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Abstract. We construct two identity-based encryption (IBE) schemes.
The first one is IBE satisfying key dependent message (KDM) security
for user secret keys. The second one is IBE satisfying simulation-based re-
ceiver selective opening (RSO) security. Both schemes are secure against
adaptive-ID attacks and do not have any a-priori bound on the number
of challenge identities queried by adversaries in the security games. They
are the first constructions of IBE satisfying such levels of security.

Our constructions of IBE are very simple. We construct KDM secure IBE
by transforming KDM secure secret-key encryption using IBE satisfying
only ordinary indistinguishability against adaptive-ID attacks (IND-ID-
CPA security). Our simulation-based RSO secure IBE is based only on
IND-ID-CPA secure IBE.

We also demonstrate that our construction technique for KDM secure
IBE is used to construct KDM secure public-key encryption. More pre-
cisely, we show how to construct KDM secure public-key encryption from
KDM secure secret-key encryption and public-key encryption satisfying
only ordinary indistinguishability against chosen plaintext attacks.

Keywords: Identity-based encryption, Key dependent message security,
Receiver selective opening security.

1 Introduction

1.1 Background

Identity-based encryption (IBE) proposed by Shamir [30] is an extension of
public-key encryption (PKE). In IBE, we can use an identity of a recipient as a
public-key. The secret-key corresponding to an identity is generated only by the
trusted authority who has the master secret-key. Users can obtain secret-keys
corresponding to their identities by authenticating themselves to the trusted au-
thority. By using IBE, we can avoid distributing public-key certificates that is
one of the major issues with public-key cryptography.

Security notions for IBE capture corruptions and collusions of users. In other
words, we require that IBE guarantee confidentiality of a message encrypted
under an identity id* even if an adversary obtains a secret-key corresponding to
any identity other than id*.
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Security notions for IBE are classified into two categories, that is, adap-
tive security and selective security. An IBE scheme is said to be secure against
adaptive-ID attacks [12] if it is secure even when an adversary adaptively chooses
the challenge identity id*. On the other hand, an IBE scheme is said to be secure
against selective-ID attacks [16] if it is secure when an adversary declares the
challenge identity id* before seeing public parameters.

Security against adaptive-ID attacks is a desirable security notion for IBE
when we use it in practical situations. However, since IBE has an advanced func-
tionality compared to PKE, attack scenarios that ordinary indistinguishability
against adaptive-ID attacks does not capture can naturally occur in practical sit-
uations of IBE. As such attack scenarios, in this work, we focus on the situations
of encrypting secret-keys and the selective opening attacks.

Black, Rogaway, and Shrimpton [11] introduced the notion of key dependent
message (KDM) security which guarantees confidentiality even in situations of
encrypting secret-keys. Informally, an encryption scheme is said to be KDM
secure if it is secure when an adversary can obtain encryptions of f(ski,...,sk),
where ski, ..., sky are secret-keys that exist in the system and f is a function.

Alperin-Sheriff and Peikert [3] pointed out that KDM security with respect
to user secret-keys is well-motivated by some natural usage scenarios for IBE
such as key distribution in a revocation system. They constructed the first IBE
satisfying KDM security for user secret-keys assuming the hardness of the learn-
ing with errors (LWE) problem. Galindo, Herranz, and Villar [22] proposed an
IBE scheme that satisfies KDM security for master secret-keys based on the
hardness of a rank problem on bilinear groups. However, both of these schemes
are secure only against selective-ID attacks. Moreover, both schemes have some
a-priori bound on the number of queries made by an adversary.!

In the selective opening attack, an adversary, given some ciphertexts, adap-
tively corrupts some fraction of users and tries to break confidentiality of cipher-
texts of uncorrupted users.

There are both sender corruption case and receiver corruption case in this at-
tack scenario. Bellare, Hofheinz, and Yilek [8] formalized sender selective opening
(SS0) security for PKE that captures situations where there are many senders
and a single receiver, and an adversary can obtain messages and random coins
of corrupted senders. Hazay, Patra, and Warinschi [24] later formalized receiver
selective opening (RSO) security for PKE that captures situations where there
are many receivers and a single sender, and an adversary can obtain messages
and secret-keys of corrupted receivers.

Selective opening attacks originally considered in the context of multi-party
computation are natural and motivated in the context of IBE since it also con-
siders situations where there are many users and some fraction are corrupted.
Bellare, Waters, and Yilek [9] defined SSO security for IBE and proposed SSO
secure IBE schemes under the decisional linear assumption and a subgroup de-

! The scheme by Alperin-Sheriff and Peikert has an a-priori bound on the number
of challenge identities in the security game. The scheme by Galindo et al. has an

a-priori bound on the number of KDM encryption queries made by an adversary.
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cision assumption in composite order bilinear groups. Their definition of SSO
security for IBE captures adaptive-ID attacks in addition to sender selective
opening attacks. However, it does not take receiver selective opening attacks
into account.

It is known that the standard notions of indistinguishability imply neither
KDM security [1,18,10,28] nor selective opening security [7,26,25]. From this fact,
we know very little about the possibility of IBE satisfying these stronger security
notions than standard indistinguishability though there have been many works
on the study of IBE.

Especially, it is open whether we can construct IBE that is KDM secure
against adaptive-ID attacks and there is no a-priori bound on the number of
queries made by an adversary. For selective opening security, we have no con-
struction of IBE satisfying RSO security even if we require only security against
selective-ID attacks.

As mentioned above, attack scenarios captured by both KDM security and
selective opening security are natural and motivated for IBE. We thus think it
is important to clarify these issues.

1.2 Owur Results

Based on the above background, we propose KDM secure IBE and RSO secure
IBE. Both schemes satisfy security against adaptive-ID attacks. They are the
first schemes satisfying such levels of security.

Our constructions of IBE are very simple. We construct KDM secure IBE
by transforming KDM secure secret-key encryption (SKE) using IBE satisfying
ordinary indistinguishability against adaptive-ID attacks (IND-ID-CPA security)
and garbled circuits. Somewhat surprisingly, our RSO secure IBE is based only
on IND-ID-CPA secure IBE.

We show the details of each result below.

Key dependent message secure IBE. In this work, we focus on KDM security for
user secret-keys similarly to Alperin-Sheriff and Peikert [3], and let KDM security
indicate KDM security for user secret-keys. We show the following theorem.?

Theorem 1 (Informal). Assuming there exist IND-ID-CPA secure IBE and
SKE that is KDM secure with respect to projection functions (resp. functions
computable by a-priori bounded size circuits). Then, there exists IBE that is
KDM secure with respect to projection functions (resp. functions computable by
a-priori bounded size circuits) against adaptive-ID attacks.

Projection function is a function each of whose output bits depends on at
most one bit of an input. KDM security with respect to projection functions is
a generalization of circular security [15]. We can construct IBE satisfying KDM

2 We also use garbled circuits, but it is implied by one-way functions [31]. Thus, it is
not explicitly appeared in the statement of Theorem 1.
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security with respect to any function computable by circuits of a-priori bounded
size [6] by requiring the same KDM security for the underlying SKE.

As noted above, KDM secure IBE proposed by Alperin-Sheriff and Peikert is
only secure against selective-ID attacks. Moreover, their scheme has an a-priori
bound on the number of challenge identities in the security game. Our KDM
secure IBE is secure against adaptive-ID attacks and does not have any a-priori
bound on the number of queries made by an adversary in the security game.

To achieve KDM security for an a-priori unbounded number of challenge
identities, in our construction, the size of instances of the underlying KDM secure
SKE needs to be independent of the number of users in the security game.?

We can construct SKE that is KDM secure with respect to projection func-
tions and satisfies this efficiency requirement based on the decisional diffie-
hellman (DDH) assumption [13] and LWE assumption [5].* In addition, Ap-
plebaum [4] showed how to transform SKE that is KDM secure with respect
to projection functions into SKE that is KDM secure with respect to functions
computable by a-priori bounded size circuits.

We can construct IND-ID-CPA secure IBE under the LWE assumption [2].
Moreover, Dottling and Garg [21] recently showed how to construct IND-ID-CPA
secure IBE based on the computational diffie-hellman (CDH) assumption.

Thus, from Theorem 1, we obtain the following corollary.

Corollary 1. There exists IBE that is KDM secure with respect to functions
computable by a-priori bounded size circuits against adaptive-ID attacks under
the DDH assumption or LWE assumption.

In addition to these results, based on the construction techniques above, we
also show that we can transform KDM secure SKE into KDM secure PKE by
using PKE satisfies ordinary indistinguishability against chosen plaintext attacks
(IND-CPA security). Specifically, we show the following theorem.

Theorem 2 (Informal). Assuming there exist IND-CPA secure PKE and SKE
that is KDM secure with respect to projection functions (resp. functions com-
putable by a-priori bounded size circuits). Then, there exists PKE that is KDM
secure with respect to projection functions (resp. functions computable by a-priori
bounded size circuits).

It seems that we cannot construct KDM secure PKE from KDM secure SKE
via the straightforward hybrid encryption methodology. It leads to a dead-lock
of secret-keys of the underlying primitives and thus it is difficult to prove the
security of hybrid encryption construction. Thus, this result is of independent
interest.

3 For more details, see Remark 1 in Section 2.2.
4 More precisely, these works showed how to construct PKE that is KDM secure with
respect to projection functions and satisfies the efficiency requirement.
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Receiver selective opening secure IBE. Before our work, RSO security for IBE
has never been studied while an IBE scheme that is SSO secure was proposed
by Bellare et al. [9]. Therefore, we first define RSO security for IBE formally.
Our definition is a natural extension of simulation-based RSO security for PKE
proposed by Hazay et al. [24]. We then show the following theorem.

Theorem 3 (Informal). Assuming there exists IND-ID-CPA secure IBE. Then,
there exists IBE that satisfies simulation-based RSO security against adaptive-1D
attacks.

Somewhat surprisingly, the above theorem says that all we need is IND-ID-CPA
secure IBE to achieve simulation-based RSO secure IBE. We can obtain the re-
sult via a simple double encryption paradigm [29)].

The reason we can obtain the above result via a simple double encryption
paradigm is that in receiver selective opening attacks for IBE, we have to con-
sider the revelation of secret-keys themselves but not the random coins for key
generation since secret-keys are generated by the trusted authority in IBE.

We also observe that if we allow only revelations of secret-keys and not
the random coins for key generation, we can construct PKE satisfying such
simulation-based RSO security using any PKE satisfying ordinary IND-CPA se-
curity. This fact is somewhat obvious from some previous results [17,24] though
these works did not explicitly state it. For self-containment, we show the follow-
ing theorem.

Theorem 4 (Informal). Assuming there exists IND-CPA secure PKE. Then,
there exists PKFE that satisfies simulation-based RSO security with respect to the
revelation of only secret-keys.

To prove simulation-based RSO security against the revelation of random
coins for key generation, it seems that the underlying PKE needs to be key sim-
ulatable [19,24] in some sense. In this case, it is difficult to construct simulation-
based RSO secure PKE without relying on some specific algebraic or lattice
assumptions.

We summarize our results in Figure 1.

1.3 Overview of Our Techniques

We first give an intuition for our KDM secure IBE.

KDM secure IBE from KDM secure SKE. Our construction methodology for
KDM secure IBE is somewhat based on the recent beautiful construction of IBE
proposed by Doéttling and Garg [21,20] using new primitives called chameleon
encryption or one-time signatures with encryption. The essence of their construc-
tions is the mechanism that an encryptor who does not know the exact value of
a public-key ek of PKE can generate an “encoding” of a PKE’s ciphertext under
the public-key ek. Moreover, in their construction, the security of IBE is directly
reduced to that of PKE in the last step of the security proof.
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Fig. 1. Our results.

Based on this idea, by realizing the mechanism that an encryptor who does
not know the value of the key K of SKE can generate an encoding of an SKE’s
ciphertext under the key K of SKE, we try to transform SKE into public-key
primitives such as PKE and IBE shifting the security level of SKE to them. We
then show that we can construct KDM secure IBE (resp. PKE) based on KDM
secure SKE and IND-ID-CPA secure IBE (resp. IND-CPA secure PKE).

We emphasize that we need neither chameleon encryption nor one-time signa-
tures with encryption. IND-ID-CPA secure IBE is sufficient for our KDM secure
IBE.

Our constructions are very simple and use garbled circuits. For simplicity,
we focus on constructing KDM secure PKE to give an intuition. Suppose that
we construct a KDM secure PKE scheme KdmPKE from a KDM secure SKE
scheme SKE and IND-CPA secure PKE scheme PKE.

The encryption algorithm of KdmPKE first garbles an encryption circuit of
SKE that has a message to be encrypted hardwired, that is, Ege(-, m), and then
encrypts labels of the garbled circuit by PKE under different keys. This pro-
cess can be done without any secret-key of SKE and thus we achieve the “en-
coding” mechanism mentioned above. This construction is similar to that of
“semi-adaptively” secure functional encryption based on selectively secure one
proposed by Goyal, Koppula, and Waters [23], but our techniques for the security
proof explained below are different from theirs.

Why IND-CPA security of the underlying PKE is sufficient? One might won-
der why IND-CPA security of the underlying PKE scheme PKE is sufficient to
construct the KDM secure PKE scheme KdmPKE. To see the answer for this
question, we closer look at the construction of KdmPKE.

Let the length of a secret-key K of SKE be lenk. A public-key Kdm.ek of
KdmPKE consists of 2-lenk PKE’s public-keys {ekjva}je[lenK],ae{O,l}’ where [leng]
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denotes {1,...,lenk}. The secret-key Kdm.dk corresponding to Kdm.ek consists
of a secret-key K of SKE and lenk secret-keys of PKE corresponding to the bit
representation of K = K[1]...K[len], that is, {dk;ki; }je[lenK]' We note that

secret-keys of PKE that do not correspond to the bit representation of K are not
included in Kdm.dk.

As mentioned above, when encrypting a message m under the public-key
Kdm.ek := {ek;, a};e[lenK Lae{0,1}’ the encryption algorithm of KdmPKE first gar-
bles an encryption circuit of SKE in which m is hardwired, that is, Ege(-, m).
This results in a single garbled circuit E and 2-len labels {lab;, a}Je llen],a€{0,1}"
Then, the encryption algorithm of KdmPKE encrypts lab;j . by ek; . for every
j € [lenk] and « € {0,1}. The resulting ciphertext of KdmPKE consists of E and
these 2 - lenk ciphertexts of PKE.

When decrypting this ciphertext with Kdm.dk := (K, {dkj7K[j]}j€[lenK]),

first obtain labels corresponding to K from lenk out of 2-lenk ciphertexts of PKE
using {dk], K[j] }Je lenk] and evaluate E with those labels. This results in an SKE’s

ciphertext Ege(K, m). Then, by decrypting it with K, we obtain m.

we

In this construction, secret-keys of PKE corresponding to K, that is, {dkj K[j] }]6 flen]

are included in Kdm.dk, but the rest of secret-keys {dkj1-k[j] } (g, 2T€ DOt in-
cluded in Kdm.dk. Thus, even if an adversary for KdImPKE obtains encryptions of

key dependent messages, they cannot get information of {dk“ KLj] }J € fleny] while

they potentially get information of {ko,K } from those encryptions. In

1 je(leny]
addition, in the security proof, we use the security of PKE of instances related
to {dkj,kK[j] }je[lenK]’ but not {dkj’Km }je[lenK]' This is the reason the IND-CPA
security of PKE is sufficient to construct a KDM secure PKE scheme KdmPKE.
To see the fact, we show the outline of the proof below.

In the proof, by using the security of garbled circuits, we change the secu-
rity game without affecting the behavior of an adversary so that we generate a
challenge ciphertext under the key pair (Kdm.ek, Kdm.dk) with simulated gar-
bled circuits computed from an SKE’s ciphertext of the challenge key dependent
message m* under the key K, that is, Eqe(K, m*), where K is the secret-key of
SKE contained in Kdm.dk. By this change, we do not need m* itself, and the
ciphertext Ege(K,m*) is sufficient to simulate the security game. Thus, at this
point, we can reduce the KDM security of KIMPKE to that of the underlying
SKE.

More precisely, in the above proof, before using the security of garbled cir-
cuits, we have to eliminate the labels of garbled circuits that do not correspond

to the bit representation of K, that is, {labjal—K[ﬂ}je[lenK] from the view of the
adversary. This can be done by using the IND-CPA security of PKE of only in-

stances related to {dk] 1— K[J]}]E leny] . Therefore, we can complete the proof by

using IND-CPA security of PKE of 1nstances related to {dkj 1— K;]} but

j€[lenk]’
not {dkLK[j }je[lenK]
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Conversions of functions. One additional non-trivial point is the conversion of
functions by reductions.

In the security game of KDM security, an adversary queries a function and
obtain an encryption of the function of secret-keys. Thus, KDM security is pa-
rameterized by function classes indicating functions that an adversary can query.

In the above construction, a secret-key Kdm.dk of KdmPKE contains some
secret-keys of PKE in addition to a secret-key of SKE. Therefore, a function
queried by an adversary for KdmPKE is a function of secret-keys of PKE and
secret-keys of SKE. On the other hand, a function that a reduction algorithm
can query is a function of only secret-keys of SKE. This means that the reduction
algorithm needs to convert a function queried by an adversary for KdmPKE.

Such conversion is clearly possible if we do not care classes of functions. How-
ever, when considering KDM security, classes of functions are important since
they determine the level of KDM security. It is not clear how such conversions
affect a class of functions. Especially, it is not clear whether we can perform such
conversions for functions without changing the class of functions.

We show that such conversions are possible for projection functions and func-
tions computable by a-priori bounded size circuits. Thus, we can reduce the KDM
security for those function classes of KAmPKE to that of SKE.

These arguments hold if we replace the underlying IND-CPA secure PKE
with IND-ID-CPA secure IBE. The above construction can be seen as a special
case where the size of instances of the underlying IBE linearly depends on the
size of identity space. Thus, we can obtain KDM secure IBE from KDM secure
SKE and IND-ID-CPA secure IBE.

RSO secure IBE from IND-ID-CPA secure IBE. Our starting point of the con-
struction of RSO secure IBE is the above KDM secure IBE based on KDM secure
SKE. It seems that the above construction can be used to carry over strong se-
curity notions of SKE to IBE that we need to simulate secret-keys in some sense
in the security game. One such example, we focus on RSO security.® Actually,
in the above construction, if the underlying SKE has non-committing property
(such as one-time pad), the resulting IBE seems to gain simulation-based RSO
security.

However, it turns out that the construction is redundant and a simple double
encryption paradigm [29] is sufficient to achieve RSO security. The reason we
can construct RSO secure IBE via simple constructions is related to whether
we allow the revelation of the random coins for key generation in addition to
secret-keys or not.

Secret key vs random coins for the key generation. Hazay et al. [24] considered
the revelation of both secret-keys and random coins for key generation when
they defined RSO security for PKE. It is better to take the revelation of random
coins of the key generation into account for many applications of PKE. However,
for IBE, it is sufficient to take the revelation of only secret-keys into account.

5 We observe that another example is leakage resilience. We do not focus on it in this
paper.
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In IBE, the trusted authority generates user secret-keys and distributes them
to users. Thus, if an adversary corrupts a user, the adversary cannot obtain the
random coin used to generate the secret-key of the user since the user does not
know it. For this reason, we do not have to take the revelation of random coins
of key generation in IBE into account.b

Construction based on a double encryption paradigm. When we do not take
the revelation of random coins of key generation in IBE into account, we can
construct simulation-based RSO secure IBE via a simple double encryption
paradigm [29] without using garbled circuits.

More precisely, using an IBE scheme IBE whose identity space is ZD x {0, 1},
we construct the following new IBE scheme RsolBE whose message space and
identity space are {0,1} and ZD, respectively.

The setup algorithm of RsolBE is the same as that of IBE. When generating a
secret-key Rso.skig for identity id € ZD, the key generation algorithm of RsolBE
generates an IBE’s secret-key skiq, for the identity (id,r), where r is a freshly
generated random bit, and outputs Rso.skig := (r,skiq,). When encrypting a
message m € {0,1} for identity id € ZD, the encryption algorithm of RsolBE
generates a pair of ciphertexts (CTg, CTy), where CT,, is an encryption of m un-
der the identity (id, «) for every a € {0, 1}. The decryption algorithm of RsolBE,
given a pair of ciphertexts (CTo,CT;) and a secret-key Rso.skiq := (7, skid,r),
outputs the decryption result of CT, with skiq ..

This construction achieves a non-committing property. Suppose that we gen-
erate CT, as an encryption of 0 under the identity (id,r) and CT;_, as an
encryption of 1 under the identity (id,1 — r) when generating a ciphertext
(CTo, CTy) for the identity id, where r is the random bit contained in the secret-
key Rso.skig := (r,skiqg,) for id. We can open this ciphertext to any m € {0,1}
by pretending as if the secret-key Rso.skiq for id is (r & m,skiq r@m ). Due to
this non-committing property, we prove the simulation-based RSO security of
RsolBE.

From this result, we observe that if we take the revelation of only secret-
keys into account, we can also construct SIM-RSO secure PKE based on any
IND-CPA secure PKE. Our results on simulation-based RSO secure IBE and
PKE highlight the gap of difficulties between achieving RSO security against
revelation of only secret-keys and that against both secret-keys and random
coins for key generation. To achieve the latter RSO security for PKE, it seems
that the underlying scheme needs to be key simulatable [19,24] in some sense.

1.4 Organization

In Section 2, we introduce some notations and review definitions of cryptographic
primitives that we use as building blocks. In Section 3, we define IBE, and
introduce KDM security and RSO security for it. In Section 4, we show how

5 One additional reason is that we can always make a key generation algorithm of IBE
deterministic by using pseudorandom functions.
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to construct KDM secure IBE from KDM secure SKE and IND-ID-CPA secure
IBE. In Section 5, we show the construction of simulation-based RSO secure IBE
based on IND-ID-CPA secure IBE. In Section 6, we show how to construct KDM
secure PKE from KDM secure SKE and IND-CPA secure PKE. In Section 7, we
show how to construct simulation-based RSO secure PKE based on IND-CPA
secure PKE.

2 Preliminaries
We define some cryptographic primitives after introducing some notations.

Notations. x < X denotes choosing an element from a finite set X uniformly at
random, and y < A(z;r) denotes assigning y to the output of an algorithm A on
an input = and a randomness . When there is no need to write the randomness
clearly, we omit it and simply write y < A(z). For strings = and y, x||y denotes
the concatenation of z and y. For an integer ¢, [¢] denote the set of integers
{1,...,4}. For a string = and positive integer j < |z|, x[j] denotes the j-th bit
of x.

A denotes a security parameter. PPT stands for probabilistic polynomial
time. A function f()\) is a negligible function if f(A) tends to 0 faster than
1 for every constant ¢ > 0. We write f(\) = negl(\) to denote f(A) being a
negligible function.

2.1 Garbled Circuits

We define garbled circuits. We can realize garbled circuits for all efficiently com-
putable circuits based on one-way functions [31].

Definition 1 (Garbled circuits). Let {C,}nen be a family of circuits where
each circuit in C,, takes n-bit inputs. A circuit garbling scheme GC is a two tuple
(Garble, Eval) of PPT algorithms.

The garbling algorithm Garble, given a security parameter 1% and circuit C €
C,., outputs a garbled circuit C, together with 2n labels {Iabj,a}je[n]7a6{0,1}. The

evaluation algorithm, given a garbled circuit C and n labels {labj}je[n}’ outputs
y. As correctness, we require Eval (6‘, {labﬂ'@m}je[n]> = C(z) for every n € N,
z € {0,1}", where (6,{|abj,a}j€[n]yae{o1}) « Garble(1*, 0).

We define its security. Let Sim be a PPT simulator. We define the following
game between a challenger and an adversary A.

1. First, the challenger chooses a bit b < {0,1} and sends a security parame-
ter 1 to A. Then, A sends a circuit C € C,, and an input x € {0,1}" for the

challenger. Next, if b = 1, the challenger computes (5’, {Iabj@}je[n] ae{O,l}) —
Garble(1*,C) and returns (C’, {Iabj)x[j]}je[no to A. Otherwise, the chal-
lenger returns (C’7 {labj}je[n]> « Sim(1M,|C|,C(x)) to A.
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2. A outputs b’ € {0,1}.

We require that there exists a PPT simulator Sim such that for any PPT
adversary A, we have Advie 4 ¢ (A) = negl(X).

2.2 Public Key Encryption

A public-key encryption (PKE) scheme PKE is a three tuple (KG, Enc, Dec) of
PPT algorithms. Below, let M be the message space of PKE. The key generation
algorithm KG, given a security parameter 1*, outputs a public key ek and a secret
key dk. The encryption algorithm Enc, given a public key ek and message m € M,
outputs a ciphertext CT. The decryption algorithm Dec, given a secret key dk
and ciphertext ¢, outputs a message m € { L} U M. As correctness, we require
Dec(dk, Enc(ek, m)) = m for every m € M and (ek,dk) < KG(1*).

We introduce indistinguishability against chosen plaintext attacks (IND-CPA
security) for PKE.

Definition 2 (IND-CPA security). Let PKE be a PKE scheme. We define
the IND-CPA game between a challenger and an adversary A as follows. We let
M be the message space of PKE.

1. First, the challenger chooses a challenge bit b <~ {0,1}. Next, the challenger
generates a key pair (ek,dk) < KG(1*) and sends ek to A.

2. A sends (mg,my1) € M? to the challenger. We require that |mo| = |m1|. The
challenger computes CT < Enc(ek,my) and returns CT to A.

3. A outputs b' € {0,1}.

indcpa

In this game, we define the advantage of the adversary A as AvaKE’A()\) =
‘Pr[b =] — 3|. We say that PKE is IND-CPA secure if for any PPT adversary
A, we have Advgﬂ‘f;i(/\) = negl(}).

Next, we define key dependent message (KDM) security for PKE [11].

Definition 3 (KDM-CPA security). Let PKE be a PKE scheme, F function
family, and ¢ the number of users. We define the F-KDM-CPA game between
a challenger and an adversary A as follows. Let DIC and M be the secret key
space and message space of PKE, respectively.

1. First, the challenger chooses a challenge bit b < {0,1}. Next, the challenger
generates { key pairs (ek(k),dk(k)> + KG(1*) (k € [€]). The challenger sets
dk = (dk“),...,dk(@) and sends (ek“),...,ek“)) to A.

2. A may adaptively make polynomially many KDM queries.

KDM queries A sends (k, f) € [] X F to the challenger. We require that
f be a function such that f : DK* — M. If b = 1, the challenger

returns CT <— Enc (ek(k)7 f(dk)) to A. Otherwise, the challenger returns
CT « Enc (ek(k), 0\f<'>l) to A.
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3. A outputs b’ € {0,1}.

We say that PKE is F-KDM-CPA secure if for any PPT adversary A and
polynomial £ = ¢(X\), we have Advé‘:(??A’é()\) = |Pr[b=b] — | = negl()).

Remark 1 (Flexibility of the number of users). The above definition implicitly
requires that the size of instances such as public keys, secret keys, and ciphertexts
be independent of the number of users £. We require the same condition for KDM
secure SKE. This requirement is necessary for our constructions of KDM secure
IBE (and PKE) based on KDM secure SKE.

When we reduce the KDM security of our IBE to that of the underlying SKE,
the number of users ¢ in the security game of SKE corresponds to the number
of challenge identities queried by an adversary for IBE. If the size of instances
of SKE depends on ¢, we can prove the KDM security of the resulting IBE only
when the number of challenge identities is a-priori bounded.

Function families. As we can see, KDM security is defined with respect to func-
tion families. In this paper, we focus on KDM security with respect to the fol-
lowing function families.

Projection functions. A projection function is a function in which each out-
put bit depends on at most a single bit of an input. Let f be a function and
Y = Y1 ...Ym be the output of the function f on an input x = x; ...x,, that
is f(z) = y. We say that f is a projection function if for any j € [m], there
exists ¢ € [n] such that y; € {0,1,2;,1 — x;}.

In this paper, we let P denote the family of projection functions, and we say
that PKE is P-KDM-CPA secure if it is KDM-CPA secure with respect to
projection functions.

Functions computable by a-priori bounded size circuits. In the security
game of KDM-CPA security with respect to this function family, an adver-
sary can query a function computable by a circuit of a-priori bounded size
and input and output length. We allow the size of instances of a scheme to
depend on these a-priori bounds on functions while we do not allow it to
depend on the number of total users as we noted in Remark 1.

In this paper, we say that PKE is B-KDM-CPA secure if it is KDM-CPA
secure with respect to functions computable by a-priori bounded size circuits.

P-KDM-CPA security is a generalization of circular security [15] and strong
enough for many applications. Boneh, Helevi, Hamburg, and Ostrovsky [13] and
Applebaum, Cash, Peikert, and Sahai [5] showed how to construct P-KDM-CPA
secure PKE under the decisional diffie-hellman (DDH) assumption and learning
with errors (LWE) assumption, respectively.”

" Brakerski and Goldwasser [14] proposed P-KDM-CPA secure PKE under the
quadratic residuosity (QR) assumption and decisional composite residuosity (DCR)
assumption, but their schemes do not satisfy the flexibility of the number of users
in the sense of Remark 1.
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Barak, Haitner, Hofheinz, and Ishai [6] showed how to construct B-KDM-CPA
secure PKE under the DDH assumption or LWE assumption. Applebaum [4]
showed how to transform P-KDM-CPA secure PKE into B-KDM-CPA secure
one using garbled circuits.

We next introduce the definition of receiver selective opening (RSO) security
for PKE. We adopt the simulation-based definition proposed by Hazay et al. [24].

Definition 4 (SIM-RSO security). Let PKE be a PKE scheme, and { the
number of users. Let A and S be a PPT adversary and simulator, respectively.
We define the following pair of games.

Real game
1. First, the challenger generates ¢ key pairs (ek(k), dk(k)) — KG(1*) (k € [4])

and sends (ek(l), . ,ek(g)) to A.

2. A sends a message distribution Dist to the challenger. The challenger
generates {m(k)}ke[e] + Dist, computes CT™ « Enc (ek(k),m(k)) for
every k € [{], and sends {CT(k)} to A.

kelf]
3. A sends a subset T of [{] to the challenger. The challenger sends

((00n0))

4. A sends a string out to the challenger.
5. The challenger outputs outyes := <{m(k)}ke[e] , Dist7I,out).

Simulated game
1. First, the challenger sends 1* to S.
2. § sends a message distribution Dist to the challenger. The challenger
generates {m(k)}kem < Dist.

3. S sends a subset I of [£] to the challenger. The challenger sends {m(k)}kez
to S.
4. S sends a string out to the challenger.

5. The challenger outputs outsjm, 1= <{m(k)}ke[£} ,Dist,I,out).

We say that PKE is SIM-RSO secure if for any PPT adversary A and poly-
nomial £ = £(X), there exists a PPT simulator S such that for any PPT distin-
guisher D with binary output we have AdVpge 4 4.5 p(A) = | Pr[D(outea) = 1] —
Pr[D(outsm) = 1]| = negl(}).

The above definition considers non-adaptive corruptions by an adversary.
Namely, an adversary needs to corrupt users in one go.

We note that our construction of RSO secure PKE based on IND-CPA secure
PKE works well even if we consider adaptive corruptions by an adversary. For
simplicity, we define RSO security for PKE against non-adaptive corruptions in
this paper.
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Secret key vs key generation randomness. We define SIM-RSO security taking
only the revelation of secret keys into account throughout the paper. Namely,
we assume that an adversary gets only a secret key itself of a corrupted user and
not the random coin used to generate the secret key.

Hazay et al. [24] considered the revelation of both secret keys and random
coins for key generation when they defined RSO security for PKE. It is better
to take the revelation of random coins of key generation into account for some
applications.

We show that by requiring only security against the revelation of secret keys,
we can obtain RSO secure PKE from IND-CPA secure PKE. If we consider
RSO security against the revelation of random coins for key generation, it seems
difficult to construct RSO secure PKE based only on IND-CPA secure PKE
without assuming that secure erasure is possible or the underlying scheme is key
simulatable [19,24] in some sense.

2.3 Secret Key Encryption

A secret-key encryption (SKE) scheme SKE is a three tuple (KG, Enc, Dec) of
PPT algorithms. Below, let M be the message space of SKE. The key genera-
tion algorithm KG, given a security parameter 1*, outputs a secret key K. The
encryption algorithm Enc, given a secret key K and a message m € M, out-
puts a ciphertext CT. The decryption algorithm Dec, given a secret key K and
a ciphertext CT, outputs a message m € {1} U M. As correctness, We require
Dec(K, Enc(K,m)) = m for every m € M and K < KG(1*).
Next, we define KDM-CPA security for SKE.

Definition 5 (KDM-CPA security for SKE). Let SKE be an SKE scheme
whose key space and message space are K and M, respectively. Let F be a func-
tion family, and £ the number of users. We define the F-KDM-CPA game be-
tween a challenger and an adversary A as follows.

1. First, the challenger chooses a challenge bit b <~ {0,1}. Next, the challenger
generates { secret keys K& « KG(1*)(k € [(]), sets K := (KO, ... K®)),
and sends 1* to A.

2. A may adaptively make polynomially many KDM queries.

KDM queries A sends (k,f) € [{] x F to the challenger. We require
that f be a function such that f : K¢ — M. If b = 1, the chal-
lenger returns CT < Enc (K(k), f(K)) Otherwise, the challenger returns
CT « Enc (K(®), 01/

3. A outputs b’ € {0,1}.

We say that SKE is F-KDM-CPA secure if for any PPT adversary A and
polynomial £ = (()\), we have Advgf("g‘]’fﬂ,e()\) = |[Pr[b=b] — 3| = negl(}).

As we noted at Remark 1 after the definition of KDM security for PKE,
we require that the size of instances of a KDM-CPA secure SKE scheme be
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independent of the number of users ¢. This requirement is necessary for our
construction of KDM secure IBE (and PKE) based on KDM secure SKE.

Similarly to KDM security for PKE, we focus on KDM security for SKE with
respect to projection functions and that with respect to functions computable
by a-priori bounded size circuits. We say that SKE is P-KDM-CPA secure if it
is KDM-CPA secure with respect to projection functions. We say that SKE is
B-KDM-CPA secure if it is KDM-CPA secure with respect to functions com-
putable by a-priori bounded size circuits.

3 Identity-Based Encryption

We define identity-based encryption (IBE). Then, we introduce KDM security
and RSO security for IBE.

An IBE scheme IBE is a four tuple (Setup, KG, Enc, Dec) of PPT algorithms.
Below, let M be the message space of IBE. The setup algorithm Setup, given
a security parameter 1%, outputs a public parameter PP and a master secret
key MSK. The key generation algorithm KG, given a master secret key MSK
and identity id € ZD, outputs a user secret key skiq. The encryption algorithm
Enc, given a public parameter PP, identity id € ZD, and message m € M,
outputs a ciphertext CT. The decryption algorithm Dec, given a user secret key
skig and ciphertext CT, outputs a message m € {1} U M. As correctness, we
require Dec(KG(MSK, id), Enc(PP,id,m)) = m for every m € M, id € ID, and
(PP, MSK) < Setup(1?).

We define indistinguishability against adaptive-ID attacks (IND-ID-CPA se-
curity [12]) for IBE.

Definition 6 (IND-ID-CPA security for IBE). Let IBE be an IBE scheme
whose identity space and message space are D and M, respectively. We define
the IND-ID-CPA game between a challenger and an adversary A as follows.

1. First, the challenger chooses a challenge bit b < {0,1}. Next, the challenger
generates (PP, MSK) < Setup(1*) and sends PP to A. Finally, the challenger
prepares a list Leg which is initially empty.

At any step of the game, A can make key extraction queries.

Extraction queries A sends id € ID to the challenger. The challenger
returns skiq < KG(MSK,id) to A and adds id to Lex:.

2. A sends (id*,mg,m1) € ID x M x M to the challenger. We require that
|mo| = |m1| and id* & Lex. The challenger computes CT «+ Enc(PP,id, my)
and returns CT to A.

Below, A is not allowed to make an extraction query for id™.

3. A outputs b' € {0,1}.

We say that IBE is IND-ID-CPA secure if for any PPT adversary A, we have
Advigt P (A) = [Pr[b = '] — 3| = negl()).
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3.1 KDM Security for IBE

Next, we define KDM security for IBE. Alperin-Sheriff and Peikert [3] defined
KDM security for IBE by extending selective security for IBE [16]. The following
definition is an extension of adaptive security for IBE [12]. For the difference
between the definition of Alperin-Sheriff and Peikert and ours, see Remark 2
after Definition 7.

Definition 7 (KDM-CPA security for IBE). Let IBE be an IBE scheme,
and F a function family. We define the F-KDM-CPA game between a challenger
and an adversary A as follows. Let SIC, ID, and M be the user secret key space,
identity space, and message space of IBE, respectively.

1. First, the challenger chooses a challenge bit b <~ {0,1}. Neat, the challenger
generates (PP, MSK) < Setup(1*) and sends PP to A. Finally, the challenger
prepares lists Lext, Len, and sk all of which are initially empty.

2. A may adaptively make the following three types of queries.

Extraction queries A sends id € ZD \ (Lext U Len) to the challenger. The
challenger returns skig <+ KG(MSK,id) to A and adds id to Le:.

Registration queries A sendsid € ZD\ (Lext U Len) to the challenger. The
challenger generates skig < KG(MSK,id) and adds id and skig to Ley and
sk, respectively.

KDM queries A sends (id, f) € Ly X F to the challenger. We require
that f be a function such that f : SKEal 5 M. If b =1, the challenger
returns CT <= Enc (PP, id, f(sk)) to A. Otherwise, the challenger returns
CT + Enc (PP, id,O‘f(')l) to A.

3. A outputs ' € {0,1}.

We say that |BE is F-KDM-CPA secure if for any PPT adversary A, we
have AdviSE P, (A) = |Pr[b = b] — 1| = negl()).

Similarly to KDM security for PKE, we focus on KDM security for IBE with
respect to projection functions and that with respect to functions computable
by a-priori bounded size circuits. We say that IBE is P-KDM-CPA secure if it
is KDM-CPA secure with respect to projection functions. We say that IBE is
B-KDM-CPA secure if it is KDM-CPA secure with respect to functions com-
putable by a-priori bounded size circuits.

Remark 2 (Difference with [3]). Alperin-Sheriff and Peikert [3] defined KDM se-
curity for IBE. Their definition is a natural extension of selective security for
IBE [16]. In their definition, an adversary must declare the set of challenge iden-
tities L¢ at the beginning of the security game. On the other hand, our definition
of KDM security for IBE is an extension of adaptive security for IBE [12]. In
our definition, an adversary can adaptively declare challenge identities through
registration queries.®

8 One might think it is a restriction to force an adversary to register challenge identi-
ties before making KDM queries. This is not the case since the adversary is allowed
to adaptively make registration and KDM queries. Our definition with registration
queries makes the security proof of our IBE simple.
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One additional difference between our definition and that of Alperin-Sheriff
and Peikert is whether the size of instances of IBE such as a public parameter is
allowed to depend on the number of challenge identities or not. In the definition
of Alperin-Sheriff and Peikert, the setup algorithm of IBE takes the upper bound
on the number of challenge identities as an input, and the size of instances of IBE
depends on the number of challenge identities. In our definition, there is no a-
priori bound on the number of challenge identities, and thus the size of instances
of IBE is required to be independent of the number of challenge identities.

3.2 RSO Security for IBE

We next define RSO security for IBE. We extends the simulation-based definition
for PKE proposed by Hazay et al. [24].

Definition 8 (SIM-RSO security for IBE). Let IBE be an IBE scheme
whose identity space and message space are ID and M, respectively. Let A
and S be a PPT adversary and simulator, respectively. We define the following
pair of games.

Real game

1. The challenger generates public parameter and master secret key
(PP,MSK) < Setup(1*) and sends PP to A. The challenger then pre-
pares a list Lexy which is initially empty.
At any step of the game, A can make key extraction queries.
Extraction queries A sends id € ID \ Lew to the challenger. The

challenger returns skig <+ KG(MSK,id) to A and adds id t0 Lex.
2. A sends q identities {id(k) €ID\ LeXt}k‘E and a message distribution

la]
Dist on M1 to the challenger, where q is an a-priori unbounded poly-

nomial of \. The challenger generates {m(k)}ke[q] < Dist, computes
CT® + Enc (PP, id(k),m(k)> for every k € [g], and sends {CT(]“)}
to A.

Below, A is not allowed to make extraction queries for {id(k)} o’
kelq

ke(q]

3. A sends a subset T of [q] to the challenger. The challenger computes
skigim <+ KG (MSK, id(k)) for every k € I and sends { (sk,gir), m™)
to A.

4. A sends a string out to the challenger.

—({ig® (k) i
5. The challenger outputs outyea| ({Id }ke[q] , {m }ke[q] , Dist, Z, out>,

}keI

Simulated game
1. First, the challenger sends 1" to S.

2. S sends q identities {id(k) € ID}k u and a message distribution Dist
€lg

on MY to the challenger, where q is an a-priori unbounded polynomial
of \. The challenger generates {m(k)}ke[q] <+ Dist.
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3. S sends a subset T of [q] to the challenger. The challenger sends {m(k’)}kez
to S.
4. S sends a string out to the challenger.

N g (k) (k) :
5. The challenger outputs outgjn, : ({Id }ke[q] , {m }ke[q] , Dlst,I,out>.

Then, we say that |BE is SIM-RSO secure if for any PPT adversary A, there
exists a PPT simulator S such that for any PPT distinguisher D with binary out-
put we have Advigg 4 s p(A) = [Pr[D(outrea) = 1] — Pr[D(outsm) = 1]| = negl(}).

As we noted after defining SIM-RSO security for PKE, for simplicity, we
consider non-adaptive corruptions by an adversary in this paper. We note that
our construction of RSO secure IBE based on IND-ID-CPA secure IBE works
well if we consider adaptive corruptions by an adversary.

Remark 3 (On the syntax of simulators). In the above definition, not only an
adversary but also a simulator is required to output challenge identities with a
message distribution, and these identities are given to a distinguisher of games.
One might think this is somewhat strange since these identities output by a
simulator are never used in the simulated game. This syntax of simulators is
similar to that used by Bellare et al. [9] when they defined simulation-based
sender selective opening security for IBE.

It does not seem to be a big issue whether we require a simulator to output
identities or not. This intuition comes from the fact that we allow an adver-
sary and simulator to output arbitrary length strings, and thus they can always
include challenge identities into the output strings.

However, this subtle issue might divide notions of selective opening security
for IBE. Especially, it looks hard to prove that the definition with simulators
without outputting identities implies that with simulators outputting identities,
while it is easy to prove the opposite implication. This means that the former
definition is possibly weaker than the latter.

From these facts, similarly to Bellare et al. [9], we adopt the definition with
simulators explicitly outputting identities in this work.

4 KDM Secure IBE from KDM Secure SKE and
IND-ID-CPA Secure IBE

We show how to construct KDM secure IBE based on KDM secure SKE and
IND-ID-CPA secure IBE. The construction also uses a circuit garbling scheme.

Let SKE = (G,E,D) be an SKE scheme whose message space is M. Let
lenk and len, denote the length of a secret key and encryption randomness of
SKE, respectively. Let IBE = (Setup, KG, Enc, Dec) be an IBE scheme whose
identity space is ZD x {0,1}'™ x {0,1}. Let GC = (Garble, Eval) be a gar-
bling scheme. Using SKE, IBE, and GC, we construct the following IBE scheme
KdmIBE = (Kdm.Setup, Kdm.KG, Kdm.Enc, Kdm.Dec) whose message space and
identity space are M and ZD, respectively.
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Kdm.Setup(1?*) :
— Return (PP, MSK) <« Setup(1?%).
Kdm.KG(MSK, id) :
— Generate Kig < G(1?).
— Generate skig ; k,[;] < KG(MSK, (id, 7, Kia[s])) for every j € [lenk].
— Return Kdm.skig := (Kid, {skid.jxui )
Kdm.Enc(PP,id, m) :
— Generate rg <~ {0,1}'*™ and compute (E,{Iabj,a}je“enK]’ae{O,l}) +—

je[lenK]>.

Garble(1*,E(-,m;rg)), where E(-,m;rg) is the encryption circuit E of
SKE into which m and rg are hardwired.
— Compute CT; < Enc(PP, (id, j, a),lab; ) for every j € [lenk] and a €
{0,1}.
~ Return Kdm.CT := (E,{CTj’a}je[,enK]yae{o,l}).
Kdm.Dec(Kdm.sk;q, Kdm.CT) :
Parse (Kid’{Skidvj}je[lenK]) + Kdm.skig.

Parse (E, {CTj,a}je[lenK],ae{o,l}) + Kdm.CT.
For every j € [lenk], compute lab; « Dec (skid,j, CT; ky[s)-

Compute CTg,e < Eval (E, {Iabj}je“enK]).
— Return m + D(Kig, CTge)-

Correctness. When decrypting a ciphertext of KdmIBE that encrypts a message
m, we first obtain a ciphertext of SKE that encrypts m from the correctness of
IBE and GC. The correctness of KdmIBE then follows from that of SKE.

We prove the following theorem.

Theorem 5. Let SKE be an SKE scheme that is P-KDM-CPA secure (resp.
B-KDM-CPA secure). Let IBE be an IND-ID-CPA secure IBE scheme and GC a
secure garbling scheme. Then, KdmIBE is an IBE scheme that is P-KDM-CPA
secure (resp. B-KDM-CPA secure).

Proof of Theorem 5. Let A be an adversary that attacks the P-KDM-CPA
security of KdmIBE and makes at most g, registration queries and gxgm KDM
queries. We proceed the proof via a sequence of games. For every t € {0,...,2},
let SUC; be the event that A succeeds in guessing the challenge bit b in Game t.

Game 0: This is the original P-KDM-CPA game regarding KdmIBE. Then, we
have Adv:ﬁi,'gclgamz 4 = |Pr[SUCo] — 3|. The detailed description is as follows.

1. The challenger chooses a challenge bit b <~ {0, 1}, generates (PP, MSK) ¢
Setup(1*), and sends PP to A. The challenger also prepares lists Leyt, Lch,
and skygm all of which are initially empty.

2. A may adaptively make the following three types of queries.
Extraction queries A sends id € ZD \ (Lext U Lepn) to the challenger.

The challenger responds as follows.
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— The challenger generates Kig < G(1%).

— The challenger generates skig j k,,[;] <~ KG(MSK, (id, j, Kig[j])) for
every j € [leng].

— The challenger returns Kdm.skiq := (Kid, {Skid7j)Kid[j]}j€[lenK]) to
A and adds id to Ley.

Registration queries A sends id € ZD \ (Lext U Lcn) to the challenger.
The challenger generates Kdm.skiq in the same way as the answer to
an extraction query. The challenger then adds id to L¢, and Kdm.sk;q
to Skkdm~

KDM queries A sends (id, f) € Le, X P to the challenger. The chal-
lenger responds as follows.

(a) The challenger sets m; := f(sKygm) and mq := 0/™11,
(b) The challenger computes (E, {Iabjya}j6[|enK]7a€{0,1}) —

Garble(1*, E(-, my; 7)), where g <~ {0, 1}'".
(c) For every j € [lenk] and o € {0,1}, the challenger computes
CT; .o < Enc(PP, (id, j, @), lab; o).

(d) The challenger returns Kdm.CT := (E, {CTj7a}je[|enK],ae{071}).
3. A outputs v’ € {0, 1}.

Game 1: Same as Game 0 except the following. When A makes a KDM query

(id, f) € Len x P, for every j € [lenk] the challenger computes CT; 1 _g,[;]
Enc (PP, (id, 7,1 — Kia[4]), Iabj}KTd[j]), where Kjq is the secret key of SKE gen-
erated when id was registered to L. Recall that in Game 0, CT; 1, 18
generated as CT;;_,[;] « Enc (F’P7 (id, 7,1 — Kia[4]), Iabj,lfK;d[j])- Namely,
we eliminate labels of garbled circuits that do not correspond to Kig from
the view of A in this game.

In order to simulate both Game 0 and 1, we do not need user secret keys of
IBE that do not correspond to {Kid}ycy , that is {Skid’j’lf"id[ﬂ']}ideLch,je[lenK]
while we need {Skidvijid[j]}ideLch,je[lenK] to compute the value of f(skidm)
when A makes a KDM query. Therefore, we can use the IND-ID-CPA secu-
rity of IBE when the challenge identity is (id, j, 1 — Ki4[j]) for every id € Lcp
and j € [leng]. By using IND-ID-CPA security of IBE lenk - gxdm times, we
can prove |Pr[SUCy] — Pr[SUC;]| = negl()).

Game 2: Same as Game 1 except that to respond to a KDM query from

A, the challenger generates a garbled circuit using the simulator for GC.
More precisely, when A makes a KDM query (id, f) € L x P, the chal-
lenger generates g {0,1}*™ and CTye ¢« E (Kig,mp; 7€), and computes
(E, {Iabj}je“enK]) + Sim(1*,|E|, CTske), where Sim is the simulator for GC

and |E| denotes the size of the encryption circuit E of SKE. Moreover, the
challenger computes CT; o < Enc (PP, (id, j, @), lab;) for every j € [lenk] and
a e {0,1}.

In the last step, we eliminate labels of garbled circuits that do not correspond
to {Kid}ideLch' Therefore, by using the security of GC gxgm times, we can show
that |Pr[SUC;] — Pr[SUC3]| = negl()).
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Below, we show that |Pr[SUCy] — 4| = negl(\) holds by the P-KDM-CPA
security of SKE. Using the adversary A, we construct an adversary Age that
attacks the P-KDM-CPA security of SKE when the number of keys is gcp.

Before describing Agke, we note on the conversion of projection functions.
We let K(¥) be the secret key of SKE generated to respond to the k-th regis-
tration query id® made by A. We let a4, ; denote the j-th bit of K®), that
is, K®)[j] for every j € [lenk] and k € [gen]. Let f be a projection function
that A queries as a KDM query. f is a projection function of {K(k)}ke[qch] and

{Skid(k) - } . To attack the P-KDM-CPA security of SKE, Ase
D>k, k€ [gch],j € [lenk]

needs to compute a projection function g such that

g ({K(k)}ke[‘kh]> =/ ({K(k)}kE[QCh] ’ {Skid(k)’j’o"” }kE[qch]:je['e”K]) . W

We can compute such a function g from f and {Skid(’”,j,a}ke[q L jellenk], 00,1}
as follows.

We first observe that for every k € [gen] and j € [lenk], we can write

skig) jan; = (1= Qhyj) - Skigm j o © Qi - Skigmn 4

= Qgj - (Skid<k>,j,1 D 5kid<k>,j,0) @ skigw o -

We suppose that skiyw ;1 and skige) ;o are represented as binary strings and &
is done in the bit-wise manner. We define a function sely, ; as sely ;(y € {0,1}) =
- (Skid(’”,j,l (§5) Skid“'),j,o) (5] Skid“’"'),j,O' Then, we have

/ ({K(k)}ke[qch] ’ {Skid(k)’j’o"‘=j }kE[qch]JE['e“K]>

= () . .
= f ({K }ke[th] a{Selk,J (akﬂ)}kE[qch],je[lenKO

k _ k k).
We define g ({K( )}ke[qch}) = ({K( Heetga > {elks (K )[J])}ke[qch},jeﬂend)
Then, g satisfies Equation 1.

We show that if f is a projection function, then so is g. Let v be an output

bit of g ({Kac)}ke[%]) — ¢ ({K(m}ke[qch],{sak,j (K(k)[j])}ke[thLje[lenK]). We
say that v is a projective bit for f (resp. g) if it depends on a single bit of an

input for f (resp. g). We also say that v is a constant bit for f (resp. g) if it
does not depend on any bit of an input for f (resp. g).

Since f is a projection function, = is a constant bit or projective bit for
f that depends on either part of {K(k)}ke[qch] or {sely; (K(k)[j])}ke[qch},je[lenK]'
Thus, we consider the following three cases. (i) If v is a constant bit for f, v
is clearly a constant bit for g. (i) If v is a projective bit for f and depends
on a single bit of {K(’“)}ke[qch]7 v is a projective bit for g since {K(k)}ke[qch]
is also an input for g. (iii) If v is a projective bit for f and depends on some

bit of {sely; (K [j])}ke[q J.jcllens? 7 18 @ projective bit for g since each bit of
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{sely,; (K® U])}ke[qch],je[lenK] depends on a bit K®)[j] for some k € [gen] and
j € [leng], and K®)[j] is a part of an input to g. Therefore, v is a projective bit
or constant bit for g in any case, and thus g is a projection function.

We now describe the adversary Age that uses the above conversion of pro-
jection functions.

1. On input 1*, Age first generates (PP, MSK) < Setup(1*) and sends PP to
A. Then, Age prepares Le: and L.

2. Aske responds to queries made by A as follows.
Extraction queries When A sends id € ZD \ (Lext U Leh) as an extraction

query, Age responds exactly in the same way as the challenger in Game 2.
We note that, in this case, Age computes the answer Kdm.skiq using a
freshly generated key Kiq of SKE.

Registration queries When A makes the k-th (k < gc,) registration query

id® ¢ ID\ (Lext U Lch), Aske relates id® to K®) where K*) is the k-th
secret key of SKE generated by the challenger. Agc generates skigx) ; , <
KG (MSK, (id(k),j, a)) for every j € [leng] and o € {0,1}. They are

used for the conversion of functions. Age. then adds id® to Lep-
KDM queries When A makes a KDM query (id, f) € Len X P, Agge Te-

sponds as follows.
(a) Aske first computes a projection function g satisfying

g <{K(k)}ke[qch]) =/ <{K(k)}ke[qch] ’ {Skid(k)’j’K(k)[j]}ke[qchlyje[le"K])

as we noted above from {skid(k)’jvo‘}kG[qch],je[lenK],ae{O,l}'

(b) Let k € [gen] be the number that related to id. Since id was added
to Lep, such k € [gen] exists. Ase queries (k, g) to the challenger as
a KDM query and gets the answer CTge.

(c) Aske computes (E, {lab }je[lenK]) < Sim (1*,|E[, CTge) and for ev-
ery j € [leng] and o € {0, 1}, computes CT; o < Enc (PP, (id, j, @), lab;).

(d) Agke returns Kdm.CT := g}E, {CTLa}je“enK])ae{o’l}) to A.

3. When A terminates with output b’ € {0,1}, Age outputs 8/ =0'.

Aske perfectly simulates Game 2 for A in which the challenge bit is the same
as that of P-KDM-CPA game of SKE between the challenger and Ag. Moreover,
Agie just outputs A’s output. Thus, Adv;f("éf%iAske’qch()\) = ’Pr[SUCQ] - %‘ holds.
Since SKE is P-KDM-CPA secure, |Pr[SUC;] — | = negl()) holds.

From the above arguments, we see that

1
AR (V) = [Prsuce] - 5

1
< ) [Pr[SUC] — Pr[SUC, ]| +
t=0

Pr[SUC;] — ;’ = negl(\) .

Since the choice of A is arbitrary, KdmIBE satisfies P-KDM-CPA security.
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On the transformation of B-KDM-CPA secure schemes. We can also construct
B-KDM-CPA secure IBE based on B-KDM-CPA secure SKE via the construc-
tion. The security proof of B-KDM-CPA secure IBE is in fact almost the same
as that of P-KDM-CPA secure IBE. The only issue we need to care is whether
the conversion of functions performed by A is successful or not also when we
construct B-KDM-CPA secure IBE.

Let f be a function queried by an adversary A for KdmIBE. As above, consider
a function g such that

g <{K(k)}k€[qch]) =/ <{K(k)}ke[qch] ’ {Sdk’j <K(k) [‘7]) }ke[qcthE['e"K])

where the function sel, ; is the function we defined earlier. Since sel ; is com-
putable by a circuit of a-priori bounded size, we see that if f is computable by
a circuit of a-priori bounded size, then so is g. Therefore, Age can successfully
perform the conversion of functions also when constructing B-KDM-CPA secure
IBE. O (Theorem 5)

5 SIM-RSO Secure IBE Based on IND-ID-CPA Secure
IBE

We construct SIM-RSO secure IBE based on any IND-ID-CPA secure IBE.

Let IBE = (Setup, KG, Enc, Dec) be an IBE scheme whose message space and
identity space are {0,1} and ZD x {0, 1}, respectively. Using IBE, we construct
the following IBE scheme RsolBE = (Rso.Setup, Rso.KG, Rso.Enc, Rso.Dec) whose
message space and identity space are {0,1} and ZD.

Rso.Setup(1*) :

— Return (PP, MSK) < Setup(1?*).
Rso.KG(MSK, id) :

— Generate 7 < {0,1}.

— Generate skiq ,» < KG(MSK, (id, 7).

— Return Rso.skig := (7, skig,r).
Rso.Enc(PP,id,m € {0,1}) :

— For every a € {0,1}, compute CT,, < Enc(PP, (id, a),m).

— Return Rso.CT := (CTy,CTy).
Rso.Dec(Rso.skiq, Rso.CT) :

— Parse (r,skig ) < Rso.dk.

— Parse (CTy,CT;) < Rso.CT.

— Return m < Dec(skig,, CT;).

Correctness. The correctness of RsolBE directly follows from that of IBE.
We prove the following theorem.

Theorem 6. Let IBE be an IND-ID-CPA secure IBE scheme. Then, RsolBE is
a SIM-RSO secure IBE scheme.
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Proof of Theorem 6. Let A be an adversary that attacks the SIM-RSO security
of RsolBE. We show the proof via the following sequence of games.

Let D be an PPT distinguisher with binary output. For every ¢ € {0, 1,2}, let
T; be the event that D outputs 1 given the output of the challenger in Game ¢.

Game 0: This is the real game of SIM-RSO security regarding RsolBE. The
detailed description is as follows.
1. First, the challenger generates (PP, MSK) « Setup(1*) and sends PP to
A. The challenger prepares a list Ley:.
At any step of the game, A can make key extraction queries.
Extraction queries A sends id € ZD \ Le to the challenger. The
challenger responds as follows.
(a) The challenger generates r <~ {0,1}.
(b) The challenger generates skiq » <— KG(MSK, (id, r)).
(c¢) The challenger returns Rso.skig := (7, skid,r ).

2. A sends ¢ identities {id(k) €ID\ LeXt}k} o] and a message distribu-
€[qch

tion Dist on {0, 1}9= to the challenger, where ¢, is an a-priori unbounded
polynomial of A. The challenger generates {mm }k Clam] Dist and com-

putes Rso.CT® for every k € [gen] as follows.
(a) The challenger computes CT*) «+ Enc (PP7 (id(k)7 a) 7m("“)) for ev-

ery a € {0,1}.
(b) The challenger sets Rso.CT®*) = (CTgk), CTgk)).
The challenger sends {Rso.CT(k)} to A.
k€ [gen]

Below, A is not allowed to make extraction queries for {id(k)}k ol
€1qch
3. A sends a subset Z of [gen] to the challenger. The challenger generates

Rso.skiyx) for every k € Z as follows.

(a) The challenger generates r*) <~ {0,1}.

(b) The challenger generates skigew) o) — KG (I\/ISK, (id(k), r(k)>).
(c) The challenger sets Rso.skiy) = (r(k),skidm’,(k)).

The challenger sends { (Rso.skigx), m(’“)) to A.

4. A sends a string out to the challenger.
5. The challenger outputs

OUtreal = <{id(k)} , {m(k)} ,Dist, Z, out)
ke[qch] ke[Qch]

Game 1: Same as Game 0 except that for every k € [gep], the challenger gener-
ates

}keI

€Ty « Enc (PP, (id®,1—r3) 1 —m®)

We note that the challenger generates CTS(C,Z) +— Enc (PP7 (id(k), r(R), m(k)>
for every k € [gen] in both Games 0 and 1.
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Secret keys for identities {(id(k)7 1-— r(k)) }k o] of IBE are not given to A
€|gch
regardless of which users A corrupts in both Games 0 and 1. Therefore, by

using the security of IBE ¢, times, we can prove |Pr[To] — Pr[Ty]| = negl(\).
Game 2: Same as Game 1 except that for every k € [qe], the challenger
uses ) @ m®) instead of 7(*) as the random bit contained in the k-th
RsolBE’s secret key Rso.ski ) for id®). We note that the challenger does not

need {r(k)}ke[qch] before generating {m(k)}ke[qch]' Thus, the transition from

Games 1 to 2 makes sense, and |Pr[Tz] — Pr[T3]| = 0 holds since r*) @ m(*)
is distributed uniformly at random for every k € [gcn].

In Game 2, uncorrupted messages {m(k) } kelga\T AF€ completely hidden from

the view of A. To verify the fact, we confirm that ciphertexts {Rso.CT(k) }k ]
€[qch

are independent of {m(k)}ke[q nl®
For every k € [gen], the challenger generates Rso.CT®#) — (CT(()k’)’ CTgk)) by
computing

CTi’f,z)@m(k) + Enc (PP, (id(k),r(k) @ m(k)> ,m(k)) ,

T g < Enc (PP, (id®, 1= 70 @ m®)) 11— m®)
We see that, regardless of the value of m(*) € {0,1}, the challenger computes
cT'h), « Enc (PP, (id®,r®) 0)

CT iy« Enc (PP, (id®,1- 7)) 1)

1—r(k)

Therefore, we see that ciphertexts {Rso.CT(k) } are independent of {m(’“) } A
k€ [gen] €[gen]
in Game 2.

Then, we construct a simulator S that perfectly simulates Game 2 for A.
The description of S is as follows.

1. On input 1*, S generates (PP,MSK) < Setup(1*) and sends PP to A. S
then prepares a list Leyt.
Extraction queries When A sends id € ZD \ Lex, S responds as follows.
(a) S generates r «- {0, 1}.
(b) S generates skiq .., < KG(MSK, (id, r)).
(c) S returns Rso.skig := (7, skig,r) to A and adds id t0 Lex:.

2. When A outputs a message distribution Dist with identities {id(k) }k ol S
€ [qch

sends them to the challenger. Then, S computes Rso.CT™ for every k € [qen)
as follows.
(a) S computes r*) < {0,1}.
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(b) S computes
cT'), « Enc (PP, (id®, ™) ,0) and

cT® | «Enc (PP, (id(’“), 1- r(k)) ,1) :

(c) S sets Rso.CT®) .= (CTék), CTgk)).

S sends {Rso.CT(k)}]C o] to A.
€Gch
3. When A outputs a subset Z of [geh], S sends it to the challenger, and gets

{m®}, .S computes sk ,wgme  KG (MSK, (id(k),r(k) @ m(k))>’
sets Rso.skiyo = (T(k) @m(k),skid(k)’r(k)@m(k)) for every k € Z, and sends

{ (Rso.skigc, m*) },
4. When A outputs a string out, S outputs it.

S perfectly simulates Game 2 for A. Therefore, we have

2
AdvRGiSe, 4.5,0(A) = | Pr{To] = Pr[T]| < 3 |Pr[Ty] = Pr[Tesd]| . (2)
t=0

From the above arguments, we see that each term of the right hand side of
Inequality 2 is negligible in A. Since the choice of A and D is arbitrary and the
description of § does not depend on that of D, we see that for any A, there
exists S such that for any D we have Advgiige 4.5.p(A) = negl(A). This means
that RsolBE is SIM-RSO secure. O (Theorem 6)

6 KDM Secure PKE from KDM Secure SKE and
IND-CPA Secure PKE

We show how to construct KDM secure PKE based on KDM secure SKE and
IND-CPA secure PKE. The construction is similar to that of KDM secure IBE
we show in Section 4 except that IND-CPA secure PKE is used instead of
IND-ID-CPA secure IBE as a building block.

Let SKE = (G, E, D) be an SKE scheme whose message space is M. Let leng
and len, denote the length of a secret key and encryption randomness of SKE,
respectively. Let PKE = (KG, Enc, Dec) be a PKE scheme and GC = (Garble, Eval)
a garbling scheme. Using SKE, PKE, and GC, we construct the following PKE
scheme KdmPKE = (Kdm.KG, Kdm.Enc, Kdm.Dec) whose message space is M.

Kdm.KG(1*) :
— Generate K + G(1*).
— Generate (ekj,q,dk; o) < KG(1*) for every j € [lenk] and « € {0, 1}.
— Return Kdm.ek := {ek; o}
Kdm.Enc(Kdm.ek,m) :

j€llenk],e{0,1}

and Kdm.dk := (K7 {dkj,K[j]}jeUenK])'
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— Parse {ek; o} } < Kdm.ek.

j€lenk],ac{0,1

— Generate g {0,1}'*" and compute (E, {Iabj,a}je[|enK]7aE{071}) —
Garble(1*,E(-,m;7g)), where E(-,m;7g) is the encryption circuit E of
SKE into which m and rg are hardwired.

— For every j € [lenk] and « € {0,1}, compute CT; o < Enc(ek; o, lab; o).

— Return Kdm.CT := (E, {CTj,a}jE[lenK],aE{O,l})'
Kdm.Dec(Kdm.dk, Kdm.CT) :

— Parse (K, {dk;}jen ) < Kdm.dk,

— Parse (E,{CTj,a}je[.enK]ﬂE{O,l}) « Kdm.CT.

— For every j € [lenk], compute lab; < Dec (dkj, CTj,Km).
Compute CTge < Eval (E, {Iabj}jeuenK]).
— Return m < D(K, CTeke).

Correctness. When decrypting a ciphertext of KdImPKE that encrypts a message
m, we first obtain a ciphertext of SKE that encrypts m from the correctness of
PKE and GC. The correctness of KImPKE then follows from that of SKE.

We have the following theorem.

Theorem 7. Let SKE be an SKE scheme that is P-KDM-CPA secure (resp.
B-KDM-CPA secure). Let PKE be an IND-CPA secure PKE scheme and GC a
secure garbling scheme. Then, KImPKE is a PKFE scheme that is P-KDM-CPA
secure (resp. B-KDM-CPA secure).

The proof for Theorem 7 is almost the same as that for Theorem 5. Thus,
we omit it and provide in the full version of this paper [27].

7 SIM-RSO Secure PKE Based on IND-CPA Secure
PKE

We can construct SIM-RSO secure PKE based on any IND-CPA secure PKE
if we take the revelation of only secret keys into account. The construction
is similar to that of SIM-RSO secure IBE we show in Section 5 except that
IND-CPA secure PKE is used instead of IND-ID-CPA secure IBE.

Using a PKE scheme PKE = (KG, Enc, Dec), we construct the following PKE
scheme RsoPKE = (Rs0.KG, Rso.Enc, Rso.Dec) whose message space is {0, 1}.

Rso.KG(1%) :
— Generate (ekq,dk,) < KG(1*) for every o € {0, 1}.
— Generate 7 <~ {0,1}.
— Return Rso.ek := (ekg, ek;) and Rso.dk := (r, dk,).
Rso.Enc(Rso.ek,m € {0,1}) :
— Parse (ekg, eky) < Rso.ek.
— For every a € {0,1}, compute CT,, < Enc(ekq,m).
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— Return Rso.CT := (CTy, CTy).

Rso.Dec(Rso.dk, Rso0.CT) :

— Parse (r,dk,) < Rso.dk
— Parse (CTy,CT;) < Rso.CT.
— Return m < Dec(dk,, CT,).

Correctness. The correctness of RsoPKE directly follows from that of PKE.

We have the following theorem.

Theorem 8. Let PKE be an IND-CPA secure PKE scheme. Then, RsoPKE is
a SIM-RSO secure PKE scheme.

The proof for Theorem 8 is almost the same as that for Theorem 6. Thus,

we omit it and provide in the full version of this paper [27].
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