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Abstract. We give a framework for trapdoor-permutation-based se-
quential aggregate signatures (SAS) that unifies and simplifies prior work
and leads to new results. The framework is based on ideal ciphers over
large domains, which have recently been shown to be realizable in the
random oracle model. The basic idea is to replace the random oracle in
the full-domain-hash signature scheme with an ideal cipher. Each signer
in sequence applies the ideal cipher, keyed by the message, to the output
of the previous signer, and then inverts the trapdoor permutation on the
result. We obtain different variants of the scheme by varying additional
keying material in the ideal cipher and making different assumptions on
the trapdoor permutation. In particular, we obtain the first scheme with
lazy verification and signature size independent of the number of signers
that does not rely on bilinear pairings.

Since existing proofs that ideal ciphers over large domains can be real-
ized in the random oracle model are lossy, our schemes do not currently
permit practical instantiation parameters at a reasonable security level,
and thus we view our contribution as mainly conceptual. However, we are
optimistic tighter proofs will be found, at least in our specific application.

Keywords. Aggregate signatures, trapdoor permutations, ideal cipher
model.
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1 Introduction

Aggregate signatures and their variants. Aggregate signature schemes
(AS), introduced by Boneh et al. [6] (BGLS), allow n signatures on different mes-
sages produced by n different signers to be combined by any third party into a
single short signature for greater efficiency, while maintaining the same security
as n individual signatures. In this paper we are concerned with the more re-
stricted sequential aggregate signatures (SAS), introduced by Lysyanskaya et al.
(LMRS) [22] and further studied by [21, 5, 1, 24, 7, 17]. These schemes, while still
maintaining the same security, require signers themselves to compute the aggre-
gated signature in order, with the output of each signer (so-called “aggregate-so-
far”) used as input to the next during the signing process. This restriction turns
out to be acceptable in several important applications of aggregate signatures,
such as PKI certification chains and authenticated network routing protocols
(e.g., BGPsec).

TDP-based SAS. Existing SAS constructions are usually based on trapdoor
permutations (TDPs) [22, 1, 24, 7] or bilinear pairings [21, 1, 5, 17]. In this paper,
we focus on improving and simplifying TDP-based SAS schemes, which are all
in the random oracle (RO) model. We describe existing constructions below, and
illustrate them in Fig. 1.

The first TDP-based SAS scheme, by Lysyanskaya et al. [22] (LMRS), is
very similar to the full-domain-hash (FDH) signature scheme of Bellare and
Rogaway [2]. Recall that in FDH, the hash function is modeled as a random
oracle whose range is equal to the domain of the TDP, and the signer simply
hashes the message and inverts the TDP on the hash output. In LMRS, the
signer exlcusive-ors the previous signer’s output together with the hash of the
message before inverting the TDP. This procedure enabled the verifier to verify
in reverse order of signing, because exclusive-or could be undone to obtain the
previous signer’s (alleged) output.

Unfortunately, this very simple construction is not secure, and two additional
checks are used in LMRS to achieve security: first, each signer must ensure that
the public keys of all preceding signers are “certified” — i.e., specify permu-
tations; and second, each signer must verify the signature received from the
previous signers before applying the signing operation. These two checks pre-
vented fast signing; ideally, each signer would be able to sign independently of
others, and verify when time permitted (this option is called “lazy verification”
and was observed by Brogle et al. [7] to be crucial in authenticated network
routing protocols).

In two successive works by Neven [24] and Brogle et al. [7] (BGR), these two
additional checks were removed (permitting, in particular, lazy verification), but
at a cost to simplicity and signature length. Neven’s scheme eliminated the first
check by introducing a Feistel-like structure with two hash functions, at the cost
of lengthening the signature by a single hash value; BGR, building on top of
Neven, eliminated the second check by lengthening the signature further by a
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short per-signer value. These two schemes were complex and had subtle security
proofs.

Our framework. We give a new framework for TDP-based SAS schemes,
which unifies and simplifies prior work as well as leads to improved construc-
tions. We observe that in all three prior TDP-based schemes, the central design
question was how to process the aggregate-so-far together with the message be-
fore applying the hard direction of the TDP; in all three, it was accomplished
using some combination of exclusive-or and random-oracle hash operations which
were designed to ensure that the aggregate-so-far could be recovered during ver-
ification. In other words, achieving invertibility in order to enable verification
was a major design constraint.

Our idea is to build invertibility explicitly into the scheme. In our scheme,
pictured in Fig. 1, we process the aggregate-so-far via a public random permu-
tation (modeled as an ideal cipher), keyed by the message. In other words, our
schemes are in the ideal ideal cipher model, where algorithms have access to a
family of random permutations and their inverses. This model is typically used
for blockcipher-based constructions, where a blockcipher like AES is modeled
as an ideal cipher. In our work, the domain of the ideal cipher is that of the
trapdoor permutation, which is usually much larger than the block-length of a
typical block cipher like AES. Fortunately, as shown by a series of works [10,
12–14] we can replace arbitrary-length ideal ciphers by using 8 rounds of Feistel
network, and obtain the same security in the random oracle as in the ideal cipher
model using indifferentiability arguments [23].

Our Results. Our framework not only simplifies prior work, but gives rise to
more efficient aggregate signatures. Specifically, we obtain:

– A scheme that, like Neven’s, does not require certified TDPs, but may permit
shorter signatures than Neven’s scheme, of length equal to the length of the
TDP output.4

– A scheme that, like BGR, permits lazy verification, but retains constant-
size signatures. This scheme is based on a stronger assumption of adaptive
tag-based TDPs [20] instead of plain TDPs.

If one prefers to stay with plain TDPs, we also obtain a scheme that permits
lazy verification and, like BGR, has signatures that grow with the number of
signers, but still the signatures have the potential to be shorter than in BGR
(with the same caveat as above). We do not compare computational costs of our
scheme vs. Neven’s and BGR’s because the only difference is the (small) number
of additional hashes, which is negligible compared to the cost of evaluating the
TDP.

4 For a comparison at the same security level, one must take into account losses in
the security proofs. Unfortunately, the proofs of [10, 12–14] are lossy, so currently
we have to use a much larger domain size of the ideal cipher than the TDP output.
However, we are optimistic tighter proofs will be found; see open problems below.



4 Gentry, O’Neill, and Reyzin

f
i
−1yi !	i

m1, …, mi

π1, …, πi H
hi

GÅ
hi Å

hi−1 !	i−1

hi

!	i−1
gi

f
i
−1yi !	imi

πi
H

hi
GÅ

hi Å

hi−1 !	i−1

hi

!	i−1

gi

ri

f
i
−1yi !	i

m1, …, mi

f1, …, fi H Å

!i−1

gi

r1, …, ri−1

LMRS:

Neven:

BGR:

f
i
−1yi !i

Ki=(fi ,mi ,…)

Ours:

π −1!	i−1

Fig. 1. Our framework, compared to LMRS, Neven, and BGR.



Title Suppressed Due to Excessive Length 5

Main Technique: Chain-to-Zero Lemma. The security proofs for all our
schemes are enabled by a lemma we prove about an ideal cipher keyed by de-
scriptions of functions. We emphasize that the functions are unrelated to the
ideal cipher itself, and that the cipher keyed by a function description results
in permutation that is unrelated to the function. This lemma, which we call
”Chain-to-Zero Lemma,” states the following.

Let πk denote the ideal cipher with key k. Recall that accessing π and π−1

requires querying an oracle. Let f and g denote functions with the same domain
and range as π; the function descriptions will also be used as keys for π (again,
we emphasize that the resulting permutations πf and πg have nothing to do with
f and g as functions). Suppose for some a, πg(a) = b, f(b) = c, and πf (c) = d.
We will say that a, b is linked to c, d. In our schemes, linking corresponds to
consecutive steps of the verification algorithm.

A sequence of values in which each pair is linked to the next pair defines a
chain. Signature verification will make sure that the last element of a chain is 0.
The Chain-to-Zero Lemma says that if the last element of the chain is 0, then
with overwhelming probability it was formed via queries to π−1 rather than to
π. In our security proofs, this lemma means that we can program the relevant
queries to π−1, and therefore a forgery can be used to break the underlying TDP.

RSA-based instantiations. The schemes we obtain via our framework are
proven secure under claw-freeness of the underlying TDP, or adaptive claw-
freeness in the tag-based TDPs case. For plain-TDP-based schemes, this means
that we can use RSA assuming standard one-wayness. For the tag-based TDP
scheme, we we can use RSA under a stronger assumption called the instance-
independent RSA assumption [25]. This instantiation hashes to the exponent (an
idea originating from [18]), so verification is more expensive than for standard
RSA.

Perspective and open problems. Compared to prior work, our framework
pushes much of the complexity of security proofs to indifferentiability arguments
that a Feistel network realizes an ideal cipher, and allows working with an ideal
cipher as a clean abstraction. We point out two interesting directions for future
work:

– Known proofs that a Feistel network is indifferentiable from an ideal cipher
are lossy in the sense that the security guarantees obtained are weaker for
a fixed domain size. We conjecture that a weaker property suffices to prove
our Chain-to-Zero Lemma and can be realized via a tight proof. We leave
proving or disproving this conjecture as an interesting direction for future
work (and perhaps fewer Feistel rounds).

– The RSA-based instantiation of our tag-based TDP scheme has an expen-
sive verification algorithm that performs a full exponentiation modulo N ,
and its security relies on a very strong assumption about RSA. It would be
interesting to remove either of these drawbacks. We conjecture that one can
actually prove a negative result here, namely that plain TDPs cannot be
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used to realize constant-size lazy-verifying SAS schemes in the RO model,
in a black-box way.

Finally, we mention that an open problem is removing the use of ROs in TDP-
based SAS schemes, although our framework does not shed any light on this
issue.

2 Preliminaries

2.1 Notation and Conventions

Algorithms. If A is an algorithm then y ← A(x1, . . . , xn; r) means we run A on
inputs x1, . . . , xn and coins r and denote the output by y. By y←$A(x1, . . . , xn)
we denote the operation of picking r at random and letting y ← A(x1, . . . , xn; r).
By Pr[P (x) : . . .] we denote the probably that P (x) holds after the elided exper-
iment is executed. Unless otherwise indicated, an algorithm may be randomized.
“PPT” stands for “probabilistic polynomial time” and “PT” stands for “polyno-
mial time.” The security parameter is denoted k ∈ N. If we say that an algorithm
is efficient we mean that it is PPT. All algorithms we consider are efficient unless
indicated otherwise.

Strings and vectors.We denote by {0, 1}∗ the set of all (binary) strings, by
{0, 1}n the set of all strings of length n ∈ N , and by {0, 1}≥n the set of all
strings of length at least n ∈ N. If a, b are strings then a‖b denotes an encoding
from which a and b are uniquely recoverable. Vectors are denoted in boldface,
for example x. We sometimes use set notation with vectors, so that the notation
x ← x ∪ {x} means that the next empty position in x is assigned x. If X is
a random variable over some (finite) probability space then E[X] denotes its
expectation.

Tables. We use the term “table” to refer to an associative array implicitly
initialized to empty. We use the pseudocode “Record x = T [y] in the X-table”
to mean that x is put at index y in table T . We use the pseudocode “X-table
entry x = T [y]” to refer to x as the value at index y in table T .

Simplifying conventions. We implicitly assume that an honestly generated
secret key contains the matching public key. In experiments, we assume that an
adversarially-provided public key can be parsed into the requisite form, and that
if it contains a description of a function f then f is PT. This does not mean we
assume public keys certified by a CA. Indeed, our requirement can be met by
running f via inputting it and its input to some PT algorithm F , say universal
machine that executes f on its input for a fixed amount of time; if f halts with
some output then F outputs it as well, otherwise F outputs a default value.
For simplicity, we also assume trapdoor permutations have domain {0, 1}k but
discuss RSA-based instantiations in Appendix A and Section 7.
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2.2 Claw-Freeness

Claw-free trapdoor permutations. A trapdoor permutation (TDP) gener-
ator F on input 1k outputs a pair (f, f−1, g) describing permutations f, g on
{0, 1}k, and f−1 describing the inverse of f . For a claw-finding algorithm C and
every k ∈ N, define its CF-advantage against F as

Advcf
F,C(k) = Pr[f(x) = g(x′) : (f, f−1, g)←$F ; (x, x′)←$C(f, g)] .

We say that F is a claw-free if Advcf
F,C(·) is negligible for every PPT C.

The permutation g is only used for security proofs. In our constructions, we
will ignore g and write (f, f−1)←$F(1k), corresponding to the standard notion
of trapdoor permutations.

(Adaptive) claw-free tag-based TDPs. A tag-based trapdoor permutation
(TB-TDP) generator Ftag with tag-space {0, 1}τ on input 1k outputs a pair
(ftag, f

−1
tag, gtag) describing functions of two inputs: t ∈ {0, 1}τ (called the tag)

and x ∈ {0, 1}k. For every tag t ∈ {0, 1}τ , ftag(t, ·), gtag(t, ·) are permutations
and f−1tag(t, ·) is the inverse of ftag(t, ·). For a claw-finding algorithm C and every
k ∈ N, define its ACF-advantage against Ftag as

Advacf
F,C(k) = Pr[f(t, x) = g(t, x′) : (f, f−1, g)←$Ftag(1k) ; t←$ {0, 1}k ;

(x, x′)←$Cf
−1(·,·)(f, g, t)]

where we require that C does not make a query of the form f−1(t, ·) to its oracle.
We say that F is adaptive claw-free if Advcf

F,C(·) is negligible for every such PPT
C.

Intuitively, F is adaptive claw-free if it is hard to find a claw even given
access to an inversion oracle for f that may be called on tags other than the
challenge tag. The notion of adaptive claw-freeness is new to this work. It is an
extension of the notion of adaptive one-wayness introduced by Kiltz et al. [20].

Instantiations. Dodis and Reyzin [16] show that any homomorphic or ran-
domly self-reducible trapdoor permutation, in particular RSA [26] is claw-free
(with a tight security reduction to one-wayness).

The notion of adaptive one-wayness for trapdoor permutations) (and more
generally trapdoor functions) was introduced by Kiltz et al. [20]. They show
that RSA gives rise to an adaptive one-way tag-based TDP under the instance-
independent RSA assumption (II-RSA). In Appendix A we show that the same
construction yields an adaptive claw-free tag-based TDP. In the construction,
computing the forward direction is slower than for standard RSA, as it performs
an exponentiation where the exponent is the length of the modulus rather than
a small constant.

2.3 Random Oracle Model

In the random oracle model [2] all parties (all algorithms and adversaries) have
oracle access to a function (“the random oracle”) H : {0, 1}∗ → {0, 1}∗ where
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for every x ∈ {0, 1}∗ the value of H(x) is chosen uniformly at random of some
desired output length. By using standard domain separation, it is equivalent
to give all parties oracle access to an unlimited number of independent random
oraclesH1, H2, . . . : {0, 1}∗ → {0, 1}∗. It is a well-known heuristic proposed by [2]
to instantiate these oracles in practice via functions constructed appropriately
from a cryptographic hash function.

2.4 Ideal Cipher Model

In the version of the ideal cipher model [27] we consider, all parties (again,
all algorithms and adversaries) have oracle access to two functions (“the ideal
cipher”):

π : {0, 1}∗ × {0, 1}≥k → {0, 1}≥k and π−1 : {0, 1}∗ × {0, 1}≥k → {0, 1}≥k ,

where the first is such that for each K ∈ {0, 1}∗ and each input length n ≥ k,
π(K, ·) is an independent random permutation on {0, 1}n. The second is such
that for each K ∈ {0, 1}∗ and each input length n ≥ k, π−1(K, ·) is the inverse of
π(K, ·) on {0, 1}n. Such a model has typically been used to analyze blockcipher-
based constructions in the symmetric-key setting (see, e.g., [4]), where the key
length is fixed to the key length of the blockcipher and the input length is fixed
to the block length.

Our constructions are in the public-key setting, the key length will be un-
bounded, and the input length will be at least as long as the input length of a
trapdoor permutation (say 2048 bits in the case of RSA). To implement such an
ideal cipher in the random oracle model, one can use a Feistel network. Indeed,
in their seminal work, Coron et al. [10] show that a 14-round Feistel network,
where the round functions are independent random oracles, is indifferentiable
in the sense of Maurer et al. [23] from a random permutation, which can then
be used to implement the ideal cipher in a straightforward way. Essentially, in-
differentiability implies that any reduction using the random permutation can
be translated to one in the random oracle model. A subsequent sequence of
works [12–14] show that 8 rounds is sufficient; the minimal number of rounds
is still open but known to be at least six. Unfortunately, none of these works
are “tight” in the sense that the resulting reduction in the random oracle model
will be very loose. An interesting question for future work is whether a weaker
notion than indifferentiability from an ideal cipher suffices in our constructions.

3 Sequential Aggregate Signatures

Sequential aggregate signatures (SAS) were introduced by Lysyanskaya et al. [22]
and were subsequently studied by [21, 5, 1, 24, 7, 17]. Following the work of Brogle
et al. [7] and Fischlin et al. [17] (and in particular using terminology of the latter)
we classify SAS schemes into two types: general and history-free. In a history-
free scheme, the signing algorithm uses only on the current signer’s secret key,
the message, and the aggregate-so-far. In a general scheme, it may also use the
public keys and messages of the previous signers.
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3.1 The General Case

Syntax. A (general) sequential aggregate signature (SAS) scheme is a tuple
SAS = (Kg,AggSign,AggVer) of algorithms defined as follows. The key-generation
algorithm Kg on input 1k outputs a public-key pk and matching secret-key
sk. The aggregate signing algorithm AggSign on inputs a secret key ski, mes-
sage mi, aggregate-so-far σi−1 and a list of pairs of public keys and messages
((pk1,m1), . . . , (pki−1,mi−1)) outputs a new aggregate signature σi. The aggre-
gate verification algorithm AggVer on inputs a list of public keys and messages
(pk1,m1), . . . , (pki,mi) and an aggregate signature σi outputs a bit.

Security. The security notion we use is the same as that in [24, 7] and originates
from [1], who strengthen the original notion of [22] to allow repeating public
keys (which they call “unrestricted” SAS). To a general SAS scheme SAS and a
forger F we associate for every k ∈ N a (general) SAS-unforgeability experiment
Expsas-uf

SAS,F (k) that runs in three phases:

• Setup: The experiment generates (pk, sk)←$Kg(1k).

• Attack: Next, the experiment runs F on input pk with oracle access to
AggSign(sk, ·, ·, ·).

• Forgery: Eventually, F halts with output parsed as (pk1,m1), . . . , (pkn,mn), σ.
The experiment outputs 1 iff: (1) AggVer((pk1,m1), . . . , (pkn,mn), σ) outputs 1,
(2) pki∗ = pk for some 1 ≤ i∗ ≤ n, and (3) F did not make an oracle query
of the form AggSign(sk,mi∗ , ((pk1,m1), . . . , (pki∗−1,mi∗−1))).

Define the (general) SAS-unforgeability advantage of F as

Advsas-uf
SAS,F (k) = Pr

[
Expsas-uf

SAS,F (k) outputs 1
]
.

3.2 The History-Free Case

Syntax. A history-free sequential aggregate signature (HF-SAS) scheme is a
tuple HF-SAS = (Kg,AggSign, AggVer) of algorithms defined as follows. The
key-generation algorithm Kg on input 1k outputs a public-key pk and matching
secret-key sk. The history-free aggregate signing algorithm AggSign on inputs
sk,m, σ′ outputs a new aggregate signature σ. The aggregate verification algo-
rithm AggVer on inputs a list of public key and messages (pk1,m1), . . . , (pki,mi)
and aggregate signature σ outputs a bit.

Security. Security in the history-free case is more restrictive on what is consid-
ered to be a forgery by the adversary than in the general case. In particular, we
follow Brogle et al. [7] in our formulation of security here but leave investigation
of a stronger security model due to Fischlin et al. [17] for furtur work. (As noted
by [7], this strengthening is not needed in applications such as BGPsec.) To an
HF-SAS scheme HF-SAS and a forger F be a forger we associate for every k ∈ N
a history-free SAS unforgeability experiment Exphf-sas-uf

SAS,F (k) that runs in three
phases:
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• Setup: The experiment generates (pk, sk)←$Kg(1k).

• Attack: Next, the experiment runs F on input pk with oracle access to
AggSign(sk, ·, ·).

• Forgery: Eventually, F halts with output parsed as (pk1,m1), . . . , (pkn,mn), σ.
The experiment outputs 1 iff: (1) AggVer((pk1,m1), . . . , (pkn,mn), σ) outputs 1,
(2) pki∗ = pk for some 1 ≤ i∗ ≤ n, and (3) F did not make an oracle query
of the form AggSign(sk,mi∗ , ·).

Define the history-free SAS-unforgeability advantage of F as

Advhf-sas-uf
HF-SAS,F (k) = Pr

[
Exphf-sas-uf

HF-SAS,F (k) outputs 1
]
.

3.3 Message Recovery

We also consider sequential aggregate signature schemes with message recovery,
following [3, 24]. The goal is to save on bandwidth. Here we replace the veri-
fication algorithm by a recovery algorithm, which we view as taking as inputs
a list of public keys and an aggregate signature and outputting either a list of
messages, with the intended meaning that the verifier accepts each message as
authentic under the respective public key, or ⊥, indicating the aggregate signa-
ture is rejected.

4 Our Basic Schemes

We give three basic schemes: a general scheme (where the signing algorithm uses
the public keys and messages of the previous signers in addition to the current
signer’s secret key and message), and two history-free schemes (where the signing
algorithm uses only the current signer’s secret key and message). In this section
we only present the constructions and security theorems. We postpone the proofs
since we later give our main lemma that unifies the proofs.

4.1 SAS1: A General Scheme

Let F be a trapdoor permutation generator. Define SAS1[F ] = (Kg,AggSign,AggVer)
in the ideal cipher model with input length of π and π−1 fixed to k ∈ N, and
where Kg(1k) outputs (f, f−1) generated via F(1k) and:

Alg AggSign(f−1i ,mi, σi−1, (f1,m1), . . . ,
(fi−1,mi−1)) :

//This is for the ith signer in the sequence:
If AggVer((f1,m1), . . . , (fi−1,mi−1), σi−1)

outputs 0 then
Return ⊥

If i = 1 then σi−1 ← 0k

xi−1 ← σi−1 ; Ki ← f1‖m1‖ . . . ‖fi‖mi

yi ← π−1(Ki, xi−1) ; xi ← f−1i (yi) ; σi ← xi
Return σi

Alg AggVer((f1,m1), . . . ,
(fn,mn), σ) :

xn ← σ
For i = n down to 1 do:

yi ← fi(xi)
K ← f1‖m1‖ . . . ‖fi‖mi

xi−1 ← π(Ki, yi)
If x0 = 0k then return 1
Else return 0
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Theorem 1. Suppose F is claw-free. Then SAS1[F ] is aggregate-unforgeable in
the ideal cipher model. In particular, suppose there is a forger F against SAS1[F ]
making at most qπ ideal cipher queries and at most qS signing queries. Then there
is a claw-finding algorithm C against F such that for every k ∈ N

Advsas-ufcma
SAS1[F ],F (k) ≤

(
1

1/(e(qS + 1))− qπ/2k

)
·Advcf

F,C(k) + q2π/2
k .

The running-time of C is that of F plus minor bookkeeping.

4.2 SAS2: A History-Free Scheme with Randomized Signing

Let F be a trapdoor permutation generator and ρ = ρ(k) be an integer param-
eter. Define SAS2[F ] = (Kg,AggSign,AggVer) where Kg(1k) outputs (f, f−1)
generated via F(1k) and:

Algorithm AggSign(f−1i ,mi, σi−1) :
//This is for the ith signer in the sequence:
If i = 1 then x0 ← 0k and r0 ← ε
Else (xi−1, ri−1)← σi−1
ri←$ {0, 1}ρ ; Ki ← fi‖mi‖ri
yi ← π−1(Ki, xi−1)
xi ← f−1i (yi) ; Append ri to ri−1
σi ← (xi, ri)
Return σi

Algorithm AggVer((f1,m1),
. . . , (fn,mn), σ) :
(σn, (r1, . . . , rn))← σ
xn ← σn
For i = n down to 1 do:

yi ← fi(xi)
K ← fi‖mi‖ri
xi−1 ← π(Ki, yi)

If x0 = 0k then return 1
Else return 0

Theorem 2. Suppose F is claw-free. Then SAS2[F ] is aggregate-unforgeable in
the ideal cipher model. In particular, suppose there is a forger F against SAS2[F ]
making at most qH queries to H, at most qπ queries to the ideal cipher, and at
most qS signing queries. Then there is a claw-finding algorithm C against F
such that for every k ∈ N

Advhf-sas-ufcma
SAS2[F ],F (k) ≤ 2ρ+k

(2ρ − q2S)(2k − q2π)
·Advcf

F,C(k) + q2π/2
k .

The running-time of C is that of F plus minor bookkeeping.

4.3 SAS3: A History-Free Scheme with Deterministic Signing

To get intuition, we first sketch how to forge against SAS2[F ] when randomness
ri is simply omitted. Let Ki = fi‖mi be the ideal cipher key that the i-th
signer “thinks” it is using. Let K ′i = fi‖m′i be the ideal cipher key derived
from a message m′i that it will be duped into signing, and let x′i−1 be the real
aggregate-so-far. We show how to derive a corresponding fake aggregate-so-far
xi−1. Let yi = π−1(Ki, xi−1) be the value that the i-th signer will apply f−1i
to. We want to make yi = π−1(K ′i, x

′
i−1), so that the i-th signer is duped.
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But this is easy: In order to force yi = π−1(K ′i, x
′
i−1), we only have to choose

π−1(Ki, xi−1) = π−1(K ′i, x
′
i−1) and therefore xi−1 = π(Ki, π

−1(K ′i, x
′
i−1)). In

essence, to solve this issue we make fi depend on mi as well.

Our construction. Let Ftag be a tag-based trapdoor permutation with tag-
space {0, 1}τ . Let H : {0, 1}∗ → {0, 1}τ be a hash function modeled as a random
oracle. Define SAS3[F ] = (Kg,AggSign,AggVer) where Kg(1k) outputs (f, f−1)
generated via Ftag(1k) and:

Algorithm AggSign(f−1i ,mi, σi−1) :
//This is for the ith signer in the sequence:
xi−1 ← σi−1
If i = 1 then σi−1 ← 0k

Ki ← fi‖mi

yi ← π−1(Ki, xi−1)
ti ← H(fi‖mi)
xi ← f−1i (ti, yi)
Return σi = xi

Algorithm AggVer((f1,m1),
. . . , (fn,mn), σ) :
xn ← σ
For i = n down to 1 do:

ti ← H(fi‖mi)
yi ← fi(tixi)
K ← fi‖mi‖ri
xi−1 ← π(Ki, yi)

If x0 = 0k then return 1
Else return 0

Theorem 3. Suppose Ftag is adaptive claw-free. Then SAS3[F ] is aggregate-
unforgeable in the ideal cipher and random oracle models. In particular, suppose
there is a forger F against SAS3[F ] making at most qH queries to the random
oracle and at most qπ queries to the ideal cipher. Then there is a claw-finding
algorithm C against Ftag such that for every k ∈ N

Advhf-sas-ufcma
SAS3[F ],F (k) ≤ 2k+τ

(2k − q2π)(2τ − qH)
·Advacf

Ftag,C(k) + q2π/2
k .

The running-time of C is that of F plus minor bookkeeping.

5 The Chain-to-Zero Lemma

Here we give a main lemma that will unify security analyses of our schemes.

The setting. Consider an adversary A executing in the ideal cipher model
where the input and output length of the ideal cipher is fixed to k ∈ N, and
where a key of the ideal cipher also describes a function f : {0, 1}k → {0, 1}k
unrelated to the function π : f × {0, 1}k → {0, 1}k. That is, A may submit a
query to π of the form f, y to receive a random x ∈ {0, 1}k, or a query f, x to
π−1 to receive a random y ∈ {0, 1}k.5 For simplicity, we assume that A does
not make the same query twice or ask redundant queries, i.e., does not ask for
π−1[f, x] if it already asked for π[f, y] for some y and got x in response, or vice
versa.

5 In the game, we denote by “y” an input to π and by “x” its output for consistency
with our constructions in Section 4.
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Linking. We say that π-table entry x1 = π[f2, y2] is linked to π-table entry
x0 = π[f1, y1] if f1(x1) = y1. For intuition, one can think of a π-table entry
x0 = π[f1, y1] as indicating that f1 applied to something (which in our con-
structions correspond to an aggregate-so-far) yielded y1; this entry is linked if
the “something” is also stored in the π-table. See Fig. 2 for a depiction. We
inductively define a π-table entry x = π[f, y] to be chained to zero if x = 0k or
it is linked to an entry that is chained to zero. The length of the chain is defined
naturally, where a chain consisting of a single entry 0k = π[f1, y1] has length
one. We say that π-table entry x = π[f, y] is a forward query if it is defined
upon A making a π query. Similarly, we say that π-table entry x = π[f, y] is a
backward query if it is defined upon A making a π−1 query.

key = f1

key = f2

… …

… …

y1

x0

x1

y2

f1

Fig. 2. A link between ideal cipher entries.

Lemma 4. (Chain-to-Zero Lemma) Consider an execution A in which it
makes at most q queries. Define BADπ to be the event that some forward query
gets chained to zero. Then Pr [BADπ ] ≤ q2/2k.

In the proof we will make use of the following claims.

Claim. Let f : {0, 1}k → {0, 1}k. Consider choosing random y1, . . . , yq ∈ {0, 1}k,
and let Ymax be the random variable giving the maximum over i of the size of
the pre-image set of f−1(yi). Then E[Ymax] = q.

Proof. Let Yi be the random variable giving the size of the pre-image set of
f−1(yi). We compute

E[Ymax] =

∞∑
x=0

Pr[Ymax > x] ≤
∞∑
x=0

q∑
i=1

Pr[Yi > x] =

q∑
i=1

E[Yi] = q .

Above, for the first (in)equality we the fact that for a nonnegative integer-valued
random variable X, E[X] =

∑∞
x=0 Pr[X > x]. For the second inequality we use

a union bound. For the last (in)equality we use that E[Yi] = 1, because the
expectation is simply the sum all pre-image set sizes divided by the total number
of points.



14 Gentry, O’Neill, and Reyzin

Now define Coll1 to be the event that a forward query xi = π[fi+1, yi+1] is
such that it is linked to some already existing backward query xi−1 = π[fi, yi],
and Coll2 to be the event that a backward query xi−1 = π[fi, yi] is such that
it is linked to some already existing query xi = π[fi+1, yi+1] (either forward or
backward). Define Coll = Coll1 ∨ Coll2.

Claim. In an execution A as above in which it makes at most q queries, we have
Pr [Coll ] ≤ q2/2k.

Proof. We say that a forward query collides if satisfies the condition for Coll1,
and similarly for a backward query and Coll2. After at most j backward queries
have been made, define the random variable Pj to give the the maximum over
all such queries of the size of the pre-image set f−1(y). We claim that after i
queries, the probability a forward query collides is at most i/2k. This is because
for such a forward query x = π[f, y], we have

Pr [x = π[f, y] collides ] ≤
∞∑
j=1

j · Pr [Pi = j ] · 2−k = E[Pi] · 2−k ≤ i · 2−k ,

where the last inequality is by the claim above.
Now if xi−1 = π[fi, yi] is a backward query then yi is random and indepen-

dent, while for any existing query xi = π[fi+1, yi+1] we know fi(xi) is already
defined before yi is chosen. So the probability fi(xi) = yi is 2−k.

Hence, by a union bound the total probability of collision is at most q2/2k.

We are now ready to prove our main lemma.

Proof. (of Lemma 4) By a conditioning argument, we have

Pr [BADπ ] ≤ Pr
[
BADπ | Coll

]
+ Pr [Coll ]

≤ Pr
[
BADπ | Coll

]
+ q2/2k

using Claim 5.
Now if BADπ occurs there are two possibilities, either some forward query

x = π[f, y] gets chained to zero by a chain of length i = 1, or it gets chained
to zero by a chain of length i > 1. If i = 1 this would mean that x = 0k. Since
x is random and independent, the probability of this is 2−k. Summing over all
possible queries, the probability that any forward query gets chained to zero by
a chain of length one is at most q/2k.

Now suppose forward query xi = π[fi+1, yi+1] gets chained to zero by a chain
of length i > 1. Then there are two possibilities: this query is chained to zero
immediately when it is defined, or later.

The first possibility would require that there is a π-table entry xi−1 = π[fi, yi]
such that fi(xi) = yi and the entry is already chained to zero by a chain of length
i− 1. By induction on i, xi−1 = π[fi, yi] is a backward query, so it would cause
a collision.
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For the second possibility, consider a query that completes the chain from
xi−1 = π[fi, yi] to zero. At the time it is asked, all the other entries in the chain
are already fixed. That query itself must be chained to zero via a chain of length
j, for some 1 ≤ j ≤ i − 1, so let us denote it by xj−1 = π[fj , yj ]. The query
number j+1 in the chain, which we denote by xj = π[fj+1, yj+1], must be linked
to query number j, i.e., it must hold that fj(xj) = yj . Because query number
j − 1 must be chained to zero, again by (strong) induction on i it must be a
backward query, so it would cause a collision.

This completes the proof.

Remark 5. The Chain-to-Zero Lemma can be extended in the following way. In-
stead of functions f : {0, 1}k → {0, 1}k we allow functions f : {0, 1}n → {0, 1}n,
for any n ≥ k, choose x and y in the game’s pseudocode for answering A’s
queries of length n defined in the query, and define x = π[f, y] to be chained to
zero if x = 0kzn−k for any z ∈ {0, 1}n−k, where n is the input length of f . The
statement of the lemma remains unchanged.

6 Proofs for the Basic Schemes

Here we give security proofs of our basic schemes, using the Chain-to-Zero
Lemma. To simplify the proofs, we assume that no query of forger F to the
ideal cipher is asked twice (even in reverse direction) and that all queries needed
in a signing query and for verifying the final forgery are already asked.

6.1 Proof of Theorem 1

We give a simpler proof that loses a factor qπ in the reduction rather than qS ;
the improved reduction can be obtained via application of Coron’s technique
using biased coin flipping [9].

Claw finder. Claw-finding algorithm C is given in Fig. 3.

Analysis. Let’s consider executions of the general SAS-unforgeability exper-
iment with F and of the claw-finding experiment with C over a common set
of random coin sequences, where the same coins are used for choices common
across both experiments. Using the terminology of Section 5, in the execution
of C in its claw-finding experiment let BADπ be the event that any forward
query is chained to zero and ABORT be the event that C aborts. Let FORGE
be the event that F produces a valid forgery in its general SAS-unforgeability
experiment. Then we have

Advcf
F,C(k) ≥ Pr

[
FORGE ∧ ABORT ∧ BADπ

]
= Pr

[
FORGE | ABORT ∧ BADπ

]
· Pr

[
ABORT | BADπ

]
·

Pr
[
BADπ

]
.



16 Gentry, O’Neill, and Reyzin

The first inequality above is due to the fact that on coin sequences where C does
not abort, the execution of F in its experiment and when run by C is identical.
Hence, on such coin sequences F also forges in its execution by C.

Now by the Chain-to-Zero Lemma (Lemma 4), we have

Pr
[
BADπ

]
≥ 1− q2π/2k .

Next we claim that

Pr
[
ABORT | BADπ

]
≥ 1/qπ .

To see this, note that there are two places C could abort: answering a signing
query, or after receiving the final forgery. In answering a signing query, we know
that the aggregate-so-far must verify (otherwise C returns ⊥), so π-table entry
xi−1 = π[f1‖m1‖ . . . ‖f∗‖mi, yi] is chained to zero, and since we are conditioning
on BADπ it must be a backward query. Similarly, upon receiving the F ’s final out-
put, if it is a valid forgery then π-table entry x∗i∗−1 = π[f∗1 ‖m∗1‖ . . . ‖f∗‖m∗i∗ , y∗i∗ ]
must also be a backward query. So if C chooses ctr∗ to be such that x∗i∗−1 =
π[f∗1 ‖m∗1‖ . . . ‖f∗‖m∗i∗ , y∗i∗ ] was defined on the ctr∗-th query, then C does not
abort. This happens with probability at least 1/qπ since ctr∗ is random and
independent.

To complete the proof, we claim that

Pr
[
FORGE | ABORT ∧ BADπ

]
≥ Advsas-ufcma

SAS1[F ],F (k)− q2π/2k .

To see this, first note that ABORT is independent of FORGE because the random
choices made by C in determining whether to abort in its claw-finding experiment
do not affect whether F forges in its SAS-unforgeability experiment. Thus

Pr
[
FORGE | ABORT ∧ BADπ

]
= Pr

[
FORGE | BADπ

]
.

Now

Pr
[
FORGE | BADπ

]
=

Pr [FORGE ]− Pr [ FORGE | BADπ ] · Pr [BADπ ]

Pr
[
BADπ

]
≥ Pr [FORGE ]− Pr [BADπ ]

≥ Pr [FORGE ]− q2π/2k

= Advsas-ufcma
SAS1[F ],F (k)− q2π/2k .

Combining the above, we have

Advcf
F,C(k) ≥

(
Advsas-ufcma

SAS1[F ],F (k)− q2π/2k
)
·
(
1/qπ − qπ/2k

)
and rearranging yields the theorem.
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Algorithm C(f∗, g∗) :
ctr ← 0 ; ctr∗←$ {1, . . . , qπ}
Run F on input f∗, answering its queries as follows:

On π-query f1‖m1‖ . . . ‖fi‖mi, y do:
x←$ {0, 1}k
Record π[f1‖m1‖ . . . ‖fi‖mi, y] = x in the π-table ; Return x

On π−1-query f1‖m1‖ . . . ‖fi‖mi, x do:
If fi = f∗ then

ctr ← ctr + 1
If ctr = ctr∗ then

x′←$ {0, 1}k ; y ← g∗(x′) ; Record g∗[x′] = y in the g∗-table
Record π[f1‖m1‖ . . . ‖fi‖mi, y] = x in the π-table ; Return y

Else
x′←$ {0, 1}k ; y ← f∗(x′) ; Record f∗[x′] = y in the f∗-table
Record π[f1‖m1‖ . . . ‖fi‖mi, y] = x in the π-table ; Return y

On signing query mi, σi−1, (f1,m1), . . . , (fi−1,mi−1) do:
If AggVer((f1,m1), . . . , (fi−1,mi−1), σi−1) outputs 0 then return ⊥
xi−1 ← σi−1 ; yi ← π−1[f1‖m1 . . . fi−1‖mi−1‖f∗‖mi, xi−1]
If yi is not in the f∗-table then abort
Else let xi be the index of yi in the f∗-table
Return σ = xi

Let (f∗1 ,m
∗
1), . . . , (f∗n,m

∗
n), σ∗ be the output of F

If AggVer((f∗1 ,m
∗
1), . . . , (f∗n,m

∗
n), σ∗) outputs 0 then return ⊥

If there does not exist 1 ≤ i∗ ≤ n such that f∗i∗ = f∗ then return ⊥
x∗n ← σ∗

For i = n down to i∗ + 1 do:
y∗i ← f∗i (x∗i )
x∗i−1 ← π[f∗1 ‖m∗1‖ . . . ‖f∗i ‖m∗i , y∗i ]

y∗i∗ ← f∗(x∗i∗)
If y∗i∗ is not in the g∗-table then abort
Else let x′i∗ be the index of y∗i∗ in the g∗-table
Return (x∗i∗ , x

′
i∗)

Fig. 3. Claw-finder C for the proof of Theorem 1.
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6.2 Proof of Theorem 2

Claw finder. Claw-finding algorithm C is given in Fig. 4.

Analysis. Again, let’s consider executions of the general SAS-unforgeability
experiment with F and of the claw-finding experiment with C over a common
set of random coin sequences with the same coins used for common choices across
both experiments. Using the terminology of Section 5, in the execution of C in
its claw-finding experiment let BADπ be the event that any forward query gets
chained to zero. Also in the execution of C in its experiment, let BADr be the
event that π-table entry π[f‖m‖r, y] defined when C answers signing query of F
was previously defined. Let FORGE be the event that F produces a valid forgery
in its experiment. We claim that

Advcf
F,C(k) ≥ Pr

[
FORGE ∧ BADr ∧ BADπ

]
= Pr

[
FORGE | BADr ∧ BADπ

]
· Pr

[
BADr | BADπ

]
· Pr

[
BADπ

]
≥ Pr

[
FORGE | BADr ∧ BADπ

]
· Pr

[
BADr | BADπ

]
·
(
1− q2π/2k

)
Above, the first inequality is because on a coin sequences on which F forges
in its experiment and on which no π-table entry defined when C answers a
signing query in its experiment was previously defined, the executions of both
experiments are identical. Hence, on such coin sequences F also forges in its
execution by C. Moreover, since the final output of F is a valid forgery, we know
that π-table entry x∗i∗−1 = π[f∗‖m∗i∗‖r∗i∗ , yi∗ ] is chained to zero. Since we are

conditioning on BADπ, the query on which the above π-table entry is defined
must be a backward query, and since C populates the g∗-table on backwards
queries, on such executions it can successfully find a claw. Finally, the last line
is by the Chain-to-Zero Lemma.

Now we claim Pr
[
BADr | BADπ

]
≤ q2S/2ρ. This is because on each signing

query r is chosen independently at random, in other words BADr and BADπ are
independent, and the probability that x = π[(f,m, r), y] is already defined on
a given signing query is at most qS/2

ρ. Summing over all signing queries yields
the claim.

Finally, we compute

Pr
[
FORGE | BADr ∧ BADπ

]
=

Pr [FORGE ]− Pr [ FORGE | BADr ∧ BADπ ] · Pr [BADr ∧ BADπ ]

Pr
[
BADr ∧ BADπ

]
≥ Pr [FORGE ]− Pr [BADr ∧ BADπ ]

≥ Pr [FORGE ]− Pr [BADπ ]

= Advsas-ufcma
SAS1[F ],F (k)− q2π/2k .

where the last line uses the Chain-to-Zero Lemma. Combining terms yields the
theorem.
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Algorithm C(f∗, g∗) :
Run F on input f∗, answering its queries as follows:

On π-query f‖m‖r, y do:
x←$ {0, 1}k
Record π[f‖m‖r, y] = x in the π-table
Return x

On π−1 query f‖m‖r, x do:
x′←$ {0, 1}k ; y ← g∗(x′)
Record g∗[x′] = y in the g∗-table
Record π[f‖m‖r, y] = x in the π-table
Return y

On signing query m,σ do:
(xi−1, r)← σ ; r←$ {0, 1}ρ
xi←$ {0, 1}k ; yi ← f(x)
Record π[f‖m‖r, xi−1] = yi in the π-table
r← r ∪ {r} ; σ ← (xi, r)
Return σ

Let (f∗1 ,m
∗
1), . . . , (f∗n, ,m

∗
n), σ∗ be the output of F

If AggVer((f∗1 ,m
∗
1), . . . , (f∗n,m

∗
n), σ∗) outputs 0 then return ⊥

If there does not exist 1 ≤ i∗ ≤ n such that f∗i∗ = f∗ then return ⊥
(x∗n, r

∗)← σ∗

For i = n down to i∗ + 1 do:
y∗i ← f∗i (x∗i )
x∗i−1 ← π[f∗i ‖m∗i ‖r∗i , y∗i ]

y∗i∗ ← f∗(x∗i∗)
Let x′i∗ be the index of yi∗ in the g∗-table
Return (x∗i∗ , x

′
i∗)

Fig. 4. Claw-finder C for the proof of Theorem 2.
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6.3 Proof of Theorem 3

Claw finder. Claw-finding algorithm C is given in Fig. 5.

Analysis. Again, let’s consider executions of the history-free SAS-unforgeability
experiment with F and of the adaptive claw-finding experiment with C over a
common set of random coin sequences, where the same coins are used choices
common across both experiments. And, in the execution of C, let BADπ be
the event that any forward query is chained to zero. Let ABORT be the event
that C aborts. Let FORGE be the event that F produces a valid forgery in its
experiment. Then we have

Advacf
F,C(k) ≥ Pr

[
FORGE ∧ ABORT ∧ BADπ

]
= Pr

[
FORGE | ABORT ∧ BADπ

]
· Pr

[
ABORT | BADπ

]
·

Pr
[
BADπ

]
.

The first inequality above is due to the fact that on coin sequences where C does
not abort and no forward query made by F gets chained to zero, the execution
of F in its experiment and when run by C is identical. Hence, on such coin
sequences F also forges in its execution by C.

Now by the Chain-to-Zero Lemma (Lemma 4), we have

Pr
[
BADπ

]
≥ 1− q2π/2k .

Next we claim that

Pr
[
ABORT | BADπ

]
≥ 1/qH · (1− qH/2τ ) .

To see this, note that there are three places C could abort: answering a hash
query, answering a signing query, or after receiving the final forgery. Note that
on each hash query where the “Else” is executed, we t = t∗ with probability
1/2τ since t and t∗ are independent and random. Upon receiving the F ’s final
output, if it is a valid forgery then π-table entry x∗i∗−1 = π[f∗‖m∗i∗ , y∗i∗ ] must
be chained to zero and hence be a backward query. So if C chooses ctr∗ to be
such that x∗i∗−1 = π[f∗‖m∗i∗ , y∗i∗ ] was defined on the ctr∗-th query, then C does
not abort. This happens with probability at least 1/qH since ctr∗ is random and
independent.

To complete the proof, we claim that

Pr
[
FORGE | ABORT ∧ BADπ

]
≥ Advsas-ufcma

SAS1[F ],F (k)− q2π/2k .

To see this, first note that ABORT is independent of FORGE because the random
choices made by C in determining whether to abort in its claw-finding experiment
do not affect whether F forges in its SAS-unforgeability experiment. Thus

Pr
[
FORGE | ABORT ∧ BADπ

]
= Pr

[
FORGE | BADπ

]
.
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Now

Pr
[
FORGE | BADπ

]
=

Pr [FORGE ]− Pr [ FORGE | BADπ ] · Pr [BADπ ]

Pr
[
BADπ

]
≥ Pr [FORGE ]− Pr [BADπ ]

≥ Pr [FORGE ]− q2π/2k

= Advsas-ufcma
SAS1[F ],F (k)− q2π/2k

as claimed. Combining the above, we have

Advcf
F,C(k) ≥

(
Advsas-ufcma

SAS1[F ],F (k)− q2π/2k
)
·
(
1/qH − q2π/2k

)
and rearranging yields the theorem.

7 Extensions

We extend our basic schemes in a few ways. First, we add message recovery to
them, so that we save on bandwidth. Second, we handle non-binary domains, as
is needed for RSA-based instantiations.

7.1 Adding Message Recovery

To add message recovery to any of our schemes, the first signer can, instead of
using the all-zeros string (of k-bits in length) as the first “aggregate-so-far,” use
n zero bits followed n− k bits of the message for n equal to security parameter
(here we abuse notation and use n as the security parameter, say 128, while k
is the length of the modulus, say 2048). The security proofs are identical except
that they use the extension of the Chain-to-Zero Lemma discussed in Remark 5.
This gives us only security parameters number of bits of bandwidth overhead
from the signature for sufficiently long messages. One issue is that the public
keys of the signers still contribute to bandwidth overhead. It would be interesting
for future work to treat message recovery for sequential aggregate signatures in
the identity-based setting, which avoids public keys, as considered by [5].

7.2 Handling Non-Binary Domains

Our RSA-based instantiations in Appendix A have domain not {0, 1}k but ZN for
per-signer N . The problem is that we may have a signer with modulus Ni and a
subsequent signer with modulus Ni+1 such that Ni+1 < Ni. To handle this, there
are two options. The first option is to append the fractional bit to the aggregate-
so-far, so that the aggregate-so-far may grow by a bit per signer. This is quite
modest growth, and in many applications such as S-BGP the number of signers is
typically small. For highly bandwidth constrained applications, another option
is to first convert the instantiation into one that does have a binary domain
by using the technique of Hayashi, Okomoto, and Tanaka [19]. The idea is to
exponentiate twice, reflecting the intermediate result about N . The downside is
that this increases the cost of verification and signing by a factor of two.
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Algorithm Cf
∗
inv(·,·)(f∗, g∗, t∗) :

ctr ← 0 ; ctr∗←$ {1, . . . , qH}
Run F on input f∗ as follows:

On H-query f‖m do:
If f = f∗ then

ctr ← ctr + 1
If ctr = ctr∗ then t← t∗

Else t←$ {0, 1}k ; If t = t∗ then abort
Record H[f‖m] = t in the H-table ; Return t

On π-query f‖m, y do:
x←$ {0, 1}k
Record π[f‖m, y] = x in the π-table ; Return x

On π−1 query f‖m,x do:
x′←$ {0, 1}k ; y ← g∗(t∗, x′)
Record g∗[t∗, x′] = y in the g∗-table
Record π[f‖m, y] = x in the π-table ; Return y

On signing query m,σ do:
If H[f∗‖m] = t∗ then abort
xi−1 ← σ
ti ← H[f∗‖m] ; yi ← π[xi−1] ; xi ← f∗inv(ti, yi)
Return σ = xi

Let (f∗1 ,m
∗
1), . . . , (f∗n,m

∗
n), σ be the output of F

If AggVer((f∗1 ,m
∗
1), . . . , (f∗n,m

∗
n), σ∗) outputs 0 then return ⊥

If there does not exist 1 ≤ i∗ ≤ n such that f∗i∗ = f∗ then return ⊥
x∗n ← σ∗

For i = n down to i∗ + 1 do:
t∗i ← H[f∗i ‖m∗i ]
y∗i ← f∗i (t∗i , x

∗
i )

x∗i−1 ← π[f∗i ‖m∗i , y∗i ]
t∗i∗ ← H[f∗i∗‖m∗i∗ ]
y∗i∗ ← f∗(t∗i∗ , x

∗
i∗)

If y∗i∗ is not in the g∗-table then abort
Let x′i∗ be the index of y∗i∗ in the g∗-table
Return (x∗i∗ , x

′
i∗)

Fig. 5. Adaptive Claw-finder C for the proof of Theorem 3.
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A RSA-Based Instantiations

We first define a general parameter generation algorithm used in our construc-
tions. An RSA [26] parameter generation algorithm is an algorithm RSAGen that
on input 1k outputs (N, p, q, e, d) where N = pq, p and q are m/2-bit primes for
some m = m(k), and ed = 1 mod φ(N).

RSA trapdoor permutation. An RSA trapdoor permutation generator Frsa
on input 1k returns frsa = (N, e), f−1rsa = (N, d) where (N, e, d, p, q)←$RSAGen(1k).
On input x ∈ Z∗N algorithm frsa outputs xe mod N and on input y ∈ Z∗N al-
gorithm f−1rsa outputs yd mod N . Dodis and Reyzin [16] show that the RSA
trapdoor permutation generator is claw-free under the standard assumption it
is one-way.

RSA tag-based trapdoor permutation. An RSA tag-based trapdoor per-
mutation generator from Kiltz et al. [20] works as follows. Let H : {0, 1}τ →
{0, 1}η for some η ∈ N be a hash function. Define the tag-based trapdoor per-
mutation generator Frsa-tag with tag-space {0, 1}τ that on input 1k outputs

frsa-tag = N ; f−1rsa-tag = (p, q)

for where (N, p, q, e, d)←$RSAGen. On inputs t ∈ {0, 1}τ , x ∈ Z∗N , algorithm
frsa-tag outputs xH(t) mod N . On inputs t ∈ {0, 1}τ , y ∈ Z∗N , algorithm f−1rsa-tag
computes d ← H(t)−1 mod φ(N) and outputs yd mod N . Kiltz et al. [20] show
that this tag-based trapdoor permutation generator is adaptive one-way assum-
ing the instance-independent RSA assumption [25, 8, 20] holds and H is division-
intractable [18]. This is plausible if η = m (the modulus length) [11]. The same
proof strategy of Dodis and Reyzin [16] works in the adaptive case and we thus
obtain that this tag-based trapdoor permutation generator is adaptive claw-free
under the same assumptions.


