
Privately Constraining and Programming PRFs,
the LWE Way

Chris Peikert? and Sina Shiehian

Computer Science and Engineering, University of Michigan.

Abstract. Constrained pseudorandom functions allow for delegating
“constrained” secret keys that let one compute the function at certain
authorized inputs—as specified by a constraining predicate—while keep-
ing the function value at unauthorized inputs pseudorandom. In the
constraint-hiding variant, the constrained key hides the predicate. On
top of this, programmable variants allow the delegator to explicitly set
the output values yielded by the delegated key for a particular set of
unauthorized inputs.
Recent years have seen rapid progress on applications and construc-
tions of these objects for progressively richer constraint classes, result-
ing most recently in constraint-hiding constrained PRFs for arbitrary
polynomial-time constraints from Learning With Errors (LWE) [Brak-
erski, Tsabary, Vaikuntanathan, and Wee, TCC’17], and privately pro-
grammable PRFs from indistinguishability obfuscation (iO) [Boneh, Lewi,
and Wu, PKC’17].
In this work we give a unified approach for constructing both of the above
kinds of PRFs from LWE with subexponential exp(nε) approximation
factors. Our constructions follow straightforwardly from a new notion we
call a shift-hiding shiftable function, which allows for deriving a key for
the sum of the original function and any desired hidden shift function. In
particular, we obtain the first privately programmable PRFs from non-iO
assumptions.

1 Introduction

Since the introduction of pseudorandom functions (PRFs) more than thirty
years ago by Goldreich, Goldwasser, and Micali [19], many variants of
this fundamental primitive have been proposed. For example, constrained
PRFs (also known as delegatable or functional PRFs) [22,9,11] allow
issuing “constrained” keys which can be used to evaluate the PRF on an
“authorized” subset of the domain, while preserving the pseudorandomness
of the PRF values on the remaining unauthorized inputs.

? This material is based upon work supported by the National Science Foundation
under CAREER Award CCF-1054495 and CNS-1606362. The views expressed are
those of the authors and do not necessarily reflect the official policy or position of
the National Science Foundation or the Sloan Foundation.



Assuming the existence of one-way functions, constrained PRFs were
first constructed for the class of prefix-fixing constraints, i.e., the con-
strained key allows evaluating the PRF on inputs which start with a
specified bit string [22,9,11]. Subsequently, by building on a sequence
of works [3,7,2] that gave PRFs from the Learning With Errors (LWE)
problem [28], Brakerski and Vaikuntanathan [14] constructed constrained
PRFs where the set of authorized inputs can be specified by an arbitrary
polynomial-time predicate, although for a weaker security notion that
allows the attacker to obtain only a single constrained key and function
value.

In the original notion of constrained PRF, the constrained key may
reveal the constraint itself. Boneh, Lewi, and Wu [8] proposed a stronger
variant in which the constraint is hidden, calling them privately constrained
PRFs—also known as constraint-hiding constrained PRFs (CHC-PRFs)—
and gave several compelling applications, like searchable symmetric en-
cryption, watermarking PRFs, and function secret sharing [10]. They also
constructed CHC-PRFs for arbitrary polynomial-time constraining func-
tions under the strong assumption that indistinguishability obfuscation
(iO) exists [4,17]. Soon after, CHC-PRFs for various constraint classes
were constructed from more standard LWE assumptions:

– Boneh, Kim, and Montgomery [6] constructed them for the class of
point-function constraints (i.e., all but one input is authorized).

– Thorough a different approach, Canetti and Chen [15] constructed
them for constraints in NC1, i.e., polynomial-size formulas.

– Most recently, Brakerski, Tsabary, Vaikuntanathan, and Wee [13]
improved on the construction from [6] to support arbitrary polynomial-
size constraints.

All these constructions have a somewhat weaker security guarantee com-
pared to the iO-based construction of [8], namely, the adversary gets
just one constrained key (but an unbounded number of function values),
whereas in [8] it can get unboundedly many constrained keys. Indeed, this
restriction reflects a fundamental barrier: CHC-PRFs that are secure for
even two constrained keys (for arbitrary constraining functions) imply
iO [15].

Boneh et al. [8] also defined and constructed what they call privately
programmable PRFs (PP-PRFs), which are CHC-PRFs for the class of
point functions along with an additional programmability property: when
deriving a constrained key, one can specify the outputs the key yields
at the unauthorized points. They showed how to use PP-PRFs to build



watermarking PRFs, a notion defined in [16]. While the PP-PRF and
resulting watermarking PRF from [8] were based on indistinguishability
obfuscation, Kim and Wu [23] later constructed watermarking PRFs from
LWE, but via a different route that does not require PP-PRFs. To date,
it has remained an open question whether PP-PRFs exist based on more
standard (non-iO) assumptions.

1.1 Our Results

Our main contribution is a unified approach for constructing both constraint-
hiding constrained PRFs for arbitrary polynomial-time constraints, and
privately programmable PRFs, from LWE with subexponential exp(nε)
approximation factors (i.e., inverse error rates), for any constant ε > 0.
Both objects follow straightforwardly from a single LWE-based construc-
tion that we call a shift-hiding shiftable function (SHSF). Essentially, an
SHSF allows for deriving a “shifted” key for a desired shift function, which
remains hidden. The shifted key allows one to evaluate the sum of the
original function and the shift function. We construct CHC-PRFs and
PP-PRFs very simply by using an appropriate shift function, which is
zero at authorized inputs, and either pseudorandom or programmed at
unauthorized inputs.

CHC-PRFs. In comparison with [13], while we achieve the same ultimate
result of CHC-PRFs for arbitrary constraints (with essentially the same
efficiency metrics), our construction is more modular and arguably a good
deal simpler.1 Specifically, our SHSF construction uses just a few well-
worn techniques from the literature on LWE-based fully homomorphic
and attribute-based cryptography [18,5,21,20], and we get a CHC-PRF
by invoking our SHSF with an arbitrary PRF as the shift function. By
contrast, the construction from [13] melds the FHE/ABE techniques with
a specific LWE-based PRF [2], and involves a handful of ad-hoc techniques
to deal with various technical complications that arise.

PP-PRFs. Our approach also yields the first privately programmable
PRFs from LWE, or indeed, any non-iO assumption. In fact, our PP-PRF
allows for programming any polynomial number of inputs. Previously, the
only potential approach for constructing PP-PRFs without iO [23] was
from CHC-PRFs having certain extra properties (which constructions

1 Our construction was actually developed independently of [13], though not concur-
rently; we were unaware of its earlier non-public versions.



prior to our work did not possess), and was limited to programming only
a logarithmic number of inputs.

1.2 Techniques

As mentioned above, the main ingredient in our constructions is what
we call a shift-hiding shiftable function (SHSF). We briefly describe its
properties. We have a keyed function Eval : K ×X → Y , where Y is some
finite additive group, and an algorithm Shift(·, ·) to derive shifted keys.
Given a secret key msk ∈ K and a function H : X → Y, we can derive
a shifted key skH ← Shift(msk,H). This key has the following two main
properties:

– skH hides the shifting function H, and

– given skH we can compute an approximation of Eval(msk, ·) +H(·) at
any input, i.e, there exists a “shifted evaluation” algorithm SEval such
that for every x ∈ X ,

SEval(skH , x) ≈ Eval(msk, x) +H(x). (1)

We emphasize that the SHSF itself does not have any pseudorandom-
ness property; this will come from “rounding” the function in our PRF
constructions, described next.

CHC-PRFs and PP-PRFs. We first briefly outline how we use SHSFs
to construct CHC-PRFs and PP-PRFs. To construct a CHC-PRF we
instantiate the SHSF with range Y = Zmq for an appropriately chosen q.
The CHC-PRF key is just a SHSF master key msk.

– To evaluate on an input x ∈ X using msk we output bEval(msk, x)ep,
where b·ep denotes (coordinate-wise) “rounding” from Zq to Zp for
some appropriate p� q.

– To generate a constrained key for a constraint circuit C : X → {0, 1},
we sample a key k for an ordinary PRF F , define the shift function
HC,k(x) := C(x) · Fk(x), and output the shifted key

skC ← Shift(msk,HC,k).

Since Shift hides the circuit HC,k, it follows that skC hides C.

– To evaluate on an input x using the constrained key skC , we output
bSEval(skC , x)ep.



Observe that for authorized inputs x (where C(x) = 0), we have
HC,k(x) = 0, so SEval(skC , x) ≈ Eval(msk, x) and therefore their rounded
counterparts are equal with high probability. (This relies on the additional
property that Eval(msk, x) is not to close to a “rounding border.”) For
unauthorized points x (where C(x) = 1), to see that the CHC-PRF output
is pseudorandom given skC , notice that by Equation (1), the output is
(with high probability)

bEval(msk, x)ep = bSEval(skC , x)−H(x)ep. (2)

Because F is a pseudorandom function, H(x) = Fk(x) completely “ran-
domizes” the right-hand side above.

Turning now to PP-PRFs, for simplicity consider the case where we
want to program the constrained key at a single input x∗ (generalizing to
polynomially many inputs is straightforward). A first idea is to use the
same algorithms as in the above CHC-PRF, except that to program a key
to output y at input x∗ we define the shift function

Hx∗,y(x) =

{
y′ − Eval(msk, x∗) if x = x∗,

0 otherwise,
(3)

where y′ ∈ Zmq is chosen uniformly conditioned on by′ep = y. As before,
the programmed key is just the shifted key skx∗,y ← Shift(msk,Hx∗,y). By
Equation (1), evaluating on the unauthorized input x∗ using skx∗,y indeed
yields by′ep = y. However, it is unclear whether the true (non-programmed)
value of the function at the unauthorized input x = x∗ is pseudorandom
given skx∗,y: in particular, because y is chosen by the adversary, y′ ∈ Zmq
may not be uniformly random.

To address this issue, we observe that the above construction satisfies
a weaker pseudorandomness guarantee: if the adversary does not specify y
but instead y is uniformly random, then by Equation (2) the PP-PRF
is pseudorandom at x∗. This observation leads us to our actual PP-
PRF construction: we instantiate two of the above “weak” PP-PRFs
with keys msk1 and msk2. To generate a programmed key for input x∗

and output y, we first generate random additive shares y1, y2 such that
y = y1 + y2, and output the programmed key skx∗,y := (skx∗,y1 , skx∗,y2)
where skx∗,yi ← Shift(mski, Hx∗,yi) for i = 1, 2. Each evaluation algorithm
(ordinary and programmed) is then defined simply as the sum of the
corresponding evaluation algorithm from the “weak” construction using
the two component keys. Because both programmed keys are generated
for random target outputs yi, we can prove pseudorandomness of the real
function value.



Constructing SHSFs. We now give an overview of our construction of
shift-hiding shifted functions. For simplicity, suppose the range of the
functions is Y = Zq; extending this to Zmq (as in our actual constructions)
is straightforward. As in [23,6] our main tools are the “gadget-matrix
homomorphisms” developed in the literature on fully homomorphic and
attribute-based cryptography [18,5,21,20].

At a high level, our SHSF works as follows. The master secret key is
just an LWE secret s whose first coordinate is 1. A shifted key for a shift
function H : X → Zq consists of LWE vectors (using secret s) relative
to some public matrices that have been “shifted” by multiples of the
gadget matrix G [24]; more specifically, the multiples are the bits of FHE
ciphertexts encrypting H, and the Zq-entries of the FHE secret key sk.
To compute the shifted function on an input x, we do the following:

1. Using the gadget homomorphisms for boolean gates [18,5] on the
LWE vectors corresponding to the FHE encryption of H, we compute
LWE vectors relative to some publicly computable matrices, shifted
by multiples of G corresponding to the bits of an FHE ciphertext
encrypting H(x).

2. Then, using the gadget homomorphisms for hidden linear functions [20]
with the LWE vectors corresponding to the FHE secret key, we compute
LWE vectors relative to some publicly computable matrix Bx, but
shifted by (H(x) + e)G where H(x) + e ≈ H(x) ∈ Zq is the “noisy
plaintext” arising as the inner product of the FHE ciphertext and
secret key. Taking just the first column, we therefore have an LWE
sample relative to some vector bx + (H(x) + e)u1, where u1 is the first
standard basis (column) vector.

3. Finally, because the first coordinate of the LWE secret s is 1, the above
LWE sample is simply 〈s,bx〉+H(x) + e ≈ 〈s,bx〉+H(x) ∈ Zq.

With the above in mind, we then define the (unshifted) function itself on
an input x to simply compute bx from the public parameters as above,
and output 〈s,bx〉. This yields Equation (1).

2 Preliminaries

We denote row vectors by lower-case bold letters, e.g., a. We denote
matrices by upper-case bold letters, e.g., A. The Kronecker product
A ⊗ B of two matrices (or vectors) A and B is obtained by replacing
each entry ai,j of A with the block ai,jB. The Kronecker product obeys
the mixed-product property: (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD) for any
matrices A,B,C,D with compatible dimensions.



2.1 Gadgets and Homomorphisms

Here we recall “gadgets” [24] over Zq and several of their homomorphic
properties, some of which were implicit in [18], and which were developed
and exploited further in [5,21,20].

For an integer modulus q, the gadget (or powers-of-two) vector over Zq
is defined as

g = (1, 2, 4, . . . , 2dlg qe−1) ∈ Zdlg qeq . (4)

For every u ∈ Zq, there is an (efficiently computable) binary vector

x ∈ {0, 1}dlg qe such that 〈g,x〉 = g · xt = u (mod q). Phrased differently,

(x⊗ g) · rt = u (mod q) (5)

for a certain binary r ∈ {0, 1}dlg qe
2

, namely, the one that selects all the
products of the corresponding entries of x and g.

The gadget matrix is defined as

Gn = In ⊗ g ∈ Zn×mq ,

where m = ndlg qe. We often drop the subscript n when it is clear from
context. We use algorithms BoolEval and LinEval, which have the following
properties.

– BoolEval(C, x,A), given a boolean circuit C : {0, 1}` → {0, 1}k of

depth d, an x ∈ {0, 1}`, and some A ∈ Zn×(`+1)m
q , outputs an integral

matrix RC,x ∈ Z(`+1)m×km with mO(d)-bounded entries for which

(A + (1, x)⊗G) ·RC,x = AC + C(x)⊗G, (6)

where AC ∈ Zn×mq depends only on A and C (and not on x).2

– LinEval(x,C), given an x ∈ {0, 1}` and a matrix C ∈ Zn×`mq , outputs

an integral matrix Rx ∈ Z2`m×m with poly(m, `)-bounded entries such
that, for all A,C ∈ Zn×`mq and k ∈ Z`q,

[A + x⊗G | C + k⊗G] ·Rx = B + 〈x,k〉 ·G, (7)

where B ∈ Zn×mq depends only on A and C (and not on x or k).3

More generally, for x ∈ {0, 1}k` by applying the above to the `-bit
chunks of x, in Equation (7) we replace 〈x,k〉 ·G = (x · kt) ·G with
(x · (Ik ⊗ kt)) ⊗ G, and now Rx ∈ Z(k+1)`m×km, A ∈ Zn×k`mq , and

B ∈ Zn×kmq .
2 This property is obtained by composing homomorphic addition and multiplication of
G-multiples; the extra 1 attached to x is needed to support NOT gates.

3 We stress that LinEval does not need to know k, which we view as representing a
secret linear function that is hidden by C.



2.2 Fully Homomorphic Encryption

We use the GSW (leveled) fully homomorphic encryption scheme [18]
(KG,Enc,Eval), whose relevant properties for our needs are summarized
as follows (we use only a symmetric-key version, which is sufficient for our
purposes):

– KG(1λ, q), given a security parameter λ and a requested modulus q,
outputs a secret key k ∈ Zτq (for some τ = poly(λ, log q)).

– Enc(k,m), given a secret key k and a message m ∈ {0, 1}, outputs a
ciphertext ct, which is a binary string.

– Eval(C, ct1, . . . , ct`), given a boolean circuit C : {0, 1}` → {0, 1} and

ciphertexts ct1, ct2, . . . , ct`, outputs a ciphertext ct ∈ {0, 1}τdlg qe.

Notice that in the above definition there is no explicit decryption algorithm.
Instead we express the essential “noisy” linear relation between the result
of homomorphic evaluation and the secret key: for any k ← KG(1λ, q),
any boolean circuit C : {0, 1}` → {0, 1} of depth at most d, any messages
mj ∈ {0, 1} and ciphertexts ctj ← Enc(k,mj) for j = 1, . . . , `, we have

Eval(C, ct1, . . . , ct`) · (Idlg qe ⊗ kt) = C(m1, . . . ,m`)⊗ g + e (mod q) (8)

for some integral error vector e ∈ [−B,B]dlg qe, where B = λO(d). In
other words, multiplying (the τ -bit chunks of) the result of homomorphic
evaluation with the secret key yields a “noisy” version of a robust encoding
of the result (where the encoding is via the powers of two). While the
robust encoding allows the noise to be removed, we will not need to do so
explicitly.

More generally, if the circuit C has k-bit output, then Eval outputs
a ciphertext in {0, 1}τkdlg qe and Equation (8) holds with Idlg qe replaced
by Ikdlg qe.

2.3 Learning With Errors

For a positive integer dimension n and modulus q, and an error distribu-
tion χ over Z, the LWE distribution and decision problem are defined as
follows. For an s ∈ Zn, the LWE distribution As,χ is sampled by choosing
a uniformly random a ← Znq and an error term e ← χ, and outputting
(a, b = 〈s,a〉+ e) ∈ Zn+1

q .

Definition 1. The decision-LWEn,q,χ problem is to distinguish, with non-
negligible advantage, between any desired (but polynomially bounded) num-
ber of independent samples drawn from As,χ for a single s← Znq , and the
same number of uniformly random and independent samples over Zn+1

q .



In this work we use a form of LWE where the first coordinate of the
secret vector s is 1, i.e. s = (1, s̄) where s̄ ← Zn−1

q . It is easy to see
that this is equivalent to LWE with an (n − 1)-dimensional secret: the
transformation mapping (a, b) ∈ Zn−1

q ×Zq to ((r,a), b+r) for a uniformly
random r ∈ Zq (chosen freshly for each sample) maps samples from As̄,χ

to samples from As,χ, and maps uniform samples to uniform samples.
A standard instantiation of LWE is to let χ be a discrete Gaussian

distribution (over Z) with parameter r = 2
√
n. A sample drawn from

this distribution has magnitude bounded by, say, r
√
n = Θ(n) except

with probability at most 2−n. For this parameterization, it is known
that LWE is at least as hard as quantumly approximating certain “short
vector” problems on n-dimensional lattices, in the worst case, to within
Õ(q
√
n) factors [28,27]. Classical reductions are also known for different

parameterizations [26,12].

2.4 One Dimensional Rounded Short Integer Solution

As in [14,6,23] we make use of a special “one-dimensional, rounded” variant
of the short integer solution problem (SIS). For the parameters we will
use, this problem is actually no easier to solve than LWE is, but it is
convenient to define it separately.

Definition 2 (1D-R-SIS [14,6]). Let p ∈ N and let p1 < p2 < · · · < pk
be pairwise coprime and coprime with p. Let q = p ·

∏k
i=1 pi. Then for

positive numbers m ∈ N and B, the 1D-R-SISm,p,q,B problem is as follows:
given a uniformly random vector v← Zmq , find z ∈ Zm such that ‖z‖ ≤ B
and

〈v, z〉 ∈ q
p

(Z + 1
2) + [−B,B]. (9)

For sufficiently large p1 ≥ B ·poly(k, log q), solving 1D-R-SIS is at least
as hard as approximating certain “short vector” problems on k-dimensional
lattices, in the worst case, to within certain B · poly(k) factors [1,25,14,6].

3 Shift-Hiding Shiftable Functions

Here we present our construction of what we call shift-hiding shiftable
functions (SHSFs), which we use in our subsequent constructions of CHC-
PRFs and PP-PRFs. Because there are several parameters and we need
some specific algebraic properties, we do not give an abstract definition
of SHSF, but instead just give a construction (Section 3.2) and show the
requisite properties (Section 3.3).



3.1 Notation

Let GSW = (KG,Enc,Eval) denote the GSW fully homomorphic encryption
scheme (Section 2.2), where the secret key is in Zτq for some τ = τ(λ).
Recall that homomorphic evaluation of a function with k output bits
produces a τkdlg qe-bit ciphertext.

Our construction represents shift functions H : {0, 1}` → Zmq by

(bounded-size) boolean circuits. Specifically, we let H ′ : {0, 1}` → {0, 1}k
for k = mdlg qe be a boolean circuit where H ′(x) is the binary decomposi-
tion of H(x), so that, following Equation (5),

(H ′(x)⊗ g) · (Im ⊗ rt) = H(x) ∈ Zmq . (10)

Let U(H ′, x) = H ′(x) denote a universal circuit for boolean cir-
cuits H ′ : {0, 1}` → {0, 1}k of size σ, and let Ux(·) = U(·, x). Its ho-
momorphic analogue is as follows: letting z be the total length of fresh
GSW ciphertexts encrypting a circuit of size σ, for any x ∈ {0, 1}` define

Ux : {0, 1}z → {0, 1}τkdlg qe (11)

Ux(ct) = GSW.Eval(Ux, ct). (12)

Observe that Ux can be implemented as a boolean circuit of size (and
hence depth) poly(λ, σ).

3.2 Construction

Here we give the tuple of algorithms (Setup,KeyGen,Eval,Shift,SEval,S)
that make up our SHSF. For security parameter λ and constraint circuit
size σ the algorithms are parameterized by some n = poly(λ, σ) and
q = 2poly(λ,σ), with m = ndlg qe = poly(λ, σ); we instantiate these more
precisely in Section 3.4 below.

Construction 1. Let X = {0, 1}` and Y = Zmq . Define:

– Setup(1λ, 1σ): Sample uniformly random and independent matrices

A ∈ Zn×(z+1)m
q and C ∈ Zn×τmq , and output pp = (A,C).

(The n-by-m chunks of A will correspond to the z bits of a GSW en-
cryption of the shift function; similarly, the chunks of C will correspond
to the GSW secret key in Zτq .)

– KeyGen(pp): Sample s′ ← Zn−1
q and set s = (1, s′). Output the master

secret key msk = s.



– Eval(pp,msk, x ∈ {0, 1}`): compute

R0 = BoolEval(Ux, 0
z,A) ∈ Z(z+1)m×τkdlg qem (13)

and let

Ax = (A + (1, 0z)⊗G) ·R0 − Ux(0z)⊗G ∈ Zn×τkdlg qemq . (14)

(Observe that by Equation (6), Ax = AC for the circuit C = Ux, and
does not depend on the “dummy” ciphertext 0z, which stands in for a
GSW encryption of a shift function.)
Next, compute

R′0 = LinEval(Ux(0z),C) ∈ Zτ(kdlg qe+1)m×kdlg qem (15)

and let

Bx = [Ax + Ux(0z)⊗G | C] ·R′0 ∈ Zn×kdlg qemq . (16)

(Observe that this corresponds to taking k = 0 in Equation (7), so Bx

does not depend on the “dummy” ciphertext 0z; it depends only on Ax,
hence A and x, and C.)
Finally, output

s ·Bx · (Im ⊗ rt ⊗ ut1) ∈ Zmq , (17)

where r ∈ {0, 1}dlg qe
2

is as in Equation (10) and u1 ∈ Zm is the first
standard basis vector.

– Shift(pp,msk,H): for a shift function H : {0, 1}` → Zmq whose binary

decomposition H ′ : {0, 1}` → {0, 1}k can be implemented by a circuit
of size σ, sample a GSW encryption key k ← GSW.KG(1λ, q), then
encrypt H ′ bit-by-bit under this key to obtain a ciphertext ct ←
GSW.Enck(H ′). Next, let

a = s(A + (1, ct)⊗G) + e (18)

c = s(C + k⊗G) + e′ (19)

where e and e′ are error vectors whose entries are sampled indepen-
dently from χ. Output

skH = (ct,a, c). (20)

(Recall that A′ = A + (1, ct) ⊗ G and C′ = C + k ⊗ G support
homomorphic operations on ct and k via right-multiplication by short
matrices, using the gadget homomorphisms. Shifted evaluation, defined
next, performs such right-multiplications on a ≈ sA′, c ≈ sC′.)



– SEval(pp, skH , x): On input skH = (ct,a, c) and x ∈ {0, 1}`, compute

Rct = BoolEval(Ux, ct,A) (21)

ax = a ·Rct. (22)

(By Equation (6), we have ax ≈ s(Ax +Ux(ct)⊗G), where recall that
Ux(ct) is a GSW encryption of H ′(x), computed homomorphically.)

Next, compute

R′ct = LinEval(Ux(ct),C) (23)

bx = [ax | c] ·R′ct. (24)

(By Equations (7) for LinEval and (8) for GSW decryption, we have
bx ≈ s(Bx+h′⊗G), where h′ is a noisy version of the robust encoding
H ′(x)⊗ g.)

Finally, output

bx · (Im ⊗ rt ⊗ ut1) ∈ Zmq , (25)

where r,u1 are as in Eval above.

(Here the Im ⊗ rt term reconstructs a noisy version of H(x) ∈ Zmq
from h′ as in Equation (10), and the ut1 ∈ Zm term selects the first
column of G, whose inner product with s is 1.)

– S(1λ, 1σ): Sample a GSW secret key k ← GSW.KG(1λ, q) and com-
pute (by encrypting bit-by-bit) ct← GSW.Enck(C), where C is some
arbitrary size-σ boolean circuit. Sample uniformly random and in-

dependent A ← Zn×(z+1)m
q ,a ← Z(z+1)m

q , C ← Zn×τmq , c ← Zτmq .
Output pp = (A,C) and sk = (ct,a, c).

3.3 Properties

Here we prove the three main properties of our SHSF that we will use in
subsequent sections.

Lemma 1 (Shift Hiding). Assuming the hardness of LWEn−1,q,χ and
CPA security of the GSW encryption scheme, for any PPT A and any
σ = σ(λ) = poly(λ),

{RealKeyA(1λ, 1σ)}λ∈N
c
≈ {IdealKeyA(1λ, 1σ)}λ∈N, (26)

where RealKey and IdealKey are the respective views of A in the experiments
defined in Figure 1.



procedure RealKeyA(1λ, 1ρ)
H ← A(1λ, 1σ)
pp← Setup(1λ, 1ρ)
msk ← KeyGen(pp)
sk ← Shift(pp,msk,H)
(pp, sk)→ A

(a) The real shifted key generation ex-
periment

procedure IdealKeyA(1λ, 1σ)
H ← A(1λ, 1σ)
(pp, sk)← S(1λ, 1σ)
(pp, sk)→ A

(b) The random key generation experi-
ment

Fig. 1: The real and random shifted key generation experiments.

Proof. Let A be any polynomial-time adversary. To show that Equa-
tion (26) holds we define a sequence of hybrid experiments and show that
they are indistinguishable.

Hybrid H0: This is the experiment RealKey.

Hybrid H1: This is the same as H0, except that we modify how the A
and C are constructed as follows: after we generate ct and k we choose
uniformly random A′ and C′ and set

A = A′ − (1, ct)⊗G (27)

C = C′ − k⊗G. (28)

Hybrid H2: This is the same as H1, except that we sample the ai and
cj uniformly at random from Zmq .

Hybrid H3: This is the same as H2, except that we again directly choose
A,C uniformly at random (without choosing A′,C′).

Hybrid H4: This is the same as H2, except that ct encrypts the (ar-
bitrary) size-σ circuit C (as in S) instead of H ′, i.e., we set ct ←
GSW.Enck′(C). Observe that this is exactly the experiment IdealKey.

Claim 1. H0 and H1 are identical.

Proof. This is because A′ and C′ are uniformly random and independent
of ct and k.

Claim 2. Assuming the hardness of LWEn−1,q,χ, we have H1
c
≈ H2.

Proof. We use any adversary A that attempts to distinguish H1 from H2

to build an adversary A′ that solves LWEn−1,q,χ with the same advantage.

First, A′ receives samples (A′,a) ∈ Zn×(z+1)m
q × Z(z+1)m

q and (C′, c) ∈
Zn×τmq × Zτmq , then proceeds exactly as in H1 to interact with A, and



outputs what A outputs. If the samples are LWE samples from As,χ where
s = (1, s′) for s′ ← Zn−1

q , then

a = s ·A′ + e = s(A + (1, ct)⊗G) + e

c = s ·C′ + e′ = s(C + k⊗G) + e′

for error vectors e, e′ whose entries are drawn from χ, therefore A’s view
is identical to its view in H1. If the samples are uniformly random, then
A’s view is identical to its view in H2. This proves the claim.

Claim 3. H2 and H3 are identical.

Proof. This is because A′,C′ are uniformly random and independent of ct
and k.

Claim 4. If GSW is CPA-secure then H3
c
≈ H4.

Proof. This follows immediately from the fact that the GSW secret key
k← GSW.KG(1λ, q) is used only to encrypt H (yielding ct) or the arbitrary
circuit C, respectively, in H3 and H4.

This completes the proof of Lemma 1.

Lemma 2 (Border Avoiding). For any PPT A, i ∈ [m], λ ∈ N and
σ = poly(λ), assuming the hardness of 1D-R-SIS(z+τ+1)m,p,q,B for some

large enough B = mpoly(λ,σ) = λpoly(λ), we have

Pr
(pp,sk)←S(1λ,1σ)
x←A(pp,sk)

[
Eval(pp, sk, x)i ∈ q

p(Z + 1
2) + [−B,+B]

]
≤ negl(λ). (29)

Proof. We show how to use an adversary which finds an x ∈ X such that

SEval(pp, sk, x)i ∈ q
p(Z + 1

2) + [−B,+B] (30)

for some i ∈ [m] to solve 1D-R-SIS.
Given a (uniformly random) 1D-R-SIS(z+τ+1)m,p,q,B challenge v =

(a, c) ∈ Z(z+1)m
q × Zτmq , we put a, c in the sk given to A, and generate pp

in the same way as in the S algorithm. Let x be a query output by A,
and consider the response

yx = SEval(pp, (ct,a, c), x) (31)

= bx ·U (32)

= [a | c]

[
Rct

Iτm

]
·R′ct ·U︸ ︷︷ ︸

T

, (33)



where Rct,R
′
ct are mpoly(λ,σ)-bounded matrices as computed by SEval,

and U is a binary matrix. Now if Equation (30) holds for some i ∈ [m],
then (yx)i ∈ q

p(Z + 1
2) + [−B,B], which means that the ith column of T

is a valid 1D-R-SIS(z+τ+1)m,p,q,B solution to the challenge v = (a, c), as
desired.

Lemma 3 (Approximate Shift Correctness). For any shift function
H : {0, 1}` → Zmq whose binary decomposition H ′ : {0, 1}` → {0, 1}k can

be represented by a boolean circuit of size σ, and any x ∈ {0, 1}`, pp ←
Setup(1λ, 1ρ), msk ← KeyGen(pp) and skH ← Shift(pp,msk,H), we have

SEval(pp, skH , x) ≈ Eval(pp,msk, x) +H(x) (34)

where the approximation hides some λpoly(λ)-bounded error vector.

Proof. Let a,ax,bx, c,Ax and Bx be as defined in algorithms SEval, Eval
and Shift. First, observe that by definition of a ≈ s(A + (1, ct) ⊗ G),
ax = a ·Rct, and Equation (6), we have

ax ≈ s(A + (1, ct)⊗G) ·Rct (35)

= s(Ax + Ux(ct)⊗G), (36)

where the approximation hides an error vector with entries bounded
by mpoly(λ,σ) = λpoly(λ). Similarly, by definition of bx, the generalized
Equation (7), and the generalized Equation (8) we have

bx = [ax | c] ·R′ct (37)

≈ s[Ax + Ux(ct)⊗G | C + k⊗G] ·R′ct (38)

= s(Bx + (Ux(ct) · (Ikdlg qe ⊗ kt))⊗G) (39)

= s(Bx + (H ′(x)⊗ g + ex)⊗G) (40)

where the approximation hides some λpoly(λ)-bounded error, and ex is
also λpoly(λ)-bounded. Therefore, by Equation (10), the mixed-product
property, and because G · ut1 = ut1 ∈ Znq , and the first coordinate of s is 1,
the output of SEval(pp, skH , x) is

bx · (Im ⊗ rt ⊗ ut1) ≈ sBx · (Im ⊗ rt ⊗ ut1) + s((H ′(x)⊗ g + ex)⊗G) · (Im ⊗ rt ⊗ ut1)
(41)

= Eval(pp,msk, x) + s((H(x) + ex(Im ⊗ rt))⊗ ut1)
(42)

= Eval(pp,msk, x) +H(x) + ex(Im ⊗ rt) (43)

≈ Eval(pp,msk, x) +H(x), (44)



where again the approximations hide λpoly(λ)-bounded error vectors, as
claimed.

The following is an immediate consequence of Lemma 3.

Corollary 1. Fix the same notation as in Lemma 3. If for all i ∈ [m] we
have

(SEval(pp, sk, x)−H(x))i /∈ q
p(Z + 1

2) + [−B,+B], (45)

then

bSEval(pp, sk, x)−H(x)ep = bEval(pp,msk, x)ep. (46)

3.4 Parameter Instantiation

We now instantiate the LWE parameters n, q and the 1D-R-SIS param-
eter k to correspond with subexponential exp(nε) and exp(kε) approx-
imation factors for the underlying worst-case lattice problems, for an
arbitrary desired constant ε > 0. Let B = λpoly(λ) be the bound from
Corollary 1. For 1D-R-SIS we need to choose k sufficiently large primes
pi = B · poly(λ) = λpoly(λ) to get an approximation factor of

B · poly(λ) = λpoly(λ)

for k-dimensional lattices. Therefore, we can choose a sufficiently large
k = poly(λ) to make this factor exp(kε). We then set

q = p
k∏
i=1

pi = p · λk·poly(λ) = λpoly(λ),

which corresponds to some λpoly(λ) approximation factor for n-dimensional
lattices. Again, we can choose a sufficiently large n = poly(λ) to make
this factor exp(nε).

4 Constraint-Hiding Constrained PRF

In this section we formally define constraint-hiding constrained PRFs
(CHC-PRFs) and give a construction based on our shiftable PRF from
Section 3.



4.1 Definition

Here we give the definition of CHC-PRFs, specializing the simulation-based
definition of [15] to the case of a single constrained-key query.

Definition 3. A constrained function is a tuple of efficient algorithms
(Setup,KeyGen,Eval,Constrain,CEval) having the following interfaces (where
the domain X and range Y may depend on the security parameter):

– Setup(1λ, 1σ), given the security parameter λ and an upper bound σ
on the size of the constraining circuit, outputs public parameters pp.

– KeyGen(pp), given the public parameters pp, outputs a master secret
key msk.

– Eval(pp,msk, x), given the master secret key and an input x ∈ X ,
outputs some y ∈ Y.

– Constrain(pp,msk,C), given the master secret key and a circuit C of
size at most σ, outputs a constrained key skC .

– CEval(pp, skC , x), given a constrained key skC and an input x ∈ X ,
outputs some y ∈ Y.

Definition 4. A constrained function is a constraint-hiding constrained
PRF (CHC-PRF) if there is a PPT simulator S such that, for any PPT
adversary A (that without loss of generality never repeats a query) and
any σ = σ(λ) = poly(λ),

{RealA(1λ, 1σ)}λ∈N
c
≈ {IdealA,S(1λ, 1σ)}λ∈N, (47)

where Real and Ideal are the respective views of A in the experiments
defined in Figure 2.

The above simulation-based definition simultaneously captures privacy
of the constraining function, pseudorandomness on unauthorized inputs,
and correctness of constrained evaluation on authorized inputs. The first
two properties (privacy and pseudorandomness) follow because in the
ideal experiment, the simulator must generate a constrained key without
knowing the constraining function, and the adversary gets oracle access
to a function that is uniformly random on unauthorized inputs.

For correctness, we claim that the real experiment is computationally
indistinguishable from a modified one where each query x is answered as
CEval(pp, skC , x) if x is authorized (i.e., C(x) = 0), and as Eval(pp,msk, x)
otherwise. In particular, this implies that Eval(pp,msk, x) = CEval(pp, skC , x)
with all but negligible probability for all the adversary’s authorized



queries x. Indistinguishability of the real and modified experiments follows
by a routine hybrid argument, with the ideal experiment as the intermedi-
ate one. In particular, the reduction that links the ideal and modified real
experiments itself answers authorized queries x using CEval, and handles
unauthorized queries by passing them to its oracle.

procedure RealA(1λ, 1σ)
C ← A(1λ, 1σ)
pp← Setup(1λ)
msk ← KeyGen(pp)
skC ← Constrain(pp,msk,C)
(pp, skC)→ A
repeat

x← A
Eval(pp,msk, x)→ A

until A halts

(a) The real experiment

procedure IdealA,S(1λ, 1σ)
C ← A(1λ, 1σ)
(pp, sk)← S(1λ, 1σ)
(pp, sk)→ A
repeat

x← A
if C(x) = 0 then

CEval(pp, sk, x)→ A
else

y ← Y; y → A
until A halts

(b) The ideal experiment

Fig. 2: The real and ideal experiments.

4.2 Construction

We now describe our construction of a CHC-PRF for domain X = {0, 1}`
and range Y = Zmp , which handles constraining circuits of size σ. It uses
the following components:

– A pseudorandom function PRF = (PRF.KG,PRF.Eval) having domain
{0, 1}` and range Zmq , with key space {0, 1}κ.

– The shift hiding shiftable function SHSF = (Setup,KeyGen,Eval,Shift,SEval,Sim)
from Section 3, which has parameters q,B that appear in the analysis
below.

For a boolean circuit C of size at most σ and some k ∈ {0, 1}κ define
the function HC,k : {0, 1}` → Zmq as

HC,k(x) = C(x) · PRF.Eval(k, x) =

{
PRF.Eval(k, x) if U(C, x) = 1

0 otherwise.

(48)
Notice that the size of (the binary decomposition of)HC,k is upper bounded
by

σ′ = σ + s+ poly(n, log q), (49)



where s is the circuit size of (the binary decomposition of) PRF.Eval(k, ·).

Construction 2. Our CHC-PRF with domain X = {0, 1}` and range
Y = Zmp is defined as follows:

– Setup(1λ, 1σ): output pp← SHSF.Setup(1λ, 1σ
′
) where σ′ is defined as

in Equation (49).

– KeyGen(pp): output msk ← SHSF.KeyGen(pp).

– Eval(pp,msk, x ∈ {0, 1}`): compute yx = SHSF.Eval(pp,msk, x) and
output byxep.

– Constrain(pp,msk,C): on input a circuit C of size at most σ, sample a
PRF key k ← PRF.KG(1λ) and output skC ← SHSF.Shift(pp,msk,HC,k).

– CEval(pp, skC , x): on input a constrained key skC and x ∈ {0, 1}`,
output bSHSF.SEval(pp, skC , x)ep.

4.3 Security Proof

Theorem 1. Construction 2 is a constraint-hiding constrained PRF as-
suming the hardness of LWEn−1,q,χ and 1D-R-SIS(zσ′+τ+1)m,p,q,B (where
z, τ are respectively the lengths of fresh GSW ciphertexts and secret keys
as used in SHSF), the CPA security of the GSW encryption scheme, and
that PRF is a pseudorandom function.

Proof. Our simulator S(1λ, 1σ) for Construction 2 simply outputs SHSF.S(1λ, 1σ
′
).

Now let A be any polynomial-time adversary. To show that S satisfies
Definition 4 we define a sequence of hybrid experiments and show that
they are indistinguishable. Before defining the experiments in detail, we
first define a particular “bad” event in all but one of them.

Definition 5. In each of the following hybrid experiments except H0, each
query x is answered as byxep for some yx that is computed in a certain
way. Define Borderline to be the event that at least one such yx has some
coordinate in q

p(Z + 1
2) + [−B,B].

Hybrid H0: This is the ideal experiment IdealA,S .

Hybrid H1: This is the same as H0, except that on every unauthorized
query x (i.e., where C(x) = 1), instead of returning a uniformly random
value from Zmp , we choose yx ← Zmq and output byxep.

Hybrid H2: This is the same as H1, except that we abort the experiment
if Borderline happens.



Hybrid H3: This is the same as H2, except that we initially choose a
PRF key k ← PRF.KG(1λ) and change how unauthorized queries x
(i.e., where C(x) = 1) are handled, answering all queries according
to a slightly modified CEval. Specifically, for any query x we answer
byxep where

yx = SHSF.SEval(pp, sk, x)− C(x) · PRF.Eval(k, x). (50)

Hybrid H4: This is the same as H3, except that (pp, sk) are gener-
ated as in the real experiment. More formally we instantiate pp ←
SHSF.Setup(1λ, 1σ

′
), msk ← SHSF.KeyGen(pp) and compute sk ←

SHSF.Shift(pp,msk,HC,k).
Hybrid H5: This is the same as H4, except that we answer all evaluation

queries as in the Eval algorithm, i.e., we output byxep where

yx = SHSF.Eval(pp,msk, x). (51)

Hybrid H6: This is the same as H5, except that we no longer abort when
Borderline happens. Observe that this is exactly the real experiment
RealA.

We now prove that adjacent pairs of hybrid experiments are indistinguish-
able.

Claim 5. Experiments H0 and H1 are identical.

Proof. This follows directly from the fact that p divides q.

Claim 6. Assuming that 1D-R-SIS(zσ′+τ+1)m,p,q,B is hard, we have H1
c
≈

H2. In particular, in H1 the event Borderline happens with negligible
probability.

Proof. Let A be an adversary attempting to distinguish H1 and H2.
We want to show that in H1 event Borderline happens with negligible
probability. Let x be a query made by A. If C(x) = 1 then yx is uniformly
random in Zmq , so for any i ∈ [m] we have

Pr[(yx)i ∈ q
p(Z + 1

2) + [−B,B]] ≤ 2 ·B · p/q = negl(λ). (52)

If C(x) = 0, the claim follows immediately by the border-avoiding property
of SHSF (Lemma 2).

Claim 7. If PRF is a pseudorandom function then H2
c
≈ H3.



Proof. We use any adversary A that attempts to distinguish H2 from
H3 to build an adversary A′ having the same advantage against the
pseudorandomness of PRF. Here A′ is given access to an oracle O which is
either PRF.Eval(k, ·) for k ← PRF.KG(1λ), or a uniformly random function
f : {0, 1}` → Zmq . We define A′ to proceed as in H2 to simulate the view
of A, except that on each query x it sets

yx = SHSF.SEval(pp, sk, x)− C(x) · O(x) (53)

and answers byxep. Finally, A′ outputs whatever A outputs. Clearly, if
O is PRF.Eval(k, ·) then the view of A is identical to H3, whereas if the
oracle is f(·) then the view of A is identical to its view in H2. This proves
the claim.

Claim 8. Assuming the hardness of LWEn−1,q,χ and CPA-security of GSW,

H3
c
≈ H4.

Proof. This follows immediately from the shift hiding property of SHSF,
i.e., Lemma 1.

Claim 9. H4 and H5 are identical.

Proof. This follows by Corollary 1 and noticing that both experiments
abort if Borderline happens.

Claim 10. Under the hypotheses of Theorem 1, we have H5
c
≈ H6.

Proof. This follows by combining all the previous claims and recalling
that we have proved that Borderline happens with negligible probability
in H1.

This completes the proof of Theorem 1.

5 Privately Programmable PRF

In this section we formally define privately programmable PRFs (PP-
PRFs) and give a construction based on our shiftable PRF from Section 3.

5.1 Definitions

We start by giving a variety of definitions related to “programmable
functions” and privately programmable PRFs. In particular, we give a
simulation-based definition that is adapted from [8].



Definition 6. A programmable function is a tuple (Setup,KeyGen,Eval,Program,PEval)
of efficient algorithms having the following interfaces (where the domain
X and range Y may depend on the security parameter):

– Setup(1λ, 1k), given the security parameter λ and a number k of pro-
grammable inputs, outputs public parameters pp.

– KeyGen(pp), given the public parameters pp, outputs a master secret
key msk.

– Eval(pp,msk, x), given the master secret key and an input x ∈ X ,
outputs some y ∈ Y.

– Program(pp,msk,P = {(xi, yi)}), given the master secret key msk and
k pairs (xi, yi) ∈ X ×Y for distinct xi, outputs a programmed key skP .

– PEval(pp, skP , x), given a programmed key skP and an input x ∈ X ,
outputs some y ∈ Y.

We now give several definitions that capture various functionality
and security properties for programmable functions. We start with the
following correctness property for programmed inputs.

Definition 7. A programmable function is statistically programmable
if for all λ, k = poly(λ) ∈ N, all sets of k pairs P = {(xi, yi)} ⊆ X × Y
(with distinct xi), and all i ∈ [k] we have

Pr
pp←Setup(1λ,1k)
msk←KeyGen(pp)

skP←Program(pp,msk,P)

[PEval(pp, skP , xi) 6= yi] = negl(λ). (54)

We now define a notion of weak simulation security, in which the
adversary names the inputs at which the function is programmed, but the
outputs are chosen at random (and not revealed to the adversary). As
before, we always assume without loss of generality that the adversary
never queries the same input x more than once in the various experiments
we define.

Definition 8. A programmable function is weakly simulation secure if
there is a PPT simulator S such that for any PPT adversary A and any
polynomial k = k(λ),

{RealWeakPPRFA(1λ, 1k)}λ∈N
c
≈ {IdealWeakPPRFA,S(1λ, 1k)}λ∈N, (55)

where RealWeakPPRF and IdealWeakPPRF are the respective views of A
in the procedures defined in Figure 3.



procedure RealWeakPPRFA(1λ, 1k)
{xi}i∈[k] ← A(1λ, 1k)
{yi}i∈[k] ← Y
pp← Setup(1λ, 1k)
msk ← KeyGen(pp)
sk ←

Program(pp,msk, {(xi, yi)})
(pp, sk)→ A
repeat

x← A
Eval(pp,msk, x)→ A

until A halts

(a) The real experiment

procedure
IdealWeakPPRFA,S(1λ, 1k)
{xi}i∈[k] ← A(1λ, 1k)

(pp, sk)← S(1λ, 1k)
(pp, sk)→ A
repeat

x← A
if x /∈ {xi} then

PEval(pp, sk, x)→ A
else

y ← Y; y → A
until A halts

(b) The ideal experiment

Fig. 3: The (weak) real and ideal experiments.

Similarly to Definition 4, the above definition simultaneously captures
privacy of the programmed inputs given the programmed key, pseudoran-
domness on those inputs, and correctness of PEval on non-programmed
inputs.

Definition 9. A programmable function is a weak privately programmable
PRF if it is statistically programmable (Definition 7) and weakly simulation
secure (Definition 8).

We now define a notion of (non-weak) simulation security for pro-
grammable functions. This differs from the weak notion in that the adver-
sary specifies the programmed inputs and corresponding outputs, and the
simulator in the ideal game is also given these input-output pairs. The
simulator needs this information because otherwise the adversary could
trivially distinguish the real and ideal experiments by checking whether
PEval(pp, skP , xi) = yi for one of the programmed input-output pairs
(xi, yi). Simulation security itself therefore does not guarantee any privacy
of the programmed inputs; below we give a separate simulation-based
definition which does.

Definition 10. A programmable function is simulation secure if there is
a PPT simulator S such that for any PPT adversary A and any polynomial
k = k(λ),

{RealPPRFA(1λ, 1k)}λ∈N
c
≈ {IdealPPRFA,S(1λ, 1k)}λ∈N, (56)

where Real and Ideal are the respective views of A in the procedures defined
in Figure 4.



procedure RealPPRFA(1λ, 1k)
P = {(xi, yi)} ← A(1λ, 1k)
pp← Setup(1λ, 1k)
msk ← KeyGen(pp)
skP ← Program(pp,msk,P)
(pp, skP)→ A
repeat

x← A
Eval(pp,msk, x)→ A

until A halts

(a) The real experiment

procedure IdealPPRFA,S(1λ, 1k)
P = {(xi, yi)} ← A(1λ, 1k)
(pp, skP)← S(1λ,P)
(pp, skP)→ A
repeat

x← A
if x /∈ {xi} then

PEval(pp, skP , x)→ A
else

y ← Y; y → A
until A halt

(b) The ideal experiment

Fig. 4: The real and ideal experiments

We mention that a straightforward hybrid argument similar to one
from [6] shows that simulation security implies that (KeyGen,Eval) is a
pseudorandom function.

Finally, we define a notion of privacy for the programmed inputs. This
says that a key programmed on adversarially chosen inputs and random
corresponding outputs (that are not revealed to the adversary) does not
reveal anything about the programmed inputs.

procedure
RealPPRFPrivacyA(1λ, 1k)
{xi}i∈[k] ← A(1λ, 1k)
{yi}i∈[k] ← Y
pp← Setup(1λ, 1k)
msk ← KeyGen(pp)
sk ←

Program(pp,msk, {(xi, yi)})
(pp, sk)→ A

(a) The real experiment

procedure
IdealPPRFPrivacyA,S(1λ, 1k)
{xi}i∈[k] ← A(1λ, 1k)

(pp, sk)← S(1λ, 1k)
(pp, sk)→ A

(b) The ideal experiment

Fig. 5: The real and ideal privacy experiments

Definition 11. A programmable function is privately programmable if
there is a PPT simulator S such that for any PPT adversary A and any
polynomial k = k(λ),

{RealPPRFPrivacyA(1λ, 1k)}λ∈N
c
≈ {IdealPPRFPrivacyA(1λ, 1k)}λ∈N,

(57)



where RealPPRFPrivacy and IdealPPRFPrivacy are the respective views of
A in the procedures defined in Figure 5.

We now give our main security definition for PP-PRFs.

Definition 12. A programmable function is a privately programmable
PRF if it is statistically programmable, simulation secure, and privately
programmable.

5.2 From Weak PP-PRFs to PP-PRFs

In this section we describe a general construction of a privately pro-
grammable PRF from any weak privately programmable PRF. Let Π ′ =
(Setup,KeyGen,Eval,Program,PEval) be a programmable function with
domain X and range Y , where we assume that Y is a finite additive group.
The basic idea behind the construction is simple: define the function as
the sum of two parallel copies of Π ′, and program it by programming
the copies according to additive secret-sharings of the desired outputs.
Each component is therefore programmed to uniformly random outputs,
as required by weak simulation security.

Construction 3. We construct a programmable function Π as follows:

– Π.Setup(1λ, 1k): generate ppi ← Π ′.Setup(1λ, 1k) for i = 1, 2 and
output pp = (pp1, pp2).

– Π.KeyGen(pp): on input pp = (pp1, pp2) generatemski ← Π ′.KeyGen(ppi)
for i = 1, 2, and output msk = (msk1,msk2).

– Π.Eval(pp,msk, x): on input pp = (pp1, pp2), msk = (msk1,msk2),
and x ∈ X output

Π ′.Eval(pp1,msk1, x) +Π ′.Eval(pp2,msk2, x).

– Π.Program(pp,msk,P): on input pp = (pp1, pp2),msk = (msk1,msk2),
k pairs (xi, yi) ⊂ X × Y, first sample uniformly random ri ← Y for
i ∈ [k], then output skP = (sk1, sk2) where

sk1 ← Π ′.Program(pp1,msk1,P1 = {(xi, ri)}) (58)

sk2 ← Π ′.Program(pp2,msk2,P2 = {(xi, yi − ri)}). (59)

– Π.PEval(pp, skP , x): on input pp = (pp1, pp2), skP = (sk1, sk2), and
x ∈ X output

Π ′.PEval(pp1, sk1, x) +Π ′.PEval(pp2, sk2, x).



Theorem 2. If Π ′ is a weak privately programmable PRF then Construc-
tion 3 is a privately programmable PRF.

Proof. This follows directly from Theorem 3 and Theorem 4, which re-
spectively prove the simulation security and private programmability of
Construction 3, and from the statistical programmability of Π ′, which
obviously implies the statistical programmability of Construction 3.

Theorem 3. If Π ′ is a weak privately programmable PRF then Π is
simulation secure.

Due to space constraints, the (straightforward) proof of Theorem 3 is
deferred to the full version.

Theorem 4. If Π ′ is weakly simulation secure then Π is privately pro-
grammable.

Proof. Let S ′ be the simulator algorithm for the weak simulation security
of Π ′. Our simulator S(1λ, 1k) for the private programmability of Π
simply generates (ppi, ski) ← S ′(1λ, 1k) for i = 1, 2 and outputs (pp =
(pp1, pp2), sk = (sk1, sk2)). To show that S satisfies Definition 12 we define
the following hybrids and show that they are indistinguishable.

Hybrid H0: This is the experiment RealPPRFPrivacyA from Figure 5.

Hybrid H1: This experiment is the same as the previous one, except
that we generate (pp1, sk1)← S ′(1λ, 1k).

Hybrid H2: This experiment is the same as the previous one, except
that we generate (pp2, sk2)← S ′(1λ, 1k). Observe that this experiment
is identical to the experiment IdealPPRFPrivacyA,S from Figure 5.

Claim 11. We have H0
c
≈ H1.

Proof. Let A be an adversary attempting to distinguish H0 and H1. We
build an adversary A′ against the weak simulation security of Π ′, which
runs A internally. When A outputs {xi}, A′ also outputs {xi}, receiving
(pp1, sk1) in response. Then A′ generates pp2 ← Π ′.Setup(1λ, 1k) and
msk2 ← Π ′.KeyGen(pp2), and chooses uniformly random ri ← Y for
i ∈ [k]. It then generates sk2 ← Π ′.Program(pp2,msk2, {(xi, ri)}). Finally
it gives (pp = (pp1, pp2), sk = (sk1, sk2)) to A. It is straightforward to see
that if A′ is in RealWeakPPRF (respectively, IdealWeakPPRF) then the
view of A is identical to its view H0 (resp., H1). So by weak simulation

security of Π ′, we have H0
c
≈ H1.



Claim 12. We have H1
c
≈ H2.

Proof. This is entirely symmetrical to the proof of Claim 11, so we omit
it.

This completes the proof of Theorem 4.

5.3 Construction of Weak Privately Programmable PRFs

In this section we construct a weak privately programmable PRF from
our shiftable function of Section 3. We first define the auxiliary function
that the construction will use. For {(xi,yi)}i∈[k] ⊂ {0, 1}

`×Zmq where the

xi are distinct, define the function H{(xi,wi)}i∈[k] : {0, 1}
` → Zmq as

H{(xi,wi)}i∈[k](x)

{
wi if x = xi for some i,

0 otherwise.
(60)

Notice that the circuit size of H{(xi,wi)}i∈[k] is upper bounded by some

σ′ = poly(n, k, log q).

Construction 4. Our weak privately programmable PRF with input
space X = {0, 1}` and output space Y = Zmp uses the SHSF from Section 3
with parameters q,B chosen as in Section 3.4, and is defined as follows:

– Setup(1λ, 1k): Output pp← SHSF.Setup(1λ, 1σ
′
).

– KeyGen(pp): Output msk ← SHSF.KeyGen(pp).
– Eval(pp,msk, x ∈ {0, 1}`): Compute yx = SHSF.Eval(pp,msk, x) and

output byxep.
– Program(pp,msk,P): Given k pairs (xi,yi) ∈ {0, 1}`×Zmp where the xi

are distinct, for each i ∈ [k] compute wi as follows: choose y′i ← Zmq
uniformly at random conditioned on by′iep = yi, and set

wi = y′i − SHSF.Eval(pp,msk, xi). (61)

Output skP ← SHSF.Shift(pp,msk,H{(xi,wi)}).
– PEval(pp, skP , x): output bSHSF.SEval(pp, skP , x)ep.

5.4 Security Proof

Theorem 5. Construction 4 is a weak privately programmable PRF (Defi-
nition 9) assuming the hardness of LWEn−1,q,χ and 1D-R-SIS(zσ′+τ+1)m,p,q,B

(where z, τ are respectively the lengths of fresh GSW ciphertexts and secret
keys as used in SHSF) and the CPA security of the GSW encryption
scheme.



Proof. The proof follows immediately by Theorem 6 and Theorem 7 below.

Theorem 6. Assuming the hardness of LWEn−1,q,χ and 1D-R-SIS(zσ′+τ+1)m,p,q,B

and the CPA security of the GSW encryption scheme, Construction 4 is
weakly simulation secure.

Proof. Our simulator S(1λ, 1k) for Construction 4 simply outputs (pp, sk)←
SHSF.S(1λ, 1σ

′
). Let A be any polynomial-time adversary. To show that

S satisfies Definition 10 we define a sequence of hybrid experiments and
show that they are indistinguishable.

Hybrid H0: This is the simulated experiment IdealWeakPPRFA,S (Fig-
ure 3).

Hybrid H1: This is the same as the previous experiment, except that on
query x ∈ {xi}, instead of returning a uniformly random value from
Zmp , we choose yx ← Zmq and output byxep.

Hybrid H2: This is the same as the previous experiment, except that
we abort if the event Borderline happens, where Borderline is as in
Definition 5.

Hybrid H3: This is the same as the previous experiment, except that
we initially choose uniformly random w′i ← Zmq for i ∈ [k] and
change how queries for x ∈ {xi} are answered (the “else” clause
in IdealWeakPPRFA,S): for x = xj , we answer as byxep, where

yx = SHSF.SEval(pp, sk, x)−w′j . (62)

Hybrid H4: This is the same as the previous experiment, except that
we generate pp and sk as follows: we generate pp ← Setup(1λ, 1k),
msk ← KeyGen(pp) and sk ← SHSF.Shift(pp,msk,H{(xi,w′i)}).

Hybrid H5: This is the same as the previous experiment, except that we
answer all queries as in the Eval algorithm, i.e., we output

bSHSF.Eval(pp,msk, x)ep. (63)

Hybrid H6: This is the same as the previous experiment, except that
here we generate sk as in the real game. Specifically, for each i ∈ [k]
we choose a uniformly random vector yi ← Zmp and uniformly random
y′i ← Zmq conditioned on by′iep = yi, and then set

wi = y′i − SHSF.Eval(pp,msk, x). (64)

We then set sk ← SHSF.Shift(pp,msk,H{(xi,wi)}).



Hybrid H7: This is the same as the previous experiment, except that we
no longer abort when Borderline happens. Observe that this is the real
experiment IdealRealPPRFA (Figure 3).

The proofs of indistinguishability (either computational or statistical)
for adjacent hybrids are straightforward, and are deferred to the full
version for lack of space.

Theorem 7. Construction 4 is statistically programmable.

Proof. Fix any P = {(xi,yi)}i∈[k] ⊂ X ×Y . We need to show that for any
i ∈ [k],

Pr
pp←Setup(1λ,1k)
msk←KeyGen(pp)

skP←Program(pp,msk,P)

[⌊
SHSF.SEval(pp, skP , xi)

⌉
p
6= yi

]
= negl(λ). (65)

By Lemma 3 we have

SHSF.SEval(pp, skP , xi) ≈ SHSF.Eval(pp,msk, xi) +H{(xi,wi)}(xi)

= SHSF.Eval(pp,msk, xi) + wi

= y′i,

where the approximation hides some B-bounded error and the last equality
holds because wi = y′i − SHSF.Eval(pp,msk, xi). Because y′i is chosen
uniformly at random such that by′iep = yi, the probability that some

coordinate of SHSF.SEval(pp, skP , xi) is in q
p(Z + 1

2) + [−B,B] is at most
2mBp/q = negl(λ), which establishes Equation (65).

References

1. Miklós Ajtai. Generating hard instances of lattice problems. Quaderni di Matem-
atica, 13:1–32, 2004. Preliminary version in STOC 1996.

2. Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic pseu-
dorandom functions. In CRYPTO, pages 353–370, 2014.

3. Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In EUROCRYPT, pages 719–737, 2012.

4. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J.
ACM, 59(2):6:1–6:48, 2012. Preliminary version in CRYPTO 2001.

5. Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
EUROCRYPT, pages 533–556, 2014.



6. Dan Boneh, Sam Kim, and Hart William Montgomery. Private puncturable PRFs
from standard lattice assumptions. In EUROCRYPT, pages 415–445, 2017.

7. Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan.
Key homomorphic PRFs and their applications. In CRYPTO, pages 410–428, 2013.

8. Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions
privately. In PKC, pages 494–524, 2017.

9. Dan Boneh and Brent Waters. Constrained pseudorandom functions and their
applications. In ASIACRYPT, pages 280–300, 2013.

10. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In EUROCRYPT,
pages 337–367, 2015.

11. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudo-
random functions. In PKC, pages 501–519, 2014.

12. Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In STOC, pages 575–584, 2013.

13. Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private
constrained PRFs (and more) from LWE. In TCC, pages ??–??, 2017.

14. Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs
from standard lattice assumptions - or: How to secretly embed a circuit in your
PRF. In TCC, pages 1–30, 2015.

15. Ran Canetti and Yilei Chen. Constraint-hiding constrained PRFs for nc1 from
LWE. In EUROCRYPT, pages 446–476, 2017.

16. Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel
Wichs. Watermarking cryptographic capabilities. In STOC, pages 1115–1127, 2016.

17. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In FOCS, pages 40–49, 2013.

18. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In CRYPTO, pages 75–92, 2013.

19. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986. Preliminary version in FOCS 1984.

20. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from LWE. In CRYPTO, pages 503–523, 2015.

21. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homo-
morphic signatures from standard lattices. In STOC, pages 469–477, 2015.

22. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In CCS, pages
669–684, 2013.

23. Sam Kim and David J. Wu. Watermarking cryptographic functionalities from
standard lattice assumptions. In CRYPTO, pages 503–536, 2017.

24. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In EUROCRYPT, pages 700–718, 2012.

25. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based
on Gaussian measures. SIAM J. Comput., 37(1):267–302, 2007. Preliminary version
in FOCS 2004.

26. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem.
In STOC, pages 333–342, 2009.

27. Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of
Ring-LWE for any ring and modulus. In STOC, pages 461–473, 2017.

28. Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM, 56(6):1–40, 2009. Preliminary version in STOC 2005.


