therefore, a tail cut τ is used,
meaning that only integers in [−τσ, τσ]

m
are sampled. Results about the nec-

essary size of the tail cut can be found in [16] and Lemma A.2. In practice, τ
is often chosen as

√
2λ ln 2, where λ is the security level because that ensures a

negligible loss in values.

2.2 Lyubashevsky’s Signature Scheme

In 2012 Lyubashevsky [16] designed a signature scheme that uses an m × n
matrix S with small coefficients as secret key and the following two matrices as
public key: a random matrix A ∈ Zn×m2q , m = 2n, and the n×n matrix T = AS
mod q, where q is an integer. The matrix A can be shared among all users,
but the matrix T is individual. To sign a message, the signer picks a vector y
according to the m-dimensional discrete Gaussian. Then c = H(Ay mod q, µ),
where H(·) is a hash function, and the potential signature vector z = Sc+y are
computed.

The system then uses rejection sampling to shape the distribution of z to
a centered discrete Gaussian, i.e., to decide whether to output the candidate
signature (z, c). In terms of Lemma 2.1, h is the distribution of Sc, gv is the
m-dimensional discrete Gaussian Dv,σ(z) centered around v = Sc, and f is the
m-dimensional centered discrete Gaussian Dm

σ (z).
Because Dm

σ (z) is independent of S the signatures do not leak information
about the private key.

2.3 Bimodal Lattice Signature Scheme: BLISS

Ducas, Durmus, Lepoint and Lyubashevsky introduced the Bimodal Lattice Sig-
nature Scheme (BLISS) in [11]. BLISS is an improvement of Lyubashevsky’s
signature scheme described above in that signatures are smaller and generated
faster. We only cover signature generation here as we are focusing on the use
of the discrete Gaussian distribution. For a full description of BLISS, see [11].
BLISS uses a special hash function H mapping to {c ∈ {0, 1}n|wt(c) = κ} for
κ some small constant. A simplified version of the BLISS signature algorithm is
given in Algorithm 2.1.

Given a message µ, the signing algorithm first samples a vector y from the m-
dimensional discrete Gaussian distribution Dm

σ . Then it computes the hash c←
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Algorithm 2.1 Simplified BLISS Signature Algorithm using matrices

Input: Message µ, public key A ∈ Zn×m2q and secret key S ∈ Zm×n2q

Output: A signature (z, c) of the message µ
1: y← Dm

σ

2: c← H(Ay mod 2q, µ) // c ∈ {0, 1}n, wt(c) = κ, κ small constant
3: Choose a random bit b ∈ {0, 1}
4: z← y + (−1)bSc

5: Output (z, c) with probability 1
/(

M exp
(
− ‖Sc‖2

2σ2

)
cosh

(
〈z,Sc〉
σ2

))

H(Ay mod 2q, µ). It samples a random bit b ∈ {0, 1} and computes the potential
signature z ← y + (−1)bSc. Now that the signing algorithm has z, it performs
rejection sampling according to Lemma 2.1, i.e., it outputs the signature (z, c)

with probability 1
/(

M exp
(
−‖Sc‖

2

2σ2

)
cosh

(
〈z,Sc〉
σ2

))
, where M is some fixed

positive real constant that is set large enough to ensure that this probability
is at most 1 for all choices of c. If the signature algorithm is unsuccessful, it
restarts with a fresh y and continues until a signature is output.

Again, rejection sampling is used to force the distribution of the output z to
be that of a centered Gaussian distribution (i.e., to be independent of Sc).

The bulk of the time in one round of the signing algorithm using BLISS
is spent in the first step in generating m samples from the one-dimensional
Gaussian. The number of repetitions depends on M and the size of Sc.

Bound on ‖Sc‖. The parameter σ of the discrete Gaussian distribution, the
size of Sc, and the rejection rate M control how much the distributions of the
target distribution Dm

σ and the input distribution overlap, i.e., how small ε can
be achieved. For BLISS the input distribution is a bimodal Gaussian distribution
0.5(Dm

−Sc,σ +Dm
Sc,σ). BLISS’ authors show that rejection sampling can be used

without error, i.e., ε = 0 is possible in Lemma 2.1 with resonable choices of σ
and M . In later sections we require an upper bound on ‖Sc‖ for proofs. In [11]
a new measure Nκ(X) of S, adapted to the form of c, is presented.

Definition 2.3. For any integer κ, Nκ : Rm×n → R is defined as:

Nκ(X) = max
I⊂{1,...,n},#I=κ

∑
i∈I

 max
J⊂{1,...,n},#J=κ

∑
j∈J

Wi,j

 ,

where W = XT ·X ∈ Rn×n.

With this definition, the authors of [11] show that for any c ∈ {0, 1}n with
wt(c) ≤ κ, we have ‖Sc‖2 ≤ Nκ(S) [11, Proposition 3.2]. In addition to the
use of bimodal Gaussians, this upper bound lowers the parameter σ by a factor
≈
√
κ/2 compared to [16].
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3 Rounded Gaussian Rejection Sampling

In this section we discuss the applicability of the rounded Gaussian distribution
in rejection-sampling-based signature schemes. After giving a formal definition
of the rounded Gaussian distribution, we provide proofs showing that it can be
used to replace the discrete Gaussian distribution in Lyubashevsky’s signature
scheme and in BLISS. We show the analogies between the rounded Gaussian
distribution and the discrete Gaussian distribution and we point out where the
security reductions differ when rounded Gaussians are used in place of discrete
Gaussians. In practice, the most important question is how the probability in
Step 5 in Algorithm 2.1 (and the equivalent on in Lyubashevsky’s scheme) needs
to change if y is sampled according to the rounded Gaussian distribution instead
of the discrete Gaussian distribution. Note, again, that this step determines the
rejection rate, i.e. how many times the algorithm needs to restart sampling fresh
randomness.

To simplify comparisons and show that rounded Gaussians can be used in
place of discrete Gaussians we follow the presentation and structure from [16]
and [11] very closely. The main difference is that the definition of rounded Gaus-
sians requires integrals over an interval of length 1, while the definition of discrete
Gaussians requires a division by the probability mass at all integers. We essen-
tially have to prove the same lemmas that were shown for discrete Gaussians
in [16] and [11] for rounded Gaussians. In the end closely analogous results hold
but the analysis turns out far more complicated than in the discrete Gaussian
setting because we have to deal with bounding integrals.

3.1 Rounded Gaussian Distribution

We now formally define the rounded Gaussian distribution. Intuitively, the rounded
Gaussian distribution is obtained by rounding samples from a continuous Gaus-
sian distribution to the nearest integer xi. To compute the probability at an
integer xi, we compute the integral over the interval (xi − 1

2 , xi + 1
2 ].

Definition 3.1. The rounded Gaussian distribution over Zm centered at some
v ∈ Zm with parameter σ is defined for x ∈ Zm as

Rmv,σ(x) =

∫
Ax

ρmv,σ(s)ds =

∫
Ax

(
1√

2πσ2

)m
exp

(
−‖s− v‖2

2σ2

)
ds,

where Ax denotes the area defined by
[
x1 − 1

2 ;x1 + 1
2

)
×· · ·×

[
xm − 1

2 ;xm + 1
2

)
.

We point out that this gives us vol(Ax) = 1, since the volume of this area is
equal to |(x1 + 1

2 )− (x1 − 1
2 )| · · · |(xm + 1

2 )− (xm − 1
2 )|. Note that the parame-

ter σ in the definition above is the standard deviation of the underlying con-
tinuous Gaussian and not the standard deviation σ′ of the rounded Gaussian

distribution, which is given by σ′ =
√
σ2 + 1

12 + ε(α), where ε(α) is some func-

tion of small value with mean 0.
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3.2 Using Rounded Gaussians in Lyubashevsky’s Scheme

The proofs by Lyubashevsky [16] for the discrete Gaussian distribution rely
on several lemmas for which we prove analogous statements in Appendix A.
The following lemma states that the centered rounded Gaussian Rmσ (z) and the
shifted rounded Gaussian Rv,σ(z) are almost always close, and Theorem 3.1
applies it to the rejection-sampling Lemma 2.1.

Lemma 3.1. For any v ∈ Zm, if σ = ω(‖v‖
√

logm), then

Pr
[
Rmσ (z)/Rmv,σ(z) = O(1); z

$←− Rmσ
]

= 1− 2−ω(‖v‖
√
logm).

This is proven in Appendix A.

Theorem 3.1. Let V be a subset of Zm in which all elements have norms less
than T , σ be some element in R such that σ = ω(T

√
logm), and h : V → R be

a probability distribution. Then there exists a constant M = O(1) such that the
distribution of the following algorithm A:

1: v
$←− h

2: z
$←− Rmv,σ

3: output (z,v) with probability min
(

Rmσ (z)
MRmv,σ(z)

, 1
)

is within statistical distance 2−ω(logm)/M of the distribution of the following
algorithm F :

1: v
$←− h

2: z
$←− Rmσ

3: output (z,v) with probability 1/M .

Moreover, the probability that A outputs something is at least (1−2−ω(logm))/M .

Proof. The proof of this theorem follows immediately from Lemma 3.1 and the
general “rejection sampling” Lemma 2.1. ut

This theorem looks the same for rounded Gaussians and for discrete Gaus-
sians; see Appendix A.1 for a detailed comparison of the results.

3.3 Using Rounded Gaussians in BLISS

In Section 3.2 we have shown that we can use the rounded Gaussian distribution
in the rejection sampling scheme by Lyubashevsky [16]. In this section we show
how to apply the rounded Gaussian distribution to BLISS and that the same
constant as in BLISS can be for rejection sampling.

BLISS randomly flips a bit to decide on adding or subtracting Sc, i.e., for
fixed Sc, z∗ is distributed according to the bimodal rounded Gaussian distribu-
tion gSc(z∗) = 1

2R
m
Sc,σ(z∗) + 1

2R
m
−Sc,σ(z∗). To avoid leaking any information on

the secret key S the scheme requires rejection sampling to change the bimodal
Gaussian to a centered Gaussian f(z∗) = Rmσ (z∗). The probability to accept is
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given by pz∗ = f(z∗) /MgSc(z∗) , where again M is chosen minimal such that
this probability is ≤ 1 for all z∗.

The results of this section are completely analogous to those in [11].
For any z∗ ∈ Zm, we have

Pr[z = z∗] = 1
2R

m
Sc,σ(z∗) + 1

2R
m
−Sc,σ(z∗)

= 1
2

(
1√

2πσ2

)m ∫
Az∗

exp
(
−‖x−Sc‖

2

2σ2

)
+ exp

(
−‖x+Sc‖2

2σ2

)
dx

= exp
(
−‖Sc‖

2

2σ2

)(
1√

2πσ2

)m ∫
Az∗

exp
(
−‖x‖

2

2σ2

)
cosh

(
〈x,Sc〉
σ2

)
dx.

(1)

The desired output is the centered rounded Gaussian distribution f(z∗), since
we need the centered property to avoid leaking S. Thus by Theorem 3.1, we
should accept the sample z∗ with probability:

pz∗ = f(z∗)/(MgSc(z∗))

=

(
1√

2πσ2

)m ∫
Az∗

exp
(
−‖x‖2/(2σ2)

)
dx

M exp (−‖Sc‖2/(2σ2))
(

1√
2πσ2

)m ∫
Az∗

exp (−‖x‖2/(2σ2)) cosh (〈x,Sc〉/σ2) dx
.

To compute a bound on M , we use Equation (1) and that cosh(x) > 0 for
any x. This leads to the following upper bound:

pz∗ =

∫
Az∗

exp
(
−‖x‖2/(2σ2)

)
dx

M exp (−‖Sc‖2/(2σ2))
∫
Az∗

exp (−‖x‖2/(2σ2)) cosh (〈x,Sc〉/σ2) dx

≤
∫
Az∗

exp
(
−‖x‖2/(2σ2)

)
dx

M exp (−‖Sc‖2/(2σ2))
∫
Az∗

exp (−‖x‖2/(2σ2)) dx

= 1/(M exp
(
−‖Sc‖2/(2σ2)

)
).

Now M needs to be chosen large enough such that pz∗ ≤ 1. Note that the last
inequality can only be used to estimate M , and not to define the probability.
It suffices that M = exp

(
1/(2α2)

)
’, where α > 0 is such that σ ≥ α‖Sc‖.

We can use the upper bound ‖Sc‖2 ≤ Nκ(S) as in Definition 2.3 to put M =
exp(Nκ(S)/2σ2); here κ denotes the sparsity of c in Algorithm 2.1. This is the
same constant as in BLISS.

3.4 BLISS Security Reduction

The security proof as given in [11] works for the rounded Gaussian distribution
with very little tweaking. This is due to the changes made in the proofs in
Section 3.2 and Appendix A. All statements follow through when replacing the
discrete Gaussian distribution with the rounded Gaussian distribution. We do
not need to adjust the proofs for [11, Lemma 3.3, 3.5]. The proof for [11, Lemma
3.4] uses σ ≥ 3/

√
2π which comes from [16, Lemma 4.4]. Our corresponding

result is Lemma A.2 which requires σ ≥
√

2/π. Next to that, we need to adjust
the definitions of f(z) and gSc(z) as above, such that these match the rounded
Gaussian distribution.



10 Andreas Hülsing, Tanja Lange, Kit Smeets

4 Practical Instantiation

In this section we discuss how we can implement a sampler for the rounded
Gaussian distribution. A very efficient and easy way to generate samples from
the continuous Gaussian distribution is based on the Box-Muller transform. We
state the algorithm and discuss an early rejection technique to prevent the com-
putation of values which would later be rejected due to the tail cut. Finally,
we analyze the output precision required for an implementation of the rounded
Gaussian distribution.

4.1 Box-Muller Transform

We begin by reviewing the Box-Muller transform [6] which is used to create
centered Gaussian distributed numbers with standard deviation σ = 1 from
uniform random distributed numbers. The algorithm is given as Algorithm 4.1
below.

Algorithm 4.1 Box-Muller Sampling

Input: Two uniform numbers u1, u2 ∈ (0, 1]
Output: Two independent centered (continuous) Gaussian distributed numbers x1, x2

with standard deviation σ = 1
1: a←

√
−2 lnu1

2: b← 2πu2

3: (x1, x2)← (a cos b, a sin b)
4: return (x1, x2)

4.2 Sampling Rounded Gaussians

We can now use the Box-Muller transform to create an algorithm for sampling
according to the rounded Gaussian distribution. For applying rounded Gaussians
to the signature scheme of BLISS, we need centered rounded Gaussians with
parameter σ. This is done by scaling the output xi for i = 1, 2 of the Box-Muller
sampling scheme z′i = xi · σ and then rounding the nearest integer zi = bz′ie.

4.3 Rejection Sampling of Signatures

At the end of Algorithm 2.1 we need to output (z, c) with probability

2
∫
Az∗

exp
(
−‖x‖2/(2σ2)

)
dx

M · exp (−‖Sc‖2/(2σ2))
(∫

Az∗
exp

(
−‖x−Sc‖

2

2σ2

)
dx +

∫
Az∗

exp
(
−‖x+Sc‖2

2σ2

)
dx
)

(see Section 3.2).
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Each of the three integrals factors, i.e., can be computed as the product of
one-dimensional integrals. Each one-dimensional integral is∫ zi+1/2

zi−1/2
exp

(
−x2i
2σ2

)
dxi = σ

√
π

2

(
erf

(
zi + 1/2√

2σ2

)
− erf

(
zi − 1/2√

2σ2

))
,

i.e., a constant times a difference of two nearby values of the standard error
function (erf).

5 Code Analysis and Benchmarks

This section provides details about our implementation. First we give a general
overview over our implementation. Then we discuss the dependency between
floating point precision and allowable number of signatures. We end with timings
and a comparison to the BLISS CDT sampler.

5.1 Implementation Details

We have used the C++ vector class library VCL by Fog [13] for the implemen-
tation of the Box-Muller sampling and the rounded Gaussian sampling. This
library offers optimized vector operations for integers, floating point numbers
and booleans. We use Vec8d, which are vectors with 8 elements of double float-
ing point precision. This means that we are only limited by the maximum size
of the double type, i.e. values of at most 53 bits of precision.

According to [13], the trigonometric and logarithmic functions in VCL have
constant runtime, i.e. there is no timing difference dependent on the input. This
makes the library ideal for constant-time implementations. The square-root func-
tion sqrt(·) takes constant time, unless all 8 inputs are in {0, 1}, which can lead
to a timing difference for the square root. However, this is unlikely to happen:
the sqrt function is applied to 2 lnu1 and the logarithm function is strictly pos-
itive and thus the case of input 0 cannot appear; the probability of sampling 8
consecutive values u1i that all would evaluate 2 lnu1i = 1 is negligible, since each
u1i is sampled from (0, 1] with 53 bit precision, making this an event of proba-
bility at most 2−8·53. Therefore we have chosen not to circumvent this problem
in the implementation, even though one could also sacrifice a vector entry and
force it to have a nontrivial square root computation.

Computing with floating-point numbers causes a drop in precision. While Fog
states that operations in VCL lose at most one bit of precision with exception of
several explicitly mentioned functions that can lose up to two bits of precision
such as the trigonometric functions, a more careful analysis of the code shows
that other operations keep (close to) the exact precision.

Sampling rounded Gaussians on top of VCL is only a few lines of code and
the data paths are short (see the code listing in Appendix F of the full version
[14]). The input of the code has 53 bits of precision and we loose at most 5 bits
of precision, i.e. the output of the code has at least p = 48 bits of precision.
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Remark 1. We were asked how to round floating point numbers in constant
time. While VCL almost trivially rounds the entire vector in constant time, a
bit more care is necessary if one wants to implement this on single values. To
round |A| < 251 compute

(A+ (252 + 251))− (252 + 251)

in two arithmetic instructions or use assembly instructions.

5.2 Considerations Regarding the Precision

Samplers for discrete Gaussians typically require tables precomputed at a certain
precision. This raises the question of how much a low-precision table can skew
the distribution and whether this can lead to attacks. Similarly, floating-point
computations, such as in our sampler, can slowly degrade precision.

An error in the computation of y results in a value y′ which might be slightly
larger or smaller than y. The magnitude of the error depends on the size of the
value, e.g., values close to 0 have higher precision than larger values; in general
the error of y is bounded by |y|2−p.

When computing rounded Gaussians, most errors are insignificant because
most erroneous values still get rounded to the correct integer. However, errors
occurring close to the boundaries of the intervals [z − 1

2 , z + 1
2 ] can lead to

wrong outputs. The interval of values that can possibly round to z is given by
[z − 1

2 − el, z + 1
2 + er), where the left boundary error satisfies |el| ≤ 2−p

∣∣z − 1
2

∣∣
and the right boundary error satisfies |er| ≤ 2−p

∣∣z + 1
2

∣∣.
We define success for the attacker to mean that he breaks the signature

scheme or that he manages to distinguish between the implementation with
precision p and a perfect implementation.

Most papers use the statistical distance (Definition B.1) to study the relative
difference between two distributions. In [1] the authors showed that studying
the Rényi divergence between the distributions can lead to better and tighter
estimates.

In this section we work with the known precision p = 48 for our imple-
mentation and using the parameters for BLISS-I [11], we determine how many
signatures an adversary A can observe before the Rényi divergence between
the ideal implementation and the practical implementation becomes larger than
some small constant c; this means, his chance of breaking the system is at most
c times as high compared to the ideal implementation.

We also provide an analysis of the asymptotic behavior of the precision p
compared to the standard deviation σ, the length m and the number of signa-
tures qs generated. The computations can be found in Appendix B. These results
are naturally less tight because we prioritize readable formulas over best approx-
imations. Accordingly, better results are obtained using numerical computations
once one settles on concrete parameters. The asymptotic analysis is helpful in
determining which distance or divergence to use.
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To analyze the allowable number of signatures qs before an attack could
possibly distinguish the distributions, we look at the Rényi divergence of order
∞ as given in [1]:

Definition 5.1. For any two discrete probability distributions P and Q, such
that Supp(P ) ⊆ Supp(Q), the Rényi divergence of order ∞ is defined by

RD∞(P || Q) = max
x∈Supp(P )

P (x)

Q(x)
.

In BLISS using rounded Gaussians we publish m independently sampled in-
tegers distributed according to the 1-dimensional rounded Gaussian distribution
R1
σ to obtain an m-dimensional vector in Rmσ . Next to that we assume qs sign-

ing queries. This means a potential attacker can learn a vector of length mqs
with entries from the (imprecise) real-world sampler R′1σ . We want to determine
the probability that an attacker can distinguish between a vector sampled from
Rmqsσ and R′

mqs
σ .

By the probability preservation property (Lemma B.2) of the Rényi di-
vergence, any adversary A having success probability ε on the scheme imple-
mented with imprecise rounded Gaussian sampling has a success probability
δ ≥ ε/RD∞(R′

mqs
σ || Rmqsσ ) on the scheme implemented with the perfect rounded

Gaussian. For a target success probability ε we have to choose δ ≤ ε/ exp(1) to
have only a small, constant loss in tightness.

We need mqs samples to create qs signatures. By the multiplicative prop-
erty of the Rényi divergence (Lemma B.1), we have RD∞(R′

mqs
σ || Rmqsσ ) ≤

RD∞(R′
1
σ || R1

σ)mqs , so we can relate the divergence of the one-dimensional
distributions to the mqs dimensional one. The formula becomes

RD∞(R′
1
σ || R1

σ) =

max
z∈Supp(R′1σ)

{∫ z+ 1
2+er

z− 1
2−el

1√
2πσ2

e−x
2/(2σ2)dx

/∫ z+ 1
2

z− 1
2

1√
2πσ2

e−x
2/(2σ2)dx

}
.

The BLISS-I parameters are σ = 215, m = 2n = 1024, and ε = 2−128, giving
τ =

√
2 · 128 ln(2) = 13.32, and we work with floating point precision p = 48.

We compute RD∞ numerically for the 1-dimensional case with Pari-GP with
precision 200 digits, giving RD∞(R′

1
σ || R1

σ) ≈ 1.0000000000203563. Recall we

want RD∞(R′
1
σ || R1

σ)mqs ≤ exp(1). For m = 1024 we get that qs = 225 gives
2.01262 < exp(1). This means that we can create 225 signatures, i.e., 1 signa-
ture/min for over 60 years, securely with one key pair. Note also that the choice
of exp(1) is kind of arbitrary and other constants would be suitable as well. More-
over, provable security continues to degrade slowly after these 225 signatures. As
far as we know, no attack is known that would use the distinguishability of the
distributions.

Several papers, starting with [1], use Rényi divergence RDa of order a to
get much better results regarding the precision. We caution the reader that the
relation δ > εa/(a−1)/RDa, for a = 2, δ = 2−128 and constant RDa = 2, means
ε = 2−64, which is loose to the point of being meaningless. For the same looseness
we could use constant 264 in place of exp(1) in RD∞ and sign 288 times.
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5.3 Implementation of Rejection Sampling of Signatures

There are many standard numerical techniques and libraries to efficiently com-
pute the complementary error function 1 − erf to high precision. We use the
following constant-time mixture of standard techniques: for fixed s, the integral
of e−x

2

for x ranging from t−s/2 to t+s/2 is e−t
2

(which we compute in constant
time using VCL) times a quickly converging power series in t2. For the constants

s = 1/
√

2σ2 relevant to BLISS-I through BLISS-IV, and for the entire range of t
allowed by our tail cut, the truncation error after five terms of this power series
is below the rounding error of double-precision floating-point computation.

Each of the three 1024-dimensional integrals is computed by the bigintegral
function shown in Appendix G of the full version [14], which is implemented in
just four lines of code, on top of the erfdiff function, which is implemented in
just two lines of code, plus a few constants precomputed from σ. The rest of the
code in Appendix G in [14] is for speeding up VCL’s exp by replacing it with a
streamlined fastexp; running a Monte-Carlo sanity check on bigintegral; and
benchmarking bigintegral.

Each call to bigintegral takes just 7800 cycles on a Haswell CPU core
using g++ 4.8.4 with standard compiler options (-O3 -fomit-frame-pointer

-std=gnu++11 -march=native -mtune=native -fabi-version=6), and there
are three integrals in the computation of rejection probabilities. (Dividing the
integrals and comparing to a random number is equivalent to multiplying the
random number by the denominator and comparing to the numerator, which
takes constant time.) We save a lot more than these 3 · 7800 = 23400 cycles in
the sampling step (see Table 5.1). Furthermore, the main point of the approach
is to produce constant-time implementations, and our code is constant time.

There are only a small number of possible inputs to erfdiff. Specifically,
each yi is an integer in [−τσ, τσ], and each entry of Sc is an integer bounded in
absolute value by 3κ for BLISS-I and II and 5κ for BLISS-III and IV, so each
erfdiff input is an integer bounded in absolute value by τσ + 3κ or τσ + 5κ
respectively.

To compute the effects of approximating erf and working with finite-precision
floating-point numbers we calculated the ratio of the result from our calculation
(for all possible erfdiff inputs) to the exact solution, where we used Sage’s
arbitrary-precision error_fcn with 1000 bits of precision to very precisely com-
pute the exact solution. The one-dimensional Rényi divergence RD∞ of these
distributions is defined as the maximum of these fractions.

For example, in 17 seconds on a 3.5GHz Haswell core we calculate for BLISS-I
that RD∞( approx calculation || exact calculation) < 1 + 2−46.

Using that RD∞ is multiplicative and (1 + 2−46)2
46

< exp(1) we get that
for m = 1024 we can output 236 signatures without the attacker gaining more
than a factor of exp(1). This is more than the number in Section 5.2 so the
approximation is sufficiently good.
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5.4 Timings for Sampling Rounded Gaussians

Another property that needs to be compared between the rounded Gaussian
distribution and the discrete Gaussian distribution is the time it takes to generate
one signature. We compare our implementation to the CDT implementation from
http://bliss.di.ens.fr/ which is a proof-of-concept, variable-time sampler
for discrete Gaussians.

Both the discrete Gaussian and the rounded Gaussian can be used in the
BLISS signature scheme as we have shown earlier. We now compare the time
that it takes to generate m = 1024 samples by the two sampling schemes. We
note that in a full implementation there are more steps to generate a signature,
e.g., the rejection step. However, as said before, these steps are not the bottle
neck and take approximately equal time for either sampling scheme; thus we do
not include them in the analysis.

Our implementation starts by drawing random bits from /dev/urandom and
then expanding them using ChaCha20 [3] to 8192 bytes of data. From that 128
vectors of 8 53-bit floating-point variables are initialized with randomness, corre-
sponding to the initial ui values in Algorithm 4.1. The rest of the implementation
follows closely the description of that algorithm.

Both implementations have been compiled using gcc with -O3. The bench-
marks have been run on a Haswell Intel(R) chip, i.e. Intel(R) Xeon(R) CPU
E3-1275 v3 3.50GHz. All values given in Table 5.1 are given in CPU cycles.
We give the quartiles Q1 and Q3 and the median over 10 000 runs to show the
statistical stability.

Name of the scheme Q1 Median Q3

Rounded Gaussians 47532 47576 47616
(including generating randomness)

Rounded Gaussians 27608 27672 27848
(without generating randomness)

Discrete Gaussians 115056 116272 127170
(including generating randomness)

Discrete Gaussians 77424 78136 78876
(without generating randomness)

Table 5.1. CPU cycles analysis for the rounded Gaussian sampling scheme and discrete
Gaussian sampling scheme with m = 1024 run on Intel(R) Xeon(R) CPU E3-1275 v3
3.50GHz., stating median and quartiles for 10 000 runs.

In Table 5.1 we can clearly see that the rounded Gaussian implementation
is significantly faster than the discrete Gaussian implementation; the rounded
Gaussian implementation needs noticeably less than half the number of CPU
cycles compared to the discrete Gaussian implementation. We can also see that
generating the randomness takes a significant part of the total CPU cycle count.

While the difference in speed is significant we would like to point out that
the implementation we used for the discrete Gaussians is not fully optimized. It

http://bliss.di.ens.fr/
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is hard to predict how much faster a better implementation would be and how
much worse the performance would drop if countermeasures to achieve constant-
time behavior were implemented.

Our motivation after [7] was to find an alternative to hard-to-secure discrete
Gaussians, even if it was slower than current implementations. Our implemen-
tation shows that with less than 40 lines of code rounded Gaussians are at least
fully competitive.
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First we look at the inner product of a rounded Gaussian variable with any
vector in Rm.

Lemma A.1. For any fixed vector u ∈ Rm and any σ, r > 0, we have

Pr[|〈z + y,u〉| > r; z
$←− Rmσ ] ≤ 2e

− r2

2‖u‖2σ2 ,

where y ∈
[
− 1

2 ,
1
2

]m
minimizes exp

(
1
σ2 〈z + y,u〉

)
.

Proof. Let u ∈ Rm be fixed and let y ∈
[
− 1

2 ,
1
2

]m
be such that exp

(
1
σ2 〈z + y,u〉

)
is minimized. For any t > 0, we have for the expectation of exp

(
t
σ2 〈z + y,u〉

)
,

taken over all z sampled from Rmσ :

E
[
exp

(
t
σ2 〈z + y,u〉

)]
= exp

(
t
σ2 〈y,u〉

)
E
[
exp

(
t
σ2 〈z,u〉

)]
= exp

(
t
σ2 〈y,u〉

) ∑
z∈Zm

Pr[z] exp
(

1
σ2 〈z, tu〉

)
=
∑

z∈Zm

∫
Az

(
1√

2πσ2

)m
exp

(
−‖x‖2
2σ2

)
dx exp

(
1
σ2 〈z + y, tu〉

)
≤
∑

z∈Zm

∫
Az

(
1√

2πσ2

)m
exp

(
−‖x‖2
2σ2

)
exp

(
1
σ2 〈x, tu〉

)
dx

=
∑

z∈Zm

∫
Az

(
1√

2πσ2

)m
exp

(
−‖x−tu‖2

2σ2

)
exp

(
t2‖u‖2
2σ2

)
dx

=
∑

z∈Zm
Rmtu,σ(z) exp

(
t2‖u‖2
2σ2

)
= exp

(
t2‖u‖2
2σ2

)
,

where the last equality follows from the fact that
∑

z∈Zm
Rmtu,σ(z) = 1 because it

is the sum over the entire range of the probability density function. We proceed
to prove the claim of the lemma by applying Markov’s inequality first and then
the above result. For any t > 0, we have:

Pr [〈z + y,u〉 > r] = Pr
[
exp

(
t
σ2 〈z + y,u〉

)
> exp

(
tr/σ2

)]
≤ (E

[
exp

(
t〈z + y,u〉/σ2

)]
)/(exp

(
tr/σ2

)
)

≤ exp
(
(t2‖u‖2 − 2tr)/(2σ2)

)
.

The function on the right assumes its maximum at t = r/‖u‖2, so we get
Pr [〈z + y,u〉 > r] ≤ exp

(
−r2/(2‖u‖2σ2)

)
. Because the distribution is symmet-

ric around the origin we also know Pr[〈z + y,u〉 < −r] ≤ exp
(
−r2/(2‖u‖2σ2)

)
.

By applying the union bound to the two inequalities, we get the probability for
|〈z + y,u〉| > r, which results in the claim of the lemma. ut

Lemma A.2. Under the conditions of Lemma A.1 we have:

1. For any kσ > 1/4(σ + 1), σ ≥ 1,Pr
[
|z| > kσ; z

$←− R1
σ

]
≤ 2e

−(k− 1
2 )

2

2 .

2. For any z ∈ Zm and σ ≥
√

2/π,Rmσ (z) ≤ 2−m.

3. For any k > 1,Pr
[
‖z‖ > kσ

√
m; z

$←− Rmσ
]
< 2kme

m
2 (1−k2).
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Proof. Item 1 follows from Lemma A.1 by substituting m = 1, r = kσ − 1
2 and

u = 1. This gives

|z + y| = |z| − 1

2
> r = kσ − 1

2
.

In other words, |z| > kσ. Then we have for the upper bound of the probabil-
ity:

2 exp

(
− r2

2‖u‖2σ2

)
= 2 exp

(
−
(
kσ − 1

2

)2
2σ2

)
≤ 2 exp

(
−
(
k − 1

2

)2
σ2

2σ2

)
,

where we use −
(
kσ − 1

2

)2 ≤ − (k − 1
2

)2
σ2 for σ ≥ 1 in the inequality. Note that

for 0.44 < k < 1.89 item 3 actually provides a better bound.
To prove Item 2, we write

Rmσ (z) =
(

1√
2πσ2

)m ∫
Az
e−‖x‖

2/(2σ2)dx

≤
(

1√
2πσ2

)m
· max
x∈Az

e−‖x‖
2/(2σ2) · vol(Az) ≤

(
1√

2πσ2

)m
,

where the first inequality follows from the fact that integrating a continuous
function on a bounded area is bounded from above by the maximum of the
function on the area times the volume of the area. The second inequality follows
from the fact that the volume of the area Az is equal to 1 and e−‖x‖

2/(2σ2) ≤ 1
for all x ∈ Az for all z ∈ Zm. Thus if σ ≥

√
2/π, we have Rmσ ≤ 2−m.

For Item 3, we write the following:

Pr
[
‖z‖ > kσ

√
m; z

$←− Rmσ
]

=
∑

z∈Zm,‖z‖>kσ
√
m

(
1√

2πσ2

)m ∫
Az
e−‖x‖

2/(2σ2)dx

≤
(

1√
2πσ2

)m ∑
z∈Zm,‖z‖>kσ

√
m

(
max
x∈Az

e−‖x‖
2/(2σ2) · vol(Az)

)
≤
(

1√
2πσ2

)m ∑
z∈Zm,‖z‖>kσ

√
m

e−‖z+y‖2/(2σ2),

(2)

where y ∈ [− 1
2 ,

1
2 ]m is chosen such that the maximum is attained, i.e. for each

zi we pick yi, i = 1, . . . ,m in the following way:

yi =

−
1
2 if zi > 0,
0 if zi = 0,
1
2 if zi < 0.

(3)

We use the second part of a lemma by Banaszczyk [2, Lemma 1.5], saying
that for each c ≥ 1/

√
2π, lattice L of dimension m and u ∈ Rm, we have∑

z∈L,‖z‖>c
√
m e
−π‖z+u‖2 < 2

(
c
√

2πee−πc
2
)n∑

z∈L e
−π‖z‖2 , and put u = y. If

we scale the lattice L by a factor of 1/s for some constant s, we have that for
all s, ∑

z∈L,‖z‖>cs
√
m

e−π‖z+y‖2/s2 < 2
(
c
√

2πee−πc
2
)m∑

z∈L
e−π‖z‖

2/s2 .
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Setting L = Zm and s =
√

2πσ, we obtain∑
z∈Zm,‖z‖>c

√
2πσ2m

e−‖z+y‖2/(2σ2) < 2
(
c
√

2πee−πc
2
)m ∑

z∈Zm
e−‖z‖

2/(2σ2).

Finally, by setting c = k/
√

2π in the upper bound for the probability and
applying it to Equation (2), we get

Pr
[
‖z‖ > kσ

√
m; z

$←− Rmσ
]
< 2kme

m
2 (1−k2)

(
1√

2πσ2

)m ∑
z∈Zm

e−‖z‖
2/(2σ2).

Note that
(

1√
2πσ2

)m ∑
z∈Zm

exp(−‖z‖2/(2σ2)) = 1, since it is the probability

density function Rmσ (z) summed over all possible values. Thus we have

Pr
[
‖z‖ > kσ

√
m; z

$←− Rmσ
]
< 2kme

m
2 (1−k2).

ut

The following is the proof of Lemma 3.1 from Section 3.

Proof. By definition we have

Rmσ (z)

Rmv,σ(z)
=

∫
Az
ρmσ (x)dx∫

Az
ρmv,σ(x)dx

=

∫
Az

exp(−‖x‖2/(2σ2))dx∫
Az

exp(−‖x− v‖2/(2σ2))dx

≤
max
x∈Az

e−‖x‖
2/(2σ2) · vol(Az)

min
x∈Az

e−‖x−v‖2/(2σ2) · vol(Az)
=

exp(−‖z + y1‖2/(2σ2))

exp(−‖z− v + y2‖2/(2σ2))
,

where the inequality follows from the fact that integrating a continuous function
on a bounded area is bounded from below by its minimum on the area times the
volume of the area; y1 ∈

[
− 1

2 ,
1
2

]m
is chosen such that the maximum is achieved

for ‖z + y1‖2, and y2 ∈
[
− 1

2 ,
1
2

]m
is chosen such that the minimum is achieved

for ‖z − v + y2‖2. In other words, y1 ∈
[
− 1

2 ,
1
2

]m
is defined as in Equation (3)

and for y2 ∈
[
− 1

2 ,
1
2

]m
we have for each zi − vi, i = 1, . . . ,m:

y2,i =

{
− 1

2 if zi < vi,
1
2 if zi ≥ vi.

(4)

This results in the following formula:

e−‖z+y1‖2/(2σ2)

e−‖z−v+y2‖2/(2σ2)
exp

((
‖y2‖2 − ‖y1‖2 + 2〈z,y2 − y1〉

)
− 2〈z + y2,v〉+ ‖v‖2

2σ2

)
.

We want to combine ‖y2‖2 − ‖y1‖2 + 2〈z,y2 − y1〉 with the inner product
〈z + y2,v〉 into an inner product of the form 〈z + y,v + a〉 for some a, where
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y ∈ [−1/2, 1/2]m minimizes 〈z + y,v + a〉, such that we can apply Lemma A.1,
where we set u = v + a. We can write

‖y2‖2 − ‖y1‖2 + 2〈z,y2 − y1〉 =

m∑
i=1

(
y22,i − y21,i + 2zi (y2,i − y1,i)

)
.

Using the definition of y1,i and y2,i, for i = 1, . . . ,m we get the following
expression:

y22,i − y21,i + 2zi (y2,i − y1,i) =


= −2zi if zi < vi ∧ zi < 0,
= 1

4 if zi = 0,
= 2zi if zi ≥ vi ∧ zi > 0,
= 0 otherwise.

(5)

To create an upper bound of the form −2〈z + y,a〉, where y ∈
[
− 1

2 ,
1
2

]m
minimizes 〈z + y,v + a〉, we need to determine an expression for a, i.e. we
determine ai such that it fits Equation (5). This gives us the following expressions
for the coordinates i = 1, . . . ,m:

−2aizi−2aiyi =

−2aizi + ai if zi < 0,
−ai if zi = 0,

−2aizi − ai if zi > 0.
⇒ ai =


− 2zi
−2zi+1 if zi < 0,

− 1
4 if zi = 0,
− 2zi

2zi+1 if zi > 0.

Now we can write
m∑
i=1

(
y22,i − y21,i + 2zi (y2,i − y1,i)

)
≤ −2〈z + y,a〉, where a

is chosen as above such that −ziai ≤ 0 and |ai| ≤ 1 for i = 1, . . . ,m and y
minimizes 〈z + y,a〉. Given y2 and y, we can write y2 = y + b, where we pick
bi ∈ {−1, 0, 1} for i = 1, . . . ,m such that the equation holds. Then we can write

2〈z + y2,v〉 = 2〈z + y,v〉 + 2〈b,v〉. We have |2〈b,v〉| =

∣∣∣∣ m∑
i=1

2bivi

∣∣∣∣ ≤ 2‖v‖2,

because bi ∈ {−1, 0, 1}, dependent on the value of zi and vi. Combining these
bounds and applying them to the previous result, gives us

exp
(
(
(
‖y2‖2 − ‖y1‖2 + 2〈z,y2 − y1〉

)
− 2〈z + y2,v〉+ ‖v‖2)/(2σ2)

)
≤ exp

(
(−2〈z + y,a〉 − 2〈z + y,v〉 − 2〈b,v〉+ ‖v‖2)/(2σ2)

)
≤ exp

(
(−2〈z + y,v + a〉+ 3‖v‖2)/(2σ2)

)
.

Lemma A.1 tells us that |〈z+y,v+a〉| ≤ σ
√

2 logm‖v+a‖ with probability
at least 1− 2− logm if y minimizes 〈z + y,v + a〉 and if v + a ∈ Zm. Since both
conditions hold, we have

exp
(
−2〈z+y2,v+a〉+3‖v‖2

2σ2

)
< exp

(
2
√
2 logm‖v+a‖+3‖v‖2

2σ2

)
≤ exp

(√
2 logm‖v+a‖√

logm‖v‖ + 3‖v‖2
2 logm‖v‖2

)
= exp

(
3‖v‖+2

√
2 logm‖v+a‖

2 logm‖v‖

)
= O(1),

where the second inequality uses σ = ω(‖v‖
√

logm) and the final equality uses
‖a‖2 being small. ut
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A.1 Comparison of Proofs for Rounded Gaussians vs. Discrete
Gaussians

As we have mentioned at the beginning of this section, the theorems and proofs
follow the line of the theorems and proofs of Lyubashevsky [16] closely. Here we
give a quick overview of the changes made in the lemmas and theorems next to
replacing the discrete Gaussian with the rounded Gaussian. We do not state in
detail where the proofs differ, since we require different techniques to end up
with similar results.

In Lemma A.1 we use 〈z+y,u〉 with y ∈
[
− 1

2 ,
1
2

]m
minimizing exp

(
1
σ2 〈z + y,u〉

)
instead of the 〈z,u〉 that is used in [16, Lemma 4.3].

In Lemma A.2 we require for Item 1 that kσ > 1/4(σ+ 1) and σ ≥ 1 instead
of the k > 0 from [16, Lemma 4.4]. Next to that, we get that the probability

< exp

(
−(k− 1

2 )
2

2

)
instead of the < exp

(
−k2
2

)
. For Item 2 we have σ ≥

√
2/π

instead of σ ≥ 3/
√

2π. For Item 3 we have 2kme
m
2 (1−k2) instead of kme

m
2 (1−k2).

Theorem 3.1 follows through directly based on the previous lemmas.

B Rényi Divergence

An adversary wins if within qs signing queries he can distinguish the perfect
scheme and an implementation thereof or if he breaks the scheme with the per-
fect implementation. We will upper bound the success probability of any such
adversary dependent on the precision used in the computation.

First we analyze the statistical distance (SD) and then Rényi divergences
(RD) of order 1 and∞ (Definition 5.1). Based on [1] we expect a lower precision
requirement from the RD analysis. We use the definition of Rényi divergence as
given in [1] and copy the relevant properties of RD from there; see [25] for a
proof of the following lemmas and note that the definitions agree up to taking
logarithms. For completeness we include the statistical difference.

Definition B.1. The statistical distance ∆(P ;Q) between two discrete proba-
bility functions P and Q is defined by

∆(P ;Q) =
1

2

∑
x∈V
|P (x)−Q(x)| ,

where V = Supp(P ) ∪ Supp(Q) denotes the union of the support of P and the
support of Q.

Definition B.2. For any two discrete probability distributions P and Q, such
that Supp(P ) ⊆ Supp(Q) the Rényi divergences of order 1 is defined by

RD1(P || Q) = exp

 ∑
x∈Supp(P )

P (x) log
P (x)

Q(x)

 .
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For RD the measures are related multiplicatively.

Lemma B.1 (Multiplicativity). Let a ∈ {1,+∞}. Let P and Q be two dis-
tributions with Supp(P ) ⊆ Supp(Q) of a pair of random variables (Y1, Y2) and
let Y1 and Y2 be independent.

Then we have: RDa(P || Q) = RDa(P1 || Q1) · RDa(P2 || Q2).

We will use the following probability preservation property to quantify the
probability of distinguishing the perfect rounded Gaussian distribution from the
one implemented with finite precision.

Lemma B.2 (Probability Preservation). Let P and Q denote distributions
with Supp(P ) ⊆ Supp(Q). Let A ⊆ Supp(Q) be an arbitrary event. Then Q(A) ≥
P (A) /R∞ (P || Q) .

B.1 Precision for Rounded Gaussians

We now give a formal analysis linking the precision p of the implementation to the
security level of the signature scheme. Computing with floating-point precision p
means that the intermediate value x will be output with a certain error η. We can
write this as x′ = x+ η, with |η| ≤ 2−px. After this, x′ is rounded to the nearest
integer, i.e. z = bx′e. Note that this implies that for computing the probability of
sampling z only the interval changes from [z− 1

2 , z+ 1
2 ) to [z− 1

2 −el, z+ 1
2 +er),

with |el| ≤ 2−p
∣∣z − 1

2

∣∣ and |er| ≤ 2−p
∣∣z + 1

2

∣∣. The tail cut forces |z| ≤ τσ and

for τ = O(
√
λ) Lemma A.2 implies that exp

(
−(τ− 1

2 )
2

2σ2

)
≈ 2−λ, i.e. with all

but negligible probability the sampled value lies within the tail bound. For all
practical values λ� 2p.

First we analyze the SD to gain a basic understanding of the precision needed
for our sampler in BLISS. After this we analyze two different kinds of RD, since
we expect that the required floating point precision will be smaller, because the
bounds are tighter for other samplers. At the end of this section, we compare all
of these bounds on the precision.

SD-based analysis. We follow [1] in assuming that any forging adversary
A with success probability ≤ δ on the scheme implemented with the perfect
rounded Gaussian sampling has a success probability ε ≤ δ + ∆(R′

mqs
σ ;Rmqsσ )

against the scheme implemented with the truncated rounded Gaussian sam-
pling, with Rmqsσ , i.e. the success probability ε on the truncated scheme is upper
bounded by the success probability on the perfect scheme δ and the extra in-
formation we gain by comparing the distributions R′

mqs
σ and Rmqsσ . For a target

success probability ε we have to choose δ ≤ ε/2 for the success probability on
the perfect scheme and we want to determine the lower bound on p such that
∆(R′

mqs
σ ;Rmqsσ ) ≤ ε/2.

By the union bound this means that we require ∆(R′σ;Rσ) ≤ ε/(mqs). We
only look at values between the tail bounds, i.e. z ∈ [−τσ, τσ], since any element



24 Andreas Hülsing, Tanja Lange, Kit Smeets

lying outside of the tail bounds is rejected and thus not in the support of R′σ.
Next to that, we assume that er, el ≤ 2−pτσ, which is the worst case setting.

∆(R′
1
σ(z);R1

σ(z))

= 1
2

τσ∑
z=−τσ

∣∣∣∫ z+ 1
2+er

z− 1
2−el

1√
2πσ2

e−x
2/(2σ2)dx−

∫ z+ 1
2

z− 1
2

1√
2πσ2

e−x
2/(2σ2)dx

∣∣∣
≤ 1

2

τσ∑
z=−τσ

∣∣∣∫ z− 1
2

z− 1
2−|el|

1√
2πσ2

e−x
2/(2σ2)dx+

∫ z+ 1
2+|er|

z+ 1
2

1√
2πσ2

e−x
2/(2σ2)dx

∣∣∣
≤ 1

2
1√

2πσ2

( −1∑
z=−τσ

∣∣∣∣|el| exp

(
−(z− 1

2 )
2

2σ2

)
+ |er| exp

(
−(z+ 1

2+|er|)
2

2σ2

)∣∣∣∣
+|el|+ |er|+

τσ∑
z=1

∣∣∣∣|el| exp

(
−(z− 1

2−|el|)
2

2σ2

)
+ |er| exp

(
−(z+ 1

2 )
2

2σ2

)∣∣∣∣ )
≤ 1

2
2−pτσ√
2πσ2

( −1∑
z=−τσ

∣∣∣∣exp

(
−(z− 1

2 )
2

2σ2

)
+ exp

(
−(z+ 1

2+2−pτσ)
2

2σ2

)∣∣∣∣+ 2

+
τσ∑
z=1

∣∣∣∣exp

(
−(z− 1

2−2
−pτσ)

2

2σ2

)
+ exp

(
−(z+ 1

2 )
2

2σ2

)∣∣∣∣ )
≤ 2−pτσ√

2πσ2

(
1 +

τσ∑
z=1

(
exp

(
−(z− 1

2−2
−pτσ)

2

2σ2

)
+ exp

(
−(z+ 1

2 )
2

2σ2

)))
,

where we use in the second to last inequality the assumption that |el|, |er| ≤

2−pτσ and in the last inequality we note that for z < 0 we have exp

(
− (z− 1

2 )
2

2σ2

)
=

exp

(
− (|z|+ 1

2 )
2

2σ2

)
, which matches the term in the sum for z > 0. Similarly we

have exp

(
− (z+ 1

2+2−pτσ)
2

2σ2

)
= exp

(
− (|z|− 1

2−2
−pτσ)

2

2σ2

)
. This means that we can

group both sums under one sum running from 1 to τσ, which we need to multiply
by 2 to compensate for having both distributions in one sum.

Note that this result looks like a rounded Gaussian centered around 1
2 and a

rounded Gaussian centered around 1
2 +2−pτσ, except that all values for z ≤ 0 are

missing. Due to the symmetric property of the rounded Gaussian distribution,
we know that both rounded Gaussians sum up to ≤ 1

2 . This gives us:

2−pτσ√
2πσ2

(
1 +

τσ∑
z=1

(
exp

(
−(z− 1

2−2
−pτσ)

2

2σ2

)
+ exp

(
−(z+ 1

2 )
2

2σ2

)))
≤ 2−pτσ

(
1√

2πσ2
+ 1

2 + 1
2

)
= 2−pτσ

(
1√

2πσ2
+ 1
)
.

We require 2−pτσ
(

1√
2πσ2

+ 1
)
≤ (ε/2)/(mqs). Note that 0 < ε < 1 and thus

that log ε < 0. This means that a smaller ε requires a higher level of floating
point precision. This is what we expect; if we want an adversary A to be less
likely to be successful, we need to be more precise in our computations.

If we use the common setting ε = 2−λ, we get the precision requirement

p ≥ log
(
mqsτσ

(√
2πσ2 + 1

))
+ λ− log

(√
2πσ2

)
+ 1. (6)
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RD1-based analysis. According to [1], if a = 1 we have for an arbitrary
event A ⊆ Supp(Q) that Q(A) ≥ P (A) −

√
ln RD1(P || Q)/2, which is the

probability preservation property (Lemma B.2) for a = 1. This means that

we have δ ≥ ε −
√

ln RD1 (R′mqsσ || Rmqsσ ) /2. We follow [1] in bounding the
right-hand side by ε/2. By the multiplicative property of the RD over the mqs
independent samples needed for signing qs times, we get RD1

(
R′
mqs
σ || Rmqsσ

)
≤(

RD1

(
R′

1
σ || R1

σ

))mqs
.

Recall that for the ln function we have ln(x) ≤ x− 1 for x > 0. Note that we
are working with positive numbers, since probabilities lie between zero and one.
If we only look at the elements between −τσ and τσ, we know that they have a
probability > 0. Now we compute the 1-dimensional case.

ln RD1

(
R′

1
σ || R1

σ

)
=

∑
z∈Supp(R′1σ)

R′
1
σ(z) ln

(
R′1σ(z)
R1
σ(z)

)
≤

∑
z∈Supp(R′1σ)

R′
1
σ(z)

(
R′1σ(z)
R1
σ(z)
− 1
)

≤
∑

z∈Supp(R′1σ)

1√
2πσ2

∫ z+ 1
2+er

z− 1
2−el

exp
(
− x2

2σ2

)
dx

 ∫ z+1
2
+er

z− 1
2
−el

exp
(
− x2

2σ2

)
dx∫ z+1

2

z− 1
2

exp
(
− x2

2σ2

)
dx
− 1


≤

∑
z∈Supp(R′1σ)

1√
2πσ2

∫ z+ 1
2+er

z− 1
2−el

exp
(
− x2

2σ2

)
dx· ∫ z− 1

2

z− 1
2
−|el|

exp
(
− x2

2σ2

)
dx+

∫ z+1
2
+|er|

z+1
2

exp
(
− x2

2σ2

)
dx∫ z+1

2

z− 1
2

exp
(
− x2

2σ2

)
dx

 .

(7)

We now want to bound this equation. We first look at a bound in the case
z > 0 for the following part of the equation:

∫ z+ 1
2+er

z− 1
2−el

exp
(
− x2

2σ2

)
dx

 ∫ z− 1
2

z− 1
2
−|el|

exp
(
− x2

2σ2

)
dx+

∫ z+1
2
+|er|

z+1
2

exp
(
− x2

2σ2

)
dx∫ z+1

2

z− 1
2

exp
(
− x2

2σ2

)
dx


≤ (1 + el + er) exp

(
−(z− 1

2−el)
2

2σ2

)
exp

(
(z+ 1

2 )
2

2σ2

)
·(

|el| exp

(
−(z− 1

2−|el|)
2

2σ2

)
+ |er| exp

(
−(z+ 1

2 )
2

2σ2

))
≤ (1 + er + el)

(
|el| exp

(
−(z+ 1

2−2(1+|el|))
2
+2(1+|el|)2

2σ2

)
+ |er| exp

(
−(z− 1

2−el)
2

2σ2

))
.

If we can find an equivalent bound like this for z < 0 and for z = 0, we can
use the above formula to bound Equation (7). For z < 0, we have the following
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equation that gives an upper bound:

∫ z+ 1
2+er

z− 1
2−el

exp
(
− x2

2σ2

)
dx

 ∫ z− 1
2

z− 1
2
−|el|

exp
(
− x2

2σ2

)
dx+

∫ z+1
2
+|er|

z+1
2

exp
(
− x2

2σ2

)
dx∫ z+1

2

z− 1
2

exp
(
− x2

2σ2

)
dx


≤ (1 + el + er) exp

(
−(z+ 1

2+er)
2

2σ2

)
exp

(
(z− 1

2 )
2

2σ2

)
·(

|el| exp

(
−(z− 1

2 )
2

2σ2

)
+ |er| exp

(
−(z+ 1

2+|er|)
2

2σ2

))
≤ (1 + er + el)

(
|el| exp

(
−(z+ 1

2+er)
2

2σ2

)
+ |er| exp

(
−(z− 1

2+2(1+|er|))
2
+2(1+|er|)2

2σ2

))
≤ (1 + er + el)

(
|el| exp

(
−(|z|− 1

2−er)
2

2σ2

)
+

|er| exp

(
−(|z|+ 1

2−2(1+|er|))
2
+2(1+|er|)2

2σ2

))
.

This means that we have the same result for z > 0 and z < 0, except that
the el’s change into er’s and vice versa. Since el, er ≤ 2−pτσ, we end up with
the following result for z < 0 and z > 0:

∫ z+ 1
2+er

z− 1
2−el

exp
(
− x2

2σ2

)
dx

 ∫ z− 1
2

z− 1
2
−|el|

exp
(
− x2

2σ2

)
dx+

∫ z+1
2
+|er|

z+1
2

exp
(
− x2

2σ2

)
dx∫ z+1

2

z− 1
2

exp
(
− x2

2σ2

)
dx


≤
(
1 + 2−p+1τσ

)
2−pτσ

(
exp

(
−(|z|− 1

2−2
−pτσ)

2

2σ2

)
+

exp

(
−(|z|+ 1

2−2(1+2−pτσ))
2
+2(1+2−pτσ)

2

2σ2

))
.

Now that we have found a bound for z < 0 and z > 0, we also need to find
a bound for z = 0. If z = 0, we have

∫ z+ 1
2+er

z− 1
2−el

exp
(
− x2

2σ2

)
dx

 ∫ z− 1
2

z− 1
2
−|el|

exp
(
− x2

2σ2

)
dx+

∫ z+1
2
+|er|

z+1
2

exp
(
− x2

2σ2

)
dx∫ z+1

2

z− 1
2

exp
(
− x2

2σ2

)
dx


≤ (1 + el + er) exp

(
1

8σ2

) (
|el| exp

(
− 1

8σ2

)
+ |er| exp

(
− 1

8σ2

))
= (1 + el + er) (|el|+ |er|) ≤

(
1 + 2−p+1τσ

)
2−p+1τσ,
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where we use el, er < 2−pτσ in the second inequality. Combining the result for
z = 0 with the results for z < 0 and z > 0 gives us:

ln RD1

(
R′

1
σ || R1

σ

)
≤
(
1 + 2−p+1τσ

)
2−p+1τσ

+
∑

z∈Supp(R′1σ),z>0

1√
2πσ2

(
1 + 2−p+1τσ

)
2−p+1τσ

(
exp

(
−(|z|− 1

2−2
−pτσ)

2

2σ2

)
+

exp

(
−(|z|+ 1

2−2(1+2−pτσ))
2
+2(1+2−pτσ)

2

2σ2

))
=
(
1 + 2−p+1τσ

)
2−p+1τσ

(
1 +

∞∑
z=0

1√
2πσ2

(
exp

(
−(z− 1

2−2
−pτσ)

2

2σ2

)
+

exp

(
−(z+ 1

2−2(1+2−pτσ))
2
+2(1+2−pτσ)

2

2σ2

)))
≤
(
1 + 2−p+1τσ

)
2−p+1τσ

(
2 + 2 exp

(
9

4σ2

))
,

where we use in the last inequality that
∞∑
z=0

1√
2πσ2

exp

(
−(z− 1

2−2
−pτσ)

2

2σ2

)
≤ 1,

as this sums over parts of a Gaussian centered at −1/2 − 2−pτσ. Similarly,
∞∑
z=0

1√
2πσ2

exp

(
−(z+ 1

2−2(1+2−pτσ))
2

2σ2

)
≤ 1. and 1 < (1 + 2−pτσ) < 3

2 , since

0 < 2−pτσ < 1
2 . We note that we could use the stronger bound τσ < 2−p/2+1

here, which implies that we can use a smaller number in the exp function. How-
ever, the goal is to get rid of p with this equation and for this the current
estimate is sufficient. This means that we can use the equation above to com-
pute the floating point precision needed in the RD1 setting. First we look at
ln RD1(R′

mqs
σ || Rmqsσ )/2, before we determine the precision p:

ln RD1(R′
mqs
σ || Rmqsσ )/2 ≤ mqs ln RD1(R′

1
σ || R1

σ)/2
≤ mqs

2

(
1 + 2−p+1τσ

)
2−p+1τσ

(
2 + 2 exp

(
9

4σ2

))
= mqs

((
2−p+1τσ + 1

2

)2 − 1
4

) (
1 + exp

(
9

4σ2

))
.

If we now bound this expression by ε2/4 and determine p, we know that this

p also holds in the setting
√

ln RD1(R′mqsσ || Rmqsσ )/2 ≤ ε/2. This results in:

mqs

((
2−p+1τσ + 1

2

)2 − 1
4

) (
1 + exp

(
9

4σ2

))
≤ ε2

4

⇔
(
2−p+1τσ + 1

2

)2 ≤ ε2+mqs(1+exp( 9
4σ2

))
4mqs(1+exp( 9

4σ2
))

⇔ 2−p+1 ≤
√
ε2+mqs(1+exp( 9

4σ2
))−

√
mqs(1+exp( 9

4σ2
))

2τσ
√
mqs(1+exp( 9

4σ2
))

.

This means that we have as the floating point precision requirement

p ≥ log

 τσ
√
mqs

(
1 + exp

(
9

4σ2

))√
ε2 +mqs

(
1 + exp

(
9

4σ2

))
−
√
mqs

(
1 + exp

(
9

4σ2

))
+ 2. (8)



28 Andreas Hülsing, Tanja Lange, Kit Smeets

RD∞-based analysis. For a = +∞, we follow [1] such that we have that
any forging adversary A having success probability ε on the scheme imple-
mented with imperfect rounded Gaussian sampling has a success probability
δ ≥ ε/RD∞(R′

mqs
σ || Rmqsσ ) on the scheme implemented with the perfect rounded

Gaussian, because of the multiplicative property of the RD, as given in Lemma
B.1. If RD∞(R′

mqs
σ || Rmqsσ ) ≤ O(1), then δ = Ω(ε).

We need mqs samples to create qs signatures. By the multiplicative property
of the RD, we have RD∞(R′

mqs
σ || Rmqsσ ) ≤ RD∞(R′

1
σ || R1

σ)mqs . We target

δ ≥ ε/ exp(1). We first compute R′
1
σ(z)/R1

σ(z) from which the maximum will
automatically follow:

R′1σ(z)
R1
σ(z)

=
(∫ z+ 1

2+er

z− 1
2−el

1√
2πσ2

e−x
2/(2σ2)dx

)/(∫ z+ 1
2

z− 1
2

1√
2πσ2

e−x
2/(2σ2)dx

)
≤ 1 +

(∫ z− 1
2

z− 1
2−|el|

e−x
2/(2σ2)dx+

∫ z+ 1
2+|er|

z+ 1
2

e−x
2/(2σ2)dx

)/(∫ z+ 1
2

z− 1
2

e−x
2/(2σ2)dx

)
.

(9)

Now we need to find a lower bound for the integral in the denominator. We
start by looking into the case z > 0. We have the following bounds:

∫ z+ 1
2

z− 1
2

e−x
2/(2σ2)dx ≥

∫ z− 1
2+

1
z

z− 1
2

e−x
2/(2σ2)dx ≥ 1

z exp
(
−(z− 1

2+
1
z )

2

2σ2

)
= 1

z exp

(
−(z− 1

2 )
2−2(z− 1

2 )
1
z−

1
z2

2σ2

)
≥ 1

z exp
(
−(z− 1

2 )
2

2σ2

)
exp

(−1
σ2

)
,

(10)

where we use that 2
z (z− 1

2 )+ 1
z2 ≤ 2 for z ≥ 1 and z ∈ Z. We bound the integrals

in the numerator the same way as in the RD1 analysis and combine this with
the lower bound from Equation (9):

1 +
(∫ z− 1

2

z− 1
2−|el|

e−x
2/(2σ2)dx+

∫ z+ 1
2+|er|

z+ 1
2

e−x
2/(2σ2)dx

)/(∫ z+ 1
2

z− 1
2

e−x
2/(2σ2)dx

)
≤ 1 +

(
|el| exp

(
−(z− 1

2−|el|)
2

2σ2

)
+ |er| exp

(
−(z+ 1

2 )
2

2σ2

))/(
1
z exp

(
−(z− 1

2 )
2

2σ2

)
exp

(−1
σ2

))
= 1 + z exp

(
1
σ2

)
exp

(
(z− 1

2 )
2

2σ2

)(
|el| exp

(
−(z− 1

2−|el|)
2

2σ2

)
+ |er| exp

(
−(z+ 1

2 )
2

2σ2

))
≤ 1 + z exp

(
1
σ2

) (
|el| exp

(
|el|(2z−1−|el|)

2σ2

)
+ |er| exp

(−z
σ2

))
≤ 1 + z exp

(
1
σ2

) (
|el| exp

(
|el|z
σ2

)
+ |er|

)
≤ 1 + 2−p(τσ)2 exp

(
1
σ2

) (
exp

(
2−p(τσ)2

σ2

)
+ 1
)
,

where we use in the last inequality that |el|, |er| ≤ 2−pτσ and that |z| ≤ τσ. We
note that 2−p+1 ≤ (τσ)2, which gives us

1 + 2−p(τσ)2 exp
(

1
σ2

) (
exp

(
2−p(τσ)2

σ2

)
+ 1
)
≤ 1 + 2−p(τσ)2 exp

(
1

2σ2

) (
exp

(
1

2σ2

)
+ 1
)

≤ exp
(
2−p(τσ)2 exp

(
1
σ2

) (
exp

(
1

2σ2

)
+ 1
))
.

We have found an upper bound for R′
mqs
σ /Rmqsσ if z > 0. We need to check

if this bound works for any value of z ∈ Z. First we look into the case z < 0. We
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want to find a similar bound as in Equation (10). We have

∫ z+ 1
2

z− 1
2

e−x
2/(2σ2)dx ≥

∫ z+ 1
2

z+ 1
2+

1
z

e−x
2/(2σ2)dx ≥ 1

|z| exp

(
−(z+ 1

2+
1
z )

2

2σ2

)
= 1
|z| exp

(
−(z+ 1

2 )
2−2(z+ 1

2 )· 1z−
1
z2

2σ2

)
= 1
|z| exp

(
−(|z|− 1

2 )
2−2(|z|− 1

2 )· 1
|z|−

1
|z|2

2σ2

)
≥ 1
|z| exp

(
−(|z|− 1

2 )
2

2σ2

)
exp

(−1
σ2

)
,

(11)
which is the same expression as we had for z > 0. We note that the only difference
between z < 0 and z > 0 is the el and the er, which we already have seen in
the case of RD1. Since we use |el|, |er| ≤ 2−pτσ, we can use the bound found
for z > 0 also in the case z < 0. Now we check if this maximum also works for
z = 0:

R′1σ(z)
R1
σ(z)

≤
(∫ z+ 1

2+er

z− 1
2−el

1√
2πσ2

e−x
2/(2σ2)dx

)/(∫ z+ 1
2

z− 1
2

1√
2πσ2

e−x
2/(2σ2)dx

)
≤ 1 + |er|+ |el| ≤ 1 + 1

2 · 2
−p + 1

2 · 2
−p = 1 + 2−p,

as we have seen in the computations for RD1. Since this is less than the max-
imum, we can use the upper bound exp

(
2−p(τσ)2 exp

(
1
σ2

) (
exp

(
1

2σ2

)
+ 1
))

to
determine the floating point precision p needed.

We have RD∞(R′
mqs
σ || Rmqsσ ) ≤ RD∞(R′

1
σ || R1

σ)mqs and want to find an
expression for p from this. This results in the following equations:

RD∞(R′
mqs
σ || Rmqsσ ) ≤ RD∞(R′

1
σ || R1

σ)mqs

≤ exp
(
2−p(τσ)2 exp

(
1
σ2

) (
exp

(
1

2σ2

)
+ 1
))mqs

.

We set the floating point precision p such that

exp

(
mqs2

−p(τσ)2 exp

(
1

σ2

)(
exp

(
1

2σ2

)
+ 1

))
≤ exp(1).

This yields a precision argument

p ≥ log

(
mqs(τσ)2 exp

(
1

σ2

)(
exp

(
1

2σ2

)
+ 1

))
. (12)

Recall that we assumed that τσ � 2−p/2, i.e. p > 2 log(τσ). We need to
check if this is true for the result we got. We see that indeed we get

p ≥ log
(
mqs(τσ)2 exp

(
1
σ2

) (
exp

(
1

2σ2

)
+ 1
))

= 2 log (τσ) + log
(
mqs exp

(
1
σ2

) (
exp

(
1

2σ2

)
+ 1
))
> 2 log(τσ),

since all the logarithms give a positive result.
Note that, as in the analysis of the discrete Gaussian in [1], Equation (12)

does not explicitly depend on ε. However, the dependency on ε is hidden in the
security parameter λ, which is still dependent on ε.
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Lower bound on the precision p

SD (Equation (6)) p ≥ log
(
mqsτσ

(√
2πσ2 + 1

))
+ λ− log

(√
2πσ2

)
+ 1

RD1 (Equation (8)) p ≥ log

 τσ

√
mqs

(
1+exp

(
9

4σ2

))
√
ε2+mqs

(
1+exp

(
9

4σ2

))
−
√
mqs

(
1+exp

(
9

4σ2

))
+ 2

RD∞ (Equation (12)) p ≥ log
(
mqs(τσ)2 exp

(
1
σ2

) (
exp

(
τ
2σ

)
+ 1
))

Table B.1. Comparison of the precision p to handle adversaries with success proba-
bility ≥ ε making ≤ qs signing queries to BLISS signature generation with Box-Muller
transformation.

Example p for rounded Gaussians Example p for discrete Gaussians

SD p ≥ 215 p ≥ 207

RD1 p ≥ 346 p ≥ 168

RD∞ p ≥ 98 p ≥ 79
Table B.2. Comparison of the precision p needed for BLISS-I implemented with
rounded Gaussians and implemented with discrete Gaussians.

Equation (12) eliminates the term ε from the floating point precision p, which
was needed for the SD-based and the RD1-based analyses. However, m, qs and ε
are dependent on λ, i.e. the resulting floating point precision p is not independent
of ε, since it is not independent of λ.

We summarize the results in Table B.1. Before we can numerically compute
this p, we need to know the value of m and against how many signing queries qs
we want to be protected.

Note that the precision plays different roles per sampler and implementation.
In our sampling approach, each computation step has the potential to decrease
the precision, but all considerations are worst-case considerations. The CDT
sampler that we considered for comparison has a stored table of fixed precision.
To compare the precision bounds as described in Table B.1 to the precision
bounds found in [1] for BLISS-I we use the same values for the variables, that
is, we use ε = 2−128, dimension m = 1024, qs = 264 sign queries, σ = 215 and
tail bound τ =

√
(2 · 128 · log(2)) = 13.32087377852. The results can be found

in Table B.2. Here we can see that rounded Gaussians need more precision than
discrete Gaussians, but rounded Gaussians come with the advantage that they
can easily be implemented in constant time and without table look ups, which
makes it suitable to use rounded Gaussians in practice for BLISS. Furthermore,
the estimates are less tight because of the approximation of integrals and errors
by their worst case value.

Note that the values in Table B.2 tell us the resulting precision needed. If we
want to know the implementations precision, i.e. the precision before the imple-
mentation makes any changes, we need to compute how much precision is lost
by the implementation. For our implementation of BLISS-I we have computed
the loss of precision in Section 5.2.
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