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Abstract. We present a new approach to extending oblivious transfer
with communication complexity that is logarithmic in the security pa-
rameter. Our method only makes black-box use of the underlying crypto-
graphic primitives, and can achieve security against an active adversary
with almost no overhead on top of passive security. This results in the
first oblivious transfer protocol with sublinear communication and active
security, which does not require any non-black-box use of cryptographic
primitives.
Our main technique is a novel twist on the classic OT extension of Ishai et
al. (Crypto 2003), using an additively key-homomorphic PRF to reduce
interaction. We first use this to construct a protocol for a large batch of
1-out-of-n OTs on random inputs, with amortized o(1) communication.
Converting these to 1-out-of-2 OTs on chosen strings requires logarithmic
communication. The key-homomorphic PRF used in the protocol can be
instantiated under the learning with errors assumption with exponential
modulus-to-noise ratio.

1 Introduction

In an oblivious transfer protocol, a receiver wishes to learn a subset of some
messages held by a sender, whilst hiding exactly which messages are received.
A common type of oblivious transfer is 1-out-of-2 OT, where the sender holds
messages x0, x1, while the receiver holds a bit b and wishes to learn xb. The pro-
tocol should guarantee that the receiver learns no information on x1−b, whilst
the sender learns nothing about b. 1-out-of-2 OT is a key tool in building secure
two-party and multi-party computation protocols, and most efficient protocols
need to use a very large number of oblivious transfers that scales with the input
size [Yao86], or the size of the circuit description of the function being com-
puted [GMW87].

All known protocols for oblivious transfer are much more expensive than
standard symmetric-key primitives, as they rely on public-key cryptography.
This property seems to be inherent, since it is known that constructing OT from
symmetric cryptographic primitives in a black-box manner is impossible [IR89].
An essential technique for reducing the cost of oblivious transfer is OT exten-
sion, which reduces the cost of carrying out many OTs with amortization. OT
extension protocols proceed in two stages: in a setup phase, a small number of



‘seed’ OTs are created using standard public-key techniques; secondly, these are
extended to create many more, independent OTs, with a lower cost than the
seed OT protocols. Typically the second phase is based only on cheap, symmet-
ric cryptography, so using OT extension allows many OTs to be created with
only O(k) public-key operations for security parameter k, greatly reducing the
computational costs.

OT Extension: A Brief History. Classically, OT extension refers to evaluat-
ing OT using mainly symmetric key cryptography. In this paper we broaden the
term to cover any protocol that generates m = poly(k) OTs in a way which is
more efficient than executing m instances of an OT protocol. Reducing commu-
nication for the case of (1-out-of-2) bit-OT, where the sender’s messages are bits,
is of particular importance. This is exactly what is needed in the GMW proto-
col for secure multi-party computation [GMW87,Gol04], and a bit-OT protocol
with O(1) communication complexity implies secure computation with constant
overhead using GMW, and even with active security [IPS08].

Beaver [Bea96] first showed how to convert O(k) seed OTs into any poly-
nomial number of OTs, using only one-way functions, for security parameter k.
In this technique, the parties use a secure two-party computation protocol to
evaluate the circuit that takes as input a random seed from each party, then
applies a PRG and computes the OT functionality on the expanded, random
inputs. With Yao’s protocol [Yao86] this only needs O(k) OTs, since the inputs
are of size O(k).

The ‘IKNP’ protocol, by Ishai, Kilian, Nissim and Petrank [IKNP03], lies at
the core of all recent, practical OT extension protocols. IKNP was the first pro-
tocol to efficiently extend OT in a black-box manner, using only a hash function
which satisfies a correlation robustness assumption (or a random oracle). The
communication complexity of this protocol is O(k + `) bits per extended OT
with passive security, where ` is the bit length of the sender’s strings. Harnik et
al. [HIKN08] later showed how to obtain active security with the same asymp-
totic efficiency. The TinyOT protocol [NNOB12] introduced the first practical,
actively secure OT extension, and more recently the overhead of active security
has been reduced to almost nothing for both the 1-out-of-2 [ALSZ15,KOS15]
and 1-out-of-n cases [OOS17,PSS17].

These protocols are essentially optimal for transferring messages of length
` = Ω(k), but when ` is short (as in bit-OT where ` = 1) there is still an
overhead in O(k). Kolesnikov and Kumaresan [KK13] presented a variant of the
IKNP protocol based on 1-out-of-n OT, which can be used to perform 1-out-
of-2 bit-OT with O(k/ log k) communication. It is not known how to make this
bit-OT protocol actively secure, because it relies on a passively secure reduction
from 1-out-of-n to 1-out-of-2 OT [NP99].

Unfortunately, all known methods for achieving constant-communication bit-
OT use very complex techniques, and often require non-black-box use of crypto-
graphic primitives. Ishai et al. [IKOS08] combined Beaver’s non-black-box tech-
nique [Bea96] for OT extension with a polynomial-stretch PRG in NC0 and ran-
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domized encodings, to obtain a passively secure protocol with amortized O(1)
computational overhead (implying O(1) communication). As well as needing a
strong assumption on the PRG, a major drawback is the use of non-black-box
techniques, which lead to a very high constant. The same authors later gave an
alternative, black-box approach with constant communication [IKOS09]. How-
ever, this still requires heavy machinery such as algebraic geometry codes, ran-
domized encodings and low-communication PIR. Additionally, achieving active
security would require generic use of zero-knowledge proofs [GMW86,IKOS07],
again with non-black-box use of the underlying primitives. Recently, Boyle et
al. [BGI17] showed how to obtain an amortized communication cost of just 4
bits per bit-OT using homomorphic secret-sharing, which can be realised from
either DDH [BGI16] or LWE [DHRW16]. As with the previous works, however,
this construction makes non-black-box use of PRGs and would be extremely
inefficient in practice.

Finally, we remark that using indistinguishability obfuscation and fully ho-
momorphic encryption, it is possible to produce poly(k) OTs on random inputs
with a communication complexity that is independent of the number of OTs,
with a general method for reusable correlated randomness in secure computa-
tion [HW15,HIJ+16].

1.1 Contributions of This Work

We present a new approach to extending oblivious transfer with low communi-
cation. Our protocol, in the random oracle model, makes black-box use of the
underlying cryptographic primitives and can achieve security against an active
adversary with almost no overhead on top of passive security. This results in the
first bit-OT protocol with sublinear communication and active security, making
only black-box use of cryptographic primitives. Table 1 compares the character-
istics of our protocol with some of the other OT extension protocols discussed
earlier.

Our main technique is a novel twist on the classic IKNP OT extension, using
an additively key-homomorphic PRF to reduce interaction. The main challenge
here is to handle the homomorphism error present in known key-homomorphic
PRF constructions, without compromising on correctness or security. We first
present a protocol for a large batch of 1-out-of-pi OTs on random inputs, for
multiple, distinct primes pi. The communication complexity of this protocol is
sublinear in the total number of random OTs, with an amortized cost of o(1)
bits per OT. It was not known previously how to achieve this without using
obfuscation,1 and this primitive may be useful in wider applications. If we want
to obtain 1-out-of-2 OT on chosen strings, each 1-out-of-pi random OT can
be converted to a 1-out-of-2 OT with O(log pi) bits of communication using
standard techniques, giving logarithmic communication overhead.

1 Even with obfuscation, secure computation with complexity sublinear in the output
size and active security is known to be impossible [HW15]. The obfuscation-based
protocol of [HIJ+16] circumvents this using a CRS, whilst we use the random oracle
model.
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Protocol Communication
per OT (bits)

Security Based on Black-box

[Bea96] poly(k) passive OWF 7

[IKNP03] O(k) passive CRH/RO 3

[KK13] O(k/ log k) passive CRH/RO 3

[ALSZ15,KOS15] O(k) active CRH/RO 3

[IKOS08] O(1) passive poly-stretch
local PRG

7

[IKOS09] O(1) passive Φ-hiding 3

[BGI17] 4 + o(1) passive DDH 7

[HIJ+16]
(
(
n
1

)
-ROT)

o(1) active iO + FHE 7

This work
(
(
pi
1

)
-ROTa)

o(1) active LWE + RO 3

This work
(
(

2
1

)
-OT)

O(log k) active LWE + RO 3

Table 1. Various protocols for extending 1-out-of-2 bit-OT (unless otherwise specified)
with different assumptions. All passively secure protocols can be transformed to be
actively secure using non-black-box zero-knowledge techniques. CRH is a correlation-
robust hash function, RO is a random oracle;

(
n
1

)
-ROT is 1-out-of-n OT on random

inputs.

a pi are small distinct primes

The additively key-homomorphic PRF needed in our protocol can be instanti-
ated based on the learning with errors assumption with an exponential modulus-
to-noise ratio. This assumption has previously been used to construct attribute-
based encryption [GVW13] and fully key-homomorphic encryption [BGG+14],
and is believed to be hard if the LWE dimension is chosen large enough to thwart
known attacks. The downside of our approach is that this spectrum of LWE pa-
rameters results in fairly heavy computational costs for the parties, so it seems
that the main uses of our protocol would be in low bandwidth environments
where communication is much more expensive than computation.

As a contribution of independent interest, to implement the base OTs in our
protocol we generalise the consistency check used for OT extension by Asharov et
al. [ALSZ15], and adapt it for producing correlated OTs over any abelian group
G, instead of just XOR correlations over bit strings. These are 1-out-of-2 OTs
where the sender’s messages are all guaranteed to be of the form (xi, xi + ∆),
for some fixed correlation ∆ ∈ G. We also identify a crucial security flaw in the
original protocol of Asharov et al. [ALSZ15,ALSZ17a], which leaks information
on the receiver’s inputs to a passively corrupted sender. After reporting this to
the authors, their protocol has been modified to fix this [ALSZ17b], and we use
the same fix for our protocol.
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1.2 Overview of Techniques

IKNP OT Extension. We first recall the IKNP OT extension protocol [IKNP03]
(with optimizations from [ALSZ13,KK13]), which uses k instances of oblivious
transfer to construct m = poly(k) oblivious transfers with only a cryptographic
hash function and a pseudorandom generator. The parties begin by performing
k 1-out-of-2 OTs on random k-bit strings with their roles reversed. The receiver
acts as sender in the base OTs, with input pairs of strings (k0i , k

1
i ). The sender,

acting as receiver, inputs a random choice bit si to the i-th OT and learns ksii ,
for i = 1, . . . , k. The receiver then sends over the values

ui = G(k0i )⊕G(k1i )⊕ x

where G : {0, 1}k → {0, 1}m is a pseudorandom generator (PRG) and x =
(x1, . . . , xm) are the receiver’s m choice bits. After this step, the parties can
obtain k correlated OTs on pairs of m-bit strings of the form (ti, ti ⊕ x), where
ti = G(k0i ): the receiver knows both ti and ti ⊕ x, while the sender can define

qi = G(ksii )⊕ si · ui
= ti ⊕ si · x

=

{
ti if si = 0

ti ⊕ x if si = 1

This is a 1-out-of-2 OT on m-bit strings because the other message, ti ⊕ si · x,
is computationally hidden to the sender due to the use of a PRG.

Both parties then place these values into matrices Q,T ∈ {0, 1}k×m contain-
ing qi and ti (respectively) as rows, where the sender holds Q and the receiver
holds T . If qj , tj ∈ {0, 1}k are the columns of Q and T , and s = (s1, . . . , sk),
then notice that we have

tj = qj ⊕ (xj · s)

So, by transposing the matrix of OTs we obtain m sets of correlated OTs on k-bit
strings, with xj as the receiver’s choice bits. Finally, the two parties can convert
these correlated OTs into OTs on random strings using a hash function H that
satisfies a notion of correlation robustness (or, modeled as a random oracle):
the sender computes the two strings H(qj) and H(qj ⊕ s), whilst the receiver
can only compute one of these with H(tj); the other string remains unknown
to the receiver since it does not know s. This means the parties have converted
k initial OTs into m = poly(k) OTs on random strings, and these random OTs
can be used to transfer the sender’s chosen messages by encrypting them with a
one-time pad.

Apart from the initial base OTs, the only interaction in this process is sending
the ui values at the beginning, which costs O(mk) bits of communication. This
gives an overhead of O(k) when the sender’s inputs are bit strings of constant
size.
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Using a Key-Homomorphic PRF. We observe that if the PRG, G, in the
above protocol satisfies G(x⊕y) = G(x)⊕G(y), and the base OTs are correlated
so that k1i = k0i ⊕ r for some fixed string r, then the main step of interaction
in IKNP can be removed. The homomorphic property of the PRG preserves the
correlation, so the parties can obtain the OTs (ti, ti⊕x) (for random choice bits
x) without any message from the receiver: the sender simply defines qi = G(ksii )
while the receiver defines ti = G(k0i ) and x = G(r). We then have

qi = G(ksii ) = G(k0i ⊕ (si · r)) = G(k0i )⊕ (si ·G(r)) = ti ⊕ si · x,

as previously.
Unfortunately, such XOR-homomorphic PRGs are not known to exist. In-

stead, we do know how to build almost-seed-homomorphic PRGs (and almost-
key-homomorphic PRFs) G : Znq → Zp, which satisfy

G(x+ y) = G(x) +G(y) + e (mod p),

where q > p and |e| ≤ 1 is an error term, based on the learning with rounding
(LWR) or learning with errors (LWE) assumption [BLMR13,BP14]. We remark
that it is possible to build an error-free key-homomorphic PRF in the random
oracle model based on the decisional Diffie-Hellman assumption, with the simple
construction F (k, x) = H(x)k [BLMR13]. However, here the output homomor-
phism is multiplicative instead of additive, which is more difficult to exploit in
constructing OT extension.

Trying to apply these additively homomorphic PRGs (or PRFs) to the IKNP
protocol brings about two main challenges. Firstly, since the homomorphism
maps into Zp and not Fk2 , we obtain matrices Q and T containing Zp elements
instead of bits, which means there is no natural way of ‘transposing’ the OT ma-
trix whilst preserving the correlated OT property. Secondly, the homomorphism
error means that all of the OTs will be incorrect with high probability.

To handle the first problem, we choose p to be a primorial modulus which is
the product of ` primes, and then decompose the correlated OTs via the Chinese
Remainder Theorem.2 This gives us an alternative to transposing the bit-matrix
in IKNP; however, it means that instead of constructing 1-out-of-2 OT, we end
up with 1-out-of-pi random OTs, for each prime factor pi in the modulus. The
second problem of eliminating the error is more difficult. We observe that the
receiver can always compute a homomorphism error e, such that the resulting
error in the OT is given by e′ = e · si, where si is one of the sender’s choice
bits in the base OTs. It seems tempting to let the receiver just send over e so
that the sender can correct the error, but this may not be secure: each error
leaks information about the unknown PRG key, and a large number of errors
could leak information on the secret PRG outputs. To securely correct the error,
the receiver instead samples some uniform noise u, which is used to mask e.

2 Ball, Malkin and Rosulek used a primorial modulus for a different application of
constructing arithmetic garbled circuits [BMR16].
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To ensure that both parties still obtain the correct result, we must obliviously
transfer the masked error u+ si · e′ to the sender. Since si is a choice bit in the
original base OTs, this can be done by without any additional OTs, by extending
the base OTs once more with a (standard) PRG.

This last error-correction step introduces some interaction into the basic OT
extension protocol, which is otherwise non-interactive. Importantly, the amount
of data that needs sending only depends on the security parameter, and not the
modulus. Since each distinct prime factor in the modulus produces one additional
OT in the OT extension phase, choosing a sufficiently large modulus allows us to
obtain an amortized communication cost of o(1) bits per random OT. If we wish
to construct 1-out-of-2 OTs, each random 1-out-of pi OTs can be converted
to a single 1-out-of-2 OT with log pi = O(log k) bits of communication (see
Appendix A).

Active security. To obtain active security, the above protocol needs to be
modified in two ways. Firstly, we need to ensure that the correlation in the
base OTs is created correctly, and secondly, we need to ensure that a malicious
receiver does not cheat in the error-correction stage, which would cause incorrect
outputs.

We first consider the error-correction step. A common technique for dealing
with this is to compute random linear combinations of all the correlated OTs,
then open the result [KOS15] and check correctness. However, this only achieves
negligible cheating probability when the correlation is over a large field. In our
case we use a ring with many zero divisors, and this method cannot be applied
in general. Nevertheless, our situation is slightly different because the size of the
adversarial deviations can be bounded by some value B that is much smaller than
the modulus. This means that for some error d < B introduced by a cheating
receiver, and random challenge r ← Zp, the product dr mod p is statistically
close to uniform in Zp (for arbitrary p), which suffices to prove security when
taking random linear combinations.

For the base OTs, the receiver can cheat in an arbitrary way when creating
the correlations, which means the above check is not enough to prevent deviations
here. It might be tempting to work around this problem by choosing a prime
modulus q for the base OTs (before applying the PRG/PRF to convert mod
p). The problem here is that we then wouldn’t be able to transpose the base
OTs, which is necessary for checking consistency via random linear combinations.
Instead, we adopt a different approach used for OT extension in [ALSZ15], where
the receiver sends hashes of every pair of base OTs, which are then checked for
consistency by the sender. We show that this approach still works to prove that
the OTs are correlated over an arbitrary abelian group, instead of just XOR
correlations over bit strings. If the receiver cheats, they may guess a few bits
of the sender’s secret choice bits. This does not cause a problem for the OT
extension phase, and we model this possibility in our setup functionality.
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Instantiation based on DDH. It is possible to modify the above protocol to
use a key-homomorphic PRF in the random oracle model based on the decisional
Diffie-Hellman assumption, instead of using LWE or LWR. This has the advan-
tage of avoiding the problems with homomorphism error, since the DDH-based
PRF F (k, x) = H(x)k is noiseless. However, the drawback is that this protocol
produces random 1-out-of-p OTs, where p is the order of a group in which DDH
is hard. Since DDH is not hard if p has small factors, these cannot be decom-
posed into smaller random OTs using the CRT, so this does not lead to any
improvements to 1-out-of-2 OT extension. Nevertheless, random 1-out-of-p OT
for exponentially large p (sometimes referred to as batch related-key oblivious
PRF evaluation) can be used to construct private equality test and private set
intersection protocols [PSZ18,KKRT16,OOS17], so this variation could be useful
in these applications to reduce interaction at the cost of requiring exponentia-
tions instead of only symmetric-key operations. More details on this protocol are
given in the full version of this work.

2 Preliminaries

2.1 Universally Composable Security

We present ideal functionalities and security proofs in the universal composabil-
ity framework [Can01], and assume some familiarity with this.

Informally speaking, for a protocol Π which implements a functionality F
in the G-hybrid model, we let HYBRIDGΠ,A,Z denote the view of an environment
Z in an execution of the real protocol with the adversary A controlling the
corrupted parties, in a hybrid model where all parties have access to the ideal
functionality G. We let IDEALF,S,Z denote the view of Z in the ideal execution,
where the simulator S plays the role of the corrupted parties in Π and interacts
with the functionality F . When the context is clear, we sometimes abbreviate
the two executions by HYBRID and IDEAL.

We say that the protocol Π securely realises the functionality F in the G-
hybrid model, if for every adversary A there exists a simulator S, such that for
every environment Z,

HYBRIDGΠ,A,Z
c
≈ IDEALF,S,Z

where
c
≈ is the standard notion of computational indistinguishability.

As well as the standard, computational security parameter k, we often use a
statistical security parameter λ. This means that the advantage of any proba-
bilistic poly(k)-time environment in distinguishing the two executions is at most
negl(k) +O(2−λ).

2.2 Key-Homomorphic Pseudorandom Functions

We now recall the definitions of additively key-homomorphic pseudorandom
functions [BLMR13,BP14], and discuss the distribution of the homomorphism
error in LWE-based constructions. Let n, p and q > p be integers.

8



Definition 1 (Key-homomorphic PRF). A function F : Znq × {0, 1}` → Zp
is a key-homomorphic PRF if it is a PRF, and for all k1, k2 ∈ Zq and x ∈ {0, 1}`
it holds that:

F (k1 + k2, x) = F (k1, x) + F (k2, x) ∈ Zp

We do not know of any PRFs satisfying the above property, where the ho-
momorphism is additive over both the inputs and the outputs, so instead use
the following, weaker definition.

Definition 2 (Almost key-homomorphic PRF). A function F : Znq×{0, 1}` →
Zp is an almost key-homomorphic PRF if it is a PRF, and for all k1, k2 ∈ Zq
and x ∈ {0, 1}` it holds that:

F (k1 + k2, x) = F (k1, x) + F (k2, x) + e ∈ Zp

where |e| ≤ 1.

To realise this, we use the rounding function

bxep = bx · (p/q)e

which scales x ∈ Zq to lie in the interval [0, p) and then rounds to the nearest
integer. We now define the learning with rounding assumption [BPR12].

Definition 3 (Learning With Rounding). Let n ≥ 1 and q ≥ p ≥ 2 be
integers. For a vector s ∈ Znq , define the distribution LWRs to be the distribution
over Znq ,Zp obtained by sampling a← Znq uniformly at random, and outputting
(a, b = b〈a, s〉ep).

The decisional-LWRn,q,p problem is to distinguish any desired number of sam-
ples (ai, bi)← LWRs from the same number of samples taken from the uniform
distribution on (Znq ,Zp), where the secret s is uniform in Znq .

With this we can easily construct a key-homomorphic PRF in the random
oracle model, with the function F : Znq × {0, 1}` → Zp defined by

F (k, x) = b〈k,H(x)〉ep

where H : {0, 1}` → Znq is a random oracle. This is an almost-key-homomorphic
PRF under the LWRn,q,p assumption [BPR12].

There are also constructions in the standard model based on learning with
rounding or learning with errors [BLMR13,BP14]. All these constructions inherit
the same error term, which comes from first computing a function that is linear
in the key k, and then rounding the result.
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Can we Remove the Homomorphism Error? Applications such as dis-
tributed PRFs can work around the error term by suitably rounding the out-
put [BLMR13]. However, in some applications, particularly those in this work,
it would be very useful to have a noise-free PRF satisfying Definition 1. Two
previous works [BV15,BFP+15] claimed that their LWE-based constructions can
achieve a slightly weaker notion, where it is computationally hard for an adver-
sary to come up with a query x that violates key-homomorphism. Unfortunately,
these claims are not correct,3 and it seems difficult to modify these PRFs to sat-
isfy this.

To see why the error seems to be inherent in these PRFs, consider an ex-
periment where we sample random values r1, r2 ← Zq, and then test whether
br1 +r2ep = br1ep+br2ep. This gives us the same result as testing for homomor-
phism error in F , since H is a random oracle and the two keys are random.4 Let
x1 = br1ep, x2 = br2ep and define the relevant fractional components e1 = r1 ·p/q
(mod 1), e2 = r2 · p/q (mod 1), where the reduction modulo 1 is mapped to the
interval [−1/2, 1/2). If p divides q then it holds that e1, e2 are uniformly random
in the set [−1/2, 1/2) ∩ (p/q)Z.

If there is no homomorphism error then we have

be1 + e2e = be1e+ be2e

Clearly when e1 ≥ 0 there will be no error as long as e2 ≤ 0. Similarly, when
e2 ≥ 0 and e1 ≤ 0 there is no error. These two error-free possibilities cover
approximately half of the space of possible choices of (e1, e2) ∈ [−1/2, 1/2)2. For
the remaining cases, if we condition on e1 ≥ 0 and e2 > 0 then there will be
an error whenever e1 + e2 ≥ 1/2, which happens with probability around 1/2.
Symmetrically, in the remaining case of e2 ≥ 0 and e1 > 0 the error probability
is around 1/2, and combining these cases we get an overall error probability of
approximately 1/4. The exact error rate depends on whether p divides q and if
q/p is even or not, but is nevertheless always close to 1/4.

3 OT Extension Protocol

We now describe our main protocol for extending oblivious transfer.

3.1 Setup Functionality

We use the setup functionality F∆-ROT, shown in Fig. 1, to implement the base
OTs in our main protocol. This functionality creates k random, correlated OTs
over an abelian group G (in our protocol we instantiate this with G = Zq) where

3 We have confirmed this through personal communication with an author
of [BFP+15]. This does not affect the main results of that work or [BV15].

4 This method also applies to known standard model KH-PRFs based on LWE, as
these constructions all have the form F (k, x) = bLx(k)ep for some linear function
Lx : Znq → Zq.
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the sender inputs ∆ ∈ Gn and obtains messages of the form (bi, bi + ∆) for
randomly sampled bi ∈ Gn. The receiver inputs the choice bits si ∈ {0, 1} in a
setup phase, and during the correlated OT phase it learns ai, which is either bi
or bi + ∆, depending on si. This ∆-OT stage of the functionality also allows a
corrupt sender to attempt to guess (a subset of) the bits si, but if the guess fails
then the functionality aborts. This leakage is necessary so that we can efficiently
implement F∆-ROT, using the protocol we give in Section 4.

F∆-ROT also includes a Chosen OTs command, which further extends the
base OTs on chosen (but not necessarily correlated) inputs from the sender,
using the same choice bits from the receiver.

Functionality Fn,k,G∆-ROT

Parameters: n, the length; k, the number of OTs; G, a finite, additive abelian group.

Initialize: On receiving (sid, init, s1, . . . , sk) from PA, where si ∈ {0, 1}, and
(sid, init) from PB , store {si}i and ignore any subsequent (sid, init) messages.

∆-OTs: On input (sid, correlated,∆) from PB , where ∆ ∈ Gn, send
(sid, correlated) to PA and do the following.
1. Sample bi ← Gn, for i ∈ [k]. If PB is corrupted, instead receive bi from A.
2. Compute ai = bi + si ·∆
3. If PA is corrupted, receive ai ∈ Gn from A and recompute bi = ai − si ·∆.
4. If PB is corrupted, wait for A to input a message (guess, S), where S effi-

ciently describes a subset of {0, 1}k. If (s1, . . . , sk) ∈ S then send (success)
to A. Otherwise, send ⊥ to both parties and terminate.

5. Output ai to PA and bi to PB .
Chosen OTs: On input (sid, chosen, B, (u0

i , u
1
i )
k
i=1) from PB , and

(sid, chosen, B) from PA, where u0
i , u

1
i ∈ [0, B− 1], send (sid, chosen, (usii )ki=1)

to PA.

Fig. 1. Extended correlated random oblivious transfer functionality over a group G

3.2 Random OT Protocol

The functionality we implement is shown in Fig. 2. This produces a batch of
m · ` random OTs at once, consisting of m sets of random 1-out-of-pi OTs, for
each i = 1, . . . , `, where pi is the i-th prime and ` is a parameter of the protocol.
Let P` = 2 · 3 · 5 · · · p` be the product of the first ` primes.

The protocol, shown in Fig. 3, starts with a setup phase where the parties
perform k correlated OTs using F∆-ROT over Znq , where n is the key length of

the almost-key-homomorphic PRF F : Znq × {0, 1}k → ZP` . After this phase,
PR holds random values r, bi ∈ Znq , whilst PS holds random si ∈ {0, 1} and
ai = bi + si · r, for i = 1, . . . , k.
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Functionality Fm,`,kpi-ROT

After receiving a message (send) from PS and (receive) from PR, ignore all other
messages from both parties and do as follows:

1. Sample choices ci1, . . . , c
i
m ← Zpi , for i ∈ [`]. If PR is corrupted, instead receive

cij ∈ Zpi from A.

2. For each j ∈ [m], sample
∑
i pi sets of strings (yi,0j , . . . , yi,pi−1

j )`i=1, where each

yi,cj ← {0, 1}
k.

3. Output (yi,0j , . . . , yi,pi−1
j ) to PS and (cij , y

i,c
j
i

j ) to PR, for i ∈ [`] and j ∈ [m].

Fig. 2. Functionality for m sets of random {1-out-of-pi}`i=1 OTs on k-bit strings

In the OT extension phase, the parties expand the base OTs using F , such
that the key-homomorphic property of F preserves the correlation between a
and b, except for a small additive error. We have:

F (ai, j) = F (bi + si · r, j) = F (bi, j) + si · (F (r, j) + ei)

where |ei| ≤ 1 (note that ei depends on j, but we often omit the subscript-j to
simplify notation).

Since PR knows both bi and r, it can compute ei, and then use the base OTs
to obliviously transfer either ui + ei (if si = 1) or ui (if si = 1) to PS , where ui
is a uniformly random value in {0, . . . , B − 1}, and B is superpolynomial in the
security parameter so that ui statistically masks ei.

After step 2f, if ui + ei /∈ {−1, B} then we have:

qi = q′i − vi = t′i + si · (xj + ei)− ui − si · ei
= t′i − ui + si · xj
= ti + si · xj (mod P`)

For each j ∈ [m+ 1], these k sets of correlated OTs are then placed into vectors
qj and tj , which satisfy qj = tj+xj ·s. To convert these into random 1-out-of-pi
OTs, for i = 1, . . . , `, each tj is reduced modulo pi and then hashed with the
random oracle to produce the receiver’s output string. The c-th output of the
sender, for c ∈ {0, . . . , pi − 1}, in the (i, j)-th OT is defined as:

H(qj − c · s mod pi) = H(tj + (xj − c) · s mod pi)

which for c = xj is equal to the receiver’s output, as required. The sender’s other
outputs are computationally hidden to the receiver, since to compute them it
would have to query qj − x′ · s mod pi to the random oracle for some x′ 6= xj ,
but this requires guessing s.

The only opportunity for a malicious receiver to misbehave in the protocol is
when sending the (ui, ui+ ei) values to the base OT functionality, to correct the
errors. The consistency check phase prevents this, by opening a random linear
combination of the correlated OTs and checking that the linear relation still

12



Protocol Πm,`,k
pi-ROT

Let F : Znq × {0, 1}k → ZP` be an almost-key-homomorphic PRF.
Let H : {0, 1}∗ → {0, 1}k be a random oracle and G : {0, 1}k → ZmP` be a PRG.

1. Setup phase.
(a) PS samples s1, . . . , sk ← {0, 1}, and PR samples r ← Znq
(b) Both parties initialize Fn,k,Zq∆-ROT , where PS inputs (s1, . . . , sk). PR then calls

the functionality again with input (correlated, r).
(c) PR receives b1, . . . , bk and PS receives a1, . . . ,ak such that ai = bi+ si ·r.

2. Extension phase.a PS initializes a zero matrix Q ∈ Zk×(m+1)
P`

. PR initializes a

zero matrix T ∈ Zk×(m+1)
P`

, and a vector x ∈ Zm+1
P`

.

For each j ∈ [m+ 1]:
(a) PS computes q′i = F (ai, j) ∈ ZP` , for i ∈ [k]
(b) PR computes t′i = F (bi, j), xj = F (r, j) ∈ ZP`
(c) PR computes the errors

ei = F (bi + r, j)− t′i − xj ∈ {0, 1}, for i ∈ [k]

and samples ui ← [0, B − 1]

(d) PR calls Fn,k,Zq∆-ROT on input (chosen, B, (ui, ui + ei mod B))

(e) PS receives vi = ui + si · ei mod B from Fn,k,Zq∆-ROT

(f) PS defines qi = q′i − vi, and PR defines ti = t′i − ui
It should now hold that

qi = ti + si · xj mod P`

(g) PS stores qj = (q1, . . . , qk) in column j of the matrix Q.
(h) PR stores tj = (t1, . . . , tk) in column j of T, and xj in entry j of the vector

x.
3. Consistency check.

(a) PS samples a seed σ ← {0, 1}k and sends this to PR
(b) Both parties compute α = (G(σ)‖1).
(c) PR computes and sends

t̃ = Tα, x̃ = x>α

(d) PS checks that Qα = t̃+ x̃s
4. Output: PS samples a seed ρ← {0, 1}k and sends this to PR. The parties then

compute their outputs as follows:
– PS outputs, for j ∈ [m] and i ∈ [`]:

H(i, ρ, qij), H(i, ρ, qij−s), . . . , H(i, ρ, qij−(pi−1)·s), where qij = qj mod pi

– PR outputs, for j ∈ [m] and i ∈ [`]:

xij , H(i, ρ, tij), where xij = xj mod pi, tij = tj mod pi

a Steps 2–4 can be iterated by maintaining j as a counter.

Fig. 3. Random 1-out-of-pi OT extension protocol
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holds. We must then discard the (m+1)-th set of OTs so that the opened values
do not reveal anything about the receiver’s outputs. This check allows a corrupt
receiver to attempt to guess a few of the si bits by cheating in only a few OT
instances. However, this is exactly the same behaviour that is already allowed
by the F∆-ROT functionality for the base OTs. It does not pose a problem for
security because in the output phase s is put through a random oracle, and the
whole of s must be guessed to break security.

3.3 Security

Theorem 1. Let B = Θ(2λ), ` = Ω(kλ), F be an almost key-homomorphic

PRF and H be a random oracle. Then protocol Πm,`,k
pi-ROT securely realises the

functionality Fm,`,kpi-ROT with static security in the Fn,k,Zq∆-ROT-hybrid model.

We prove this by considering separately the cases of a corrupt sender and
a corrupt receiver. Security when both parties are honest, or both corrupt, is
straightforward.

Corrupt sender. This is the simpler of the two cases. We construct an ideal-
world simulator, SS , shown in Fig. 4. The simulator uses random values to
simulate the vi messages sent to PS during the OT extension phase, then samples
x̃ at random to respond to the consistency check, computing t̃ such that the check
will always pass. The random oracle queries are responded to using knowledge
of the sender’s bits s from the setup phase, so as to be consistent with the
random sender messages obtained from Fpi-ROT. All other queries are responded
honestly, at random. The security of the protocol against a corrupt sender rests
on two key points: (1) B = Θ(2λ), so that ui + ei statistically masks the errors
ei in the protocol, and (2) The security of the key-homomorphic PRF, which
implies the xj outputs of the honest receiver are pseudorandom, and also the
simulated x̃ is indistinguishable from the real value in the protocol.

Lemma 1. For every adversary A who corrupts PS, and for every environment
Z, it holds that

IDEALFpi-ROT,SS ,Z
c
≈ HYBRIDF∆-ROT

Πpi-ROT,A,Z

Proof. Recall that as well as seeing the view of A during the protocol execution,
the environment Z learns the outputs of both parties. We prove security by
defining a sequence of hybrid executions, where H0 is defined to be the ideal
process and each successive hybrid modifies the previous execution in some way.

Hybrid H1: Instead of sampling vi at random, SS sends vi = ui+ si · ei mod B,
where ui ← [0, B − 1] and ei is computed as in the protocol, using randomly
sampled r ∈ Znq and bi := ai − si · r.
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Simulator SS

1. Setup phase. SS receives s = (s1, . . . , sk) ∈ {0, 1}k and a1, . . . ,ak ∈ Znq from

the corrupt sender, as input to Fn,k,Zq∆-ROT .
2. Extension phase.

(a) For each j ∈ [m+1] and i ∈ [k], whenever SS receives a message (chosen, B)

from A (as input to Fn,k,Zq∆-ROT), sample a random value vi,j ∈ [0, B − 1] and
return this to A.

(b) Compute the matrix Q as PS should in the protocol, using knowledge of
ai and vi,j .

(c) Call the functionality Fpi-ROT to obtain the sender’s outputs yij =

(yij [1], . . . , yij [pi]), for i ∈ [`] and j ∈ [m].
3. Consistency check. After receiving the seed σ from A, compute α = (G(σ)‖1),

then send x̃← ZP` and t̃ = Qα− x̂s to A.
4. Output/Random Oracle Queries. Receive the seed ρ from A, and whenever a

query of the form (i, ρ, qij−c·s) is sent to the random oracle H, for c ∈ [0, pi−1],

respond with yij [c].

Fig. 4. Simulator for a corrupted sender

Hybrid H2: Instead of sampling x̃ at random, let x1, . . . , xm be the outputs
of the honest receiver (from Fpi-ROT), and sample xm+1 ← ZP` . SS then sends
x̃ = x>α.

Hybrid H3: This is defined the same as H2, except the random choices x1, . . . , xm+1

are replaced with values computed from the key-homomorphic PRF as xj =
F (r, j), using the previously sampled r.

Note that all of the simulated messages in the final hybrid, H3, are identically
distributed to messages sent in the real execution, and the outputs of the sender
and receiver are computed exactly as in the protocol as outputs of the random
oracle H and PRF F , respectively. Therefore, H3 ≡ HYBRID.

Hybrids H0 and H1 are identically distributed as long as ui+si ·ei /∈ {−1, B},
since ei ∈ {0,±1}. If the reduction modulo B overflows then Z could distinguish
because the outputs in H1 will be incorrect. This occurs with probability at most

2/B for each i, so when B = Ω(2λ) we have H0
s
≈ H1.

In hybrid H2, the value x̃ is masked by xm+1 so is uniformly random in the
view of Z. Therefore, H1 ≡ H2.

Hybrids H2 and H3 are computationally indistinguishable, by a standard
reduction to the key-homomorphic PRF, since r is uniformly random and not
seen by the environment, so the xj values are pseudorandom. This completes

the claim that IDEAL
c
≈ HYBRID. ut

Corrupt receiver. The simulator SR, given in Fig. 5, essentially runs an in-
ternal copy of the sender and honestly generates messages as PS would. The
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Simulator SR

1. Setup phase. SR receives r and b1, . . . , bk from the corrupt receiver, as input
to Fn,k,Zq∆-ROT . It then samples s← {0, 1}k and defines ai = bi + sir.

For any key query guess submitted by A to Fn,k,Zq∆-ROT , S responds according to
the secret s. If any guess is unsuccessful, S aborts.

2. Extension phase.
(a) S waits for PR to send a message of the form (chosen, B, ui, u

′
i) as input

to Fn,k,Zq∆-ROT . S then defines e′i = u′i − ui mod B and vi = ui + si · e′i.
(b) S computes qi as an honest sender would, and defines the matrix Q.

3. Consistency Check.
(a) S samples σ ← {0, 1}k and sends this to PR.
(b) S receives t̃, x̃ and checks that Qα = t̃+ x̃s. If the check fails, abort.
(c) Extract the inputs x′j using Proposition 1.
(d) Call Fpi-ROT and send the choices {x′j mod pi}i∈[`], for j ∈ [m]. Receive

back the OT outputs yij , for i ∈ [`], j ∈ [m].
4. Output phase/Random Oracle Queries. S sends a random seed ρ ← {0, 1}k,

and responds to the random oracle queries as follows:
(a) If a query is (i, ρ, (qj − x′js) mod pi) for some i ∈ [`], j ∈ [m] then respond

with yij . Otherwise, respond at random (consistent with previous queries).

Fig. 5. Simulator for a corrupted receiver

main challenge is to extract the inputs of the corrupt PR, and also show that
Z cannot query the random oracle H on a value corresponding to one of the
sender’s random outputs that was not chosen by the receiver.

We use the following technical lemma to analyse the soundness of the con-
sistency check when taking random linear combinations over the ring ZP` .

Lemma 2. Let E ∈ Zk×(m+1)
P`

. Suppose that every column ei of E satisfies
‖ei‖∞ ≤ B, and further that there is at least one column not in span(1). Then,

Pr
α←ZmP`×{1}

[Eα ∈ span(1)] ≤ 2B/P`

Proof. From the assumption that at least one column of E not in span(1),
there exist two rows a, b of E with a 6= b. If Eα ∈ span(1) then 〈a,α〉 = 〈b,α〉
and so 〈a− b,α〉 = 0. Let d = a − b, and j be an index where dj 6= 0. Then
〈d,α〉 = 0 if and only if djαj = −

∑
i 6=j diαi.

First consider the case that j 6= m + 1, so αj is uniform in ZP` . For any
fixed choice of dj , the number of distinct possibilities for djαj mod P` is given
by the order of dj in the additive group ZP` , which equals P`/ gcd(dj , P`). Since
|aj |, |bj | ≤ B, we have dj ∈ [0, 2B]∪ [P`− 2B,P`− 1], from which it follows that
gcd(dj , P`) ≤ 2B. Therefore, since αj is random and independent of

∑
i6=j αidi,

we have that Pr[〈d,α〉 = 0] ≤ 2B/P`.
On the other hand, if j = m + 1 then αj = 1. But this means dj =

−
∑
i 6=j diαi, and because dj 6= 0 there must be another index j′ with dj′ 6= 0.

We then apply the previous argument on j′ to obtain the same probability. ut
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If α is sampled using a PRG with a public seed, instead of uniformly at
random, the previous statement still holds except with negligible probability.

Lemma 3. Let E be as in Lemma 2 and let G : {0, 1}k → ZmP` ×{1} be a PRG.
Then,

Pr
σ←{0,1}k

[Eα ∈ span(1) : α = G(σ)] ≤ 2B/P` + negl(k)

Proof. Define a distinguisher, D, for the PRG G, which on input a challenge
α, outputs 1 if Eα ∈ span(1) and 0 otherwise. From Lemma 2 we know that
Pr[D = 1] given that α is uniformly random is ≤ 2B/P`. On the other hand,
the advantage of D is negl(k), so if α is an output of G then it must be that D
outputs 1 with probability at most 2B/P` + negl(k). ut

We now show indistinguishability of the simulation.

Lemma 4. For every adversary A who corrupts PR, and for every environment
Z, it holds that

IDEALFpi-ROT,SR,Z
c
≈ HYBRIDF∆-ROT

Πpi-ROT,A,Z

Proof. We first show how SR (Fig. 5) extracts the corrupt receiver’s inputs
in step 3c. SR received the values ui, u

′
i = ui + e′i which A used as input to

F∆-ROT. SR can also compute the actual errors ei (which would equal e′i if PR
was honest), since it knows r and bi. For each j ∈ [m+1] and i ∈ [k], SR defines
a value (omitting j subscripts) qi = q′i−(ui+sie

′
i), and then puts all these values

into the vector qj . We also compute the values xj and tj as an honest PR would
do according to the protocol.

Now, if PR was honest we would have qj = tj + xj · s, but it actually holds
that

qj = tj + xj · s+ ej ∗ s

where ej contains the values (e1− e′1, . . . , ek− e′k) from iteration j of this phase,
and ∗ denotes component-wise product. Note that since ei ∈ {0,±1} and e′i ∈
{0, . . . , B − 1} we have ‖ej‖∞ ≤ B for all j.

At this point, although we have computed values xj which could be used to
define the inputs of PR, these may not be the correct inputs SR should send
to Fpi-ROT. This is because A could choose, for instance, ej = 1, and then the
actual inputs would correspond to xj+1 and not xj . Proposition 1 shows how we
obtain the correct inputs. Let view(A) denote the view of the corrupt receiver
at this point in the execution.

Proposition 1. Suppose the consistency check passes, and A makes no (guess)
queries to F∆-ROT. Then with overwhelming probability there exists a set S ⊂ [k]
and values x′j , e

′
j, for j ∈ [m] such that:

1. qj = tj + x′j · s+ e′j ∗ s.
2. For all i ∈ [k] \ S, e′j [i] = 0
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3. H∞((si)i∈S |view(A)) = 0
4. H∞((si)i∈[k]\S |view(A)) = k − |S|

Proof. Recall that t̃, x̃ are the values received by SR from PR during the
consistency check, and we have qj = tj + xj · s+ ej ∗ s.

This means we can write

Q = T + (x1 · 1 + e1‖ · · · ‖xm · 1 + em)︸ ︷︷ ︸
=Y

∗s

where we extend the ∗ operator to apply to every column of Y in turn.
Define the vectors, in ZkP` ,

δx = 1x̃−Yα, δt = Tα− t̃

We can think of these as representing the deviation between what PR sent, and
the values PR should have sent, given Y,T. If the check succeeds, then we know
that

Qα = t̃+ (1x̃) ∗ s

and so

(T + Y ∗ s)α = t̃+ (1x̃) ∗ s
⇔ δt = (1x̃) ∗ s− (Y ∗ s)α

= δx ∗ s

For each index i ∈ [k], if the check passes then it must hold that either
δt[i] = δx[i] = 0 — which essentially means there was no deviation at position
i — or δx[i] 6= 0. In the latter case, because si ∈ {0, 1}, the cheating receiver
must guess si in order to pass the check.

Define S ⊂ [k] to be the set of all indices i for which δx[i] 6= 0. From the
above, we have that the probability of passing the check (over the random choice
of s) is at most 2−|S|. If the check passes, this also implies the last two claims of
the proposition, that H∞((si)i∈S |view(A)) = 0, and H∞((si)i∈[k]\S |view(A)) =
k − |S|.

Let Y−S denote the matrix Y with its rows corresponding to indices in the
set S removed. Note that for any i /∈ S, we have δx[i] = 0 and so (Yα)−S =
(Y−S)α = 1x̃, which lies in span(1). Since column j of Y is equal to 1xj + ej ,
it must also hold that (E−S)α ∈ span(1), where E = (e1‖ · · · ‖em+1).

Applying Lemma 3 with E−S , it then holds that every column of E−S is in
span(1) with overwhelming probability, provided 2B/P` is negligible. Therefore,
for every j ∈ [m], we can compute x′j and e′j such that the j-th column of Y
satisfies yj = x′j · 1 + e′j , where (e′j)−S = 0. These are values needed to satisfy
points 1 and 2. ut

The set S in the proposition represents the indices where PR cheated, cor-
responding to the set of bits of s which PR must guess to pass the consistency
check. Passing the check also guarantees that the error vectors e′j can only be
non-zero in the positions corresponding to S, which is crucial for the next stage.
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After extracting the corrupt receiver’s inputs, we need to show that the
random oracle calls made by Z cannot allow it to distinguish. In particular, if
Z queries

(i, ρ, (qj − yjs) mod pi))

for some yj 6= x′j mod pi then Z will be able to distinguish, since the simulator’s
response will be random, whereas the response in the real world will be one of
the sender’s OT outputs.

From Proposition 1, we know that if no (guess) queries were made to F∆-ROT

then there are exactly k − |S| bits of the secret s that are unknown in the view
of A, and these correspond to the index set [k] \ S.

Now, from the first part of the proposition, we can rewrite a ‘bad’ query of
the form given above as

(i, ρ, (tj + e′j ∗ s+ (x′j − yj)s) mod pi)

Since tj and e′j ∗ s are fixed in the view of Z, it must be the case that coming
up with such a query requires knowing all of s. This happens with probability
at most (pi − 1) · 2|S|−k per query with index i. Taking into account the prob-
ability of passing the consistency check, we get an overall success probability
bounded by Q · (p` − 1) · 2−k, where Q is the number of random oracle queries,
which is negligible. Making key queries to F∆-ROT cannot help guess s because
any incorrect guess causes an abort, so this does not affect the distinguishing
probability. ut

3.4 Choosing the Parameters

We first show how to securely choose parameters to optimize communication, and
then discuss instantiating the key-homomorphic PRF. After the setup phase, and
ignoring the short seeds sent in the consistency check, the only communication is
to the (chosen) command of F∆-ROT, which can be implemented with λ bits of
communication when B = 2λ (see Section 4). This gives an overall complexity of
λkm bits to generate m` random OTs. If ` = ω(λk) then we obtain an amortized
cost per random OT of o(1), which gets smaller as ` increases.

To realise 1-out-of-2 bit-OT on chosen strings, each random 1-out-of-pi OT
must be converted to a 1-out-of-2 OT, at a cost of sending log pi bits from
the receiver and 2 bits from the sender (see Appendix A). This adds a cost

of Tm,` = m
∑`
i=1(log2 pi + 2) bits, and from the prime number theorem we

have pi = O(i log i), so Tm,` = m
∑`
i=1O(log i) = O(m` log `), giving an overall,

amortized cost of O(log `) = O(log k) bits per OT when ` = Ω(λk).

Instantiating the key-homomorphic PRF. We can instantiate F using the
random oracle-based construction from Section 2 based on learning with round-
ing, or standard model constructions from LWE [BLMR13,BP14]. With LWR,
the parameters affecting security are the dimension n and moduli p, q. In our
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case we fix p = P` and can choose n, q to ensure security. With an exponen-
tial modulus, we know that LWR is at least as hard as LWE with the same
dimension n and modulus q, where the LWE error distribution is bounded by
β = q/(2λP`), and λ is a statistical security parameter [BPR12,AKPW13]. This
gives a modulus-to-noise ratio of q/β = O(2λP`). LWE with an exponential
modulus-to-noise ratio has previously been used to construct attribute-based
encryption [GVW13] and fully key-homomorphic encryption [BGG+14], and is
believed to be hard if q/β ≤ 2n

ε

, for some constant 0 < ε < 1/2 chosen to resist
known attacks based on lattice reduction and BKW. To achieve optimal com-
munication in our protocol, we need ` = ω(λk), which from the prime number
theorem implies that logP` = ω(λk log k). This gives log(q/β) = ω(λ2k log k),
so we can have a dimension of n = ω((λ2k log k)1/ε) and ensure security.

4 Actively Secure Base OTs

We now show how to implement the functionality Fn,k,G∆-ROT (Fig. 1), which creates
k correlated base OTs over Gn, for an additive abelian group G. We achieve ac-
tive security using a modification of the consistency check from the OT extension
protocol by Asharov et al. [ALSZ15,ALSZ17a]. Additionally, in Section 4.1 we
identify a crucial security flaw in their protocol, whereby a passively corrupted
sender can obtain an ‘oracle’ that allows brute-force guessing of the receiver’s
choice bits by computing hash values. This bug has since been fixed in a revised
version [ALSZ17b], and we apply the same fix to our protocol.

We let Fk,kOT denote the standard functionality for k sets of 1-out-of-2 OTs on
k-bit strings. In the correlated OT phase of our protocol, shown in Fig. 6, the
parties first extend the base OTs from FOT using a PRF, and the sender PS (who
would be receiver when running the main OT extension protocol) then sends the
ui values which create the correlation over the group G. The consistency check
is based on the check in the OT extension protocol by Asharov et al. [ALSZ15],
which is used to verify the sender’s inputs are bit strings of the form (bi, bi⊕∆).
We adapt this to ensure they have the form (bi, bi+∆), where ∆ and each bi are
vectors of length n over any finite abelian group G. In our protocol the parties
then output the correlated base OTs, instead of transposing and hashing them
to perform OT extension as in [ALSZ15]. This means we need to account for
some leakage on the si choice bits of PR, caused by the consistency check, which
is modeled by the key query feature of F∆-ROT.

We also have an additional (non-correlated) Chosen OTs phase, which ex-
tends the base OTs further with arbitrary inputs from the sender, PS , and the
same choice bits from PR, in a standard manner using the PRF. Both of these
phases can be called repeatedly after the setup phase has run.

4.1 Security

We prove the following theorem by considering separately the two cases of a
corrupted PR and corrupted PS .
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Protocol Πn,k,G
∆-ROT

Let F : {0, 1}k × {0, 1}k → Gn+k′ be a PRF and H : Gn+k′ × Gn+k′ → {0, 1}k be

a random oracle, where k′ is chosen so that |G|k
′
≥ 2k.

The protocol consists of two main commands, which can be repeatedly called after
the Initialize stage. Both parties maintain a counter c := 0.

Initialize: On input (init, s1, . . . , sk) from PR and (init) from PS , where
(s1, . . . , sk) ∈ {0, 1}k:
1. PS samples seeds k0

i , k
1
i ← {0, 1}k for i ∈ [k]

2. The parties run Fk,kOT , where PS is sender with input (k0
i , k

1
i )i and PR is

receiver with input si.
3. PR receives ksii , for i = 1, . . . , k.

∆-OTs: On input (correlated) from PR, and (correlated,∆) from PS , where
∆ ∈ Gn:
1. Create correlation:

(a) PS samples ρ← Gk
′

and sets ∆′ := (∆‖ρ).
(b) PS computes t0i = F (k0

i , c) and t1i = F (k1
i , c), then computes

ui = t0i + t1i +∆′, i = 1, . . . , k

and sends these to PR.
(c) PR computes ai = (−1)si · F (ksii , c) + si · ui (= t0i + si ·∆′)
(d) Set c := c+ 1.

2. Consistency Check: For every pair (α, β) ∈ [k]2:
(a) PS computes

h0,0
α,β = H(t0α − t0β), h0,1

α,β = H(t0α − t1β)

h1,0
α,β = H(t1α − t0β), h1,1

α,β = H(t1α − t1β)

and sends these to PR.
(b) PR checks that:

i. h
sα,sβ
α,β = H(tsαα − t

sβ
β )

ii. h
s̄α,s̄β
α,β = H(uα − uβ − tsαα + t

sβ
β )

iii. uα 6= uβ
3. Output: PR outputs the first n components of ai, and PS outputs n com-

ponents of bi := t0i .
Chosen OTs: On input (chosen, B, (u0

i , u
1
i )i∈[k]) from PS and (chosen, B) from

PR, where each ubi ∈ [0, B − 1] and B ≤ 2k:
1. PS sends d0

i = F (k0
i , c)⊕ u0

i and d1
i = F (k1

i , c)⊕ u1
i to PR, for i ∈ [k]

2. PR outputs vi = dsii ⊕ F (ksii , c)
a

3. Set c := c+ 1

a Only the first log2 B output bits of the PRF are used in this stage.

Fig. 6. Base OT protocol for correlated OTs over an additive abelian group G

21



Theorem 2. If F is a secure PRF, H is a random oracle and λ ≤ k/2 then

protocol Πn,k,G
∆-ROT securely realises the functionality Fn,k,G∆-ROT in the Fk,kOT -hybrid

model with static security.

Corrupt PR. To be secure against a corrupted PR, it is vital that PS appends
the additional randomness ρ to the input ∆ in step 1a, before creating the
correlated OTs. Without this, PR can obtain an ‘oracle’ that allows guessing
whether a candidate value ∆̃ equals the input of PS or not by just computing
one hash value. For example, let α, β be indices where sα = sβ = 0. Given

t0α, t
0
β , uα and the hash values sent by PS , PR can compute t̃1α := uα − t0α − ∆̃,

and then test whether h1,0α,β = H(t̃1α − t0β). This only holds if ∆ = ∆̃, so allows

testing any candidate input ∆̃. Including the extra randomness ρ prevents this
attack by ensuring that ∆′ = (∆‖ρ) always has at least k bits of min-entropy
(as long as |G|k′ ≥ k), so PR can only guess ∆′ with negligible probability.5

Note that this step was missing in the published versions of [ALSZ15,ALSZ17a],
which leads to an attack on their actively secure OT extension protocol. This
has now been fixed in a revised version [ALSZ17b].

To formally prove security against a corrupted PR, we construct a simulator
SR, who interacts with F∆-ROT whilst simulating the communication from the
honest PS and the FOT functionality to the adversary, A. SR is described below.

1. In the Initialize phase, SR receives the inputs {si}i∈[k] from A to Fk,kOT ,

then samples random strings ksii ← {0, 1}k and sends these to A.

2. Whenever the ∆-OTs phase is called, SR starts by sampling ui ← Gn+k′ ,
for i ∈ [k], and sends these to A.

3. In the consistency check, SR computes and sends the hash values h
sα,sβ
α,β =

H(tsαα − t
sβ
β ) and h

sα,sβ
α,β = H(uα − uβ − tsαα + t

sβ
β ). The other two values

h
sα,sβ
α,β , h

sα,sβ
α,β are sampled uniformly at random.

4. SR then sends {si}i to F∆-ROT, and computes the values {ai}i as an honest
PR would in the protocol. SR then sends {ai}i to F∆-ROT and increments
the counter c.

5. Whenever the Chosen OTs phase is called, SR calls F∆-ROT with input
(chosen, B), and receives {vi}ki=1. SR computes dsii = F (ksii , c)⊕vi, samples
a random string dsii , then sends d0i , d

1
i to A and increments c.

Lemma 5. If H is a (non-programmable, non-observable) random oracle and
F is a secure PRF, then for every adversary A who corrupts PR, and for every
environment Z, it holds that

IDEALF∆-ROT,SR,Z
c
≈ HYBRIDFOT

Π∆-ROT,A,Z
5 This modification is not strictly needed for our application to the protocol in Sec-

tion 3, because PS ’s input to F∆-ROT is always uniformly random and cannot be
guessed. However, making this change allows for a simpler, more modular exposition
and the functionality may be useful in other applications.
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Proof. We consider a sequence of hybrid distributions, going from the ideal
execution to the real execution, defined as follows. The first hybrid H0 is identical
to the ideal execution with SR and F∆-ROT.

Hybrid H1: This is identical to H0, except that both sets of keys k0i , k
1
i are

sampled by SR, instead of just ksii . We also modify the Chosen OTs phase so
that both values d0i , d

1
i are computed according to the protocol, using the PRF

keys and the real inputs of the honest PS .

Hybrid H2: Here we modify H1 further, so that the ui values in the ∆-OTs
stage are also computed according to the real protocol, using PS ’s real input ∆
and a random value ρ. These ui values are then used by SR to compute the ai’s
which are sent to F∆-ROT.

Hybrid H3: This is the same as H2, except the two hash values h
sα,sβ
α,β , h

sα,sβ
α,β

are computed as in the protocol, instead of with random strings.
It is easy to see the view of Z in H3 is identical to the real execution, since

all messages are computed as an honest PS would using the real inputs, and the
outputs computed by F∆-ROT are the same as in the protocol.

Hybrids H0 and H1 are computationally indistinguishable because the keys
ksii are unknown to Z, which means the values dsii are indistinguishable from
the previously uniform values, by a standard reduction to the PRF security.
Similarly, H1 and H2 are computationally indistinguishable because tsii is pseu-
dorandom based on the PRF, so masks PS ’s input in ui.

Regarding H2, and H3, notice that the two relevant hash values in H3 are
equal to

h
sα,sβ
α,β = H(tsαα − t

sβ
β ) = H(tsαα − uβ + t

sβ
β +∆′)

h
sα,sβ
α,β = H(tsαα − t

sβ
β ) = H(uα − tsαα −∆′ − t

sβ
β )

Looking at the values on the right-hand side, PR knows everything in both sets
of inputs to H except for ∆′ = (∆‖ρ).

The only way Z can distinguish between H2 and H3 is by querying H on one
of the two inputs above, which occurs with probability at most q ·|G|−k′ ≤ q ·2−k,
where q is the number of random oracle queries, since ρ is uniformly random in
Gk′ and unknown to Z. This completes the proof. ut

Corrupt PS. When PS is corrupt, the main challenge is to analyse soundness
of the consistency check, similarly to [ALSZ15] (with a corrupt receiver in that
protocol). Most of the analysis turns out to be identical, so we focus on the
differences and state the main properties that we need from that work to show
that our protocol securely realises F∆-ROT. For the proof to go through here we
need to assume that the statistical security parameter λ is no more than k/2,
but can always increase k to ensure this holds.
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Note that the main way a corrupt PS may cheat in the protocol is by using
different ∆′ values when sending the ui values. To account for this, for each
i ∈ [k] we define ∆i = ui − t0i − t1i ; if PS behaves honestly then we have ∆1 =
· · · = ∆k = ∆′, otherwise they may be different.

The following lemma is analogous to [ALSZ15, Lemma 3.1], except we work
over G instead of bit strings, and implies that the rest of the analysis of the
consistency check from that work also applies in our case. Using the terminology
of Asharov et al, if the consistency check passes for some set of messages T =
{{k0i , k1i , ui}i, {Hα,β}α,β} and some secret s, we say that T is consistent with s.
If the check fails then it is inconsistent.

Lemma 6. Let Tα,β = {k0α, k1α, k0β , k1β , uα, uβ , Hα,β} and suppose that H is a
collision-resistant hash function. Then, except with negligible probability:

1. If ∆α 6= ∆β and Tα,β is consistent with (sα, sβ) then Tα,β is inconsistent
with (sα, sβ).

2. If ∆α = ∆β and Tα,β is consistent with (sα, sβ) then Tα,β is also consistent
with (sα, sβ)

Proof. For the first claim, suppose that ∆α 6= ∆β , and Tα,β is consistent with
both (sα, sβ) and (sα, sβ). Then from the consistency with (sα, sβ) we have

h
sα,sβ
α,β = H(tsαα − t

sβ
β ), h

sα,sβ
α,β = H(uα − uβ − tsαα + t

sβ
β )

On the other hand, consistency with (sα, sβ) implies

h
sα,sβ
α,β = H(tsαα − t

sβ
β ), h

sα,sβ
α,β = H(uα − uβ − tsαα + t

sβ
β )

By the collision resistance of H, except with negligible probability it must
then hold that

tsαα − t
sβ
β = uα − uβ − tsαα + t

sβ
β

= tsαα − t
sβ
β + (∆α −∆β)

This means ∆α = ∆β , which is a contradiction.
For the second claim, if ∆α = ∆β then uα − uβ = t0α + t1α − t0β − t1β , and it

can be seen from the above equations that the checks for (sα, sβ) and (sα, sβ)
are equivalent. ut

For the case of a corrupted PS , we construct a simulator S, who interacts
with A and plays the role of the honest PR and the FOT functionality. SS is
described below.

1. SS receives all the keys k0i , k
1
i as inputs to FOT, and then the messages ui.

2. Using these it computes t0i , t
1
i as in the protocol, and ∆i = ui − t0i − t1i . If

PS is honest then ∆1 = · · · = ∆k.
3. SS defines ∆′ to be the most common of the ∆i’s, and sends the first n

components of this as PS ’s input to F∆-ROT.
4. SS then receives the sets of 4 hash values Hα,β = {h0,0α,β , h

0,1
α,β , h

1,0
α,β , h

1,1
α,β}, for

each α, β ∈ [k], as part of the consistency check.
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5. SS then uses the transcript of A to define a set of constraints on the secret
s that must be satisfied for the consistency check to pass, by running Algo-
rithm 1 from [ALSZ15]. Note that each of the constraints produced by this
algorithm either fixes individual bits of s, or the XOR of two bits of s, so
from this we can efficiently define a set S(T ) ⊂ {0, 1}k which describes the
set of all s that are consistent with the messages from A.

6. SS queries F∆-ROT with (guess, S(T )). If the query is successful, SS contin-
ues as if the consistency check passed, otherwise, S aborts.

7. If the check passed, SS defines values b′i, for i ∈ [k] as specified below. These
are sent to F∆-ROT.

8. Whenever the Chosen OTs phase is run, SS uses its knowledge of the keys
to extract PS ’s inputs (u0i , u

1
i ), and sends these to F∆-ROT.

The key part of the simulation is step 5, which uses the hash values sent in
the consistency check to define the exact bits (or XOR of bits) of the honest PR’s
secret s which the corrupt PS tried to guess from cheating. Note that SS does not
define its own secret s, as this is already sampled internally in the functionality
F∆-ROT. Therefore, SS sends a description of all the possible consistent values
of s to the (guess) command of F∆-ROT to see if the cheating attempt was
successful or not.

Lemma 7. If λ ≤ k/2 and H is collision-resistant then for every adversary A
who corrupts PS, and for every environment Z, it holds that

IDEALF∆-ROT,SS ,Z
c
≈ HYBRIDFOT

Π∆-ROT,A,Z

Proof (sketch): Define the transcript of the simulation up until the consistency
check by T = {{k0i , k1i , ui}i, {Hα,β}α,β}, and define consistent(T , s) to be 1 if
the consistency check would pass if s is the secret of PR, and 0 otherwise. From
Algorithm 1 in step 5, recall that the we defined set of all possible secrets s ∈
{0, 1}k of an honest PR for which the check would pass to be S(T ) = {s ∈
{0, 1}k : consistent(T , s) = 1}, where T is the transcript produced by A. Note
that from the definition of S(T ), the probability that the consistency check
passes is |S(T )|/2k in both the real and ideal executions. To complete the proof
we just need to show how to extract the correct values b′i defining PS ’s output.

Below we give the key results from [ALSZ15] needed to analyse the consis-
tency check.

Lemma 8. For a given transcript T , let U be the largest set of indices such that
for all i, j ∈ U , ∆i = ∆j, and let B = [k] \ U be the complementary set. We
have:

1. If B > λ then the probability of passing the consistency check is ≤ 2−λ.
2. If the consistency check passes, then for all s′ ∈ S(T ), it holds that either

the bits {s′i}i∈B are fixed, or the bits {s′i}i∈U are fixed.

Proof. The first claim follows from Claim B.3 of [ALSZ15] and Lemma 6. The
second can be seen from inspection of the proof of Claim B.4 in the same work.

ut

25



From the first item, we conclude that |B| ≤ λ, except with negligible prob-
ability. We claim that this means we first be in the first case of item 2 in the
lemma. If the bits {s′}i∈U were fixed then the adversary must have guessed |U |
bits of the secret to pass the check, but since |U | ≥ k − λ ≥ λ, this can only
happen with probability ≤ 2−λ.

This implies that (except with negligible probability) the bits of s sampled
by F∆-ROT are fixed at the positions i ∈ B, so S can define a value b′i = t0i + si ·
(∆i−∆′) from the fact that si is fixed, for all i ∈ B. We then have b′i = ai−si ·∆,
so this defines the correct output that S sends to F∆-ROT in step 7. Note that
for all i ∈ U we have ∆i = ∆′, so we can just let b′i = t0i . These outputs are then
identically distributed to the outputs of PS in the real protocol, so (accounting
for the negligible failure events) the simulation is statistically close. ut
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A Conversion to 1-out-of-2 OTs

The main protocol in Section 3 produces a batch of random 1-out-of-pi OTs,
for multiple small primes pi. If an application requires 1-out-of-2 OTs (as is
common) then we can convert each of the 1-out-of-pi OTs to a 1-out-of-2 OT at
a cost of O(log pi) bits of communication using standard techniques, with active
security.6

In the protocol, shown in Fig. 7, the receiver first converts the random choice
c from the 1-out-of-N OT into its chosen input bit b by sending the difference
d = c − b mod N . The sender, who initially has random strings r0, . . . , rN−1,
then uses rd and rd+1 mod N to one-time-pad encrypt its two input messages.
The receiver can recover exactly one of these, corresponding to rc = rd+b.

Security of the protocol is straightforward. The only concern is that if the
receiver is corrupt, PR might choose an inconsistent value b ∈ {2, ..., p − 1}
instead of a bit, so learns a random string instead of one of the sender’s two
inputs. However, the fact that a corrupt PR may not learn a valid output does
not pose a problem, since in this case, in the security proof the simulator can
just send an arbitrary choice bit to the FOT functionality and simulate the e0, e1
messages from the sender with random strings.

6 It is possible to convert a 1-out-of-N OT into log2 N 1-out-of-2 OTs [NP99,KK13],
but this technique would not improve the asymptotic communication cost in our
case, and is only passively secure.
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Protocol ΠConv

Sender input: strings s0, . . . , sN−1

Receiver input: choice b ∈ {0, 1}

1. PS obtains random strings r0, . . . , rN−1 from Fpi-ROT

2. PR obtains a random choice c ∈ {0, . . . , N − 1}, and the string rc.
3. PR sends d = c− b mod N to PS
4. PS sends e0 = s0 ⊕ rd and e1 = s1 ⊕ rd+1 mod N

5. PR recovers sb by computing eb ⊕ rc

Fig. 7. Conversion from random 1-out-of-N OT to chosen 1-out-of-2 OT
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