
Public-Key Encryption Resistant to Parameter
Subversion and its Realization from

Efficiently-Embeddable Groups

Benedikt Auerbach1, Mihir Bellare2, and Eike Kiltz1

1 Horst-Görtz Institute for IT Security and Faculty of Mathematics, Ruhr-University
Bochum, Germany

{ benedikt.auerbach, eike.kiltz }@rub.de
2 Department of Computer Science & Engineering, University of California San Diego,

9500 Gilman Drive, La Jolla, California 92093, USA
mihir@eng.ucsd.edu.

Abstract. We initiate the study of public-key encryption (PKE) schemes
and key-encapsulation mechanisms (KEMs) that retain security even
when public parameters (primes, curves) they use may be untrusted and
subverted. We define a strong security goal that we call ciphertext pseudo-
randomness under parameter subversion attack (CPR-PSA). We also
define indistinguishability (of ciphertexts for PKE, and of encapsulated
keys from random ones for KEMs) and public-key hiding (also called
anonymity) under parameter subversion attack, and show they are implied
by CPR-PSA, for both PKE and KEMs. We show that hybrid encryption
continues to work in the parameter subversion setting to reduce the
design of CPR-PSA PKE to CPR-PSA KEMs and an appropriate form
of symmetric encryption. To obtain efficient, elliptic-curve-based KEMs
achieving CPR-PSA, we introduce efficiently-embeddable group families
and give several constructions from elliptic-curves.

1 Introduction

This paper initiates a study of public-key encryption (PKE) schemes, and key-
encapsulation mechanisms (KEMs), resistant to subversion of public parameters.
We give definitions, and efficient, elliptic-curve-based schemes. As a tool of inde-
pendent interest, we define efficiently-embeddable group families and construct
them from elliptic curves.
Parameter subversion. Many cryptographic schemes rely on some trusted,
public parameters common to all users and implementations. Sometimes these are
specified in standards. The Oakley primes [39], for example, are a small number of
fixed prime numbers widely used for discrete-log-based systems. For ECC (Elliptic
Curve Cryptography), the parameters are particular curves. Examples include
the P-192, P-224, ... curves from the FIPS-186-4 [38] standard and Ed25519 [16].

There are many advantages to such broad use of public parameters. For
example, it saves implementations from picking their own parameters, a task

2 B. Auerbach, M. Bellare, E. Kiltz

that can be error-prone and difficult to do securely. It also makes key-generation
faster and allows concrete-security improvements in the multi-user setting [7].
Recent events indicate, however, that public parameters also bring a risk, namely
that they can be subverted. The representative example is Dual-EC. We refer
to [19] for a comprehensive telling of the story. Briefly, Dual EC was a PRG
whose parameters consisted of a description of a cyclic group and two generators
of the group. If the discrete logarithm of one generator to base the other were
known, security would be compromised. The Snowden revelations indicate that
NIST had adopted parameters provided by the NSA and many now believe these
parameters had been subverted, allowing the NSA to compromise the security of
Dual EC. Juniper’s use of Dual EC further underscores the dangers [21].

Security in the face of parameter subversion. DGGJR [26] and BFS [9]
initiated the study of cryptography that retains security in the face of subverted
parameters, the former treating PRGs and the latter treating NIZKs, where the
parameter is the common reference string. In this paper we treat encryption. We
define what it means for parameter-using PKE schemes and KEMs to retain
security in the face of subversion of their parameters. With regard to schemes,
ECC relies heavily on trusted parameters. Accordingly we focus here, providing
various efficient elliptic-curve-based schemes that retain security in the face of
parameter subversion.

Current mitigations. In practice, parameters are sometimes specified in a
verifiable way, for example derived deterministically (via a public algorithm)
from publicly-verifiable coins. The coins could be obtained by applying a hash
function like SHA1 to some specified constants (as is in fact done for the FIPS-
186-4 curves [38] and in the ECC brainpool project), via the first digits of
the irrational number π, or via lottery outcomes [5]. This appears to reduce
the possibility of subversion, but BCCHLN [15] indicate that the potential of
subverting elliptic curves still remains, so there is cause for caution even in this
regard. Also, even if such mechanisms might “work” in some sense, we need
definitions to understand what “work” means, and proofs to ensure definitions
are met. Our work gives such definitions.

Background. A PKE scheme specifies a parameter generation algorithm that
returns parameters π, a key-generation algorithm that takes π and returns a
public key pk and matching secret key sk, an encryption algorithm that given
π, pk and message m returns a ciphertext c, and a decryption algorithm that
given π, sk, c recovers m. We denote the classical notions of security by IND
—indistinguishability of ciphertexts under chosen-ciphertext attack [8, 22]— and
PKH —public-key hiding, also called anonymity, this asks that ciphertexts not
reveal the public key under which they were created [6]. For KEMs, parameter
and key generation are the same, encryption is replaced by encapsulation —it
takes π, pk to return an encapsulated key K and a ciphertext c that encapsulates
K— and decryption is replaced by decapsulation —given π, sk, c it recovers
K. We continue to denote the classical goals by IND —this now asks for in-
distinguishability of encapsulated keys from random under chosen-ciphertext

PKE Resistant to Parameter Subversion 3

CPR-PSA

IND-PSA PKH-PSA

CPR

IND PKH

Fig. 1. Relations between notions of security. The notions are defined, and the
relations hold, for both PKE schemes and KEMs. An arrow A→ B is an implication: if
a scheme meets A then it also meets B.

attack [23]— and PKH. We stress that these classical notions assume honest
parameter generation, meaning the parameters are trusted.

We know that, in this setting, IND PKE is reduced, via hybrid encryption, to
IND KEMs and ind-cpa symmetric encryption [23]. To the best of our knowledge,
no analogous result exists for PKH.

Mass surveillance activities have made apparent the extent to which privacy
can be violated purely by access to meta-data, including who is communicating
with whom. PKE and KEMs providing PKH are tools towards systems that do
more to hide identities of communicants. We will thus target this goal in the
parameter subversion setting as well.

Definitions and relations. For both PKE and KEMs, we formulate a goal
called ciphertext pseudorandomness under parameter subversion attack, denoted
CPR-PSA. It asks that ciphertexts be indistinguishable from strings drawn ran-
domly from the ciphertext space, even under a chosen-ciphertext attack (CCA).
We also extend the above-discussed classical goals to the parameter subversion set-
ting, defining IND-PSA and PKH-PSA. For both PKE (Proposition 1) and KEMs
(Proposition 2) we show that CPR-PSA implies both IND-PSA and PKH-PSA.
We thus get the relations between the new and classical notions summarized in
Figure 1. (Here CPR is obtained by dropping the PSA in CPR-PSA, meaning
it is our definition with honest parameter generation. This extends the notions
of [37, 26] to allow a CCA.)

We ask whether we can reduce the design of CPR-PSA PKE to the design
of CPR-PSA KEMs via hybrid encryption. Proposition 3 says the answer is
yes, but, interestingly, requires that the KEM has an extra property of well-
distributed ciphertexts that we denote WDC-PSA. (The symmetric encryption
scheme is required to have pseudo-random ciphertexts. Such symmetric schemes
are easily obtained.) We now have a single, strong target for constructions, namely
CPR-PSA+WDC-PSA KEMs. (By the above they imply CPR-PSA PKE, which
in turn implies IND-PSA PKE and PKH-PSA PKE.) Our goal thus becomes to
build efficient KEMs that are CPR-PSA+WDC-PSA.

4 B. Auerbach, M. Bellare, E. Kiltz

Parameter-free schemes. We say that a scheme (PKE or KEM) is parameter
free if there are no parameters. (Formally, the parameters are the empty string ε.)
Note that a parameter-free scheme that is XXX secure is trivially also XXX-PSA
secure. (XXX ∈ {CPR, IND,PKH}.) This is an important observation, and
some of our schemes will indeed be parameter-free, but, as we discuss next, this
observation does not trivialize the problem.
Issues and challenges. In an attempt to achieve PSA security through the
above observation, we could consider the following simple way to eliminate
parameters. Given a XXX-secure parameter-using scheme, build a parameter-free
version of it as follows: the new scheme sets its parameters to the empty string;
key generation runs the old parameter generation algorithm to get π, then the
old key generation algorithm to get pk and sk, setting the new public and secret
keys to (π, pk) and (π, sk), respectively; encryption and decryption can then
follow the old scheme. This trivial construction, however, has drawbacks along
two dimensions that we expand on below: (1) security and (2) efficiency.

With regard to security, the question is, if the old scheme is XXX, is the new
one too? (If so, it is also XXX-PSA, since it is parameter free, so we only need to
consider the classical notions.) The answer to the question is yes if XXX = IND,
but no if XXX ∈ {PKH,CPR}. Imagine, as typical, that the parameters describe
a group. Then in the new scheme, different users use different, independent
groups. This will typically allow violation of PKH [6]. For example, in the El
Gamal KEM, a ciphertext is a group element, so if two users have groups G0
and G1, respectively, one can determine which user generated a ciphertext by
seeing to which of the two groups it belongs. The same is true for RSA where
the group Gi = ZNi is determined by the modulus Ni in the key of user i. Even
when the moduli have the same bit length, attacks in [6] show how to violate
PKH-security of the simple RSA KEM.

With regard to efficiency, the drawback is that we lose the benefits of
parameter-using schemes noted above. In particular, key-generation is less effi-
cient (because it involves parameter generation for the old scheme, which can
be costly), and public keys are longer (because they contain the parameters of
the old scheme). We aim to retain, as much as possible, the efficiency benefits of
parameters while adding resistance to PSA.

BBDP [6] give (1) parameter-free IND+PKH RSA-based PKE schemes and
(2) parameter-using discrete-log based IND+PKH PKE schemes. The former,
since parameter-free, are IND-PSA+PKH-PSA, but they are not CPR-PSA and
they are not as efficient as ECC-based schemes. The latter, while ECC-based
and fast, are not secure against PSA.

The open question that emerges is thus to design efficient, ECC-based KEMs
that are CPR-PSA+WDC-PSA. The technical challenge is to achieve CPR-PSA
(and thus PKH-PSA) even though the groups of different users may be different.
Overview of the approach. We introduce and formalize efficiently-embeddable
group (eeg) families and identify desirable security properties for them. We
give a transform constructing CPR-PSA+WDC-PSA KEMs from secure eeg
families. This reduces our task to finding secure eeg families. We propose several

PKE Resistant to Parameter Subversion 5

eeg family Transform Parameter Assumption
Efficiency

Key size
KE.G KE.E KE.D

EGtwist eegToKE1 p sCDH-PSA tTGen 2,2 2 10k
EGtwist eegToKE2 p CDH-PSA tTGen 3,3 3 12k

EG`
twist-rs eegToKE1 — sCDH-PSA tTGen 3, `+1 1 9k

EG`
twist-rs eegToKE2 — CDH-PSA tTGen 4, `+2 2 11k

EGtwist-re eegToKE1 — sCDH-PSA tTGen 3, 3 1 9k
EGtwist-re eegToKE2 — CDH-PSA tTGen 4, 4 2 11k

EG`
ell1, EG`

ell2 eegToKE1 p sCDH-PSA tEllGen 3, `+ 1 1 6k
EG`

ell1-rs, EG`
ell2-rs eegToKE1 — sCDH-PSA tEllGen 5, `+1 1 5k

Table 1. Our elliptic curve based CPR-PSA+WDC-PSA KEMs. p denotes
the modulus of the field. Efficiency of KE.G is dominated by the sampling time of the
curves. Efficiency of KE.E (average, worst case) and KE.D (worst case) is given as the
number of exponentiations on the curves. The key size is measured in bits, k = d|Fp|e
being the bit length of the used modulus. For the rejection sampling based constructions,
` denotes the cut-off bound. For transform eegToKE2 and the constructions based on
Elligator curves (last two rows) see [4].

instantiations of eeg families from elliptic curves with security based on different
assumptions. An overview of the resulting KEMs is given in Table 1. We discuss
our results in greater detail below.

Efficiently-embeddable group families. As described above, having users
utilize different groups typically enables linking ciphertexts to the intended
receiver and hence violating CPR-PSA. However, certain families of groups allow
to efficiently map group elements to a space, which is independent of the particular
group of the family. Building on these types of group families it is possible to
achieve CPR-PSA secure encryption while still allowing each user to choose his
own group.

We formalize the required properties via efficiently embeddable group families,
a novel abstraction that we believe is of independent interest. An eeg family EG
specifies a parameter generation algorithm EG.P sampling parameters to be
used by the other algorithms, and a group generation algorithm EG.G sampling
a group from the family. Embedding algorithm EG.E embeds elements of the
group into some embedding space EG.ES. The group element can be recovered
using inversion algorithm EG.I. An important property is that the embedding
space only depends on the parameters and in particular not on the used group.
Looking ahead, the KEM’s public key will contain a group sampled with EG.S and
ciphertexts will be embeddings. We require two security properties for EG in order
to achieve CPR-PSA+WDC-PSA KEMs. Both assume parameter subversion
attacks and are defined with respect to a sampling algorithm EG.S, which samples
(not necessarily uniformly distributed) group elements. The first, embedding
pseudorandomness (EPR-PSA), is that embeddings of group elements sampled
with EG.S are indistinguishable from uniform. Further we give a definition the
strong computational Diffie-Hellman assumption (sCDH-PSA) with respect to

6 B. Auerbach, M. Bellare, E. Kiltz

EG— an adaption of the interactive assumption introduced in [2] to our setting.
It differs from the usual strong computational Diffie-Hellman assumption in two
points. The group used for the challenge is sampled using EG.G on a parameter of
the adversary’s choice and additionally one of the exponents used in the challenge
is sampled with sampling algorithm EG.S.

Key ecapsulation mechanisms from eeg families. We provide a trans-
form eegToKE1 of eeg families to secure KEMs. If the eeg family is both
EPR-PSA and sCDH-PSA the resulting KEM is CPR-PSA and WDC-PSA.

Key encapsulation from weaker assumptions. In the full version of this
paper [4] we give a second transform eegToKE2 from eeg families to secure
KEMs. It is applicable to eeg families consisting of groups, which order has no
small prime factors. Its security is based on the weaker computational Diffie-
Hellman assumption (CDH-PSA), i.e. it achieves a CPR-PSA and WDC-PSA
KEM under the weaker assumption that EG is both EPR-PSA and CDH-PSA.
However, this comes at the cost of larger key size and slower encryption and
decryption.

Instantiations from elliptic curves. We propose several instantiations of
eeg families from elliptic curves. It is well known that elliptic curves are not all
equal in security. We target elliptic-curve groups over the field Fp for a large odd
prime p since they are less vulnerable to discrete-log-finding attacks than groups
over fields of characteristic two [28, 40]. While the usage of standardized primes
allows for more efficient implementations, several cryptanalysts further suggest
that p should be as random as possible for maximal security, see for example
Brainpool’s RFC on ECC [36]. These constraints make building eeg families more
challenging. We offer solutions for both cases. We first identify an eeg family
implicitly given in prior work [34, 37]. The family consists of curve-twist pairs of
elliptic curves. Its embedding space depends on the modulus p of the underlying
field, which serves as parameter of the construction.

Building on eeg family EGtwist we also provide alternatives, which no longer
rely on a fixed modulus. The constructions have empty parameters and p is
sampled at random in the group generation algorithm. The technical challenge is to
still achieve pseudorandom embeddings in an embedding space independent of the
group. Our solution EG`twist-rs achieves this by using rejection sampling with cut-off
parameter `. Its embedding space consists of bit strings of length only dependent
on the security parameter. The sampling algorithm has a worst-case running time
of ` exponentiations, but the average cost is two exponentiations independently of
`. Eeg family EGtwist-re uses a range expansion technique from [33] and improves
on EG`twist-rs both in terms of efficiency and security. As in the other construction
embeddings are bit strings, but sampling only requires a single exponentiation.

Security of the instantiations. We now discuss the security properties of
our instantiations in greater detail. An overview is given in Table 2. All of our
constructions achieve EPR-PSA statistically. Embeddings in eeg families EGtwist,
and EGtwist-re are perfectly random, i.e. any (unbounded) adversary has advantage

PKE Resistant to Parameter Subversion 7

eeg family Curve type Parameter ∆EPR-PSA See

EGtwist twist p 0 § 5.2
EG`

twist-rs twist — (1/2)` § 5.3
EGtwist-re twist — 0 § 5.4

EG`
ell1, EG`

ell2 Elligator p (2/3)` [4]
EG`

ell1-rs, EG`
ell2-rs Elligator — (4/5)` [4]

Table 2. Security of our eeg families. The modulus of the used field is denoted by
p. ∆EPR-PSA denotes the maximal advantage of an (unbounded) adversary in breaking
EPR-PSA. ` denotes the cut-off bound used in the construction based on rejection
sampling.

0 in breaking EPR-PSA. For family EG`twist-rs the advantage decays exponentially
in the cut-off bound `.

Diffie-Hellman problem sCDH-PSA is non standard. It is defined with re-
spect to the eeg family’s sampling algorithm and assumes parameter subversion
attacks. However, for all of our proposed instantiations we are able to show
that sCDH-PSA can be reduced to assumptions, which no longer depend on the
sampling algorithms, but use uniformly sampled exponents instead. Considering
the parameters of our constructions, they belong to one of two classes. Eeg
familiy EGtwist uses the modulus p as parameter, which might be subject to
subversion. Accordingly sCDH-PSA in this case corresponds to the assumption
that the adversary’s possibility to choose p does not improve its capacities in
solving Diffie-Hellman instances on either the curve or its twist for a curve-
twist pair sampled from the family. Eeg families EG`twist-rs and EGtwist-re serve
as more conservative alternatives. They are parameter-free and each user choses
his own modulus at random, resulting in the weaker assumption that solving
Diffie-Hellman instances over curves sampled with respect to a randomly chosen
modulus is hard.

Instantiations from Elligator curves In the full version of this paper [4]
we provide alternatives to our curve-twist pair based constructions. Eeg families
EG`ell1, EG`ell2, EG`ell1-rs and EG`ell2-rs make use of the Elligator1 and Elligator2
curves of [17]. EG`ell1 and EG`ell2 were implicitly given in [17] and use the modulus
of the underlying field as parameter. Constructions EG`ell1-rs and EG`ell2-rs serve
as parameter-free alternatives.

Related work. One might consider generating parameters via a multi-party
computation protocol so that no particular party controls the outcome. It is
unclear however what parties would perform this task and why one might trust
any of them. PKE resistant to parameter subversion provides greater security.

Parameter subversion as we consider it allows the adversary full control
of the parameters. This was first considered for NIZKs [9] and (under the
term backdoored) for PRGs [26, 25]. Various prior works, in various contexts,
considered relaxing the assumptions on parameters in some way [20, 32, 30, 35],

8 B. Auerbach, M. Bellare, E. Kiltz

but these do not allow the adversary full control of the parameters and thus do
not provide security against what we call parameter subversion.

Algorithm-substitution attacks, studied in [12, 10, 24, 11, 3], are another form
of subversion, going back to the broader framework of kleptography [43, 44].
The cliptography framework of RTYZ [41] aims to capture many forms of
subversion. In [42] the same authors consider PKE that retains security in the
face of substitution of any of its algorithms, but do not consider parameter
subversion.

2 Preliminaries

Notation. We let ε denote the empty string. If X is a finite set, we let x←$ X
denote picking an element of X uniformly at random and assigning it to x. All
our algorithms are randomized and polynomial time (PT) unless stated otherwise.
An adversary is an algorithm. Running time is worst case. If A is an algorithm,
we let y ← A(x1, . . . ; r) denote running A with random coins r on inputs x1, . . .
and assigning the output to y. We let y←$ A(x1, . . .) be the result of picking r
at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all
possible outputs of A when invoked with inputs x1, We use the code based
game playing framework of [14]. (See Figure 3 for an example.) By Pr[G] we
denote the probability that the execution of game G results in the game returning
true. We also adopt the convention that the running time of an adversary refers
to the worst case execution time of the game with the adversary. This means
that the time taken for oracles to compute replies to queries is included. The
random oracle model [13] is captured by a game procedure RO that implements
a variable output length random oracle. It takes a string x and an integer m and
returns a random m-bit string. We denote by Pk the set of primes of bit length
k and by [d] the set {0, . . . , d− 1}. Furthermore, the uniform distribution on M
is denoted by UM . If two random variables X and Y are equal in distribution we
write X ∼ Y . The statistical distance between X and Y is denoted by ∆(X;Y).
If ∆(X;Y) ≤ δ we say X is δ-close to Y .

3 Public-Key Encryption Resistant to Parameter
Subversion

In this section we recall public-key encryption schemes and key encapsulation
mechanisms. For both primitives we define the strong security notion of pseudo-
randomness of ciphertexts in the setting of parameter subversion and show that it
implies both indistinguishability of encryptions and public-key hiding. We further
define the security notion of well-distributedness of ciphertexts for key encapsula-
tion mechanisms. Finally, we recall symmetric encryption schemes and revisit
the hybrid encryption paradigm in the setting of ciphertext pseudorandomness
under parameter subversion attacks.

PKE Resistant to Parameter Subversion 9

3.1 Public-Key Encryption Schemes
Below we give a syntax for public-key encryption schemes. It follows [23], but
uses slightly different notation and includes an additional algorithm setting up
global parameters to be utilized by all users. We then formalize a novel security
requirement of pseudorandomness of ciphertexts under parameter subversion
attacks (CPR-PSA), which says that even if the parameters of the scheme are
controlled by the adversary, ciphertexts obtained under any public key are
indistinguishable from random elements of the ciphertext space, which depends
only on the security parameter, the message length and the global parameters. We
then recall two existing requirements of public-key encryption schemes adapting
them to the setting of parameter subversion attacks. The first is the well-known
notion of indistinguishability of encryptions [31], the second, from [6, 1], is that
ciphertexts under different public keys are indistinguishable, which they called
anonymity or key hiding and we call public-key hiding. In Proposition 1 we
show that the first requirement implies the other two, allowing us to focus on it
subsequently. We model the possibility of subverted parameters by having the
adversary provide the parameters, which are used in the security games.
Public-Key Encryption. A public-key encryption scheme (PKE) PE specifies
the following. Parameter generation algorithm PE.P takes input 1k, where k ∈ N
is the security parameter, and returns global parameters π. Key-generation
algorithm PE.G takes input 1k, π and returns a tuple (pk, sk) consisting of the
public (encryption) key pk and matching secret (decryption) key sk. PE.CS
associates to k, π and message length m ∈ N a finite set PE.CS(k, π,m) that
is the ciphertext space of PE. Encryption algorithm PE.E takes 1k, π, pk and a
messageM ∈ {0, 1}∗ and returns a ciphertext c ∈ PE.CS(k, π, |M |). Deterministic
decryption algorithm PE.D takes 1k, π, sk and a ciphertext c and returns either a
message M ∈ {0, 1}∗ or the special symbol ⊥ indicating failure. The correctness
condition requires that for all k ∈ N, all π ∈ [PE.P(1k)], all (pk, sk) ∈ [PE.G(1k, π)]
and all M ∈ {0, 1}∗ we have Pr

[
PE.D(1k, π, sk, c) = M

]
≥ 1− PE.de(k), where

the probability is over c←$ PE.E(1k, π, pk,M) and PE.de : N → R≥0 is the
decryption error of PE. Our PKEs will be in the ROM [13], which means the
encryption and decryption algorithms have access to a random oracle specified
in the security games. Correctness must then hold for all choices of the random
oracle. We say a PKE is parameter-free if PE.P returns ε on every input 1k.
Ciphertext pseudorandomness. Consider game Gcpr-psa

PE,A (k) of Figure 2 asso-
ciated to PKE PE, adversary A and security parameter k, and let

Advcpr-psa
PE,A (k) = 2 Pr[Gcpr-psa

PE,A (k)]− 1 .
We say that PE has pseudorandom ciphertexts under parameter subversion attacks
(also called CPR-PSA) if the function Advcpr-psa

PE,A (·) is negligible for every A. In
the game, b is a challenge bit. When b = 1, the challenge ciphertext c∗ is an
encryption of a message of the adversary’s choice, but if b = 0 it is chosen at
random from the ciphertext space. Given the public key and challenge ciphertext,
the adversary outputs a guess b′ and wins if b′ equals b, the game returning
true in this case and false otherwise. The adversary has access to an oracle Init,

10 B. Auerbach, M. Bellare, E. Kiltz

Games Gcpr-psa
PE,A (k),Gind-psa

PE,A (k),Gpkh-psa
PE,A (k)

c∗ ← ⊥
b←$ {0, 1}
b′←$AInit,Enc,Dec,RO(1k)
Return (b = b′)
RO(x,m) // Gcpr-psa

PE,A ,Gind-psa
PE,A ,Gpkh-psa

PE,A

If (T [x,m] = ⊥)
then T [x,m]←$ {0, 1}m

Return T [x,m]
Enc(M) // Gcpr-psa

PE,A

If (pk = ⊥) then return ⊥
If (b = 0) then c∗←$ PE.CS(k, π, |M |)
Else c∗←$ PE.ERO(1k, π, pk,M)
Return c∗

Enc(M0,M1) // Gind-psa
PE,A

If (pk = ⊥) then return ⊥
If (|M0| 6= |M1|) then return ⊥
c∗←$ PE.ERO(1k, π, pk,Mb)
Return c∗

Enc(M) // Gpkh-psa
PE,A

If (pk0 = ⊥ ∨ pk1 = ⊥)
return ⊥

c∗←$ PE.ERO(1k, π, pkb,M)
Return c∗

Init(π) // Gcpr-psa
PE,A ,Gind-psa

PE,A

(pk, sk)←$ PE.G(1k, π)
Return pk
Init(π) // Gpkh-psa

PE,A

(pk0, sk0)←$ PE.G(1k, π)
(pk1, sk1)←$ PE.G(1k, π)
If (pk0 = ⊥ ∨ pk1 = ⊥)

return ⊥
Return (pk0, pk1)
Dec(c) // Gcpr-psa

PE,A ,Gind-psa
PE,A

If (c = c∗) then return ⊥
Else return PE.DRO(1k, π, sk, c)
Dec(c) // Gpkh-psa

PE,A

If (c = c∗) then return ⊥
M0 ← PE.DRO(1k, π, sk0, c)
M1 ← PE.DRO(1k, π, sk1, c)
Return (M0,M1)

Fig. 2. Games defining security of PKEs. In each game the adversary is given access to
oracles. The game, to which an oracle belongs, is indicated behind the oracle’s name.
In each game oracles Init and Enc may be queried only once. Further Init has to be
queried before using any of the other oracles.

which sets up the public key using parameters of the adversary’s choice, and an
oracle Enc to generate the challenge ciphertext. Furthermore it has access to
the random oracle and a decryption oracle crippled to not work on the challenge
ciphertext. We require that the adversary queries the oracles Init and Enc only
once. Furthermore Init has to be queried before using any of the other oracles.

Indistinguishability of encryptions. Consider game Gind-psa
PE,A (k) of Figure 2

associated to PKE PE, adversary A and security parameter k, and let
Advind-psa

PE,A (k) = 2 Pr[Gind-psa
PE,A (k)]− 1 .

We say that PE has indistinguishable encryptions under parameter subversion
attacks (also called IND-PSA) if the function Advind-psa

PE,A (·) is negligible for every
A. In the game, b is a challenge bit. The adversary has access to an oracle Init,
which sets up the public key using parameters of the adversary’s choice, and an

PKE Resistant to Parameter Subversion 11

oracle Enc, which receives as input two messages M0, M1 of the same length
and outputs the challenge ciphertext c∗. When b = 0, the challenge ciphertext
is an encryption of M0, if b = 1 an encryption of M1. Given the public key and
challenge ciphertext, the adversary outputs a guess b′ and wins if b′ equals b, the
game returning true in this case and false otherwise. Again, the adversary has
access to the random oracle and a decryption oracle crippled to not work on the
challenge ciphertext. We require that the adversary queries the oracles Init and
Enc only once. Furthermore Init has to be queried before using any of the other
oracles.

Public-key hiding. Consider game Gpkh-psa
PE,A (k) of Figure 2 associated to PKE

PE, adversary A and security parameter k, and let
Advpkh-psa

PE,A (k) = 2 Pr[Gpkh-psa
PE,A (k)]− 1 .

We say that PE is public-key hiding under parameter subversion attacks (also
called PKH-PSA) if the function Advpkh-psa

PE,A (·) is negligible for every A. In the
game, b is a challenge bit. Unlike the prior games, two key pairs are generated, not
one. The challenge ciphertext c∗ is an encryption of a message of the adversary’s
choice under pkb. Given the public keys and the challenge ciphertext, the adversary
outputs a guess b′ and wins if b′ equals b. This time the crippled decryption
oracle returns decryptions under both secret keys. The adversary sets up the
public keys with its call to oracle Init, and an uses oracle Enc to generate the
challenge ciphertext. Again we require that the adversary queries the oracles
Init and Enc only once. Furthermore Init has to be queried before using any of
the other oracles.

Relations. The following says that pseudorandomness of ciphertexts implies
both indistinguishable encryptions and anonymity. We give both asymptotic and
concrete statements of the results.

Proposition 1. Let PE be a PKE that has pseudorandom ciphertexts under
parameter subversion attacks. Then:
1. PE is IND-PSA. Concretely, given an adversary A the proof specifies an

adversary B0 such that Advind-psa
PE,A (k) ≤ 2 ·Advcpr-psa

PE,B0
(k) for every k ∈ N,

and B0 has the same running time and query counts as A.
2. PE is PKH-PSA. Concretely, given an adversary A the proof specifies an

adversary B1 such that Advpkh-psa
PE,A (k) ≤ 2 ·Advcpr-psa

PE,B1
(k) for every k ∈ N,

and B0 has the same running time and query counts as A.

The proof of the proposition can be found in the full version of this paper [4].

3.2 Key Encapsulation Mechanisms

Below we first give a syntax for key encapsulation mechanisms. It follows [23] but
with notation a bit different and including an additional algorithm setting up
global parameters to be utilized by all users. As for public-key encryption schemes
we formalize the security requirement of pseudorandomness of ciphertexts under

12 B. Auerbach, M. Bellare, E. Kiltz

Game Gcpr-psa
KE,A (k)

b←$ {0, 1}
b′←$AInit,Dec,RO(1k)
Return (b = b′)
Game Gind-psa

KE,A (k)

b←$ {0, 1}
b′←$AInit,Dec,RO(1k)
Return (b = b′)
Game Gpkh-psa

KE,A (k)

b←$ {0, 1}
b′←$AInit,Dec,RO(1k)
Return (b = b′)
Dec(c) // Gcpr-psa

KE,A ,Gind-psa
KE,A

If (c = c∗) then return ⊥
K ← KE.DRO(1k, π, sk, c)
Return K
Dec(c) // Gpkh-psa

KE,A

If (c = c∗) then return ⊥
K0 ← KE.DRO(1k, π, sk0, c)
K1 ← KE.DRO(1k, π, sk1, c)
Return (K0,K1)

RO(x,m) // Gcpr-psa
KE,A ,Gind-psa

KE,A ,Gpkh-psa
KE,A

If (T [x,m] = ⊥)
then T [x,m]←$ {0, 1}m

Return T [x,m]
Init(π) // Gcpr-psa

KE,A

(pk, sk)←$ KE.G(1k, π)
If (pk = ⊥) then return ⊥
If (b = 1) then (K∗, c∗)←$ KE.ERO(1k, π, pk)
Else K∗←$ KE.KS(k)
c∗←$ KE.CS(k, π)
Return (pk,K∗, c∗)
Init(π) // Gind-psa

KE,A

(pk, sk)←$ KE.G(1k, π)
If (pk = ⊥) then return ⊥
(K∗, c∗)←$ KE.ERO(1k, π, pk)
If (b = 0) then K∗←$ KE.KS(k)
Return (pk,K∗, c∗)
Init(π) // Gpkh-psa

KE,A

(pk0, sk0)←$ KE.G(1k, π)
(pk1, sk1)←$ KE.G(1k, π)
If (pk0 = ⊥ ∨ pk1 = ⊥) then return ⊥
(K∗, c∗)←$ KE.ERO(1k, π, pkb)
Return (pk0, pk1,K

∗, c∗)

Fig. 3. Games defining security of key encapsulation mechanism KE. In each game the
adversary is given access to oracles. The game, to which an oracle belongs, is indicated
behind the oracle’s name. In each game oracle Init must be queried only once, which
has to be done before using any of the other oracles.

parameter subversion attacks (CPR-PSA). We then adapt the two existing KEM
requirements of indistinguishability of encryptions [23] and public-key hiding [6,
1] to the setting of parameter subversion attacks. In Proposition 2 we show
that —as in the case of public-key encryption— the first requirement implies
the other two. We furthermore define a new security requirement called well-
distributedness of ciphertexts, which is necessary to achieve CPR-PSA in the
hybrid PKE construction. It states that key-ciphertext pairs generated using the
KEM’s encapsulation algorithm are indistinguishable from choosing a ciphertext
at random and then computing its decapsulation.

KEMs. A key encapsulation mechanism (KEM) KE specifies the following. Pa-
rameter generation algorithm KE.P takes input 1k, where k ∈ N is the security
parameter, and returns global parameters π. Key-generation algorithm KE.G
takes input 1k, π and returns a tuple (pk, sk) consisting of the public (encryption)
key pk and matching secret (decryption) key sk. KE.KS associates to k a finite

PKE Resistant to Parameter Subversion 13

set KE.KS(k) only depending on the security parameter that is the key space
of KE. KE.CS associates to k and parameters π a finite set KE.CS(k, π) that is
the ciphertext space of KE. Encapsulation algorithm KE.E takes 1k, π, pk and
returns (K, c) where K ∈ KE.KS(k) is the encapsulated key and c ∈ KE.CS(k, π)
is a ciphertext encapsulating K. Deterministic decapsulation algorithm KE.D
takes 1k, π, sk and a ciphertext c and returns either a key K ∈ KE.KS(k) or
the special symbol ⊥ indicating failure. The correctness condition requires
that for all k ∈ N, all π ∈ [KE.P(1k)] and all (pk, sk) ∈ [KE.G(1k, π)] we
have Pr

[
KE.D(1k, π, sk, c) = K

]
≥ 1 − KE.de(k), where the probability is over

(K, c)←$ KE.E(1k, π, pk) and KE.de : N → R≥0 is the decryption error of KE.
Our KEMs will be in the ROM [13], which means the encapsulation and decapsu-
lation algorithms have access to a random oracle specified in the security games.
Correctness must then hold for all choices of the random oracle. We say a KEM
is parameter-free if KE.P returns ε on every input 1k.

Ciphertext pseudorandomness. Consider game Gcpr-psa
KE,A (k) of Figure 3 asso-

ciated to KEM KE, adversary A and security parameter k, and let
Advcpr-psa

KE,A (k) = 2 Pr[Gcpr-psa
KE,A (k)]− 1 .

We say that KE has pseudorandom ciphertexts under parameter subversion
attacks (also called CPR-PSA) if the function Advcpr-psa

KE,A (·) is negligible for
every A. In the game, b is a challenge bit. When b = 1, the challenge key K∗ and
ciphertext c∗ are generated via the encapsulation algorithm, but if b = 0 they are
chosen at random, from the key space and ciphertext space, respectively. Given
the public key, challenge key and challenge ciphertext, the adversary outputs a
guess b′ and wins if b′ equals b, the game returning true in this case and false
otherwise. The adversary has access to an oracle Init, which sets up the challenge.
We require that the adversary queries Init before using any of the other oracles
and that it queries Init only once. Further the adversary has access to an oracle
for decapsulation under sk, crippled to not work when invoked on the challenge
ciphertext. It, and the encapsulation and decapsulation algorithms, have access
to the random oracle RO. The parameters used in the game are provided by the
adversary via its call to Init.

Indistinguishability of encapsulated keys from random. Consider game
Gind-psa

KE,A (k) of Figure 3 associated to KEM KE, adversary A and security param-
eter k, and let

Advind-psa
KE,A (k) = 2 Pr[Gind-psa

KE,A (k)]− 1 .
We say that KE has encapsulated keys indistinguishable from random under
parameter subversion attacks (also called IND-PSA) if the function Advind-psa

KE,A (·)
is negligible for every A. In the game, b is a challenge bit. When b = 1, the
challenge key K∗ and ciphertext c∗ are generated via the encapsulation algorithm,
while if b = 0 the key is switched to one drawn randomly from the key space,
the ciphertext remaining real. Given the public key, challenge key and challenge
ciphertext, the adversary outputs a guess b′ and wins if b′ equals b. Again the
adversary has access to a crippled decapsulation oracle and the random oracle

14 B. Auerbach, M. Bellare, E. Kiltz

and provides the parameters used in the game via his call to the oracle Init,
which has to be queried before using any of the other oracles.

Public-key hiding. Consider game Gpkh-psa
KE,A (k) of Figure 3 associated to KEM

KE, adversary A and security parameter k, and let
Advpkh-psa

KE,A (k) = 2 Pr[Gpkh-psa
KE,A (k)]− 1 .

We say that KE is public-key hiding under parameter subversion attacks (also
called PKH-PSA) if the function Advpkh-psa

KE,A (·) is negligible for every A. In the
game, b is a challenge bit. Unlike the prior games, two key pairs are generated, not
one. The challenge key K∗ and ciphertext c∗ are generated via the encapsulation
algorithm under pkb. Given the public keys, challenge key and challenge ciphertext,
the adversary outputs a guess b′ and wins if b′ equals b. This time the crippled
decapsulation oracle returns decapsulations under both secret keys. Again the
adversary provides the parameters to be used in the game via his single call to
the oracle Init, which has to be queried before using any of the other oracles.

Relations. The following says that in the parameter subversion setting CPR-PSA
implies both IND-PSA and PKH-PSA. We give both the asymptotic and concrete
statements of the results.

Proposition 2. Let KE be a KEM that has pseudorandom ciphertexts under
parameter subversion attacks. Then:

1. KE is IND-PSA. Concretely, given an adversary A the proof specifies an
adversary B such that Advind-psa

KE,A (k) ≤ 2 ·Advcpr-psa
KE,B (k) for every k ∈ N, and

B has the same running time and query counts as A.

2. KE is PKH-PSA. Concretely, given an adversary A the proof specifies an
adversary B such that Advpkh-psa

KE,A (k) ≤ 2 · Advcpr-psa
KE,B (k) for every k ∈ N,

and B has the same running time and query counts as A.

The proof of the proposition can be found in the full version of this paper [4].

Well-distributed ciphertexts. Consider game Gwdc-psa
KE,A (k) of Figure 4 asso-

ciated to KEM KE, adversary A and security parameter k, and let
Advwdc-psa

KE,A (k) = 2 Pr[Gwdc-psa
KE,A (k)]− 1.

We say KE has well distributed ciphertexts under parameter subversion attacks
(also called WDC-PSA), if the function Advwdc-psa

KE,A (·) is negligible for every
adversary A. In the game b is a challenge bit. If b equals 1 the adversary as
response to querying the initialization procedure, which may be done at most
once, receives a key-ciphertext pair generated using KE.E. If b equals 0 it receives
a pair (c∗,K∗) generated by choosing c∗ at random and then setting K∗ to be
the decapsulation of c∗. The adversary has access to a decryption oracle. We
require that the adversary queries Init before querying any of the other oracles.
Looking ahead, all of our instantiations achieve this notion statistically.

PKE Resistant to Parameter Subversion 15

Game Gwdc-psa
KE,A (k)

b←$ {0, 1}
b′←$AInit,Dec,RO(1k)
Return (b = b′)
Init(π)
(pk, sk)←$ KE.G(1k, π)
If (pk = ⊥) then return ⊥
If (b = 1) then (K∗, c∗)←$ KE.ERO(1k, π, pk)
Else c∗←$ KE.CS(k, π)
K∗ ← KE.DRO(1k, π, sk, c∗)
Return (pk,K∗, c∗)

RO(x,m)
If (T [x,m] = ⊥)
then T [x,m]←$ {0, 1}m

Return T [x,m]
Dec(c)
If (c = c∗) then return ⊥
K ← KE.DRO(1k, π, sk, c)
Return K

Fig. 4. Game defining well-distributedness of ciphertexts of KEs.

3.3 Symmetric Encryption

Below, we recall symmetric encryption. Our definition follows [23] but uses
different notation. We further define the security notion of ciphertext pseudoran-
domness for symmetric key encryption.
One-Time symmetric-Key Encryption. A symmetric-key encryption scheme
(SKE) specifies the following. SE.KS associates to security parameter k key
space SE.KS(k). SE.CS associates to security parameter k and message length
m ∈ N the ciphertext space SE.CS(k,m). Deterministic encryption algorithm
SE.E takes as input 1k, key K ∈ SE.KS(k) and a message M ∈ {0, 1}∗ and
returns ciphertext c ∈ SE.CS(k, |M |). Deterministic decryption algorithm SE.D on
input 1k,K ∈ SE.KS(k), c ∈ SE.CS(k,m) returns either a message M ∈ {0, 1}m
or the special symbol ⊥ indicating failure. For correctness we require that
M = SE.D(1k,K, c) for all k, all K ∈ SE.KS(k) and all M ∈ {0, 1}∗, where
c← SE.E(1k,K,M).
One-time security Consider game Gcpr

SE,A(k) of Figure 5 associated to SKE
SE, adversary A and security parameter k, and let

Advcpr
SE,A(k) = 2 Pr[Gcpr

SE,A(k)]− 1 .

We say that SE has pseudorandom ciphertexts (also called CPR) if the function
Advcpr

SE,A(·) is negligible for every A. We require that Enc is queried at most
once.

3.4 PKE from Key Encapsulation and Symmetric-Key Encryption

Below, we analyze hybrid encryption in the setting of parameter subversion.
Formally we give a transform KEMToPE that associates to KEM KE and
symmetric-key encryption scheme SE a public-key encryption scheme PE. The
construction essentially is the hybrid encryption scheme of [23] including an addi-
tional parameter generation algorithm. The scheme’s parameter generation, key

16 B. Auerbach, M. Bellare, E. Kiltz

Game Gcpr
SE,A(k)

b←$ {0, 1}
K←$ SE.KS(k)
b′ ← AEnc,Dec(1k)
Return (b = b′)

Enc(M)
If (b = 0) then c∗←$ SE.CS(k, |M |)
Else c∗ ← SE.E(1k,K,M)
Return c∗

Dec(c)
If (c = c∗) then return ⊥
Else return SE.D(1k,K, c)

Fig. 5. Game defining one-time security notions of SKEs.

PE.P(1k)
π←$ KE.P(1k)
Return π
PE.G(1k, π)
(pk, sk)←$ KE.G(1k, π)
Return (pk, sk)

PE.E(1k, π, pk,M)
(K, c1)←$ KE.ERO(1k, π, pk)
c2 ← SE.E(1k,K,M)
Return (c1, c2)
PE.D(1k, π, sk, c)
(c1, c2)← c
K ← KE.DRO(1k, π, sk, c1)
M ← SE.D(1k,K, c2)
Return M

Fig. 6. PKE KEMToPE[KE, SE] associated to KEM KE and SE SE.

generation encryption and decryption algorithms are in Figure 6. PE’s ciphertext
space is given by PE.CS(k, π,m) = KE.CS(k, π)×SE.CS(k,m). It is easy to verify
that PE has decryption error PE.de(k) = KE.de(k). The following essentially
states that hybrid encryption also works in setting of ciphertext pseudorandom-
ness under parameter subversion attacks, i.e., combining a KEM that is both
CPR-PSA and WDC-PSA with a SKE that is CPR yields a CPR-PSA PKE,
where the well-distributedness of the KEM’s ciphertext is necessary to correctly
simulate the decryption oracle in the CPR-PSA game with respect to PE.

Proposition 3. Let KE a KEM and SE a SE such that KE.KS(k) = SE.KS(k) for
all k ∈ N. Let PE = KEMToPE[KE,SE] be the PKE associated to KE and SE.
If KE is CPR-PSA and WDC-PSA and if SE is CPR then PE is CPR-PSA Con-
cretely, given adversary A against Gcpr-psa

PE,A (k), there exist adversaries B1,B2,B3
having the same running time and query count as A, which satisfy
Advcpr-psa

PE,A (k) ≤ 2 Advcpr-psa
KE,B1

(k) + Advwdc-psa
KE,B2

(k) + Advcpr
SE,B3

(k) + KE.de(k) .

The proof of the proposition can be found in the full version of this paper [4].

PKE Resistant to Parameter Subversion 17

Game Gepr-psa
EG,A (k)

b←$ {0, 1}
b′←$AInit(1k)
Return (b = b′)

Init(π)
G←$ EG.G(1k, π)
If (G = ⊥) then return ⊥
(〈G〉, n, g)← G
If (b = 1) then

y←$ EG.S(1k, π,G)
c←$ EG.E(1k, π,G, gy)

Else c←$ EG.ES(k, π)
Return (G, c)

Fig. 7. Game defining embedding pseudorandomness of eeg family EG.

4 KEMs from Efficiently Embeddable Group Families

In this section we define efficiently embeddable group families (eeg). We define
the security notion of pseudorandom embeddings under parameter subversion
attacks (EPR-PSA) and adapt the strong computational Diffie-Hellman problem
(sCDH-PSA) to the setting of efficiently embeddable group families and param-
eter subversion. Further we give a generic constructions of key encapsulation
mechanisms from eeg families. It achieves security assuming the eeg family is
sCDH-PSA and EPR-PSA.

4.1 Efficiently Embeddable Group families

Efficiently embeddable group families. An embeddable group family EG
specifies the following. Parameter generation algorithm EG.P takes as input
1k, where k ∈ N is the security parameter, and returns parameters π. Group
generation algorithm EG.G on input 1k, π returns a tuple G = (〈G〉, n, g), where
〈G〉 is a description of a cyclic group G of order n, and g is a generator of
G. EG.ES associates to k a finite set EG.ES(k, π) called the embedding space
that is only dependent on k and π. Sampling algorithm EG.S on input of 1k, π
and G ∈ [EG.G(1k, π)] outputs y ∈ Zn. (Not necessarily uniformly distributed.)
Embedding algorithm EG.E receives as input 1k, π, G ∈ [EG.G(1k, π)] and h ∈ G
and returns an element c ∈ EG.ES(k, π). Deterministic inversion algorithm EG.I
on input of 1k, π, G ∈ [EG.G(1k, π)] and c ∈ EG.ES(k, π) returns an element
of G. The correctness condition requires that for all k ∈ N, all π ∈ EG.P(1k)
and all G ∈ [EG.G(1k, π)] we have Pr

[
EG.I(1k, π,G, h) = gy

]
≥ 1 − EG.ie(k),

where the probability is over y←$ EG.S(1k, π,G) and h←$ EG.E(1k, π,G, gy),
and EG.ie : N → R≥0 is the inversion error of EG. If EG.P returns ε on every
input 1k, i. e. if no parameters are used, we say that EG is parameter-free.
Embedding Pseudorandomness. Consider game Gepr-psa

EG,A (k) of Figure 7 asso-
ciated to eeg family EG, adversary A and security parameter k. Let

Advepr-psa
EG,A (k) = 2 Pr[Gepr-psa

EG,A (k)]− 1.

18 B. Auerbach, M. Bellare, E. Kiltz

Game Gscdh-psa
EG,A (k)

Z←$AInit,ddh(1k)
Return (Z = gxy ∧G 6= ⊥)
ddh(Ỹ , Z̃)
Return (Ỹ x = Z̃)

Init(π)
G←$ EG.G(1k, π)
If (G = ⊥) then return ⊥
(〈G〉, n, g)← G
x←$ Zn

y←$ EG.S(1k, π,G)
Return (G, gx, gy)

Fig. 8. Experimentfor the strong computational Diffie-Hellman problem with respect
to eeg family EG. Oracle Init may be queried only once and has to be queried before
using oracle ddh.

We say that EG has pseudorandom embeddings under parameter subversion
attacks (also called EPR-PSA) if the function Advepr-psa

EG,A,· is negligible for every
A. In the game, b is a challenge bit. When b = 1, the challenge embedding c∗
is generated by sampling an exponent using EG.S and embedding the group
generator raised to the exponent with EG.E. If b = 0 the adversary is given an
embedding sampled uniformly from the embedding space. Given the group and
the embedding, the adversary outputs a guess b′ and wins if b′ equals b. The
parameters used in the game are provided by the adversary making a single
call to the oracle Init. All of our instantiations sample exponents such that the
resulting embeddings are statistically close to uniform on EG.ES(k, π), and hence
achieve this notion statistically.

Diffie-Hellman problem with respect to EG. The computational Diffie-
Hellman problem for a cyclic group G of order n, which is generated by g, asks to
compute gxy given gx and gy, where x, y←$ Zn. In the strong computational Diffie-
Hellman problem introduced by Abdalla et al. in [2] the adversary additionally
has access to an oracle, which may be used to check whether Y x = Z for
group elements Y, Z ∈ G. We provide a definition for the strong computational
Diffie-Hellman problem with respect to eeg families EG, which allows parameter
subversion. An additional difference is that y is not chosen uniformly from Zn
but instead sampled using EG.S.

Thus, consider game Gscdh-psa
EG,A (k) of Figure 8. The game is associated to eeg

family EG, adversary A and security parameter k. The adversary has access to
an oracle Init setting up a problem instance according to the parameters it is
provided. Let

Advscdh-psa
EG,A (k) := Pr

[
Gscdh-psa

EG,A (k)
]
.

We say that the strong computational Diffie-Hellman problem under parameter
subversion (also called sCDH-PSA) is hard with respect to EG if Advscdh-psa

EG,A (·)
is negligible for every adversary A.

PKE Resistant to Parameter Subversion 19

KE.G1(1k, π)
G←$ EG.G(1k, π)
If (G = ⊥) return ⊥
(〈G〉, n, g)← G
x←$ Zn; X ← gx

pk ← (G,X)
sk ← (G, x, pk)
Return (pk, sk)

KE.ERO
1 (1k, π, pk)

(G,X)← pk
y←$ EG.S(1k, π,G)
Y ← gy

c←$ EG.E(1k, π,G, Y)
K ← RO((pk, c,Xy),m(k))
Return (K, c)

KE.DRO
1 (1k, π, sk, c)

(G, x, pk)← sk
Y ← EG.I(1k, π,G, c)
K ← RO((pk, c, Y x),m(k))
Return K
KE.P1(1k)
π←$ EG.P(1k)
Return π

Fig. 9. KEM KE1 = eegToKE1[EG,m] built from eeg family EG and polynomial m
via our transform. The KE has key space KE.KS(k) = {0, 1}m(k) and ciphertext space
KE.CS(k, π) = EG.ES(k, π).

4.2 Key Encapsulation from Efficiently Embeddable Group Families

In this section we give a generic construction of a key encapsulation mecha-
nism from an eeg family EG. Its security is based on the strong Diffie-Hellman
problem, i.e. if sCDH-PSA is hard with respect to EG, the KEM is IND-PSA. If
additionally EG has pseudorandom embeddings, the KEM has pseudorandom
and well-distributed ciphertexts. The construction is similar to the standard
El Gamal based key encapsulation mechanism as for example used in [2, 23].
As an intermediate step in the proof that the construction is CPR-PSA we
obtain that it is IND-PSA. The proof of this property follows the outlines of
the proofs given in [2, 23]. Afterwards we use the pseudorandomness of the eeg
family’s embeddings to show, that our construction achieves pseudorandom and
well-distributed ciphertexts.

Formally, we define a transform eegToKE1 that associates to an eeg family
EG and a polynomial m : N→ N a KEM KE = eegToKE1[EG,m]. The parame-
ter generation, key generation, encryption and decryption algorithms of KE are
in Figure 9. The construction is in the ROM, so that encryption and decryption
invoke the RO oracle. The key space is KE.KS(k) = {0, 1}m(k). The ciphertext
space KE.CS(k, π) = EG.ES(k, π) is the embedding space of EG. It is easy to
verify that KE.de = EG.ie, meaning the decryption error of the KEM equals the
inversion error of the eeg family.

Security of the construction. The following says that if sCDH-PSA is hard
with respect to eeg family EG then eegToKE1[EG,m] has desirable security
properties.

Theorem 4. Let KE = eegToKE1[EG,m] be the KEM associated to eeg family
EG and polynomial m : N → N as defined in Figure 9. Assume that EG is
EPR-PSA and that sCDH-PSA is hard with respect to EG. Then

(i) KE has pseudorandom ciphertexts under parameter subversion attacks.
(ii) KE has well-distributed ciphertexts under parameter subversion attacks.

20 B. Auerbach, M. Bellare, E. Kiltz

Moreover, if EG is parameter-free so is KE. Concretely, given an adversary A
making at most q(k) queries to RO the proof specifies adversaries B1 and B2
having the same running time as A satisfying

Advcpr-psa
KE (A)(k) ≤ Advscdh-psa

EG,B1
(k) + Advepr-psa

EG,B2
(k) ,

where B2 makes at most q(k) queries to ddh. Furthermore given an adversary
A′ the proof specifies an adversary B′ having the same running time as A′ such
that,

Advwdc-psa
KE,A′ (k) ≤ Advepr-psa

EG,B′ (k) + EG.ie(k) .

The proof of the theorem can be found in the full version of this paper [4]. In
the full version of this paper [4] we also provide a transform eegToKE2, which
achieves security under the weaker CDH-PSA assumption with respect to EG.

5 Efficiently Embeddable Group Families from
Curve-Twist Pairs

In this section we give instantiations of eeg families based on elliptic curves.
The main tool of the constructions is a bijection of [34] mapping points of an
elliptic curve and its quadratic twist to an interval of integers. We first give a
construction using parameters, the parameter being a prime p of length k serving
as the modulus of the prime field the curves are defined over. The construction
has embedding space [2p+ 1]. Since we assume, that the parameter shared by all
users might be subject to subversion, security of this construction corresponds to
the assumption that there exist no inherently bad choices for p, i.e. that for any
sufficiently large prime p it is possible to find elliptic curves defined over Fp on
which the strong computational Diffie-Hellman assumption holds.

As an alternative we also give parameter-free eeg-families whose security is
based on the weaker assumption that for random k-bit prime p it is possible to
find elliptic curves defined over Fp, such that the strong computational Diffie-
Hellman assumption holds. Since in this construction the modulus p is sampled
along with the curve, it is no longer possible to use [2p+ 1] as the embedding
space of the eeg family. We propose two solutions to overcome this, one using
rejection sampling to restrict the embedding space to the set [2k], the other one
is based on a technique from [33] and expands the embedding space to [2k+1].

5.1 Elliptic Curves

Let p ≥ 5 be prime and Fp a field of order p. An elliptic curve over Fp can be
expressed in short Weierstrass form, that is as the set of projective solutions of
an equation of the form

Y Z2 = X3 + aXZ2 + bZ3,

where a, b ∈ Fp with 4a3 + 27b2 6= 0. We denote the elliptic curve generated by
p, a, b by E(p, a, b). E(p, a, b) possesses exactly one point with Z-coordinate 0,
the so called point at infinity O = (0 : 1 : 0). After normalizing by Z = 1 the

PKE Resistant to Parameter Subversion 21

curve’s other points can be interpreted as the solutions (x, y) ∈ F2
p of the affine

equation y2 = x3 + ax+ b. It is possible to establish an efficiently computable
group law on E(p, a, b) with O serving as the neutral element of the group. We
use multiplicative notation for the group law to be consistent with the rest of
the paper.
Twists of Elliptic Curves. In [34, section 4] Kaliski establishes the following
one-to-one correspondence between two elliptic curves defined over Fp which are
related by twisting and a set of integers.

Lemma 5. Let p ∈ N≥5 be prime. Let u ∈ Zp be a quadratic nonresidue modulo p
and a, b ∈ Zp such that 4a3+27b2 6= 0. Consider the elliptic curves E0 := E(p, a, b)
and E1 := E(p, au2, bu3). Then |E0|+ |E1| = 2p+ 2. Furthermore, the functions
l0 : E0 −→ [2p+ 2] and l1 : E1 −→ [2p+ 2] defined as

l0 (P) =

p if P = O0

(ux mod p) if (P = (x, y)) ∧ (0 ≤ y ≤ (p− 1)/2)
(ux mod p) + p+ 1 if (P = (x, y)) ∧ ((p− 1)/2 < y)

,

l1 (P) =

2p+ 1 if P = O1

x if (P = (x, y)) ∧ (0 < y ≤ (p− 1)/2)
x+ p+ 1 if (P = (x, y)) ∧ ((y = 0) ∨ ((p− 1)/2 < y))

are injective with nonintersecting ranges, where O0 and O1 denote the neutral
elements of E0 and E1 respectively.

Lemma 6. The functions l0 and l1 can be efficiently inverted. That is, given
z ∈ [2p + 1], one can efficiently compute the unique (P, δ) ∈ E0 ∪ E1 × {0, 1}
such that lδ(P) = z.

The proof of the lemma can be found in the full version of this paper [4].

Definition 7. A curve-twist generator TGen on input of security parameter
1k and a k-bit prime p returns (G0, G1), where G0 = (〈E0〉, n0, g0) and G1 =
(〈E1〉, n1, g1) are secure cyclic elliptic curves defined over the field Fp. More
precisely we require E0 := E(p, a, b) and E1 := E(p, au2, bu3) for a, b ∈ Fp
such that (4a3 + 27b2) 6= 0 and quadratic nonresidue u. Furthermore we require
that g0 generates E0 and g1 generates E1 as well as |E0| = n0, |E1| = n1 and
gcd(n0, n1) = 1.

Generation of secure Twisted Elliptic Curves. There exist several
proposals for properties an elliptic curve over a prime field Fp should have to be
considered secure (e.g., [18, 27]). Firstly, the elliptic curve’s order is required to
be either the product of a big prime and a small cofactor — or preferably prime.
Secondly, several conditions preventing the transfer of discrete logarithm problems
on the curve to groups, where faster algorithms to compute discrete logarithms
may be applied, should be fulfilled. Finally, for our applications we need both the
elliptic curve and its quadratic twist to be secure, a property usually called twist

22 B. Auerbach, M. Bellare, E. Kiltz

security. For concreteness, we suggest to implement TGen(1k, p) by sampling
the necessary parameters a, b, u with rejection sampling such that the resulting
curve E(p, a, b) fulfills the three security requirement mentioned above. This way,
TGen can be implemented quite efficiently3 and furthermore, with overwhelming
probability, the resulting curve fulfills all relevant security requirements from [18,
27] that are not covered by the three security properties explicitly mentioned
above.
Computational problems associated to TGen. Let TGen a curve-twist
generator. We give two versions of the strong computational Diffie-Hellman
assumption with respect to TGen. In the first version the prime p on which
TGen is invoked is chosen by the adversary, while in the second version p is
sampled uniformly at random from all k-bit primes. For d ∈ {0, 1} consider
games Gtwistd-cp-scdh

TGen,A (·) and Gtwistd-up-scdh
TGen,A (·) of Figure 10. We define advantage

functions

Advtwistd-cp-scdh
TGen,A (k) = Pr

[
Gtwistd-cp-scdh

TGen,A (k)
]
,

Advtwistd-up-scdh
TGen,A (k) = Pr

[
Gtwistd-up-scdh

TGen,A (k)
]
.

Definition 8. Let TGen be a curve-twist generator. We say the strong computa-
tional Diffie-Hellman assumption for chosen (uniform) primes holds with respect
to curve-twist generator TGen, if both Advtwist0-cp-scdh

TGen,A (·) and Advtwist1-cp-scdh
TGen,A (·)

(or Advtwist0-up-scdh
TGen,(Pk)k,A (·) and Advtwist1-up-scdh

TGen,(Pk)k,A (·) respectively) are negligible for
all adversaries A.

5.2 An Eeg Family from Elliptic Curves

In [34] Kaliski implicitly gives an eeg family based on elliptic curves. The family
is parameter-using, the parameter being a prime p serving as the modulus of
the field the elliptic curves are defined over. The definition of eeg family EGtwist
may be found in Figure 11. Parameter generation algorithm EGtwist.P on input
of security parameter 1k returns a randomly sampled k-bit prime4 p. Group
generation algorithm EGtwist.G on input of parameter π = p checks, whether
p is indeed a prime of appropriate length, and —if so— runs a curve-twist
3 In [29] Galbraith and McKee consider elliptic curves E chosen uniformly from the set
of elliptic curves over a fixed prime field Fp. They give a conjecture (together with
some experimental evidence) for a lower bound on the probability of |E| being prime.
Using a similar technique [27] argue, that the probability of a uniformly chosen elliptic
curve over a fixed prime field Fp to be both secure and twist secure is bounded from
below by 0.5/ log2(p). Since their definition of security of an elliptic curve includes
primality of the curve order and since due to Lemma 5 the orders of curve and twist
sum up to 2p+ 2, this in particular implies that the curve and its twist are cyclic
and have coprime group order.

4 In practice one would preferably instantiate EGtwist with a standardized prime.

PKE Resistant to Parameter Subversion 23

Game Gtwistd-cp-scdh
TGen,A (k)

Z←$AInit,ddh(1k)
Return (Z = gxy

d)
ddh(Ỹd, Z̃d)
If Ỹd 6∈ Ed ∨ Z̃d 6∈ Ed

return ⊥
Return (Ỹd

x = Z̃d)

Init(π)
p← π
If (p /∈ Pk) then return ⊥
(G0, G1)←$ TGen(1k, p)
(〈Ed〉, nd, gd)← Gd

x←$ Znd ; y←$ Znd

X ← gx
d , Y ← gy

d

Return (G0, G1, X, Y)

Game Gtwistd-up-scdh
TGen,A (k)

Z←$AInit,ddh(1k)
Return (Z = gxy

d)
ddh(Ỹd, Z̃d)
If (Ỹd 6∈ Ed ∨ Z̃d 6∈ Ed)

return ⊥
Return (Ỹd

x = Z̃d)

Init
p←$ Pk

(G0, G1)←$ TGen(1k, p)
(〈Ed〉, nd, gd)← Gd

x←$ Znd ; y←$ Znd

X ← gx
d , Y ← gy

d

Return (G0, G1, p,X, Y)

Fig. 10. Experiments for the sCDH problem for chosen (uniform) primes with respect
to d ∈ {0, 1}, adversary A and curve-twist generator TGen.

generator TGen(1k, π) to obtain the description of two cyclic secure cyclic elliptic
curves G0 = (〈E0〉, n0, g0) and G1 = (〈E1〉, n1, g1). Its output is (〈G〉, n, g), where
G ← E0 × E1 is the direct product of the two elliptic curves, n ← n0 · n1 and
g ← (g0, g1). Here we assume that the description 〈G〉 of G includes the values
n0 and n1, which are used by EGtwist’s other algorithms. Note that |G| = n and
since n0 and n1 are coprime, g generates G. Furthermore, if we regard E0 and
E1 as subgroups of G = E0 × E1 in the natural way, we may rewrite the set
E0 ∪ E1 ⊆ G as

E0 ∪ E1 = {(h0,O1) | h0 ∈ E0} ∪ {(O0, h1) | h1 ∈ E1}
= {(g0, g1)y | y ∈ Zn : y ≡ 0 mod n0 or y ≡ 0 mod n1}

Algorithm EGtwist.S uses this property to efficiently sample y ∈ Zn such that
gy ∼ UE0∪E1 . It first samples z←$ Z2p+1. If z < n0 it returns ϕcrt(z, 0). Else
it returns ϕcrt(0, z − n0 − 1). Here ϕcrt denotes the canonical isomorphism
ϕcrt : Zn0 × Zn1 → Zn. As a result y←$ EGtwist.S(1k, G) satisfies y ∼ UM ,
where M := {y ∈ Zn | y ≡ 0 mod n0 or y ≡ 0 mod n1}. Embedding algorithm
EGtwist.E receives as input 1k, π, G and h = (h0, h1) ∈ G. It first checks, whether
h lies outside of the support [EGtwist.S(1k, π,G)] of the sampling algorithm, i.e.
whether both h0 6= O0 and h1 6= O1. In this case the element is mapped to 0.
If h is an element of [EGtwist.S(1k, π,G)], algorithm EGtwist.E returns l0(h0) if
h1 = O1, and l1(h1) if h1 6= O1. Here l0 : E0 → [2p + 2] and l1 : E1 → [2p + 2]
denote the maps of Lemma 5. By Lemma 5 the map EGtwist.E(1k, G, ·)|E0∪E1 is a

24 B. Auerbach, M. Bellare, E. Kiltz

EGtwist.P(1k)
p←$ Pk

π ← p
Return π
EGtwist.G(1k, π)
p← π
If (p /∈ Pk) return ⊥
(G0, G1)←$ TGen(1k, p)
(〈E0〉, g0, n0)← G0; (〈E1〉, g1, n1)← G1
G← E0 × E1; g ← (g0, g1); n← n0 · n1
G← (〈G〉, n, g)
Return G

EGtwist.S(1k, π,G)
p← π
z←$ Z2p+1
If (z < n0) return ϕcrt(z, 0)
Else return ϕcrt(0, z − n0 − 1)
EGtwist.E(1k, π,G, (h0, h1))
If (h0 6= O0 ∧ h1 6= O1) return 0
Elseif h1 = O1 return l0(h0)
Else return l1(h1)
EGtwist.I(1k, π,G, z)
If (z ∈ im(l0)) return l−1

0 (z)
Else return l−1

1 (z)

Fig. 11. Definition of eeg family EGtwist with embedding space EGtwist.ES(k, π) =
[2p + 1]. l0 and l1 denote the maps from Lemma 5, ϕcrt the canonical isomorphism
Zn0 × Zn1 → Zn.

bijection between E0∪E1 and [2p+1] and we obtain EGtwist.E(1k, G, gy) ∼ U[2p+1]
for y sampled with EGtwist.S(1k, G). We obtain the following
Lemma 9. EGtwist as defined in Figure 11 is an eeg family with embedding space
EGtwist.ES(k,G) = [2p + 1] and inversion error EGtwist.ie(k) = 0. Furthermore
EGtwist has pseudorandom embeddings. More precisely, for every (potentially
unbounded) adversary A we have

Advepr-psa
EGtwist,A(k) = 0 .

A proof of the lemma can be found in the full version of the paper [4].
Concerning the hardness of sCDH-PSA with respect to EGtwist we obtain the
following.
Lemma 10. Let EGtwist be the embeddable group generator constructed with
respect to twisted elliptic curve generator TGen as described above. If the strong
Diffie-Hellman assumption for chosen primes holds with respect to TGen, then
the strong Diffie-Hellman assumption holds with respect to EGtwist.

Concretely for every adversary A against game Gscdh-psa
EGtwist,A(·), which makes at

most Q queries to its DDH-oracle, there exist adversaries B0, B1 against games
Gtwist0-cp-scdh

TGen,B0
(·) or Gtwist1-cp-scdh

TGen,B1
(·) respectively making at most Q queries to

their DDH-oracles, satisfying
Advscdh-psa

EGtwist,A(k) ≤ Advtwist0-cp-scdh
TGen,B0

(k) + Advtwist1-cp-scdh
TGen,B1

(k).
The proof of the lemma can be found in the full version of this paper [4].

5.3 A Parameter-Free Eeg Family Using Rejection Sampling
Eeg family EGtwist of Section 5.2 is parameter-using, the parameter being the
size p of the field Fp. Correspondingly, hardness of sCDH-PSA with respect to

PKE Resistant to Parameter Subversion 25

EG`
twist-rs.P(1k)

Return ε
EG`

twist-rs.G(1k, π)
p←$ Pk

G′←$ EGtwist.G(1k, p)
G← (G′, p)
Return G

EG`
twist-rs.S(1k, π,G)

(G′, p)← G
For `∗ = 1 to `

Do y ← EGtwist.S(1k, p,G′)
If (EGtwist.E(1k, p,G, gy) < 2k)

return y
Return ⊥

EG`
twist-rs.E(1k, π,G, h)

(G′, p)← G′

z←$ EGtwist.E(1k, p,G′, h)
Return z
EG`

twist-rs.I(1k, π,G, z)
(G′, p)← G′

h← EGtwist.I(1k, p,G′, z)
Return h

Fig. 12. Parameter-free eeg family EG`
twist-rs.

EGtwist follows from the assumption, that the elliptic curves output by curve-twist
generator TGen are secure, independently of the prime p the curve-twist generator
TGen is instantiated with. In this section we show how EGtwist can be used to
construct an eeg family EG`twist-rs for which hardness of sCDH-PSA follows from
the weaker assumption that TGen instantiated with a randomly chosen prime is
able to sample secure elliptic curves. The construction is parameter-free and has
embedding space [2k]. The size p of the field over which the elliptic curves are
defined is now sampled as part of the group generation. The embedding algorithm
uses rejection sampling to ensure that embeddings of group elements gy for y
sampled with EG`twist-rs.S are elements of [2k]. The specification of EG`twist-rs’s
algorithms may be found in Figure 12.

Theorem 11. Let ` : N → N be a polynomial. EG`twist-rs as described above is
an eeg family with embedding space EG`twist-rs.ES(k, π) = [2k] and inversion error
EG`twist-rs.ie(k) ≤ 2−`(k). Furthermore EG`twist-rs has pseudorandom embeddings.
More precisely, for every (potentially unbounded) adversary A we have

Advepr-psa
EG`

twist-rs,A
(k) ≤ 2−`(k) .

The proof of the theorem can be found in the full version of this paper [4].
As discussed above, we obtain that —assuming that TGen invoked on randomly
sampled prime p returns a secure curve-twist pair— the sCDH-PSA-problem
with respect to eeg family EG`twist-rs is hard.

Lemma 12. Let ` : N → N be a polynomial and EG`twist-rs the eeg family with
underlying curve-twist generator TGen as described above. If the sCDH assumption
for uniform primes holds with respect to TGen, then sCDH-PSA is hard with
respect to EG`twist-rs. Concretely, for every adversary A against game Gscdh-psa

EG`
twist-rs,A

(·)
making at most Q queries to its DDH-oracle there exist adversaries B0, B1 against
Gtwist0-up-scdh

TGen,B0
(·) or Gtwist1-up-scdh

TGen,B1
(·) respectively, making at most Q queries to

their DDH-oracles and running in the same time as A, which satisfy

Advscdh-psa
EG`

twist-rs,A
(k) ≤ 3

(
Advtwist0-up-scdh

TGen,B0
(k) + Advtwist1-up-scdh

TGen,B1
(k)
)

+ 2−`(k)

for all k ∈ N≥6.

26 B. Auerbach, M. Bellare, E. Kiltz

EGtwist-re.G(1k, π)
p←$ Pk

G′←$ EGtwist.G(1k, p); G← (G′, p)
Return G
EGtwist-re.S(1k, π,G)
(G′, p)← G
z←$ [2k+1]
If (z ≤ 2p)

y ← ψG(z)
If (EGtwist.E(1k, p,G′, gy) < 2k+1 − (2p+ 1))

return y
Else z ← EGtwist.E(1k, p,G′, gy)

Else z ← z − (2p+ 1)
y ← ψG(z)
Return y

EGtwist-re.P(1k)
Return ε
EGtwist-re.E(1k, π,G, h)
(G′, p)← G; b←$ {0, 1}
z ← EGtwist.E(1k, p,G′, h)
If z < 2k+1 − (2p+ 1)

z ← z + b(2p+ 1)
Return z
EGtwist-re.I(1k, π,G, z)
(G′, p)← G
If (z ≥ 2p+ 1)

z ← z − (2p+ 1)
h← EGtwist.I(1k, p,G′, z)
Return h

Fig. 13. Definition of eeg family EGtwist-re with embedding space EGtwist-re.ES(k, π) :=
[2k+1]. ψG denotes the bijection [2p+ 1]→ [EGtwist.S(1k, p,G′)] defined in Section 5.4.

The proof of the lemma can be found in the full version of this paper [4].

5.4 A Parameter-Free Family Using Range Expansion

In this section we modify the algorithms of EGtwist to obtain an embeddable
group family EGtwist-re with embedding space EGtwist-re.ES(k, π) = [2k+1]. The eeg
family has inversion error EGtwist-re.ie(k) = 0 and achieves uniformly distributed
embeddings. The construction is building on a technique introduced by Hayashi
et al. [33], where it is used to expand the range of one way permutations. As in
Section 5.3, the hardness sCDH-PSA with respect to EGtwist-re is based on the
hardness of the sCDH problem for uniform primes with respect to TGen. The
sampling algorithm — in contrast to the construction based on rejection sampling
— needs access to only one uniformly random sampled integer, performs at most one
exponentiation in the group and uses at most one evaluation of EGtwist.E to output
y with the correct distribution. Furthermore, exponents sampled by EGtwist-re.S
are distributed such that the eeg family achieves EGtwist-re.ie(k) = 0 and for every
(potentially unbounded) adversary A we additionally have Advepr-psa

EGtwist-re,A(k) = 0.
The description of EGtwist-re may be found in Figure 13. We now discuss the

construction in greater detail. Let (G′, p) = G ∈ [EGtwist-re.G(k, π)], where G′ =
(〈G〉, n, g). The idea of the construction is to partition [EGtwist.S(1k, p,G′)] into
two sets M1, M2 with M1 ∪M2 = [EGtwist.S(1k, p,G′)], {EGtwist.E(1k, p,G′, gy) |
y ∈ M1} = {2k+1 − (2p + 1), · · · , 2p} and {EGtwist.E(1k, p,G′, gy) | y ∈ M2} =
{0, · · · , 2k+1− (2p+ 2)}. The sampling algorithm EGtwist-re.S is constructed such
that for y sampled by EGtwist-re.S(1k, π,G), the probability Pr[y = y′] equals 2−k
for all y′ ∈ M2 and 2−(k+1) for all y′ ∈ M1. Embedding algorithm EGtwist-re.E

PKE Resistant to Parameter Subversion 27

on input (1k, π,G, h) first computes c ← EGtwist.E(1k, p,G′, h). If c ∈ {2k+1 −
(2p+ 1), · · · , 2p} its output remains unchanged. Otherwise it is shifted to {2p+
1, · · · , 2k+1− 1} with probability 1/2. In this way we achieve embeddings , which
are uniformly distributed on EGtwist-re.ES(k, π) = [2k+1].

Our construction relies on the existence of a bijection ψG : [2p + 1] →
[EGtwist.S(1k, p,G′)] for all (G′, p) = G ∈ [EGtwist-re.G(1k, π)]. We use the bi-
jection, which was implicitly given in the definition of EGtwist.S. That is, for
z ∈ [2p+ 1] we define

ψG(z) :=
{
ϕcrt(z, 0) if z < n0

ϕcrt(0, z − n0 − 1) else,
where ϕcrt denotes the canonical isomorphism Zn0 × Zn1 → Zn.
Theorem 13. EGtwist-re as specified in Figure 13 is an embeddable group family
with embedding space EGtwist-re.ES(k, π) = [2k+1] and inverson error EGtwist-re.ie(k) =
0. Furthermore EGtwist-re has pseudorandom embeddings. More precisely, for every
(potentially unbounded) adversary A we have

Advepr-psa
EGtwist-re,A(k) = 0 .

The proof of the theorem can be found in the full version of this paper [4].
As in the case of EG`twist-rs, we obtain that —assuming that TGen invoked on
randomly sampled prime p returns a secure curve-twist pair— sCDH-PSA with
respect to eeg family EGtwist-re is hard.
Lemma 14. Let EGtwist-re be the eeg family defined above with underlying curve-
twist generator TGen. If the sCDH assumption holds with respect to TGen, then
sCDH-PSA is hard with respect to EGtwist-re. Concretely, for every adversary
A against Gscdh-psa

EGtwist-re,A(·) making at most Q queries to its DDH-oracle there
exist adversaries B0, B1 against Gtwist0-up-scdh

TGen,B0
(·) or Gtwist1-up-scdh

TGen,B1
(·) respectively

running in the same time as A and making at most Q queries to their DDH-
oracles, which satisfy

Advscdh-psa
EGtwist-re,A(k) ≤ 2

(
Advtwist0-up-scdh

TGen,B0
(k) + Advtwist1-up-scdh

TGen,B1
(k)
)
.

The proof of the lemma can be found in the full version of this paper [4].

Acknowledgments

Benedikt Auerbach was supported by the NRW Research Training Group
SecHuman. Mihir Bellare was supported in part by NSF grants CNS-1526801
and CNS-1717640, ERC Project ERCC FP7/615074 and a gift from Microsoft
corporation. Eike Kiltz was supported in part by ERC Project ERCC FP7/615074
and by DFG SPP 1736 Big Data.

References
1. M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee,

G. Neven, P. Paillier, and H. Shi. Searchable encryption revisited: Consistency

28 B. Auerbach, M. Bellare, E. Kiltz

properties, relation to anonymous IBE, and extensions. In V. Shoup, editor,
Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer
Science, pages 205–222. Springer, Heidelberg, Aug. 2005.

2. M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman assumptions
and an analysis of DHIES. In D. Naccache, editor, Topics in Cryptology – CT-
RSA 2001, volume 2020 of Lecture Notes in Computer Science, pages 143–158.
Springer, Heidelberg, Apr. 2001.

3. G. Ateniese, B. Magri, and D. Venturi. Subversion-resilient signature schemes.
In I. Ray, N. Li, and C. Kruegel:, editors, ACM CCS 15: 22nd Conference on
Computer and Communications Security, pages 364–375. ACM Press, Oct. 2015.

4. B. Auerbach, M. Bellare, and E. Kiltz. Public-key encryption resistant to parameter
subversion and its realization from efficiently-embeddable groups. Cryptology ePrint
Archive, Report 2018/023, 2018. http://eprint.iacr.org/2018/023.

5. T. Baignères, C. Delerablée, M. Finiasz, L. Goubin, T. Lepoint, and M. Rivain.
Trap me if you can – million dollar curve. Cryptology ePrint Archive, Report
2015/1249, 2015. http://eprint.iacr.org/2015/1249.

6. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key
encryption. In C. Boyd, editor, Advances in Cryptology – ASIACRYPT 2001, volume
2248 of Lecture Notes in Computer Science, pages 566–582. Springer, Heidelberg,
Dec. 2001.

7. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. In B. Preneel, editor, Advances in
Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer
Science, pages 259–274. Springer, Heidelberg, May 2000.

8. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions
of security for public-key encryption schemes. In H. Krawczyk, editor, Advances
in Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in Computer Science,
pages 26–45. Springer, Heidelberg, Aug. 1998.

9. M. Bellare, G. Fuchsbauer, and A. Scafuro. NIZKs with an untrusted CRS: Security
in the face of parameter subversion. In J. H. Cheon and T. Takagi, editors, Advances
in Cryptology – ASIACRYPT 2016, Part II, volume 10032 of Lecture Notes in
Computer Science, pages 777–804. Springer, Heidelberg, Dec. 2016.

10. M. Bellare and V. T. Hoang. Resisting randomness subversion: Fast deterministic
and hedged public-key encryption in the standard model. In E. Oswald and
M. Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part II, volume
9057 of Lecture Notes in Computer Science, pages 627–656. Springer, Heidelberg,
Apr. 2015.

11. M. Bellare, J. Jaeger, and D. Kane. Mass-surveillance without the state: Strongly
undetectable algorithm-substitution attacks. In I. Ray, N. Li, and C. Kruegel:,
editors, ACM CCS 15: 22nd Conference on Computer and Communications Security,
pages 1431–1440. ACM Press, Oct. 2015.

12. M. Bellare, K. G. Paterson, and P. Rogaway. Security of symmetric encryption
against mass surveillance. In J. A. Garay and R. Gennaro, editors, Advances in
Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer
Science, pages 1–19. Springer, Heidelberg, Aug. 2014.

13. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference on Computer
and Communications Security, pages 62–73. ACM Press, Nov. 1993.

14. M. Bellare and P. Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In S. Vaudenay, editor, Advances in Cryptology

PKE Resistant to Parameter Subversion 29

– EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages
409–426. Springer, Heidelberg, May / June 2006.

15. D. J. Bernstein, T. Chou, C. Chuengsatiansup, A. Hülsing, T. Lange, R. Nieder-
hagen, and C. van Vredendaal. How to manipulate curve standards: a white
paper for the black hat. Cryptology ePrint Archive, Report 2014/571, 2014.
http://eprint.iacr.org/2014/571.

16. D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-
security signatures. In B. Preneel and T. Takagi, editors, Cryptographic Hardware
and Embedded Systems – CHES 2011, volume 6917 of Lecture Notes in Computer
Science, pages 124–142. Springer, Heidelberg, Sept. / Oct. 2011.

17. D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator: elliptic-curve
points indistinguishable from uniform random strings. In A.-R. Sadeghi, V. D.
Gligor, and M. Yung, editors, ACM CCS 13: 20th Conference on Computer and
Communications Security, pages 967–980. ACM Press, Nov. 2013.

18. D. J. Bernstein and T. Lange. Safecurves: choosing safe curves for elliptic-curve
cryptography. https://safecurves.cr.yp.to. Accessed: 18 May 2016.

19. D. J. Bernstein, T. Lange, and R. Niederhagen. Dual EC: A standardized back door.
Cryptology ePrint Archive, Report 2015/767, 2015. http://eprint.iacr.org/2015/767.

20. R. Canetti, R. Pass, and a. shelat. Cryptography from sunspots: How to use an
imperfect reference string. In 48th Annual Symposium on Foundations of Computer
Science, pages 249–259. IEEE Computer Society Press, Oct. 2007.

21. S. Checkoway, S. Cohney, C. Garman, M. Green, N. Heninger, J. Maskiewicz,
E. Rescorla, H. Shacham, and R.-P. Weinmann. A systematic analysis of the
juniper dual ec incident. In Proceedings of the 23rd ACM conference on Computer
and communications security. ACM, 2016.

22. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In H. Krawczyk, editor, Advances in
Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in Computer Science,
pages 13–25. Springer, Heidelberg, Aug. 1998.

23. R. Cramer and V. Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2003.

24. J. P. Degabriele, P. Farshim, and B. Poettering. A more cautious approach to
security against mass surveillance. In G. Leander, editor, Fast Software Encryption
– FSE 2015, volume 9054 of Lecture Notes in Computer Science, pages 579–598.
Springer, Heidelberg, Mar. 2015.

25. J. P. Degabriele, K. G. Paterson, J. C. N. Schuldt, and J. Woodage. Backdoors
in pseudorandom number generators: Possibility and impossibility results. In
M. Robshaw and J. Katz, editors, Advances in Cryptology – CRYPTO 2016,
Part I, volume 9814 of Lecture Notes in Computer Science, pages 403–432. Springer,
Heidelberg, Aug. 2016.

26. Y. Dodis, C. Ganesh, A. Golovnev, A. Juels, and T. Ristenpart. A formal treatment
of backdoored pseudorandom generators. In E. Oswald and M. Fischlin, editors,
Advances in Cryptology – EUROCRYPT 2015, Part I, volume 9056 of Lecture Notes
in Computer Science, pages 101–126. Springer, Heidelberg, Apr. 2015.

27. J.-P. Flori, J. Plût, J.-R. Reinhard, and M. Ekerå. Diversity and transparency for
ecc. Cryptology ePrint Archive, Report 2015/659, 2015. http://eprint.iacr.org/.

28. G. Frey. How to disguise an elliptic curve (weil descent). Talk given at ECC 1998,
1998.

30 B. Auerbach, M. Bellare, E. Kiltz

29. S. D. Galbraith and J. McKee. The probability that the number of points on
an elliptic curve over a finite field is prime. Journal of the London Mathematical
Society, 62(3):671–684, 2000.

30. S. Garg, V. Goyal, A. Jain, and A. Sahai. Bringing people of different beliefs
together to do UC. In Y. Ishai, editor, TCC 2011: 8th Theory of Cryptography
Conference, volume 6597 of Lecture Notes in Computer Science, pages 311–328.
Springer, Heidelberg, Mar. 2011.

31. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2):270–299, 1984.

32. J. Groth and R. Ostrovsky. Cryptography in the multi-string model. In A. Menezes,
editor, Advances in Cryptology – CRYPTO 2007, volume 4622 of Lecture Notes in
Computer Science, pages 323–341. Springer, Heidelberg, Aug. 2007.

33. R. Hayashi, T. Okamoto, and K. Tanaka. An RSA family of trap-door permutations
with a common domain and its applications. In F. Bao, R. Deng, and J. Zhou,
editors, PKC 2004: 7th International Workshop on Theory and Practice in Public
Key Cryptography, volume 2947 of Lecture Notes in Computer Science, pages
291–304. Springer, Heidelberg, Mar. 2004.

34. B. S. Kaliski Jr. One-way permutations on elliptic curves. Journal of Cryptology,
3(3):187–199, 1991.

35. J. Katz, A. Kiayias, H.-S. Zhou, and V. Zikas. Distributing the setup in universally
composable multi-party computation. In M. M. Halldórsson and S. Dolev, editors,
33rd ACM Symposium Annual on Principles of Distributed Computing, pages 20–29.
Association for Computing Machinery, July 2014.

36. M. Lochter and J. Mekle. RFC 5639: ECC Brainpool Standard Curves & Curve
Generation. Internet Engineering Task Force, Mar. 2010.

37. B. Möller. A public-key encryption scheme with pseudo-random ciphertexts. In
P. Samarati, P. Y. A. Ryan, D. Gollmann, and R. Molva, editors, ESORICS 2004:
9th European Symposium on Research in Computer Security, volume 3193 of Lecture
Notes in Computer Science, pages 335–351. Springer, Heidelberg, Sept. 2004.

38. NIST. Digital signature standard (DSS), 2013. FIPS PUB 186-4.
39. H. Orman. The oakley key determination protocol, 1998.
40. C. Petit and J.-J. Quisquater. On polynomial systems arising from a Weil descent. In

X. Wang and K. Sako, editors, Advances in Cryptology – ASIACRYPT 2012, volume
7658 of Lecture Notes in Computer Science, pages 451–466. Springer, Heidelberg,
Dec. 2012.

41. A. Russell, Q. Tang, M. Yung, and H.-S. Zhou. Cliptography: Clipping the power of
kleptographic attacks. In J. H. Cheon and T. Takagi, editors, Advances in Cryptology
– ASIACRYPT 2016, Part II, volume 10032 of Lecture Notes in Computer Science,
pages 34–64. Springer, Heidelberg, Dec. 2016.

42. A. Russell, Q. Tang, M. Yung, and H.-S. Zhou. Generic semantic security against
a kleptographic adversary. In B. M. Thuraisingham, D. Evans, T. Malkin, and
D. Xu, editors, ACM CCS 17: 24th Conference on Computer and Communications
Security, pages 907–922. ACM Press, Oct. / Nov. 2017.

43. A. Young and M. Yung. The dark side of “black-box” cryptography, or: Should we
trust capstone? In N. Koblitz, editor, Advances in Cryptology – CRYPTO’96, volume
1109 of Lecture Notes in Computer Science, pages 89–103. Springer, Heidelberg,
Aug. 1996.

44. A. Young and M. Yung. Kleptography: Using cryptography against cryptography.
In W. Fumy, editor, Advances in Cryptology – EUROCRYPT’97, volume 1233 of
Lecture Notes in Computer Science, pages 62–74. Springer, Heidelberg, May 1997.

