Revisiting Proxy Re-Encryption: Forward
Secrecy, Improved Security, and Applications

David Derler!, Stephan Krenn?, Thomas Loriinser?, Sebastian Ramacher!,
Daniel Slamanig?, and Christoph Striecks?

1 TAIK, Graz University of Technology, Austria
2 AIT Austrian Institute of Technology, Vienna, Austria
{firstname.lastname}@tugraz.at, {firstname.lastname}@ait.ac.at

Abstract. We revisit the notion of proxy re-encryption (PRE), an en-
hanced public-key encryption primitive envisioned by Blaze et al. (EURO-
CRYPT’98) and formalized by Ateniese et al. (NDSS’05) for delegating
decryption rights from a delegator to a delegatee using a semi-trusted
proxy. PRE notably allows to craft re-encryption keys in order to equip
the proxy with the power of transforming ciphertexts under a delega-
tor’s public key to ciphertexts under a delegatee’s public key, while not
learning anything about the underlying plaintexts.

We study an attractive cryptographic property for PRE, namely that of
forward secrecy. In our forward-secret PRE (fs-PRE) definition, the proxy
periodically evolves the re-encryption keys and permanently erases old
versions while the delegator’s public key is kept constant. As a conse-
quence, ciphertexts for old periods are no longer re-encryptable and, in
particular, cannot be decrypted anymore at the delegatee’s end. More-
over, delegators evolve their secret keys too, and, thus, not even they
can decrypt old ciphertexts once their key material from past periods
has been deleted. This, as we will discuss, directly has application in
short-term data/message-sharing scenarios.

Technically, we formalize fs-PRE. Thereby, we identify a subtle but sig-
nificant gap in the well-established security model for conventional PRE
and close it with our formalization (which we dub fs-PRE"). We present
the first provably secure and efficient constructions of fs-PRE as well as
PRE (implied by the former) satisfying the strong fs-PRE™ and PRE™ no-
tions, respectively. All our constructions are instantiable in the standard
model under standard assumptions and our central building block are
hierarchical identity-based encryption (HIBE) schemes that only need to
be selectively secure.

Keywords: Forward secrecy, proxy re-encryption, improved security
model

1 Introduction

The security of cryptosystems essentially relies on the secrecy of the respective
secret key. For example, if for an encryption scheme a secret key is (accidentally)

leaked, the confidentiality of all the data encrypted with respect to this key so far
is immediately destroyed. One simple mitigation strategy for such a secret-key
leakage is to frequently change secret keys such that leaking a secret key only
affects a small amount of data. Implementing this in a nalve way, for instance
in context of public-key encryption, means that one either has to securely and
interactively distribute copies of new public keys frequently or to have huge pub-
lic keys®, which is rather inconvenient in practice. Consequently, cryptographic
research focused on the design of cryptosystems that inherently provide such a
property, being denoted as forward secrecy (or, forward security) [28]. The goal
hereby is that key leakage at some point in time does not affect the data which
was encrypted before the key leakage, while mitigating the drawbacks of the naive
solution discussed before. That is, one aims at efficient non-interactive solutions
that have fixed sublinear-size public keys in the number of key switches/time
periods. Those (strong) properties are the minimal requirements in the de-facto
standard notion of forward secrecy in the cryptographic literature.

Within the last two decades, forward secrecy has been identified as an im-
portant property of various different cryptographic primitives such as digital
signatures [6], identification schemes [1], public-key encryption [15], and private-
key cryptography [7]. Only recently, another huge step forward has been made by
Green and Miers [27] as well as Giinther, Jager, Hale, and Lauer [29] to bring for-
ward secrecy to important practical applications in the context of asynchronous
messaging and zero round-trip time (0-RTT) key exchange. Given revelations
and leaks about large-scale surveillance activities of security agencies within the
last years, it is of utmost importance to further develop and deploy cryptosys-
tems that inherently provide forward secrecy. We aim at advancing the research
on forward secrecy with respect to other practically important public-key prim-
itives, ideally, to ones with slightly more functionality.

Proxy re-encryption. Proxy re-encryption (PRE), envisoned by Blaze, Bleu-
mer, and Strauss [9] and formalized by Ateniese, Fu, Green, and Hohenberger [4,
5], is a cryptographic primitive that can be seen as an extension of public-
key encryption. A central feature of PRE is that senders can craft so-called
re-encryption keys, which are usually created using only public information of
the designated delegatee and the delegators’ key material. Those re-encryption
keys have the power to transform ciphertexts under a delegator’s public key to
ciphertexts under the delegatees’ public keys. Within PRE, this transformation is
done by a semi-trusted* proxy. The widely accepted model for PRE security (i.e.,
the conventional or plain PRE model) [4] requires that the proxy does not learn
anything about the plaintexts which underlie the ciphertexts to be transformed.®

3 With size O(n) for n key switches/time periods.

4 A semi-trusted proxy honestly follows the protocols, i.e., stores consistent re-
encryption keys and re-encrypts correctly.

® The well-established security notions for PRE leave a potentially critical gap open.
To look ahead, our proposed security model for forward-secret PRE closes this gap
(implicitly also for plain PRE) and goes even beyond.

Proxy re-encryption is considered very useful in applications such as en-
crypted e-mail forwarding or access control in secure file systems, which was
already discussed heavily in earlier work, e.g., in [4]. Furthermore, PRE has
been object of significant research for almost two decades now, be it in a con-
ventional setting [9, 4, 5], PRE with temporary delegation [4, 5, 34], identity-
based PRE [26, 37], extensions to the chosen-ciphertext setting [16, 34], type-
based/conditional PRE [39, 41], anonymous (or key-private) PRE [3], traceable
PRE [32], or PRE from lattice-based assumptions [18, 36]. Generic constructions
of PRE schemes from fully-homomorphic encryption [24] and from non-standard
building blocks such as resplittable-threshold public key encryption as proposed
in [30] are known, where different constructions of secure obfuscators for the re-
encryption functionality have been given [31, 19, 18]. Despite PRE being an ob-
ject of such significant research, forward-secret constructions remain unknown.%

On modeling forward-secret proxy re-encryption. Forward secrecy in the
context of PRE is more complex than in standard public-key primitives, as PRE
involves multiple different parties (i.e., delegator, proxy, and delegatees), where
delegator and delegatees all have their own secret-key material and the proxy
additionally holds all the re-encryption keys. One may observe that the proxy
needs to be considered as a semi-trusted (central) party being always online,
and, thus, it is reasonable to assume that this party is most valuable to attack.
Consequently, we model forward secrecy in the sense that the re-encryption-
key material can be evolved by the proxy to new periods while past-period
re-encryption keys are securely erased. Hence, ciphertexts under the delegator’s
public key with respect to past-periods can no longer be re-encrypted. In addi-
tion, we model forward secrecy for the delegator’s key material in a way that it
is consistent with the evolution of the re-encryption material at the proxy.

For now, we do not consider forward secrecy at the delegatee, who can be
seen as a passive party and does not need to take any further interaction with
the delegator during the life-time of the system, except providing her public key
once after set-up (e.g., via e-mail or public key server). It also does not have to
be online when ciphertexts are re-encrypted for her by the proxy. Nevertheless,
we leave it as a path for future research to cover the third dimension, i.e., model
forward secrecy for the delegator and proxy as well as forward secrecy for the
delegatee with efficient non-trivial constructions. However, it seems highly non-
trivial to achieve efficient constructions that support forward secrecy for the
delegatee additionally. In particular, we believe that the difficulty of achieving
such strong type of forward secrecy is due to the circumstance that one has to
carefully integrate three dimension of evolving key-material, one at the delegator,
one at the proxy, and one at the delegatee. All dimensions seem to interfere

5 We stress that we only aim at efficient non-trivial (non-interactive) forward-secret
PRE constructions that have sublinear-size public and re-encryption keys in the
number of time periods.

with each other.” As it will be confirmed by our application, covering the two
dimensions already yields an interesting tool.

Moreover, to achieve forward secrecy for delegator and proxy key material,
we face the following obstacles. First, it has to be guaranteed that the honest
proxy must not be able to gain any information from the ciphertexts while at the
same time being able to transform such ciphertexts and to update re-encryption
key material consistently to newer time periods without any interaction with
the delegator. Secondly, any delegatee must not be able to decrypt past-period
ciphertexts. In this work, we give an affirmative answer to overcome those ob-
stacles.

A practical application of forward-secret PRE. We believe that forward
secrecy is an essential topic nowadays for any application. Also PRE is increas-
ingly popular, be it in applied cryptographic literature [10, 14, 42, 36, 35], work-
ing groups such as the CFRG of the IRTF®, large-scale EU-funded projects®,
and meanwhile also companies'® that foster transition of such technologies into
applications.

A practical application for forward-secret PRE is disappearing 1-to-n mes-
saging. Here, a user encrypts a message under his public key and sends it to
the proxy server that is responsible for distributing the encrypted messages to
all pre-determined n receivers (note that receivers do not have to be online at
the time the encrypted message is sent and an initial public-key exchange has
to be done only in the beginning, but no more interactivity is needed). During
setup time, the user has equipped the server with re-encryption keys (one for
each receiver) while new keys can be added any time once a new receiver is
present. Furthermore, the user does not need to manage a potentially huge list
of public keys for each message to be sent. After a period, the data gets deleted
by the proxy server, the re-encryption keys get evolved to a new period (without
any interactions), and old-period re-encryption keys get deleted. The security
of forward-secret PRE then guarantees that the proxy server does not learn the
sensitive messages, neither can the two types of parties access disappeared mes-
sages later on. Once period-i re-encryption keys leak from the proxy server, only
present and future encrypted messages (from period ¢ onward) are compromised,
while period-(i — 1) messages stay confidential. More generally, we believe that
forward-secret PRE can be beneficially used in all kinds of settings that require
access revocation, e.g., in outsourced encrypted data storage.

We also stress that within our forward-secret PRE instantiations, each user is
only required to manage her own public and secret keys on her device and not a
list of recipient public keys (or, identities). This deviates significantly from other
primitives such as broadcast encryption (BE) [12, 22, 38], which could also be

" It is currently unknown to us how to solve the problem with efficient cryptographic
tools, e.g., in the bilinear-maps setting. For efficiency reasons, multilinear maps and
obfuscation are out of focus.

8 https://www.ietf.org/id/draft-hallambaker-mesh-recrypt-00.txt

9 https://credential.eu/

10 ¢.g., http://www.nucypher.com, https://besafe.io/

https://www.ietf.org/id/draft-hallambaker-mesh-recrypt-00.txt
https://credential.eu/
http://www.nucypher.com
https://besafe.io/

suitable in such scenarios. However, practical BE schemes, e.g., [13], need large
public keys and are computationally expensive.

1.1 Contribution

In this paper, we investigate forward secrecy in the field of proxy re-encryption
(PRE) and term it fs-PRE. More precisely, our contributions are as follows:

— We first port the security model of PRE to the forward-secret setting (fs-
PRE™). Thereby, we observe a subtle but significant gap in existing (plain)
security models for conventional PRE with regard to the granularity of del-
egations of decryption rights. In particular, existing models allow that a
recipient, who has once decrypted a re-encrypted ciphertext, can potentially
decrypt all re-encryptable ciphertexts of the same sender without further
involvement of the proxy. In the forward-secret setting, it would essentially
require to trust the delegatees to delete their re-encrypted ciphertexts when-
ever the period is switched, which is a problematic trust assumption.'!

— We close this gap by introducing an additional security notion which in-
herently requires the involvement of a proxy in every re-encryption and in
particular consider this notion in the forward-secret setting (fs-PRE™). We
also note that, when considering only a single time interval, this implicitly
closes the aforementioned gap in the conventional PRE setting.'? We also
provide an explicit separation of the weaker fs-PRE™ notion (resembling ex-
isting PRE models) and our stronger notion fs-PRE™.

— We then continue by constructing the first forward-secret PRE schemes (in
the weaker as well as our stronger model) that are secure in the stan-
dard model under standard assumptions. On a technical side, only few
approaches to forward secrecy are known. Exemplary, in the public-key-
encryption (PKE) setting, we essentially have two ways to construct forward
secrecy, i.e., the Canetti-Halevi-Katz (CHK) framework [15] from selectively
secure hierarchical identity-based encryption (HIBE) [25] schemes and the
more abstract puncturable-encryption (PE) approaches by [27, 29] (where
both works either explicitly or implicitly use the CHK techniques). Partic-
ularly, we are not aware of any framework to achieve forward secrecy for
PKE schemes based on “less-complex” primitives in comparison to selec-
tively secure HIBE schemes. Consequently, we also base our constructions on
selectively secure HIBE schemes [25], which we combine with linearly homo-
morphic encryption schemes, e.g., (linear) ElGamal.

— As a side result, we generalize the recent work of PE [27, 21, 17, 29] to what
we call fully puncturable encryption (FuPE) in the full version of this paper
and show how we can use FUPE to construct fs-PRE.

11 Clearly, we still have to trust that the proxy deletes past-period re-encryption key
material.

12 Tn the conventional PRE setting, this gap was very recently independently addressed
by Cohen [20].

1.2 Intuition and Construction Overview

To obtain more general results and potentially also more efficient instantiations,
we use a relaxation of HIBEs denoted as binary-tree encryption (BTE) which
was introduced by Canetti, Halevi, and Katz (CHK) in [15]. As an interme-
diate step, we introduce the notion of a forward-secret delegatable public-key
encryption (fs-DPKE) scheme and present one instantiation which we obtain by
combining the results of CHK with a suitable homomorphic public-key encryp-
tion (HPKE) scheme. Loosely speaking, a fs-DPKE scheme allows to delegate the
decryption functionality of ciphertexts computed with respect to the public key
of some user A to the public key of some other user B. Therefore, A provides
a public delegation key to B. B then uses the delegation key together with the
secret key corresponding to B’s public key to decrypt any ciphertext that has
been produced for A. A fs-DPKE scheme moreover incorporates forward secrecy
in a sense that the originator A can evolve it’s secret key and the scheme addi-
tionally allows to publicly evolve delegation keys accordingly. Interestingly, such
a scheme is already sufficient to construct a fs-PRE™ -secure PRE scheme. Fi-
nally, we demonstrate how to strengthen this construction to a fs-PRE™-secure
PRE scheme, by solely relying on a certain type of key-homomorphism of the
underlying fs-DPKE scheme. The intermediate step of introducing fs-DPKE is
straightforward yet interesting, since we believe fs-DPKE is the “next natural
step” to lift PKE to a setting which allows for controlled delegation of decryp-
tion rights.

Instantiation. In Table 1, we present an instantiation including the resulting
key and ciphertext sizes. Thereby, we only look at fs-PRE instantiations that are
fs-PRE™-secure and note that the asymptotic sizes for fs-PRE ™ -secure fs-PRE
schemes are identical. For our instantiation, we use the BTE (or any selectively
secure HIBE) from [15] and the linear encryption scheme from [11] as HPKE
scheme under the Bilinear Decisional Diffie-Hellman (BDDH) and decision linear
(DLIN) assumption respectively.

Building Blocks |pk| |rk@| sk | |C| Assumption
BTE [15],
HPKE [11]

O(logn) O((logn)?) O((logn)?) O(logn) BDDH, DLIN

Table 1. Our fs-PRE™-secure instantiation. All parameters additionally scale asymp-
totically in a security parameter k£ which is, hence, omitted. Legend: n ... number of pe-
riods, |pk| . .. public key size, |rk¥] . . . size of re-encryption key for period i, |sk®] . . . size
of secret key for period i, |C]...ciphertext size.

A note on a side result. Additionally, in the full version, we include the defini-
tion and a construction of a so called fully puncturable encryption (FuPE) scheme
which is inspired by techniques known from HIBEs and the recent PE schemes
in [27, 29]. We then show that FuPE schemes closely capture the essence which
is required to construct fs-PRE T -secure schemes by presenting a construction of
a fs-PRE"-secure PRE scheme from FuPE and HPKE.

1.3 Related Work and Outline

Work related to forward-secret PRE. Tang et al. [39, 41] introduced type-
based/conditional PRE, which allows re-encryption of ciphertexts at the proxy
only if a specific condition (e.g., a time period) is satisfied by the ciphertext. Fur-
thermore, PRE with temporary delegations was proposed by Ateniese et al. [4, 5]
and improved by Libert and Vernaud (LV) [34]. All those approaches yield a weak
form of forward secrecy. Notably, the LV schemes provide fixed public parame-
ters and non-interactivity with the delegatee as well. However, in contrast to our
approach, LV and Tang et al. require at least to update the re-encryption keys
for each time period with the help of the delegator (i.e., one message per time
period from the delegator to the proxy) and also do not allow for exponentially
many time periods, which do not suit our (stronger) forward-secret scenario.

Concurrent work on PRE. There is a considerable amount of very recent
independent and concurrent work on different aspects of PRE and its applica-
tions [20, 8, 35, 23]. The works in [8, 35, 23] are only related in that they also
deal with various aspects of PRE, but not fs-PRE. Those aspects are however
unrelated to the work presented in this paper. In contrast, the work presented
in [20] is related to one aspect of our work. It formalizes a security property for
conventional PRE, which can be seen as a special case of our fs-PRE' notion
which we introduce in context of fs-PRE. More precisely, our notion generalizes
the notion of [20] and implies it if we fix the numbers of time periods to n = 1.

Outline. After discussing preliminaries in Section 2, we define fs-PRE in Sec-
tion 3, discuss the gap in previous models and also briefly discuss its conse-
quences to conventional PRE. We then give the first construction of a fs-PRE
scheme from binary tree encryption in Section 4. We also show a separation re-
sult for the weaker fs-PRE™ (resembling existing PRE models) and our stronger
notion fs-PRE™.

2 Preliminaries

For n € N, let [n] := {1,...,n} and let k& € N be the security parameter.
For an algorithm A, let y + A(1¥,x) be the process of running A, on input
1% and z, with access to uniformly random coins and assigning the result to
y. We assume that all algorithms take 1* as input and we will sometimes not
make this explicit in the following. To make the random coins r explicit, we write
A(1*,z;7). An algorithm A is probabilistic polynomial time (PPT) if its running
time is polynomially bounded in k. A function f is negligible if Ve3koVk > ko :
|f(k)| < 1/k°. For binary trees, we denote the root node with ¢ and all other
nodes are encoded as binary strings, i.e., for a node w we denote child nodes as
w0 and wl.

Homomorphic public-key encryption. A F-homomorphic public key en-
cryption (HPKE) scheme is a public-key encryption (PKE) scheme that is homo-
morphic with respect to a class of functions F, i.e., given a sequence of cipher-
texts to messages (M;);c[n one can evaluate a function f: M" — M € F on
the ciphertexts such that the resulting ciphertext decrypts to f(Mj,. .., My,).

Definition 1 ((F-)HPKE). A F-homomorphic public key encryption (F-HPKE
or HPKE for short) scheme with message space M, ciphertext space C and a
function family F consists of the PPT algorithms (Gen, Enc, Dec, Eval):

Gen(1%): On input security parameter k, outputs public and secret keys (pk, sk).

Enc(pk, M): On input a public key pk, and a message M € M, oulputs a ci-
phertext C € C.

Dec(sk,C): On input a secret key sk, and ciphertext C, outputs M € M U{L}.

Eval(f, (Ci)iemn): On input a function f: M™ — M € F, a sequence of cipher-
texts (Cy)iepn) encrypted under the same public key, outputs C.

In addition to the standard and folklore correctness definition for public-key
encryption (PKE), we further require for HPKE that for all security parameters
k € N, all key pairs (pk,sk) « Gen(1%), all functions f : M" — M € F, all
message sequences (M;);c[,) it holds that Dec(sk, Eval(f, (Enc(pk, M;))iem])) =
f(My,...,M,). We are particularly interested in the case where M is a group
and F is the set of all linear functions on products of M. In that case, we call
the HPKE scheme linearly homomorphic. For a HPKE, we require conventional
IND-CPA security as with PKE schemes and recall an efficient instantiation of
a linearly homomorphic scheme, i.e., linear ElGamal [11], in the full version.

Proxy re-encryption. Subsequently, we define proxy re-encryption and defer
a formal treatment of security to Section 3.

Definition 2 (PRE). A prozy re-encryption (PRE) scheme with message space
M consists of the PPT algorithms (Setup, Gen, Enc, Dec, ReGen, ReEnc) where
Enc = (Enc(j))je[g] and Dec = (Dec(j))je[g]. For j € [2], they are defined as
follows.

Setup(1%): On input security parameter k, outputs public parameters pp.

Gen(pp): On input public parameters pp, outputs public and secret keys (pk,sk).

Enc(j)(pk, M): On input a public key pk, and a message M € M outputs a level
{'_ ciphertext C.

Dec])(sk, C): On input a secret key sk, and level j ciphertext C, outputs M €
MuU{L}.

ReGen(ska, pkg): On input a secret key ska and a public key pkg for B, outputs
a re-encryption rka_p.

ReEnc(tka—p,Ca): On input a re-encryption key rka_p, and a ciphertext Ca
for user A, outputs a ciphertext Cp for user B.

Binary tree encryption. Binary tree encryption (BTE) [15] is a relaxed version
of hierarchical identity-based encryption (HIBE) [25]. Similar to a HIBE scheme,
a BTE scheme has a (master) public key associated to a binary tree where each
node in the tree has a corresponding secret key. To encrypt a message for some
node, one uses both the public key and the name of the target node. Using the
node’s secret key, the resulting ciphertext can then be decrypted. Additionally,
the secret key of a node can be used to derive the secret keys of its child nodes.

In contrast to BTE defined in [15], we make the part of the secret key used
to perform the key derivation explicit, i.e., we will have secret keys for the

decryption and derivation keys to derive secret keys. In case, an instantiation
does not support a clear distinction, it is always possible to assume that the
derivation key is empty and everything is contained in the secret key.

Definition 3. A binary tree encryption (BTE) scheme with message space M
consists of the PPT algorithms (Gen, Evo, Enc, Dec) as follows:

Gen(1%,¢): On input security parameter k and depth of the tree £, outputs public,
secret, and derivation keys (pk7sk(6)7 dk(s)).

Der(sk™, dk™)): On input secret key sk and derivation key dk™, for node
w € {0,1}<¢, outputs secret keys sk™®) sk gnd derivation keys dk(w9)
dk™Y for the two children of w.

Enc(pk, M, w): On input a public key pk, a message M € M, and node w €
{0,1}=*, outputs a ciphertext C.

Dec(sk™),C): On input a secret key sk, for node w € {0,1}=%, and ciphertext
C, outputs M € MU{L}.

For correctness, we require that for all security parameters £ € N, all depths
¢ € N, all key pairs (pk, (sk(s),ek(e))) generated by Gen(1*,/), any node w €
{0,1}=¢, any derived key sk'®) derived using Der from (sk®,dk(¥)), and all
messages M € M, it holds that Dec(sk™, Enc(pk, M, w)) = M.

The indistinguishability against selective node, chosen plaintext attacks (IND-
SN-CPA) is a generalization of the standard IND-CPA security notion of PKE
schemes. Essentially, the security notion requires the adversary to commit to
the node to be attacked in advance. The adversary gets access to all secret keys
except the secret keys for all nodes that are on the path from the root node to
the targeted node.

Experiment Expgﬁ;f’;*cpa (1%, ¢)

(pk, sk, dk(®)) «— Gen(1*,¢)

b<&{0,1}

(w*,st) « A(1%,0)

Let W be the set of all nodes that are siblings to the path from the root node to w*
and (if possible) w*0 and w*1.

Compute (sk®), dk(™)) for all w € W from (sk(®),dk(®)) using Der.

(Mo, My, st) < A(st, pk, (sk™, dk)) ew)

b* + A(st, Enc(pk, My, w™))

if b = b* return 1, else return 0

Experiment 1. The IND-SN-CPA security experiment for a BTE scheme.

Definition 4 (IND-SN-CPA). For a polynomially bounded function £, a« PPT
adversary A, we define the advantage function in the sense of IND-SN-CPA as

. . 1
AVETES ™ (1, £(8) = [Pr [ExplTe ™ (1%, () = 1] - z’ '

ind—sn—cpa

If for all £, and any A there exists a negligible function € such that AdvgTe s (
1%, 4(k)) < e(k), then a BTE scheme is IND-SN-CPA secure.

The CHK Compiler. The technique of Canetti et al. [15] can be summarized
as follows. To build a forward-secret PKE scheme with n periods, one uses a BTE
of depth ¢ such that n < 21, Associate each period with a node of the tree and
write w’ to denote the node for period i. The node for period 0 is the root node,
ie. w® = ¢e. If w' is an internal node, then set w't! = w?0. Otherwise, if w? is
a leaf node and i < N — 1, then set w'*! = w'l where w’ is the longest string
such that w0 is a prefix of w’. The public key is simply the public key of the
BTE scheme. The secret key for period i consists of the secret key for node w?.

3 Security of (Forward-Secret) Proxy Re-Encryption

Proxy re-encryption (PRE) schemes can exhibit several important properties. In
the following, we focus on the most common PRE properties in the cryptographic
literature, i.e., uni-directionality (Alice is able to delegate decryption rights to
Bob but not from Bob to Alice), non-interactivity (Alice can generate delegation
key material without interacting with Bob), and collusion-safeness (even if Bob
and other delegatees are colluding with the proxy, they cannot extract Alice’ full
secret key). Moreover, we consider PRE schemes that only allow a single hop, i.e.,
a ciphertext can be re-encrypted only a single time in contrast to multiple times
in a row (multi-hop). Latter can be problematic due to unwanted transitivity.

In this work, we examine a further property of PRE schemes, namely the
property of forward secrecy and propose the first uni-directional, non-interactive,
collusion-safe, single hop, and forward-secret PRE scheme (dubbed fs-PRE) in
the standard model from generic assumptions. Subsequently, in Section 3.1, we
present the formal model for fs-PRE, while in Section 3.3 we discuss the rela-
tion and application of our stronger model to the conventional (i.e., plain) PRE
security model.

3.1 Syntax of Forward-Secret Proxy Re-Encryption

To realize forward-secure PRE (fs-PRE), we lift the definitions and security mod-
els of uni-directional, single-hop, non-interactive, and collusion-safe PRE to a
setting where we can have several periods. Thereby, we allow re-encryptions in
every period such that re-encryption keys—in the same way as secret keys—are
bound to a period. Furthermore, we align our PRE definitions with Ateniese et
al. as well as Libert and Vergnaud [4, 5, 33] such that if we only have a single
period, then they are equivalent to the definitions for plain PRE in [5, 33].13

Definition 5 (fs-PRE). A forward-secure prozy re-encryption (fs-PRE) scheme
with message space M consists of the PPT algorithms (Setup, Gen, Evo, Enc,
Dec, ReGen, ReEvo, ReEnc) where Enc = (Enc(j))je[g] and Dec = (Dec(j))je[g]
for levels j € [2]. We denote level-2 ciphertext as re-encryptable ciphertexts,
whereas level-1 ciphertexts are not re-encryptable.

13 Observe that for a single period, i.e., n = 1, Evo and ReEvo in Definition 5 are not
defined. Dropping these algorithms and the corresponding evolution keys ek and rek
yields a plain PRE scheme.

Setup(1%): On input security parameter k, outputs public parameters pp.

Gen(pp,n): On input public parameters pp, and number of periods n € N, out-
puts public and secret keys (pk, (sk(o),ek(o))).

Evo(sk(i),ek(i)): On input secret key sk and evolution key ek for period i €
{0,...,n—2}, outputs a secret key sk and evolution key ek 1) for period
14 1.

Enc(j)(pk,M,i): On input a public key pk, a message M € M, and period i €
{0,...,n — 1}, outputs a level-j ciphertext C.

Dec(j)(sk(i), C): On input a secret key sk, for period i € {0,...,n — 1}, and
level-j ciphertext C, outputs M € MU {L}.

ReGen(skx), ekfj), pkg): On input a secret key skg) and a evolution key ekg) (or
1) for A and period i € {0,...,n— 1}, and a public key pkg for B, outputs
a re-encryption rkgLB and re-encryption-evolution key rekgLB (or L).

ReEvo(rkEZLB, rekﬁLB) : Oninput a re-encryption key rkXLB, and a re-encryption-

evolution key rek(j)_ﬂg for period i € {0,...,n — 2}, outputs a re-encryption

key rkfji% and re-encryption evolution key rek(jilj% for the period i + 1.

ReEnc(rkijB,CA): On input a re-encryption key rkXLB, and a (level-2) ci-
phertext Cy for user A, outputs a (level-1) ciphertext Cp for user B.

Correctness. For correctness, we basically require on the one hand that ev-
ery ciphertext encrypted for some period i can be decrypted with the respec-
tive secret key from period i. On the other hand—when also considering re-
encryptable and re-encrypted ciphertexts—we require that level-2 ciphertexts
encrypted for period i can be re-encrypted with a suitable re-encryption key
for the same period and then decrypted using the (delegatee’s) respective se-
cret key for period i. More formally, for all security parameters k € N, all
public parameters pp < Setup(1¥), any number of periods n € N and users
U € N, all key tuples (pku,skgo),ekgo))uem generated by Gen(1%,n), any pe-
riod i € {0,...,n — 1}, for any u € [U], any evolved key skgj"’l) generated by
Evo(sk'"), for all u’ € [U],u # «/, any (potentially evolved) re-encryption and

re-encryption-evolution keys rkijU, and rekiiu,7 respectively, for period i gen-
erated using ReGen from (potentially evolved) secret and evolution keys as well

as the target public key, and all messages M € M, it holds that

Vi€ [2] 35 € 2] : Dec)(sk® Enc(pk,, M,i)) =
Dec(l)(skgf,), ReEnc(rk(i) Enc® (pk,, M,7))) =

u—u’’

)

3.2 Security of Forward-Secret Proxy Re-Encryption

The security notions for fs-PRE are heavily inspired by the security notions
of (plain) PRE [4, 5, 33] and forward-secret PKE [15]. We will discuss multi-
ple notions, combine them carefully, and introduce forward-secret indistinguish-
ably under chosen-plaintext attacks for level-1 and level-2 ciphertexts (termed

fs-IND-CPA-1 and fs-IND-CPA-2, respectively) which we argue to be reason-
able notions in our setting. Additionally, we define a new (stronger) variant of
indistinguishably-under-chosen-plaintext-attacks security for fs-PRE (dubbed fs-
RIND-CPA) that focuses on malicious users in the face of honest proxies. In
particular, the latter strengthen the folklore PRE security notion.

For all experiments defined in this section, the environment keeps initially
empty lists of dishonest (DU) and honest users (HU). The oracles are defined as
follows:

Gen(h)(pp,n): Run (pk,sk,ek) < Gen(pp,n), set HU < HU U {(pk, sk,ek)}, and
return pk.

Gen¥ (pp,n): Run (pk,sk,ek) < Gen(pp,n), set DU < DU U {(pk, sk, ek)}, and
return (pk, sk, ek).

ReGen!” (] pk,,pk): On input a period j, a public key pk, and a public key
pk, abort if (pk,,-,) & HU. Otherwise, look up skg)) and ekq(LO) corresponding
to pk, from HU. If j > 0 set (sk{”, ek} « Evo(sk{! ™ ek for i € [j].
Return ReGen(skqgj), ek&j), pk).

ReGen(h/)(j7 sk(o),ek(o),pku): On input a period j, secret key sk(® evolution
key ek and a public key pk,, abort if (pk,,-,) &€ HU. Otherwise, if j > 0

set (sk@, ek@) «— Evo(ski V) ek(’ DY for i € [j]. Return ReGen(sk'?), ek,

Ku)-

ReGen (d) (], sk® ek® pky): On input a period j, secret key sk© . evolution key
ek®, and a public key pk,, abort if (pkg,-,-) & DU. Otherwise, if j > 0
set (sk® ek®) « Evo(sk™Y, ek) for i € [j]. Return ReGen(sk?), ek?,
pkg)-

fs-IND-CPA-i security. We start with the definition of fs-IND-CPA-1 and
fs-IND-CPA-2 security for fs-PRE. Inspired by the work on forward secrecy due
to Canetti, Halevi, and Katz [15], our experiments lift standard PRE security
notions as defined in Ateniese et al. [4] (AFGH) to the forward-secrecy setting.
More concretely, after the selection of a target period j* by the adversary A,
A gets access to the secret and the evolution key (sk(j*),ek(j*)) of the target
period j*, while the challenge ciphertext for A-chosen message M, is generated
for period j* — 1, for uniform b « {0, 1}. Eventually, A outputs a guess on b.
We say A is valid if A only outputs equal-length messages |My| = |M;| and
1 <5 <n.

Furthermore, we adapted the AFGH security experiment such that A has
access to re-encryption and re-encryption-evolution keys for period j* — 1. Anal-
ogously to previous work on PRE, we present two separate notions for level-1 and
level-2 ciphertexts. The corresponding security experiments are given in Experi-
ment 2 and Experiment 3. The only difference in Experiment 2 is that for level-1
ciphertexts, i.e., the ones which can no longer be re-encrypted, the adversary
gets access to more re-encryption and re-encryption-evolution keys (obviously,
the challenge ciphertext in that experiment is a level-1 ciphertext).

. fs—ind—cpa—1
Experiment Expg pre 4 (1%, n)

pp < Setup(1¥), (pk, sk®, ek(®) « Gen(pp,n),b < {0,1}

(j*,st) < A(pp,n, pk) A

(sk'9), ek@)) « Evo(sk =1, ekU=1) for j € [57].

O <« {Gen(h), ReGen(h>(j* — 1,-,pk), ReGen(h,)(j* — 1,5k(@ ek, s Gen(®),
ReGen @ (5* — 1,sk(0)7ek(0'), 1

(Mo, My, st) < A°(st, skl ekl™)

b* « A(st, Enc® (pk, My, j* — 1))

if b = b* return 1, else return 0

Experiment 2. The fs-IND-CPA-1 security experiment for level-1 ciphertexts of fs-
PRE schemes.

. fs—ind—cpa—2
Experiment Exp pre 4 (1%, n)

pp < Setup(1¥), (pk,sk(®, ek®) < Gen(pp, n),b < {0, 1}

(j*,st) < A(pp,n, pk) A

(sk'), ek(@)) « Evo(sk ™1, ekU=Y) for j € [57].

O+ {Gen(h), ReGen(h)(j*‘ -1, -,vpk), ReGenW)(j* — 1,5k, ek(® 9}
(Mo, My, st) « A (st,skU™) ek@™))

b* « A(st, Enc® (pk, My, j* — 1))

if b = b* return 1, else return 0

Experiment 3. The fs-IND-CPA-2 security experiment for level-2 ciphertexts of fs-
PRE schemes.

Definition 6 (fs-IND-CPA-i). For a polynomially bounded function n(-) > 1,
a PPT adversary A, we define the advantage function for A in the sense of
fs-IND-CPA-i for level-i ciphertexts as

, . . , 1
A (1) = |Pr (B0 et 0% k) = 1] - .

A fs-PRE scheme is fs-IND-CPA-i secure if for all polynomially bounded n(-) > 1

and any valid PPT A there exists a negligible function € such that Adv;ss_in,fF;Ec)'j:_i(

1%, n(k)) < e(k), where Exp;s;_in,f,{é‘jjfi, for alli € 2], are defined in Experiment 2
and Fxperiment 3, respectively.

Master-secret security. As discussed in [33], the security notion for level-
1 (i.e., non re-encryptable) ciphertexts already implies classical master-secret
security notion for PRE [4].14 However, this must not be the case in the forward-
secret setting. To formally close this gap, we give a trivial lemma (cf. Lemma 1)
which states that fs-IND-CPA-1 implies master-secret security in the sense of
Experiment 4 in the forward-secrecy setting. Essentially, master-secret security
ensures collusion safeness such that re-encryption keys in period j do not leak the
secret key corresponding to level-1 ciphertexts which can not be re-encrypted in
period j — 1. In Experiment 4, we lift master-secret security in the classical PRE

14" As we will discuss below, this notion seems to suggest false guarantees and leaves a
critical gap in the security model open.

sense to the forward-secret setting. In the experiment, the adversary A selects
an target period j* and receives the secret and evolution keys (sk(j *), ek *)) for
the target period in return. Within the experiment, A has access to several ora-
cles, e.g., to obtain re-encryption and re-encryption-evolution keys for period j*.
Eventually, A outputs secret and evolutions keys (sk*, ek™) and the experiment
returns 1 (i.e., A wins) if (sk*,ek*) = (sk¥ =Y, ekl D). We say A is valid if A
only outputs 1 < j* < n.

Experiment Expfjf;";kRE’A(lk, n)
pp < Setup(1¥), (pk, sk'®, ek(®)) « Gen(pp,)
(j*,st) < A(pp,n,pk) _
(sk'?), ek@)) « Evo(sk =1, ekU~1) for j € [57].
O <« {Gen(h>, ReGen<h)(j*, -, pk), ReGen(h')(j*, sk(® ek(®) s Gen(®, ReGen(® (j*,
ok ek(®))}
(sk™, ek™) + Ao(s';,sk(j*), ek(j*))
if (sk*,ek*) = (skU" =1 ekl V) return 1, else return 0

Experiment 4. The forward secure master secret security experiment for fs-PRE
schemes.

Definition 7 (fs-master-secret security). For a polynomially bounded func-
tion n(-) > 1 and a PPT adversary A, we define the advantage function for A
in the sense of fs-master-secret security as

Adv?;_m§§E7A(1k7n(k)) = Pr EXP;S;—mSEE,A(lka”(k)) = 1] :

A fs-PRE scheme is fs-master-secret secure if for all polynomially bounded n(-) >

1 and any valid PPT A there exists a negligible function € such that Adv;s;mlngﬁA(

1%, n(k)) < e(k), where Exp?;_mSEEVA is defined in Experiment /.

We now show that this notion in the sense of Definition 7 is trivially implied by
fs-IND-CPA-1 security for fs-PRE in the sense of Definition 6.

Lemma 1. If a fs-PRE scheme is fs-IND-CPA-1 secure in the sense of Defi-
nition 6, then the same fs-PRE scheme is fs-master-secret secure in the sense
of Definition 7.

Proof sketch. Tt is trivial to see that any successful PPT adversary on the fs-
master-secret security of a fs-PRE scheme can be transformed into a PPT ad-
versary on the fs-IND-CPA-1 security of that fs-PRE scheme. (Essentially, any
PPT adversary that is able to gain access to the secret key of the prior period
can trivially distinguish ciphertexts for the same period.)

The problem with (fs-)PRE security. A problem with the notion of standard
(i.e., IND-CPA and master secret) security for (plain) PRE and also our fs-PRE
notions so far is that the secret keys used for level-1 (i.e., non re-encryptable)
and level-2 (i.e., re-encryptable) ciphertexts can be independent. Consequently,
although ciphertexts on both levels can be shown to be indistinguishable, this

does not rule out the possibility that ciphertexts on level-2 reveal the respective
level-2 secret key of the sender to an legitimate receiver. This is exactly the reason
for the gap in the plain PRE model which allows to leak a “level-2 secret key”
once a re-encryption has been performed while all security properties are still
satisfied (we provide an example for such a scheme in Section 4.4). In particular,
this allows the receiver to potentially decrypt any level-2 ciphertext. We provide
a solution in form of a stronger security notion which we term fs-RIND-CPA
security in the following.

fs-RIND-CPA security. We observe that existing PRE notions only consider
that (1) as long as the users are honest, the proxy learns nothing about any
plaintext, and (2) if proxies and users collude they do not learn anything about
the ciphertexts which are not intended to be re-encrypted. We go a step further
and consider malicious users in the face of an honest proxy in the forward-
secret and, hence, also in the plain PRE sense. That is, we want to enforce that a
malicious user can only read the ciphertexts which were actually re-encrypted by
the proxy and can not tell anything about the ciphertexts which can potentially
be re-encrypted. We capture this via the notion of fs-RIND-CPA security. In this
scenario, an adversary receives re-encrypted ciphertexts generated by an honest
proxy, that it is able to decrypt. Nevertheless, for all other level-2 ciphertexts,
the adversary should still be unable to recover the plaintext. In Experiment 5,
we model this notion where the adversary gets access to a ReEnc-oracle which
is in possession of the re-encryption key from the target user to the adversary.
We say A is valid if A only outputs 1 < j* < n and equal length messages
|Mo| = [M].

Experiment Exp?;i;‘ég’cff (1%, n)
pp < Setup(1*), (pk, sk(®, ek®) « Gen(pp,n),b il {0,1}
(j*,pk",st) < A(pp,m,pk)
(sk?), ek@)) « Evo(skU =1 ekU=D) for j € [5*]
rk + ReGen(sk“*), 1, pk*)
(Mo, My, st) « AReEnc(t I} (gt)
b* « A(st,Enc® (pk, My, j*))
if b = b* return 1, else return 0

Experiment 5. The fs-RIND-CPA security experiment for fs-PRE schemes.

Definition 8 (fs-RIND-CPA). For a polynomially bounded function n(-) and
a PPT adversary A, we define the advantage function for A in the sense of

fs-RIND-CPA as
. . 1
AR (0¥ (1) = [P [l B 0% k) = 1] - 3.

A fs-PRE scheme is fs-RIND-CPA if for all polynomially bounded n(-) and
fs—rind—cpa

any valid PPT A there exists a negligible function € such that Advfs—PREA (
1%, n(k)) < e(k), where Exp?;i;?zgiza is defined in Experiment 5.

We distinguish fs-PRE schemes based on this last notion:

Definition 9 (fs-PRE™-security). If a fs-PRE scheme is fs-IND-CPA-1 and
fs-IND-CPA-2 secure, then we say this fs-PRE scheme is fs-PRE™ -secure.

Definition 10 (fs-PRET-security). If a fs-PRE scheme is fs-IND-CPA-1, fs-
IND-CPA-2, and fs-RIND-CPA secure, then we say this fs-PRE scheme is fs-
PRE™ -secure.

3.3 Stronger Security for Proxy Re-Encryption

To conclude the discussion of the security model of fs-PRE schemes, we first
observe that it is interesting to consider the notion of fs-RIND-CPA security
in the classical setting for PRE, i.e., Experiment 5 with fixed n = 1 and no
call to the Evo algorithm. The notion again ensures involvement of the proxy
for the re-encryption of every ciphertext, and can, thus, enforce that malicious
users cannot learn anything beyond the explicitly re-encrypted ciphertexts. This
immediately leads to a stronger security model for classical PRE (given in the
full version), which we denote as PRE™. In particular, it extends the classical
model [4], dubbed PRE™, which covers standard (IND-CPA) and master-secret
security definitions, by our fs-RIND-CPA security notion ported to the PRE
setting. As our fs-IND-CPA-i notions for fs-PRE are generalizations of the es-
tablished standard security notions of PRE as defined in [4], we consequently
obtain a PRET-secure PRE scheme from any fs-PRE"-secure fs-PRE scheme. We
formalize this observation via Lemma 2.

Lemma 2. Any fs-PRE™ -secure fs-PRE scheme yields a PRE™ -secure PRE scheme.

In the full version, we formally prove this lemma. This immediately gives us a
construction for a PRE'-secure PRE scheme.

Corollary 1. Scheme 3 when limited to a single time period, i.e., settingn =1,
represents a PRET -secure PRE scheme.

4 Constructing fs-PRE from Binary Tree Encryption

In this section we present our construction of fs-PRE which is based on BTEs.
Along the way, we introduce the notion of forward-secret delegatable PKE (fs-
DPKE) as intermediate step. Such a fs-DPKE scheme then directly gives us a
first fs-PRE satisfying fs-PRE™ security. To extend our construction to satisfy the
stronger fs-PRE™ notion generically, we require a relatively mild homomorphic
property of the fs-DPKE. This property is in particular satisfied by our fs-DPKE
instantiation, which yields the first fs-PRE scheme with strong security.

4.1 Forward-Secret Delegatable Public-Key Encryption

We now formalize fs-DPKE. In such a scheme decryption rights within a public-
key encryption scheme can be delegated from a delegator to a delegatee and
secret keys of delegators can be evolved so that a secret key for some period e;
is no longer useful to decrypt ciphertexts of prior periods e; with j < ¢.

Definition 11 (fs-DPKE). A forward-secret delegatable PKE (fs-DPKE) scheme
with message space M consists of the PPT algorithms (Setup, Gen, Evo, Del, Enc,
Dec, DelEvo, DelDec) as follows:

Setup(lk): On input security parameter k, outputs public parameters pp.

Gen(pp,n): On input public parameters pp, and mazimum number of periods n,
outputs public, secret and evolution keys (pk,sk(o),ek(o)).

Evo(sk(i),ek(i)): On input secret key sk(i’), and evolution key ek for period
i € {0,...,n — 2}, outputs secret key sk and evolution key ek for
period i + 1.

Del(sk(j), ek(j), pkg): On input secret key skx) and evolution key ekx) (or L) for
A and period i € {0,...,n—1}, and public key pkg for B, outputs delegated
key dk® and delegated evolution key dek® (or L) for period i.

Enc(pk, M,i): On input a public key pk, a message M € M, and period i €
{0,...,n — 1}, outputs a ciphertext C.

Dec(sk(i),C): On input a secret key sk, for period i € {0,...,n — 1}, and
ciphertext C, outputs M € MU {L}.

DeIEvo(dk(i), dek(i)): On input a delegation key dk® and delegated evolution key
dek® for periodi € {0,...,n—2}, output delegation key dkY and delegated
evolution key dek* Y for period i + 1.

DeIDec(skg), dkijB, Ca): Oninput secret key skg) for B and period i € {0, ...,
n— 1}, delegation key dkEZLB from A for B and period i, and ciphertext C 4
for A, outputs M € MU {1}.

We note that the existence of the DelEvo algorithm is entirely optional. If pro-
vided, it allows the user in possession of a delegation key to evolve it for later
periods without additional interaction with the delegator.

Correctness. For correctness we require that period 7 ciphertexts encrypted
for user u can be decrypted if one is in possession of the secret key of u evolved
to that period or one possess a delegation key of u to another user u’ and the
secret key for u’ for that period. More formally, we require that for all security
parameters k € N, all public parameters pp generated by Setup(1¥), all number
of periods n € N, all users U € N, all key tuples (pk,,, ska)), ek&o))ue[U] generated
by Gen(pp,n), any period i € {0,...,n — 1}, for any v € [U], any evolved
keys (sk{?, ek()) generated by Evo from (sk'”,ek(®), for all v/ € [U],u # u/,
any (potentially evolved) delegation key qu(f)_m, for period ¢ generated using
Del from a (potentially evolved) secret key and the target public key, and all
messages M € M it holds that

Dec(sk”), Enc(pk,, M, i)) = DelDec(sk"?, dk'”

u’ u—u’?’

Enc(pk,, M,i)) = M.

Security notions. The forward-secret IND-CPA notion is a straight-forward
extension of the typical IND-CPA notion: the adversary selects a target period
and gets access to secret and evolution keys of the targeted user for the selected
period and is able to request delegation keys with honest and dishonest users

for that period. The adversary then engages with an IND-CPA style challenge
for the previous period. For the experiment, which is depicted in Experiment 6,
the environment keeps a list of an initial empty list of honest users HU.

Gen(h)(pp,n): Run (pk,sk,ek) < Gen(pp,n), set HU < HU U {(pk, sk,ek)}, and
return pk.

Del(h)(j, pk,, pk): On input a period j, a public key pk, and a public key pk,
abort if (pk,,-) & HU. Otherwise, look up sk{”, ek(®) corresponding to pk,
from HU, set (sk{”), ek} « Evo(sk'™1) ek(i=Y)) for i € [j] if j > 0, and
return Del(sk{?, ek?), pk).

Del®) (J, sk(o), ek(o), pk,): Oninput a period j, a secret key sk(o), a evolution key
ek® and a public key pk,, abort if (pk,, -) & HU. Otherwise, set (sk@, ek®) «
Evo(sk® ™, ek~ for i € [4] if j > 0, and return Del(sk', ek pk,).

Experiment Expif;i"g;,gg?A (1%, n)
pp < Setup(1¥), (pk, sk(®, ek®) «— Gen(pp,n),b il {0,1}
(j*,st) < A(pp,n, pk) _
sk@) ek@ « Evo(sk? =1 ek =) for j € [5*].
O+ {Gen(h), Del(h)(j* —1,-,pk), Del(hl>(j* —1,sk(@ ek©®, 9}
(Mo, My, st) < A9 (st,skl™) ek@)))
b* «+ A(st, Enc(pk, My, 5" — 1))
if b =0" return 1, else return 0

Experiment 6. The fs-IND-CPA security experiment for a fs-DPKE scheme.

Definition 12 (fs-IND-CPA). For a polynomially bounded function n(-) > 1,

a PPT adversary A, we define the advantage function in the sense of fs-IND-
CPA as

, . 1

A B2 (14,01 = |Pr (B B2y (14, n(0) = 1] = 3.

If for all n(-) > 1, and any A there exists a negligible function € such that
fs— DPKE, A(1¥,n(k)) < e(k), then a fs-DPKE scheme is fs-IND-CPA secure.

4.2 Constructing fs-DPKE from BTE

Now we construct a fs-DPKE scheme from a BTE scheme by applying the CHK
compiler to a BTE and combining it with an F-HPKE scheme for handling the
delegation keys, i.e., the fs-DPKE key contains a BTE and an F-HPKE key. The
evolution key contains the secret and derivation keys for all right siblings on the
path from the root node to w? as well as the evolution key for w. The evolution
algorithms traverse the tree in a depth-first manner, hence the evolution keys
are viewed as stack and when visiting a node, the derived secret and derivation
keys are pushed onto the stack. To simplify the presentation of the scheme, we
define an algorithm DFEval that performs the stack manipulation on a stack of
pairs:

(w

DFEvaI(sgwl)7 s,Eval): On input the stack s and first element s;) of the pair
for node w?, an algorithm Eval, perform the following steps:

— Pop the topmost element, (L, S(le)), from the stack s.
— If w’ is an internal node, set s(wio)7 s(w') o Eval(s&wl), sgwl)) and push
s(“’il), s(®'0) onto s.
(W) (w'th) ; (w
Replace the topmost element, (s; , S5), with (L, sy
i+l
Return sgw) and the new stack s.

i+1)

).

The overall idea is now to encrypt the BTE secret key of the current period using
the F-HPKE scheme’s public key of the target user. Using the homomorphic
property of the encryption scheme, we are able to evolve the delegation keys in
the same way as the secret keys of the nodes. In particular, we will require that
the key derivation algorithm of the BTE can be represented by functions in F,
i.e., Dergte = (fi)ie[m)- For notional simplicity, we will write Evalppke(DerpTe, -)
instead of repeating it for each f; that represents Dergre.

For our fs-DPKE scheme we need keys of different users to live in compatible
key spaces. To that end, we introduce Setup algorithms for both schemes that
fix the key spaces and we change the key generation algorithms to take the
public parameters instead of the security parameter as argument. Note that
when using the BTE from [15], linear ElGamal [11] as F-HPKE to encrypt the
BTE keys suffices for our needs.

Our construction. The fs-DPKE scheme is detailed in Scheme 1. We note that
only the definition of DelEvo relies on the homomorphic properties of the HPKE
scheme. So to obtain a fs-DPKE scheme without DelEvo algorithm, a compatible
PKE scheme is sufficient. Yet, we will require the homomorphic properties later to
achieve a suitable notion of adaptability regardless of the availability of DelEvo.

Similar to Canetti et al.’s construction, our fs-DPKE scheme inherits the
fs-IND-CPA security from the BTE’s IND-SN-CPA security.

Theorem 1. If instantiated with an IND-SN-CPA secure BTE scheme and a
IND-CPA secure HPKE scheme, then Scheme 1 is a fs-IND-CPA secure fs-
DPKE.

Proof. We prove the theorem using a sequence of games. We denote by W all
the relevant nodes in the binary tree for period j. We note that the size of W is
bounded by log,(n). We index W as w; for i € [|W]].

Game 0: The original game.

Game 1, ; (1 <i<gpgn,1 < j < 2|W|): As the previous game, but we replace
all HPKE ciphertexts up to the j-th one in the i-th query with ciphertexts
encrypting random plaintexts. That is, we modify the Del” in the i-th query
as follows:

Del” (7, k(@ ek(®) pk;): Up to the j-th call to Encypke, encrypt a uniformly
random value.

Let (Setupgrg, Gengre, Dergre, Encgre, Decgte) be a BTE scheme and (Setupypge,
GeanKE, EnchKE, DechKE, EvaIHpKE) a compatible f—HPKE scheme with DerBTE e F.

Setup(1*) : Set ppgre + Setupgre(1*), ppupke — Setupypye (1), and return (ppgre,

PPHPKE)-
Gen(pp,n) : Parse pp as (ppgre, PPupke). Choose £ such that n < 241 set (pkgre,

skispe, dkie) + Gengre(ppgre, £) and (pkypye, skipke) « Genwpke (pPupie), and
return ((Pkare, Pkiypxe), (ke skipice), (L dkisye))-

Evo(sk(i),ek(i)) . Parse sk® as (sk(Bl-‘Fé),skaKE) and view ek(® organized as a stack of
secret key and evolution keys pairs. Set sk(BuTjgl),ek(i“) — DFEvaI(skg;},ek(i),
Dergre), and sk 1) « (sk(Bﬁ:l),skaKE). Return sk k(1)

Enc(pk, M,) : Parse pk as (pkgrg, ‘), and return Encgre(pkgre, M, w").

Dec(sk®, C) : Parse sk® as (sk2¢,-), and return Decgre(sk$2, C).

Del(skfj), ek(Ai), pkg) : Parse skfj) as (skg#;), -) and pkg as (-, pkypke)- If eki‘i) = 1, return

Encrpke (PKupke; ské’#;)). Otherwise parse ek as (sk(qu)r)E, dkf;#é)wew, (, dkgﬁ’-g), and
set dk™) < Encupe (pkupie skivt) and dek™) < Encupe (pkupie, dkiet) for w €
WU {w'}. Set dk® « dk®") and dek® « (dk®, dek™)ew, (L, (dek™")) and
return dk®, dek®.

DeIEvo(dk(AiLB,dek(AiLB): Parse dk(ng as dk(Awi)B and view dek(ng organized as

a stack of encrypted evolution keys. Set dkgwigi,dekifilg — DFEvaI(dk;wi)B,
dek?) ., Evalupke(Dergre, -)), and dk(1) « dk{¥.). Return dk(+Y | dek(+1).

DeIDec(skg),deLB,CA): Parse skg) as (-,sknpke), set skéﬁ? < Decppke(sknpke,

dkSLB), and return DecBTE(ské?iE), Ca).

Scheme 1. fs-DPKE scheme from BTE scheme and a compatible HPKE scheme.

Transition®!t.1, Transition'is 7!.i+1, Transition!:2w121i+11: A distingu-
isher D111 (respectively Dlii?lid+1 or Dliziwi=litit) is an IND-CPA
adversary against the HPKE scheme. We construct a reduction where we
let C be a IND-CPA challenger. We modify Del” in the i-th query in the
following way:

Del” (4, sk(O), ek(®, pk,): Simulate everything honestly, but on the j-th query

choose |r| uniformly at random and run

e C(sk =))| if j is odd and |c « C(eklyzp2,) if j s even,

where ¢ + C(mg, myp) denotes a challenge ciphertext with respect to mg
and mi.
Now, the bit b chosen by C switches between the distributions of the Games.

In Game Lo n 21w all ciphertexts obtainable from Del” are with respect to ran-
dom values. Now, an adversary B winning Game Lo n.2iw| can be transformed
into a IND-SN-CPA adversary A against the underlying BTE scheme:

1. When A is first started on 1%, ¢, choose i* <= [n] and output w1

2. When A is started on pkgre, (sk™, dk™)) ey, compute (pkype, SKHPKE) <
Genppke(1%). The secret key skypke is stored in the state st and we extend
the public key to pk < (pkgtg, Pkupke)- Now start B on the extended public
key, i.e. (j%,st) < B(1%,n,pk). If i* # j*, output a random bit and halt.
Otherwise we have the secret-derivation key pairs of all nodes that are right
siblings on the path from the root node to w®@ ~1 and (if they exist) all
child nodes of w@ =1 hence we are able to simulate all oracle queries from
B honestly. Similarly, we can compute (sk(j *),dk(j *)) from the given keys.
Thus we run B9 (st,skU "), dkU")) and forward its result.

3. When A is finally started on the challenge ciphertext, the ciphertext is simply
forwarded to B and when B outputs the bit b, A returns b and halts.

When B is running within A and j* = ¢*, B has exactly the same view as in
Game Ly, n.2iwi- In this case the probability of A to win is exactly the same
as the winning probability of B, and Game 1qunh’2‘W| is computationally in-
distinguishable from the initial game. The random guess of i* so that i* = j*
induces a loss of %L, which is however bounded by a polynomial in the security
parameter. O

4.3 Constructing fs-PRE from fs-DPKE

Now we present a construction of a fs-PRE'-secure fs-PRE scheme from a fs-
DPKE scheme. Therefore, we define additional properties of fs-DPKE and show
that a fs-PRE can be directly obtained from a fs-DPKE. For our transformation to
work, we need to define an additional algorithm that allows us to homomorphi-
cally shift ciphertexts and delegation keys. That is, ciphertexts and delegation
keys are modified in such a way that the delegation keys look like randomly
distributed fresh keys, which are only useful to decrypt ciphertexts adapted to
this key. Formally, we introduce an algorithm Adapt that enables this adaption:

Adapt(dk, C): On input a delegation key dk, a ciphertext C, outputs an adapted
delegation key dk’ and ciphertext C".

Since the delegation keys in our construction are encrypted BTE secret keys, we
essentially adapt secret keys and ciphertexts from a BTE. We will see that this
adaption is possible as long as the HPKE scheme used to encrypt the BTE keys
provides a suitable homomorphism on the message space.

To adapt ciphertexts and delegation keys we extend correctness to addi-
tionally require that for any message M encrypted under the public key of A,
any delegation key dkEZL g, and any adapted delegation key-ciphertext pairs
(dK', C") < Adapt(dk{), ,C.4), it holds that M = DelDecppe (sk'Y, dk’, C").

As security notion we introduce the fs-ADAP-IND-CPA notion, where the
adversary may see multiple adapted delegation keys and ciphertexts, but the
adversary should be unable to win an IND-CPA game for non-adapted cipher-
texts. We give the formal definition of the security experiment in Experiment 7.
This notion gives the delegator more control over the ciphertexts that should

be readable for the delegatee. If given the delegation key, the delegatee can al-
ways decrypt all ciphertexts, but if just given an adapted delegation key, only a
selected subset of ciphertexts is decryptable.

. fs—adap—ind—
Experiment Exp; *5F ") P(1%,n)

pp < Setup(1¥), (pk, sk(®, ek®) « Gen(pp,n),b il {0,1}

(%, pk", st) <= A(pp, n, pk)

sk@) ek « Evo(skV™V ekU=b) for j € [j*], dk « Del(sk™), L, pk*)
(Mo, Ml, St) < A{Adapt(dk’A)} (St)

b* + A(st, Enc(pk, My, "))

if b = b* return 1, else return 0

Experiment 7. The fs-ADAP-IND-CPA security experiment for a fs-DPKE scheme.

Definition 13 (fs-ADAP-IND-CPA). For a polynomially bounded function
n(-) > 1, a PPT adversary A, we define the advantage function in the sense of
fs-IND-CPA as

; 1
Pr [t ™0t () = 1] - .

AdVE B (1 (k) = 2

If for all n(-) > 1, and any A there exists a negligible function € such that
Adv® agﬁ’KEmf‘ Cpa(lk n(k)) < e(k), then a fs-DPKE scheme is fs-ADAP-IND-
C’PA secure.

For Scheme 1, this adaption can be achieved solely from key-homomorphic prop-
erties of the BTE and homomorphic properties of the HPKE, respectively. Sub-
sequently, we define the required homomorphisms. Our definitions are inspired
by [2, 40]. We focus on schemes where the secret/derived key pairs, and public
keys live in groups (G, +), and (H, -), respectively. We will require two different
properties: first, the public key is the image of the secret key under a group
homomorphism, and second, given two secret keys with a known difference, we
can map the binary tree of derived keys from one key to the other key. In other
words, the difference in the keys propagates to the derived keys.

Definition 14. Let 2 be a BTE scheme with secret/derived key space (G,+)
and public key space (H,).

1. The scheme {2 provides a secret-key-to-public-key homomorphism, if there
exists an efficiently computable group homomorphism p : G — H such that
for all (pk,sk) < Gen, it holds that pk = p(sk).

2. The scheme {2 provides a derived-key homomorphism, if there exists a family
of efficiently computable group homomorphisms v*) : G — G2 such that for
all (pk,sk®)) < Gen, all nodes w it holds that (sk®?,skY) = /() (sk(®))
and for all messages M it holds that Dec(sk™), Enc(pk, M, w)) = M.

We denote by & the set of all possible secret key differences in G. Alternatively,
it is possible to view &1 as set of functions representing all linear shifts in G
and we simply identify each shift by an element A € G.

Definition 15. A BTE scheme (2 is called T -key-homomorphic, if it provides
both a secret-key-to-public-key homomorphism and a derived key homomorphism
and an additional PPT algorithm Adapt, defined as:

Adapt(pk, C, A): On input a delegation key dk, a ciphertext C' and a secret key
difference A, outputs a public key pk’ and a ciphertext C'.

such that for all A € &%, and all (pk,sk) « Gen(...), all message M, and all
C + Enc(pk, M), and (pk’,C") < Adapt(pk,C, A) it holds that pk’ = pk - u(A)
and Dec(sk™) + () (A),C") = M.

Definition 16 (Adaptability of ciphertexts). A &1 -key-homomorphic BTE
scheme provides adaptability of ciphertexts, if for every security parameter k €
N, any public parameters pp < Setup(1¥), every message M and every period
J, it holds that Adapt(pk, Enc(pk, M, j), A) and (pk - u(A), Enc(pk - u(A), M, 5))
as well as (sk,pk) and (sk’, u(sk’)) are identically distributed, where (pk,sk)
Gen(pp,n), sk' <= G and A + &+.

Next, we discuss the BTE from [15] with respect to our notion of ciphertext
adaptability. We first recall the BTE scheme in Scheme 2 where BGGen is a
bilinear group generator. By [15, Proposition 1] this scheme is IND-SN-CPA
secure if the decisional BDH assumption holds relative to BGGen.

Setup(1¥): Run to BGGen,(1*) to generate groups Gi,Gz of prime order ¢ and a
bilinear map e and select a random generator P € G1. Set pp < (G1,Go,e€,q, P)
and return pp.

Gen(pp, £): Choose a < Z, and set Q < a - P. Set sk'®) <« aH(e) and pk « (Q, H).
Return (pk, sk®).

Der(sk™): Parse sk*) as (Ruj1,--+»Rw,Sw). Choose 7,71 &7, and set
Rwi « 7P and Swi « Sw + 1 - H(wi) for ¢ € [2] and return
((Rwj1s- -+ Ruws Rwo, Swo), (Ruj1s - - - Ruws Ruwt, Swi)))-

Enc(pk, M,7): Choose v < Zq and set C < (y- P,v- H(w|1),...,v- H(w),M -e(Q,~ -
H(¢g))). Return C.

Dec(sk™), C): Parse sk as (Ry1, ..., Ruw, Sw) and C as (U, ..., Us, V). Return M =
V/d where

e(Uo, Sw)

d = =t o
[Tiz: e(Ruwi, Us)

Scheme 2. BTE scheme from [15]

Now we show that Scheme 2 also provides adaptability of ciphertexts:

Lemma 3. Scheme 2 provides adaptability of ciphertexts under shared H.

Proof. We show the existence of the homomorphisms and give the Adapt al-

gorithm. Note that the master secret key can easily be viewed as containing «,

hence, the secret-to-public-key homomorphism is simply p : a — aP. As the Der

algorithm simply computes sums, the existence of the homomorphism is clear.
We now show the existence of Adapt:

Adapt(pk, C, A): Parse pk as (Q,¢,H) and C as (Ug,..., U, V). Let Q' + Q +
A - P and set pk' «+ (Q', ¢, H). Let V' < Ve(Uy, A - H(¢)) and set C' «+
(Uo, . ..,Us, V') and return (pk’,C").

The adapted C’ ciphertext is an encryption of the original message under the
public key Q' =Q + A - P. O

Now, given any &'-key-homomorphic BTE scheme, it can be turned into an
adaptable fs-DPKE by defining Adapt in a publicly computable way as follows:

Adapt(dk'{, ., C): Sample A <% &+ and compute dka < Encupke(pky, () (
A)), and then dk’ < Evalupke(+, dk't, 5, dka). Set (-,C”) < Adaptgre(pk 4,
C, A). Return (dk',C").

Theorem 2. If in addition to the premise in Theorem 1 the BTE scheme also
provides adaptability of ciphertexts, then Scheme 1 is a fs~ADAP-IND-CPA se-
cure fs-DPKE scheme.

Proof. We prove this theorem with a sequence of games.

Game 0: The original game.
Game 1: We modify the simulation of the Adapt oracle as follows, where we
denote the modified oracle by Adapt’:

Adapt’ sk, pk, pk*|, C): Parse sk as (sk(Bq”%iE), -), pk as (pkgtE,*), and pk*
as (-, pkjjpke). Choose A +— & run

‘dk’ — EnchKE(pkﬁPKE,sk(Bﬁig + V(wi)(A))‘ and
‘C’ < Encgre(pk - n(4), DecBTE(sk(i),C),i)‘. Return (dk’, C").

Transition®!: The distributions of Game 0 and Game 1 are indistinguishable
under the BTE’s adaptability of ciphertexts.
Game 2: We further modify the simulation of Adapt’ as follows:

Adapt’(jsk'?, pk*|,C): Parse sk as (skéﬁ2,~), pk as (pkgtg,), and pk* as

(-, pkiipke)- Choose ‘pkgTE, sk;(TEE), ekig’(TEE) — GenBTE‘ and evolve the secret

key to period ¢, run

‘dk’ <+ Encrpke(pkijpkes SkéSFQEZ))‘ and

C’ Encere(pke, Decgre(sk™, ©), 1)]. Return (dk', C").

Transition'72: The change is conceptual.

In Game 2 all the secret BTE keys the adversary gets are chosen independently
from the challenge key. Hence, Game 2 is a standard IND-CPA game and thus
the success probability of Game 2 is negligible by Theorem 1. ad

Now, given an adaptable fs-DPKE scheme, we use the Adapt algorithm to obtain
a fs-PRE™ secure fs-PRE scheme. While the algorithms Setup, Gen, Evo, Enc(i),
and Dec” can simply be lifted from the fs-DPKE scheme, we note that for
each period j in the fs-PRE scheme, we use two periods, i.e., 2j — 1 and 2j, of
the fs-DPKE scheme. The period 25 — 1 is used for level 1 ciphertexts whereas
the period 2j is used for level 2 ciphertexts'®. We use Delppke and DelEvoppke
for ReGen and ReEvo, respectively. For the re-encryption algorithm ReEnc, we
apply Adapt. DecV) for re-encrypted ciphertexts then decrypts the ciphertext
by running DelDecppke on the adapted delegation key and ciphertext. The full
scheme is presented in Scheme 3.

Let (SetupDPKE, GenDpKE, Evoppke, DeIDpKE, Encppke, DechKE, AdaptDPKE) be fs-DPKE
scheme with adaption of ciphertexts and delegation keys.

Setup(1¥) : Return Setupppye(1¥).

Gen(pp,n) : Set (pkppke; SkE)OF?KB ekI(DOP)KE) < Genppke(pp; 2n+1), obtain (Skl(DngKB ek(DlF?KE)

+ Evoppke(skipke, ekine), and return (pkppye, sk, ek®), where
0 0 1 0 0 1
sk® = (skipres Skipe)s ek <= (ekie: ekiake)-

Evo(sk™,ek®) : Parse (sk®,ek() as ((sk,(f,f,)(E,skE)Q,f:El)), (ek,(DQFf&E,ekE)QFf:El))) and return

(sk(1), ek) = (skipe” s skipe) (ko ekpoxe), where
(skopwe s ekppxe) + Evoopke (skipxe s ek) for j € [2].

Enc®(pk, M, i) : Return Encppxe(pk, M, 27).

Enc® (pk, M, i) : Return Encppke(pk, M, 2i + 1).

DecV(sk?,C) : Parse sk as (skg;,)(E,sngf;é)) and return Decppke(sk?”, 0) if C
was not re-encrypted. Otherwise parse C as (Ci,rk) and return DelDecppke(
sk vk,).

Dec® (sk®, C) : Parse sk® as (skize, skit!)) and return Decppie(sk® 1), 0).

ReGen(sky, ek}, pkpp) : Parse (sk™),ek(™) as ((skipke: ki): (ekipke: ekipre));
and Delppke (sk ™, ek pk).

(%)

ReEvo(rk) ., rek’) .) : Return DelEvoppe (DelEvoppke(rk't., 5, rek) 1)).

ReEnc(rkijB, Ca): Choose 7 <* G and return AdaptDPKE(rkXLB, Ca,T).

Scheme 3. fs-PRE scheme from an adaptable fs-DPKE scheme.

We prove that our scheme is both fs-IND-CPA-1 and fs-IND-CPA-2 secure.
Both security notions follow from the fs-IND-CPA security of the underlying
fs-DPKE scheme. In contrast, to achieve fs-RIND-CPA, we require an fs-ADAP-
IND-CPA fs-DPKE scheme.

Theorem 3. If instantiated with a fs-IND-CPA and fs-ADAP-IND-CPA secure
fs-DPKE scheme, Scheme 3 is a fs-PRE™ -secure fs-PRE scheme.

5 One can see the keys for period 2j as weak keys in the sense of [4, Third Attempt]
whereas the keys for period 2j — 1 constitute the master secret keys.

Proof. Informally speaking, the security experiment for fs-IND-CPA-2 with a
fixed period j* corresponds to the fs-IND-CPA experiment for fs-DPKE for period
25*. We can build a straightforward reduction from an adversary against fs-IND-
CPA-2, A, to fs-IND-CPA for fs-DPKE:

— When started on pp, n and pk, run (j*,st) <= Az(pp, [5+1], pk). Set j" < 25*
and return (j’, st).

— When started on st, sk(D],;)KE7 ekg,;LE, we simulate the ReGen™ and ReGen"")
oracles using Del™ and Del™". Indeed, Del™ and Del™) return delegation
keys for period j'—1 = 2j*—1, which are re-encryption keys for period j*—1.
Using Evo we evolve skg;LE,ekgl;)KE to period j’ + 1. Set (sk(j*),ek(j*)) —
((sk,(Djl;?(E,skg;;é)), (ekgl;?(E,ek,gj,;Ié))) and start Ay on st, (sk/") ekU")) and
simply forward the result.

— Finally, when started on st and Cj/_1, Cj—; is a level 2 ciphertext for j* —1.
Hence we start As on the ciphertext and return its’ result.

To show fs-IND-CPA-1 security, we perform a similar reduction:

— When started on pp, n and pk, run (j*,st) <= Ay (pp, [§ + 1], pk). Set j" <
25* — 1 and return (j', st).

— When started on st, sk(D],;)KE7 ekg,;)KE, we simulate the ReGen and ReGen"")
oracles using Del™ and Del™) and by running DelEvo on the result. Indeed,
Del™ and Del™) return delegation keys for period j' —1 = 25* —2, hence af-
ter applying DelEvo we obtain re-encryption keys for period j* —1. ReGen®

is simulated honestly by delegating sk(Djl;)KE, ek(Djl;)KE to a dishonest user. Us-

ing Evo we evolve sk(Dj,;LE,ek(DjF/,)KE to period j' + 2. Set (skU") ekU™)) «
((sk,(DJPJKré)7 sk(D]PI?), (ek(D]PIé), ek(D]PI?)) and start A; on st, (sk¥"), ek")) and
simply forward the result.

— Finally, when started on st and Cj/_q, Cj_; is a level 1 ciphertext for j* —1.
Hence we start A; on the ciphertext and return its’ result.

To show receiver-IND-CPA security we build an fs-ADAP-IND-CPA adversary
against the fs-DPKE scheme. The fs-RIND-CPA adversary is denoted as A,..

— When started on pp, n and pk, run (j*,st) <— A.(pp, [§ + 1], pk). Set j’ <
25* + 1 and return (j', st).

— When started on st, we can simulate ReEnc honestly using Adapt.

— Wen started on st and C', the ciphertext is a level 2 ciphertext for period jx,
hence we return A, (st,C).

Note that all values are consistently distributed in all three reductions. a

4.4 Separating fs-PRE~ from fs-PRE+

To expand on the gap between fs-PRE™ and fs-PRE™ schemes and to provide an
explicit separation, we construct a counterexample. In particular, it is clear that

every scheme that satisfies fs-PRE™ also satisfies fs-PRE™. For our separation
we now present a scheme that is fs-PRE™ but trivially violates fs-PRE™. The
scheme is also built from a fs-DPKE scheme and presented in Scheme 4. In this
scheme however, ReEnc simply embeds the delegation key in the re-encrypted
ciphertext. The shortcomings of this construction compared to Scheme 3 are
obvious: once the receiver is presented with one valid re-encrypted ciphertext, it
can recover the delegation key from that ciphertext and can decrypt all level 2
ciphertexts for this period.

Let (SetupDPKE, GenDpKE, EVODPKE, DeIDpKE, EnchKE, DechKE) be fS—DPKE scheme.

Setup(1¥) : Return Setupppye(17).
Gen(pp,n) : Set (Pkppe, Skiype: ekiike) < Genopre(pp, 2n-+1), obtain (skipe, ki)

— EvonKE(skl(DOFQKE, ekl(jogKE), and return (pkppke, sk?, ek(®), where
0 0 1 0 0 1
sk « (SkE)P)KEvSkE)P)KE): ek (ekI(DFQKE’ekE)F?KE)'

Evo(sk, ek®) : Parse (sk@, ek®) as ((skg;&E,skE)Q;;é)), (ek,(DZFf&E,ekg;;El))) and return

(sk(H1), ekTD) = (skispe, skope) (koo ekpoe), where
(skipre ' ekppee) < Evoopke (skppee ekppeg) for j € [2].

Enc<1>(pk,M, i) : Return Encppke(pk, M, 2i).

Enc<2>(pk,M, i) : Return Encppke(pk, M,2i + 1).

Dec™M (sk?,C) : Parse sk as (skl(f,f,)(E,skgf:El)) and return Decppe(sk®,0) if C
was not re-encrypted. Otherwise parse C' as (Ci,rk) and return DelDecppke(
sk vk,).

Dec® (sk®, C) : Parse sk as (skimne, skoid)) and return Decppxe(sk* 1), ©).

ReGen(sk(y), ek}, pkps) : Parse (sk,ek®) as ((skiypue, skipre): (ekoue: ekione),

and return (rkEjLB, rek(j)_)B)7 where

(k%) 5, rek$) L) « Delppre sk, ek Z k).

ReEvo(rkf:LB, rekijB) : Return DeIEvonKE(DeIEvonKE(rkSLB, rek%LB)).
ReEnc(rk%LmC’A) : Return (Ca, rkEjLB).

Scheme 4. fs-PRE scheme from a fs-DPKE scheme without adaption.

In the following Theorem, we first show that Scheme 4 is indeed fs-PRE™
secure, i.e., satisfies fs-IND-CPA-1 and fs-IND-CPA-2 security, but trivially does
not satisfy fs-RIND-CPA security and thus is not fs-PRE™ secure.

Theorem 4. Scheme 4 when instantiated with a fs-IND-CPA secure fs-DPKE
scheme satisfies fs-IND-CPA-1 and fs-IND-CPA-2 security, but not fs-RIND-
CPA security.

Proof. We follow the same strategy as for Theorem 3 to show fs-IND-CPA-2.

— When started on pp, n and pk, run (j*,st) <= Az(pp, [5+1], pk). Set j" < 25*
and return (j’, st).

— When started on st,skgl;?(E,ekg,;)KE, we simulate the ReGen” and ReGen"
oracles using Del” and Del”'. Indeed, Del" and Del” return delegation keys
for period j° — 1 = 25* — 1, which are re-encryption keys for period j* — 1.
Using Evo we evolve sk,gjl;LE,ek(Djl;)KE to period j’ + 1. Set (sk(j*),ek(j*)) +—
((skg,;?(E,skg;;é)), (ekg,;?(E,ekg,;Ié))) and start Ay on st, (sk¥"), ek and
simply forward the result.

— Finally, when started on st and Cj 1, Cjs_; is a level 2 ciphertext for j* —1.
Hence we start A on the ciphertext and return its’ result.

To show fs-IND-CPA-1 security, we perform a similar reduction:

— When started on pp, n and pk, run (j*,st) <— A1 (pp, [§ + 1], pk). Set j’ <
25* — 1 and return (j’, st).

— When started on st,skgé,?(E,eng/,)KE, we simulate the ReGen” and ReGen™
oracles using Del” and Del” and by running DelEvo on the result. Indeed,

Del” and Del” return delegation keys for period j' — 1 = 25* — 2, hence

after applying DelEvo we obtain re-encryption keys for period j* — 1. ReGen?

is simulated honestly by delegating sk(Dj,;LE, eng/,)KE to a dishonest user. Us-

ing Evo we evolve sk(Djl;i(E,ek(Djl;LE to period j + 2. Set (sk(j*),ek(j*)) —
((sk,gjpzé), sk(DjP:Qé)), (ek(DjP:Zé), ek(DjP:Q?)) and start A; on st, (sk(j*), ek(j*)) and
simply forward the result.

— Finally, when started on st and Cj/_q, Cj_1 is a level 1 ciphertext for j* —1.
Hence we start A; on the ciphertext and return its’ result.

Following the initial observation on the recoverability of delegation keys, an
receiver-IND-CPA adversary is straightforward to define:

— When started on pp, n and pk, honestly generate a key (pk*,sk(o),ek(o)) +—
Gen(pp,n) and store it in st. Choose j* <% [n] and store it together with pk
in st, and return (5*, pk™, st).

— When started on st to output the challenge messages, choose Mo, My, My <& M.
Invoke the ReEnc oracle as (-, dk) < ReEnc(rk, Enc(2)(pk,M2,j*)) and store
My, My, dk in st. Return My, My, st.

— Now when started on st and the challenge ciphertext C, use dk stored in st
and obtain M < DelDecppe(sk'®) dk, C). Check for which i € {0,1}
M = M; and return 1.

Regardless of the chosen period the adversary always wins, rendering the scheme
insecure with respect to the fs-RIND-CPA notion. a

From this theorem we obtain the following corollary:
Corollary 2. fs-PRET is a strictly stronger notion than fs-PRE™.

Note that this also shows that for conventional PRE scheme there is a separa-
tion between the classical security notion of PRE (PRE™) as defined by Ateniese
et al. and the PRE™ notion.

Acknowledgments. Supported by H2020 project PRISMACLOUD, grant agree-
ment 1°644962 and by H2020 project CREDENTIAL, grant agreement n°653454.
We thank all anonymous reviewers for their valuable comments.

References

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the fiat-shamir transform: Minimizing assumptions for security and
forward-security. In: EUROCRYPT (2002)

. Applebaum, B., Harnik, D., Ishai, Y.: Semantic Security under Related-Key At-

tacks and Applications. In: ICS (2011)

Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption. In:
CT-RSA (2009)

Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: NDSS (2005)
Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1) (2006)

Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: CRYPTO
(1999)

Bellare, M., Yee, B.S.: Forward-security in private-key cryptography. In: CT-RSA
(2003)

Berners-Lee, E.: Improved security notions for proxy re-encryption to enforce access
control. In: LATINCRYPT (2017)

Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: EUROCRYPT (1998)

Blazy, O., Bultel, X., Lafourcade, P.: Two secure anonymous proxy-based data
storages. In: SECRYPT (2016)

Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: CRYPTO (2004)
Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: CRYPTO (2005)

Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke
system. In: CCS (2006)

Borceaa, C., Guptaa, A.B.D., Polyakova, Y., Rohloffa, K., Ryana, G.: Picador:
End-to-end encrypted publish-subscribe information distribution with proxy re-
encryption. Future Generation Comp. Syst. (2016)

Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: EUROCRYPT (2003)

Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
CCS (2007)

Canetti, R., Raghuraman, S., Richelson, S., Vaikuntanathan, V.: Chosen-ciphertext
secure fully homomorphic encryption. In: PKC 2017 (2017)

Chandran, N., Chase, M., Liu, F., Nishimaki, R., Xagawa, K.: Re-encryption,
functional re-encryption, and multi-hop re-encryption: A framework for achieving
obfuscation-based security and instantiations from lattices. In: PKC (2014)
Chandran, N., Chase, M., Vaikuntanathan, V.. Functional re-encryption and
collusion-resistant obfuscation. In: TCC (2012)

Cohen, A.: What about bob? the inadequacy of cpa security for proxy reencryption.
Cryptology ePrint Archive, Report 2017/785 (2017)

21.

22.

23.

24.
25.

26.
27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: STOC (2016)

Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: ASTACRYPT 2007 (2007)

Fan, X., Liu, F.H.: Proxy re-encryption and re-signatures from lattices. Cryptology
ePrint Archive, Report 2017/456 (2017)

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC (2009)
Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: ASTACRYPT
(2002)

Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: ACNS (2007)
Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: IEEE S&P (2015)

Giinther, C.G.: An identity-based key-exchange protocol. In: EUROCRYPT (1989)
Giinther, F., Hale, B., Jager, T., Lauer, S.: 0-rtt key exchange with full forward
secrecy. In: EUROCRYPT (2017)

Hanaoka, G., Kawai, Y., Kunihiro, N., Matsuda, T., Weng, J., Zhang, R., Zhao, Y.:
Generic construction of chosen ciphertext secure proxy re-encryption. In: CT-RSA
(2012)

Hohenberger, S., Rothblum, G.N.; Shelat, A., Vaikuntanathan, V.: Securely obfus-
cating re-encryption. J. Cryptology (2011)

Libert, B., Vergnaud, D.: Tracing malicious proxies in proxy re-encryption. In:
Pairing (2008)

Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: PKC (2008)

Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. IEEE Trans. Information Theory (2011)

Myers, S., Shull, A.: Efficient hybrid proxy re-encryption for practical revocation
and key rotation. Cryptology ePrint Archive, Report 2017/833 (2017)

Polyakov, Y., Rohloff, K., Sahu, G., Vaikuntanathan, V.: Fast proxy re-encryption
for publish/subscribe systems. ACM Trans. Priv. Secur. 20(4) (2017)

Ren, Y., Gu, D., Wang, S., Zhang, X.: Hierarchical identity-based proxy re-
encryption without random oracles. Int. J. Found. Comput. Sci. 21(6), 1049-1063
(2010)

Sakai, R., Furukawa, J.: Identity-based broadcast encryption. IACR Cryptology
ePrint Archive (2007)

Tang, Q.: Type-based proxy re-encryption and its construction. In: INDOCRYPT
(2008)

Tessaro, S., Wilson, D.A.: Bounded-collusion identity-based encryption from
semantically-secure public-key encryption: Generic constructions with short cipher-
texts. In: PKC (2014)

Weng, J., Yang, Y., Tang, Q., Deng, R.H., Bao, F.: Efficient conditional proxy
re-encryption with chosen-ciphertext security. In: ISC 2009 (2009)

Xu, P., Xu, J., Wang, W., Jin, H., Susilo, W., Zou, D.: Generally hybrid proxy
re-encryption: A secure data sharing among cryptographic clouds. In: AsiaCCS
(2016)

	Revisiting Proxy Re-Encryption: Forward Secrecy, Improved Security, and Applications
	Introduction
	Contribution
	Intuition and Construction Overview
	Related Work and Outline

	Preliminaries
	Security of (Forward-Secret) Proxy Re-Encryption
	Syntax of Forward-Secret Proxy Re-Encryption
	Security of Forward-Secret Proxy Re-Encryption
	Stronger Security for Proxy Re-Encryption

	Constructing fs-PRE from Binary Tree Encryption
	Forward-Secret Delegatable Public-Key Encryption
	Constructing fs-DPKE from BTE
	Constructing fs-PRE from fs-DPKE
	Separating fs-PRE- from fs-PRE+

