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Abstract. Selective opening security (SO security) is desirable for pub-
lic key encryption (PKE) in a multi-user setting. In a selective opening
attack, an adversary receives a number of ciphertexts for possibly corre-
lated messages, then it opens a subset of them and gets the corresponding
messages together with the randomnesses used in the encryptions. SO
security aims at providing security for the unopened ciphertexts. Among
the existing simulation-based, selective opening, chosen ciphertext secure
(SIM-SO-CCA secure) PKEs, only one (Libert et al. Crypto’17) enjoys
tight security, which is reduced to the Non-Uniform LWE assumption.
However, their public key and ciphertext are not compact.
In this work, we focus on constructing PKE with tight SIM-SO-CCA
security based on standard assumptions. We formalize security notions
needed for key encapsulation mechanism (KEM) and show how to trans-
form these securities into SIM-SO-CCA security of PKE through a tight
security reduction, while the construction of PKE from KEM follows the
general framework proposed by Liu and Paterson (PKC’15). We present
two KEM constructions with tight securities based on the Matrix Deci-
sion Diffie-Hellman assumption. These KEMs in turn lead to two tightly
SIM-SO-CCA secure PKE schemes. One of them enjoys not only tight
security but also compact public key.

1 Introduction

Selective Opening Security. In the context of public key encryption (PKE),
IND-CPA(CCA) security is widely believed to be the right security notion. How-
ever, multi-user settings enable more complicated attacks and the traditional
IND-CPA(CCA) security may not be strong enough. Consider a scenario of
N senders and one receiver. The senders encrypt N (possibly correlated) mes-
sages m1, · · · ,mN under the receiver’s public key pk using fresh randomnesses
r1, · · · , rN to get ciphertexts c1, · · · , cN , respectively, i.e., each sender i com-
putes ci = Enc(pk,mi; ri). Upon receiving the ciphertexts c1, · · · , cN , the ad-
versary might be able to open a subset of them via implementing corruptions.
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Namely, by corrupting a subset of users, say I ⊂ [N ], the adversary obtains the
messages {mi}i∈I together with the randomnesses {ri}i∈I . Such an attack is
called selective opening attack (SOA). It is desirable that the unopened cipher-
texts {ci}i∈[N ]\I still protect the privacy of {mi}i∈[N ]\I , which is exactly what
the SO security concerns.

The potential correlation between {mi}i∈I and {mi}i∈[N ]\I hinders the use of
hybrid argument proof technique. Hence, traditional IND-CPA security may not
imply SO security. To date, there exist two types of SO security formalizations:
indistinguishability-based SO security (IND-SO, [1, 2]) and simulation-based SO
security (SIM-SO, [1, 5]). According to whether the adversary has access to a
decryption oracle, these securities are further classified into IND-SO-CPA, IND-
SO-CCA, SIM-SO-CPA and SIM-SO-CCA.

Intuitively, IND-SO security requires that, given public key pk, ciphertexts
{ci}i∈[N ], the opened messages {mi}i∈I and randomnesses {ri}i∈I (together
with a decryption oracle in the CCA case), the unopened messages {mi}i∈[N ]\I
remain computationally indistinguishable from independently sampled messages
conditioned on the already opened messages {mi}i∈I . Accordingly, the IND-SO
security usually requires the message distributions be efficiently conditionally re-
samplable [1, 10, 11] (and such security is referred to as weak IND-SO security
in [2]), which limits its application scenarios.

On the other hand, SIM-SO security is conceptually similar to semantic se-
curity [9]. It requires that the output of the SO adversary can be simulated by a
simulator which only takes the opened messages {mi}i∈I as its input after it as-
signs the corruption set I. Since there is no restriction on message distribution,
SIM-SO security has an advantage over IND-SO security from an application
point of view. SIM-SO security was also shown to be stronger than (weak) IND-
SO security in [2]. However, as shown in [13], SIM-SO security turns out to be
significantly harder to achieve.

Generally speaking, there are two approaches to achieve SIM-SO-CCA se-
curity. The first approach uses lossy trapdoor functions [22], All-But-N lossy
trapdoor functions [10] or All-But-Many lossy trapdoor functions [11] to con-
struct lossy encryption schemes. If this lossy encryption has an efficient opener,
then the resulting PKE scheme can be proven to be SIM-SO-CCA secure as
shown in [1]. A DCR-based scheme in [11] and a LWE-based scheme in [18]
are the only two schemes known to have such an opener. The second approach
uses extended hash proof system and cross-authentication codes (XACs) [6]. As
pointed out in [14, 15], a stronger property of XAC is required to make this
proof rigorous. Following this line of research, Liu and Paterson proposed a gen-
eral framework for constructing SIM-SO-CCA PKE from a special kind of key
encapsulation mechanism (KEM) in combination with a strengthened XAC [19].

Tight Security Reductions. Usually, the security of a cryptographic prim-
itive is established on the hardness of some underlying mathematical prob-
lems through a security reduction. It shows that any successful probabilistic
polynomial-time (PPT) adversary A breaking the cryptographic primitive with
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advantage εA can be transformed into a successful PPT problem solver B for the
underlying hard problem with advantage εB. The ideal case is εA = εB. However,
most reductions suffer from a loss in the advantage, for example, εA = L · εB
where L is called security loss factor of the reduction. Smaller L always indi-
cates a better security level for a fixed security parameter. For a PKE scheme,
L usually depends on λ (the security parameter) as well as Qe (the number of
challenge ciphertexts) and Qd (the number of decryption queries). A security re-
duction for a PKE scheme is tight and the PKE scheme is called a tightly secure
one [7, 12] if L depends only on the security parameter λ6 (and is independent
of both Qe and Qd). Note that for concrete settings, λ is much smaller than Qe
and Qd (for example, λ = 80 and Qe, Qd can be as large as 220 or even 230 in
some settings). Most reductions are not tight and it appears to be a non-trivial
problem to construct tightly IND-CCA secure PKE schemes.

Among the existing SIM-SO-CCA secure PKEs, only one of them has a tight
security reduction [18]. Very recently, Libert et al. [18] provide an all-but-many
lossy trapdoor function with an efficient opener, leading to a tightly SIM-SO-
CCA secure PKE based on the Non-Uniform LWE assumption. Note that, their
construction relies on a specific tightly secure PRF which is computable in NC1.
So far, no construction of such a PRF based on standard LWE assumption is
known, which is why their PKE has to rely on a non-standard assumption.
Meanwhile, there is no PKE scheme enjoying both tight SIM-SO-CCA security
and compact public key & ciphertext up to now.

1.1 Our Contribution

We explore how to construct tightly SIM-SO-CCA secure PKE based on stan-
dard assumptions. Following the KEM+XAC framework proposed in [19],

– we characterize stronger security notions needed for KEM and present a
tightness preserving security reduction, which shows the PKE is tightly SIM-
SO-CCA secure as long as the underlying KEM is tightly secure;

– we present two KEM instantiations and prove that their security can be
tightly reduced to the Matrix Decision Diffie-Hellman (MDDH) assumption,
thus leading to two tightly SIM-SO-CCA secure PKE schemes. One of them
enjoys not only tight security but also compact public key.

1.2 Technique Overview

Roughly speaking, to prove the SIM-SO-CCA security of a PKE (see for Def-
inition 1), for any PPT adversary, we need to construct a simulator and show
that the adversary’s outputs are indistinguishable with those of the simulator.
Naturally, such a simulator can be realized simply by simulating the entire real
SO-CCA environment, invoking the adversary and returning the adversary’s

6 According to [3, 8], such a security reduction is called an almost tight one and a
security reduction is tight only if L is a constant.
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outputs. However, due to lack of essential information like messages and ran-
domnesses, the simulator is not able to provide a perfect environment directly.
Therefore, both the PKE scheme and the simulator has to be carefully designed,
so that the simulator is able to provide the adversary a computational indistin-
guishable environment. To this end, we have to solve two problems.

– The first problem is how the simulator prepares ciphertexts for the adversary
without knowing the messages.

– The second problem is how the simulator prepares randomnesses for the
adversary according to the opened messages {mi}i∈I that it receives later.

To solve the first problem, the simulator has to provide ciphertexts that
are computational indistinguishable with real ciphertexts in the setting of se-
lective opening (together with chosen-ciphertext attacks). As to the second
problem, note that the adversary can always check the consistence between
{mi}i∈I , {ci}i∈I and the randomnesses by re-encryption. Therefore, the sim-
ulator should not only provide indistinguishable ciphertexts but also be able to
explain these ciphertexts as encryptions of any designated messages.

Liu and Paterson [19] solved these two problems and proposed a general
framework for constructing SIM-SO-CCA secure PKE with the help of KEM in
combination with XAC. Their PKE construction encrypts message in a bitwise
manner. Suppose the message m has bit length `. If the i-th bit of m is 1
(mi = 1), a pair of encapsulation ψi and key γi is generated from KEM, i.e.,
(ψi, γi)←$ KEnc(pkkem). If mi = 0, a random pair is generated, i.e., (ψi, γi)←$

Ψ × Γ . Then a tag T is generated to bind up (γ1, · · · , γ`) and (ψ1, · · · , ψ`) via
XAC. And the final ciphertext is C = (ψ1, · · · , ψ`, T ).

They construct a simulator in the following way.

• Without knowledge of the message, the simulator uses an encryption of 1`

as the ciphertext. Thus the encryption involves ` encapsulated pairs (ψi, γi)←$

KEnc(pkkem). The simulator then saves all the randomnesses used in these en-
capsulations.

• When providing the randomnesses for the opened messages, the simulator
checks the opened messages bit by bit. If a specific bit is 1, then the simulator
outputs the original randomnesses and the simulation is perfect. Otherwise, the
simulator views the encapsulated pair as a random pair. Then the simulator
resamples randomnesses as if this pair is randomly chosen using these resampled
randomnesses.

Thanks to the bit-wise encryption mode and the resampling property of
spaces Ψ and Γ , an encapsulation pair (encrypting bit 1) can be easily explained
as a random pair (encrypting bit 0). Therefore the second problem is solved.

To solve the first problem, one has to show that the encapsulated pairs and
the random pairs are computationally indistinguishable. In [19], a special security
named IND-tCCCA is formalized for KEM. This security guarantees that one
encapsulated pair is computationally indistinguishable with one random pair
even when a constrained decryption oracle is provided. With the help of IND-
tCCCA security of KEM, the indistinguishability between the encryption of 1`
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and the encryption of real messages are proved with ` hybrid arguments, each
hybrid replacing only one encapsulated pair with one random pair.

To pursue tight security reduction, the ` hybrid arguments have to be avoided.
To this end, we enhance the IND-tCCCA security and consider the pseudoran-
domness for multiple pairs even when a constrained decryption oracle is provided.
This new security for KEM is formalized as mPR-CCCA security in Definition
5. Armed with this enhanced security, it is possible to replace the ` encapsulated
pairs once for all in the security reduction from the SIM-SO-CCA security of
PKE to the mPR-CCCA security of KEM. However, this gives rise to another
problem. The SIM-SO-CCA adversary A may submit a fresh ciphertext which
shares the same encapsulation ψ with some challenge encapsulation. In the se-
curity reduction, the adversary B, who invokes A to attack the mPR-CCCA
security of KEM, cannot ask its own decapsulation oracle to decapsulate ψ since
ψ is already embedded in some challenge ciphertext for A. To solve this problem,
we define another security notion for KEM, namely, the Random Encapsulation
Rejection (RER) security of KEM (cf. Definition 6). Equipped with the RER
security of KEM and a security of XAC, B could simply set 0 as the decryption
bit for ψ.

Although the enhancement from IND-tCCCA to mPR-CCCA is conceptually
simple, finding an mPR-CCCA secure KEM instantiation with tight reduction
to standard assumptions is highly non-trivial. Inspired by the recent work on
constructing tightly IND-CCA secure PKE [7, 8], we are able to give two tightly
mPR-CCCA & RER secure KEM instantiations, one of which also enjoys com-
pact public key.

1.3 Instantiation Overview

We provide two KEM instantiations.

The first KEM instantiation is inspired by a recent work in Eurocrypt’16.
In the work [7], Gay et al. proposed the first tightly multi-challenge IND-CCA
secure PKE scheme based on the MDDH assumption. From their PKE con-
struction, we extract a KEM and tightly prove its mPR-CCCA security & RER
security based on the MDDH assumption.7

The second KEM instantiation is contained in a very recent work by Gay et al.
[8] in Crypto’17. In [8], a qualified proof system (QPS) is proposed to construct
multi-challenge IND-CCCA secure KEM, which can be used to obtain a tightly
multi-challenge IND-CCA secure PKE scheme with help of an authenticated
encryption scheme. Note that our mPR-CCCA security is stronger than multi-
challenge IND-CCCA security. To achieve mPR-CCCA security, we formalize a
so-called Pseudorandom Simulated Proof property for QPS. We prove that if
QPS has this property, the KEM from QPS is mPR-CCCA secure. Finally, we
show that the QPS in [8] possesses the pseudorandom simulated proof property.

7 In [20], a PKE with tight SIM-SO-CCA security is constructed directly on the MDDH
assumption. Our work unified their work by characterizing the mPR-CCCA security
and RER security for KEM.
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Compared with the first instantiation, the public key of our second KEM
instantiation has a constant number of group elements. The compactness of
public key is in turn transferred to the PKE, resulting in the first tightly SIM-
SO-CCA secure PKE based on standard assumptions together with a compact
public key.

2 Preliminaries

We use λ to denote the security parameter in this work. Let ε be the empty string.
For n ∈ N, denote by [n] the set {1, · · · , n}. Denote by s1, · · · , sn ←$ S the
process of picking n elements uniformly from set S. For a PPT algorithm A, we
use y ← A(x; r) to denote the process of running A on input x with randomness
r and assigning the deterministic result to y. Let RA be the randomness space
of A, we use y ←$ A(x) to denote y ← A(x; r) where r ←$ RA. We use T(A)
to denote the running time of A, which is a polynomial in λ if A is PPT.

We use boldface letters to denote vectors or matrices. For a vector m of
finite dimension, |m| denotes the dimension of the vector and mi denotes the
i-th component of m. For a set I = {i1, i2, · · · , i|I|} ⊆ [|m|], define mI :=

(mi1 ,mi2 , · · · ,mi|I|). For all matrix A ∈ Z`×kq with ` > k, A ∈ Zk×kq denotes

the upper square matrix of A and A ∈ Z(`−k)×k
q denotes the lower ` − k rows

of A. By span(A) := {Ar | r ∈ Zkq}, we denote the span of A. By Ker(A>), we
denote the orthogonal space of span(A). For ` = k, we define the trace of A as

the sum of all diagonal elements of A, i.e., trace(A) :=
∑k
i=1 Ai,i.

A function f(λ) is negligible, if for every c > 0 there exists a λc such that
f(λ) < 1/λc for all λ > λc.

We use game-based security proof. The games are illustrated using pseudo-
codes in figures. By a box in a figure, we denote that the codes in the box appears

in a specific game. For example, G4

�� ��G5 means that G4 contains the codes in

dash box , G5 contains the codes in
�� ��oval box , and both of them contain codes

in square box . Moreover, we assume that the unboxed codes are contained in
all games. We use the notation Pri[E] to denote the probability that event E
occurs in game Gi, and use the notation G ⇒ 1 to denote the event that game
G returns 1. All variables in games are initialized to ⊥. We use “�” to denote
the end of proof of lemmas and use “�” to denote the end of proof of theorems.

Due to space limitations, we refer to the full version of this paper [21] for
the definitions of collision resistant hash function, universal hash function, public
key encryption, the MDDH assumption and its random self-reducibility property,
together with leftover hash lemma.

2.1 Prime-order Groups

Let GGen be a PPT algorithm that on input 1λ returns G = (G, q, P ), a descrip-
tion of an additive cyclic group G with a generator P of order q which is a λ-bit
prime. For a ∈ Zq, define [a] := aP ∈ G as the implicit representation of a in
G. More generally, for a matrix A = (aij) ∈ Zn×mq , we define [A] as the implicit
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representation of A in G, i.e., [A] := (aijP ) ∈ Gn×m. Note that from [a] ∈ G it
is generally hard to compute the value a (discrete logarithm problem is hard in
G). Obviously, given [a], [b] ∈ G and a scalar x ∈ Z, one can efficiently compute
[ax] ∈ G and [a + b] ∈ G. Similarly, for A ∈ Zm×nq ,B ∈ Zn×tq , given A,B or
[A],B or A, [B], one can efficiently compute [AB] ∈ Gm×t.

2.2 Simulation-based, Selective-Opening CCA Security of PKE

Let m and r be two vectors of dimension n := n(λ). Define Enc(pk,m; r) :=
(Enc(pk,m1; r1), · · · ,Enc(pk,mn; rn)) where ri is a fresh randomness used for
the encryption of mi for i ∈ [n]. Then we review the SIM-SO-CCA security
definition in [6]. Let M denote an n-message sampler, which on input a string
α ∈ {0, 1}∗ outputs a message vector m of dimension n, i.e., m = (m1, · · · ,mn).
Let R be any PPT relation.

Expso-cca-realPKE,A,n,M,R(λ):

(pk, sk)←$ Gen(1λ)

(α, a1)←$ ADec(·)
1 (pk)

m←$ M(α), r←$ (REnc)
n

C← Enc(pk,m; r)

(I, a2)←$ A
Dec/∈C(·)
2 (a1,C)

r̂I ← rI

outA ←$ A
Dec/∈C(·)
3 (a2,mI , r̂I)

Return R(m, I, outA)

Expso-cca-idealS,n,M,R (λ):

(α, s1)←$ S1(1λ)

m←$ M(α)

(I, s2)←$ S2(s1, (1
|mi|)i∈[n])

outS ←$ S3(s2,mI)

Return R(m, I, outS)

Fig. 1. Experiments used in the definition of SIM-SO-CCA security of PKE

Definition 1 (SIM-SO-CCA Security). A PKE scheme PKE = (Gen,Enc,Dec)
is simulation-based, selective-opening, chosen-ciphertext secure (SIM-SO-CCA
secure) if for every PPT n-message sampler M, every PPT relation R, every
stateful PPT adversary A = (A1,A2,A3), there is a stateful PPT simulator
S = (S1,S2,S3) such that Advso-ccaPKE,A,S,n,M,R(λ) is negligible, where

Advso-ccaPKE,A,S,n,M,R(λ) :=
∣∣∣Pr
[
Expso-cca-realPKE,A,n,M,R(λ) = 1

]
− Pr

[
Expso-cca-idealS,n,M,R (λ) = 1

]∣∣∣ .
Experiments Expso-cca-realPKE,A,n,M,R(λ) and Expso-cca-idealS,n,M,R (λ) are defined in Figure 1.
Here the restriction on A is that A2,A3 are not allowed to query the decryption
oracle Dec(·) with any challenge ciphertext Ci ∈ C.

2.3 Efficiently Samplable and Explainable (ESE) Domain

A domain D is said to be efficiently samplable and explainable (ESE) [6] if there
exist two PPT algorithms (SampleD,Sample−1D ) where SampleD(1λ) outputs a
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uniform element over D and Sample−1D (x), on input x ∈ D, outputs r that is
uniformly distributed over the set {r ∈ RSampleD | SampleD(1λ; r) = x}.

It was shown by Damg̊ard and Nielsen in [4] that any dense subset of an
efficiently samplable domain is ESE as long as the dense subset admits an efficient
membership test.

2.4 Cross-Authentication Codes

The concept of XAC was first proposed by Fehr et al. in [6] and later adapted
to strong XAC in [15] and strengthened XAC in [17].

Definition 2 (`-Cross-Authentication Code, XAC).
An `-cross-authentication code XAC (for ` ∈ N) consists of three PPT algorithms
(XGen,XAuth,XVer) and two associated spaces, the key space XK and the tag
space XT . The key generation algorithm XGen(1λ) outputs a uniformly random
key K ∈ XK, the authentication algorithm XAuth(K1, · · · ,K`) takes ` keys
(K1, · · · ,K`) ∈ XK` as input and outputs a tag T ∈ XT , and the verification
algorithm XVer(K,T ) outputs a decision bit.
Correctness. failXAC(λ) := Pr[XVer(Ki,XAuth(K1, · · · ,K`)) 6= 1] is negligible
for all i ∈ [`], where the probability is taken over K1, · · · ,K` ←$ XK.
Security against impersonation and substitution attacks. Define
εimp
XAC(λ) := maxT ′ Pr[XVer(K,T ′) = 1 | K ←$ XK] where max is over all T ′ ∈

XT , and εsubXAC(λ) := max
i,K6=i,F

Pr

 T ′ 6= T
XVer(Ki, T

′) = 1

∣∣∣∣∣∣
Ki ←$ XK,

T ← XAuth(K1, · · · ,K`),
T ′ ← F (T )


where max is over all i ∈ [`], all K 6=i := (Kj)j∈[`\i] ∈ XK`−1 and all (possibly
randomized) functions F : XT → XT . Then we say XAC is secure against

impersonation and substitution attacks if both εimp
XAC(λ) and εsubXAC(λ) are negligible.

Definition 3 (Strong and semi-unique XACs). An `-cross-authentication
code XAC is strong and semi-unique if it has the following two properties.
Strongness [15]. There exists a PPT algorithm ReSamp, which takes as input
T ∈ XT and i ∈ [`], with K1, · · · ,K` ←$ XGen(1λ), T ← XAuth(K1, · · · ,K`),
and outputs K̂i ∈ XK, denoted by K̂i ←$ ReSamp(T, i). Suppose for each fixed
(k1, · · · , k`−1, t) ∈ (XK)`−1 × XT , the statistical distance between K̂i and Ki,
conditioned on (K6=i, T ) = (k1, · · · , k`−1, t), is bounded by δ(λ), i.e.,

1

2

∑
k∈XK

∣∣∣∣∣∣
Pr[K̂i = k | (K6=i, T ) = (k1, · · · , k`−1, t)]

−
Pr[Ki = k | (K6=i, T ) = (k1, · · · , k`−1, t)]

∣∣∣∣∣∣ ≤ δ(λ).

Then the code XAC is said to be δ(λ)-strong or strong if δ(λ) is negligible.
Semi-Uniqueness [17]. The code XAC is said to be semi-unique if XK =
Kx × Ky, and given T ∈ XT and Kx ∈ Kx, there exists at most one Ky ∈ Ky
such that XVer((Kx,Ky), T ) = 1.

See the full version [21] for a concrete XAC instantiation by Fehr et al. in
[6].



Tightly SIM-SO-CCA Secure PKE from Standard Assumptions 9

3 Key Encapsulation Mechanism

In this section, we recall the definition of key encapsulation mechanism and
formalize two new security notions for it.

Definition 4 (Key Encapsulation Mechanism). A KEM KEM is a tuple
of PPT algorithms (KGen,KEnc,KDec) such that, KGen(1λ) generates a (pub-
lic, secret) key pair (pkkem, skkem); KEnc(pkkem) returns an encapsulation ψ ∈ Ψ
and a key γ ∈ Γ , where Ψ is the encapsulation space and Γ is the key space;
KDec(skkem, ψ) deterministically decapsulates ψ with skkem to get γ ∈ Γ or ⊥.

We say KEM is perfectly correct if for all λ, Pr[KDec(skkem, ψ) = γ] = 1,
where (pkkem, skkem)←$ KGen(1λ) and (ψ, γ)←$ KEnc(pkkem).

3.1 mPR-CCCA Security for KEM

We formalize a new security notion for KEM, namely mPR-CCCA. Roughly
speaking, mPR-CCCA security guarantees pseudorandomness of multiple (ψ, γ)
pairs outputted by KEnc even if a constrained decapsulation oracle is provided.

Definition 5 (mPR-CCCA Security for KEM). Let A be an adversary and
b ∈ {0, 1} be a bit. Let KEM = (KGen,KEnc,KDec) be a KEM with encapsulation

space Ψ and key space Γ . Define the experiment Expmpr-ccca-b
KEM,A (λ) in Figure 2.

Expmpr-ccca-b
KEM,A (λ): //b ∈ {0, 1}

(pkkem, skkem)←$ KGen(1λ)

b′ ←$ AOenc(),Odec(·,·)(pkkem)

Return b′

Oenc():

(ψ0, γ0)←$ Ψ × Γ
(ψ1, γ1)←$ KEnc(pkkem)

ψenc ← ψenc ∪ {ψb}
Return (ψb, γb)

Odec(pred, ψ):

γ ← KDec(skkem, ψ)

Return

γ If

(
ψ /∈ ψenc∧
pred(γ) = 1

)
⊥ Otherwise

Fig. 2. Experiment used in the definition of mPR-CCCA security of KEM

In Expmpr-ccca-b
KEM,A (λ), pred : Γ ∪ {⊥} → {0, 1} denotes a PPT predicate and

pred(⊥) := 0. Let Qdec be the total number of decapsulation queries made by
A, which is independent of the environment without loss of generality. The un-
certainty of A is defined as uncertA(λ) := 1

Qdec

∑Qdec

i=1 Prγ←$Γ [predi(γ) = 1],
where predi is the predicate in the i-th Odec query.

We say KEM has multi-encapsulation pseudorandom security against con-
strained CCA adversaries (mPR-CCCA security) if for each PPT adversary A
with negligible uncertainty uncertA(λ), the advantage Advmpr-ccca

KEM,A (λ) is negligi-

ble, where Advmpr-ccca
KEM,A (λ) :=

∣∣∣Pr
[
Expmpr-ccca-0

KEM,A (λ) = 1
]
− Pr

[
Expmpr-ccca-1

KEM,A (λ) = 1
]∣∣∣.

Note that the afore-defined mPR-CCCA security implies multi-challenge
IND-CCCA security defined in [8].
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3.2 RER Security of KEM

We define Random Encapsulation Rejection security for KEM which requires
the decapsulation of a random encapsulation is rejected overwhelmingly.

Definition 6 (Random Encapsulation Rejection Security for KEM).
Let KEM = (KGen, KEnc,KDec) be a KEM with encapsulation space Ψ and key
space Γ . Let A be a stateful adversary and b ∈ {0, 1} be a bit. Define the following
experiment Exprer-bKEM,A(λ) in Figure 3.

Exprer-bKEM,A(λ): //b ∈ {0, 1}
(pkkem, skkem)←$ KGen(1λ)

ψran ← ∅
(st, 1n)←$ AOcha(·,·)(pkkem)

ψran = {ψ1, · · · , ψn} ←$ Ψ
n

b′ ←$ AOcha(·,·)(st,ψran)

Return b′

Ocha(pred, ψ):

If ψ /∈ ψran:

Return pred(KDec(skkem, ψ))

If b = 1:

Return pred(KDec(skkem, ψ))

Else:

Return 0

Fig. 3. Experiment used in the definition of RER property of KEM

In Exprer-bKEM,A(λ), pred : Γ ∪ {⊥} → {0, 1} denotes a PPT predicate and
pred(⊥) := 0. Let Qcha be the total number of Ocha queries made by A, which is
independent of the environment without loss of generality. The uncertainty of A
is defined as uncertA(λ) := 1

Qcha

∑Qcha

i=1 Prγ←$Γ [predi(γ) = 1], where predi is the
predicate in the i-th Ocha query.

We say KEM has Random Encapsulation Rejection security (RER security) if
for each PPT adversary A with negligible uncertainty uncertA(λ), the advantage

AdvrerKEM,A(λ) :=
∣∣Pr
[
Exprer-0KEM,A(λ) = 1

]
− Pr

[
Exprer-1KEM,A(λ) = 1

]∣∣ is negligible.

4 SIM-SO-CCA Secure PKE from KEM

4.1 PKE Construction

In Figure 4, we recall the general framework for constructing SIM-SO-CCA se-
cure PKE proposed in [19]. A small difference from [19] is that we make use of
hash function H1 to convert the key space of KEM to the key space of XAC.
Ingredients. This construction uses the following ingredients.
• KEM=(KGen,KEnc,KDec) with key space Γ & ESE encapsulation space Ψ .
• (`+ 1)-XAC XAC with ESE key space XK = Kx ×Ky.
• Hash function H1 : Γ → XK generated by hash function generator H1(1λ).
• Hash function H2 : Ψ ` → Ky generated by hash function generator H2(1λ).
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Gen(1λ):

(pkkem, skkem)←$ KGen(1λ)

H1 ←$ H1(1λ)

H2 ←$ H2(1λ)

Kx ←$ Kx
pk← (pkkem,H1,H2,K

x)

sk← (pk, skkem)

Return (pk, sk)

Enc(pk,m ∈ {0, 1}`):
For j ← 1 to `:

If mj = 1:

(ψj , γj)←$ KEnc(pkkem)

Kj ← H1(γj)

Else:

ψj ←$ Ψ

Kj ←$ XK
Ky ← H2(ψ1, · · · , ψ`)
K`+1 ← (Kx,Ky)

T ← XAuth(K1, · · · ,K`+1)

Return C ← (ψ1, · · · , ψ`, T )

Dec(sk, C = (ψ1, · · · , ψ`, T )):

m′ ← 0`

Ky′ ← H2(ψ1, · · · , ψ`)
K′`+1 ← (Kx,Ky′)

If XVer(K′`+1, T ) = 1:

For j ← 1 to `:

γ′j ← KDec(skkem, ψj)

K′j ← H1(γ′j)

m′j ← XVer(K′j , T )

Return m′

Fig. 4. Construction of PKE = (Gen,Enc,Dec).

4.2 Tight Security Proof of PKE

In this subsection, we prove the SIM-SO-CCA security of PKE with tight reduc-
tion to the security of KEM. We state our main result in the following theorem.

Theorem 1. Suppose the KEM KEM is mPR-CCCA and RER secure, the (`+
1)-cross-authentication code XAC is δ(λ)-strong, semi-unique, and secure against
impersonation and substitution attacks; H1 is universal; H2 outputs collision re-
sistant function. Then the PKE scheme PKE constructed in Figure 4 is SIM-
SO-CCA secure. More precisely, for each PPT adversary A = (A1,A2,A3)
against PKE in the SIM-SO-CCA real experiment, for each PPT n-message sam-
pler M, and each PPT relation R, we can construct a stateful PPT simulator
S = (S1,S2,S3) for the SIM-SO-CCA ideal experiment and PPT adversaries
B1,B2,B3 with T(B1) ≈ T(B2) ≈ T(B3) ≤ T(A) +Qdec · poly(λ), such that

Advso-ccaPKE,A,S,n,M,R(λ) ≤ Advmpr-ccca
KEM,B2

(λ) + AdvrerKEM,B3
(λ) + ` ·Qdec · εsubXAC(λ)

+ 2AdvcrH,B1
(λ) + (n`) · (δ(λ) +∆), (1)

where Qdec denotes the total number of A’s decryption oracle queries, poly(λ) is
a polynomial independent of T(A) and ∆ = 1

2 ·
√
|XK|/|Γ |.

Remark. If we instantiate the construction with the information-theoretically
secure XAC in [6] and choose proper set XK and Γ , then ∆, δ(λ), εimp

XAC(λ) and
εsubXAC(λ) are all exponentially small in λ. Then (1) turns out to be

Advso-ccaPKE,A,S,n,M,R(λ) ≤ Advmpr-ccca
KEM,B2

(λ) + AdvrerKEM,B3
(λ) + 2AdvcrH,B1

(λ) + 2−Ω(λ).

If the underlying KEM has tight mPR-CCCA security and RER security, then
our PKE turns out to be tightly SIM-SO-CCA secure.
Proof of Theorem 1. For each PPT adversary A = (A1,A2,A3), we can construct
a stateful PPT simulator S = (S1,S2,S3) as shown in Figure 5.
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S1(1λ):

(pk, sk)←$ SimKeyGen(1λ)

(α, a1)←$ ADec(·)
1 (pk)

Return (α, s1 = (pk, sk, a1))

S2(s1, (1
|mi|)i∈[n]):

(C,R,K)←$ SimCtGen(pk)

(I, a2)←$ A
Dec/∈C(·)
2 (a1,C)

Return (I, s2 = (s1, a2, I,C,R,K))

S3(s2,mI):

R̂I ←$ SimOpen(I,mI ,C,R,K)

outA ←$ A
Dec/∈C(·)
3 (a2,mI , R̂I)

Return outA

SimKeyGen(1λ):

(pkkem, skkem)←$ KGen(1λ),H1 ←$ H1(1λ),H2 ←$ H2(1λ),Kx ←$ Kx
pk← (pkkem,H1,H2,K

x), sk← (pk, skkem)

Return (pk, sk)

SimCtGen(pk):

For i← 1 to n:

For j ← 1 to `:

ri,j ←$ RKEnc

(ψi,j , γi,j)← KEnc(pkkem; ri,j)

Ki,j ← H1(γi,j)

Ky
i ← H2(ψi,1, · · · , ψi,`)

Ki,`+1 ← (Kx,Ky
i )

Ti ← XAuth(Ki,1, · · · ,Ki,`+1)

Ci ← (ψi,1, · · · , ψi,`, Ti)
Ri ← (ri,1, · · · , ri,`)
Ki ← (Ki,1, · · · ,Ki,`+1)

Return

C
R
K

 =

C1, · · · ,Cn

R1, · · · ,Rn

K1, · · · ,Kn



SimOpen(I,mI ,C,R,K):

For i ∈ I:

For j ← 1 to `:

If mi,j = 1:

r̂i,j ← ri,j

Else:

K̂i,j ←$ ReSamp(Ti, j)

r̂Ki,j ←$ Sample−1
XK(K̂i,j)

r̂ψi,j ←$ Sample−1
Ψ (ψi,j)

r̂i,j ← (r̂Ki,j , r̂
ψ
i,j)

R̂i ← (r̂i,1, · · · , r̂i,`)
Return R̂I = (R̂i)i∈I

Fig. 5. Construction of simulator S = (S1,S2,S3) for Expso-cca-idealS,n,M,R (λ).

The differences between the real and the ideal experiments lie in two aspects.
The first is how the challenge ciphertext vector is generated and the second is how
the corrupted ciphertexts are opened. In other words, the algorithms SimCtGen
and SimOpen used by the simulator differ from the real experiment. In the proof,
we focus on these two algorithms and gradually change them through a series of
games starting with game G0 and ending with game G9, with adjacent games
being proved to be computationally indistinguishable. The full set of games are
illustrated in Figure 6.

Game G0. Game G0 is exactly the ideal experiment Expso-cca-idealS,n,M,R (λ). Hence

Pr
[
Expso-cca-idealS,n,M,R (λ) = 1

]
= Pr0[G⇒ 1]. (2)

Game G0 −G1. The only difference between G1 and G0 is that a collision check
for H2 is added in G1 and G1 aborts if a collision is found. More precisely, we use
a set Q to log all the (input, output) pairs for H2 in algorithm SimCtGen. Then in
the Dec oracle, if there exists a usage of H2 such that its output collides with some
output in Q but with different inputs, then a collision for H2 is found and the
game G1 aborts immediately. It is straightforward to build a PPT adversary B1
with T(B1) ≈ T(A) +Qdec · poly(λ), where poly(λ) is a polynomial independent
of T(A), such that,

|Pr0[G⇒ 1]− Pr1[G⇒ 1]| ≤ AdvcrH,B1
(λ). (3)
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Expso-cca-idealS,n,M,R (λ):

(pk, sk)←$ SimKeyGen(1λ)

(α, a1)←$ ADec(·)
1 (pk)

m←$ M(α)

(C,R,K)←$ SimCtGen(pk)

(I, a2)←$ A
Dec/∈C(·)
2 (a1,C)

R̂I ←$ SimOpen(I,mI ,C,R,K)

outA ←$ A
Dec/∈C(·)
3 (a2,mI , R̂I)

Return R(m, I, outA)

SimCtGen(pk):

G0 G1, G2 G3

�� ��G4 −G7

�� ��G8 G9

For i← 1 to n:

For j ← 1 to `:

If mi,j = 0:

rψi,j ←$ RSampleΨ

ψi,j ← SampleΨ (1λ; rψi,j)

γi,j ←$ Γ

Ki,j ← H1(γi,j)�



�
	rKi,j ←$ RSampleXK

Ki,j ← SampleXK(1λ; rKi,j)

ri,j ← (rKi,j , r
ψ
i,j)

Else:

ri,j ←$ RKEnc

(ψi,j , γi,j)← KEnc(pkkem; ri,j)

Ki,j ← H1(γi,j)

Ky
i ← H2(ψi,1, · · · , ψi,`)
Q ← Q∪ {(Ky

i , (ψi,1, · · · , ψi,`))}
Ki,`+1 ← (Kx,Ky

i )

Ti ← XAuth(Ki,1, · · · ,Ki,`+1)

Ci ← (ψi,1, · · · , ψi,`, Ti)
Ri ← (ri,1, · · · , ri,`)
Ki ← (Ki,1, · · · ,Ki,`+1)

Return

C
R
K

 =

C1, · · · ,Cn

R1, · · · ,Rn

K1, · · · ,Kn



SimOpen(I,mI ,C,R,K):

G0 −G6 G7, G8 G9

For i ∈ I:

For j ← 1 to `:

If mi,j = 1:

r̂i,j ← ri,j

Else:

K̂i,j ←$ ReSamp(Ti, j)

r̂Ki,j ←$ Sample−1
XK(K̂i,j)

r̂Ki,j ←$ Sample−1
XK(Ki,j)

r̂ψi,j ←$ Sample−1
Ψ (ψi,j)

r̂i,j ← (r̂Ki,j , r̂
ψ
i,j)

R̂i ← (r̂i,1, · · · , r̂i,`)
R̂I ← RI

Return R̂I

Dec/∈C(C = (ψ1, · · · , ψ`, T )):

G0 G1 G2, G3, G4

�� ��G5 G6, G7 G8, G9

If C ∈ C:

Return ⊥
m← 0`

Ky′ ← H2(ψ1, · · · , ψ`)

If

[
∃(K̂y, (ψ̂1, · · · , ψ̂`)) ∈ Q s.t.

Ky′ = K̂y ∧ (ψ1, · · · , ψ`) 6= (ψ̂1, · · · , ψ̂`)

]
:

Abort game //Find a collisoin for H2

Q ← Q∪ {(Ky′, (ψ1, · · · , ψ`))}
K′`+1 ← (Kx,Ky′)

If XVer(K′`+1, T ) = 1:

For η ← 1 to `:

γ′η ← KDec(skkem, ψη)

If

[
∃(i, j) ∈ [n]× [`] s.t.
mi,j = 0 ∧ ψη = ψi,j

]
:

m′η ← XVer(H1(γ′η), T )

m′η ← XVer(Ki,j , T )�� ��m′η ← 0

Else:

m′η ← XVer(H1(γ′η), T )

Return m′

SimKeyGen(1λ): G0 G1 −G7 G8, G9

(pkkem, skkem)←$ KGen(1λ),H1 ←$ H1(1λ),H2 ←$ H2(1λ),Kx ←$ Kx
pk← (pkkem,H1,H2,K

x), sk← (pk, skkem) T ← ∅
Return (pk, sk)

Fig. 6. Games G0 −G9 in the proof of Theorem 1.

Game G1 −G2. G2 is essentially the same as G1 except for one conceptual
change in the Dec oracle. More precisely, for a Dec(C = (ψ1, · · · , ψ`, T )) query
such that ∃(i, j) ∈ [n]× [`], η ∈ [`] s.t. mi,j = 0 ∧ ψη = ψi,j ,

• in G1, we proceed exactly the same as the decryption algorithm, i.e.,
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set m′η ← XVer(H1(γ′η), T ) where γ′η = KDec(skkem, ψη);

• in G2, we set m′η ← XVer(Ki,j , T ).
Since ψη = ψi,j , γ

′
η = KDec(skkem, ψη) and (ψi,j , γi,j) is the output of

KEnc(pkkem), we have that γ′η = γi,j due to the perfect correctness of KEM.
Then Ki,j = H1(γi,j) = H1(γ′η). Thus the difference between G1 and G2 is only
conceptual, and it follows

Pr1[G⇒ 1] = Pr2[G⇒ 1]. (4)

Game G2 −G3. G3 is almost the same as G2 except for one change in the
SimCtGen algorithm.
• In G2, all (ψi,j , γi,j) pairs are the output of KEnc(pkkem).
• In G3, for mi,j = 1, (ψi,j , γi,j) pairs are the output of KEnc(pkkem);
• In G3, for mi,j = 0, (ψi,j , γi,j) pairs are uniformly selected from Ψ × Γ .
We will reduce the indistinguishability between game G2 and G3 to the mPR-

CCCA security of KEM. Given A = (A1,A2,A3), we can build a PPT adversary

B2 with T(B2) ≈ T(A) and uncertainty uncertB2
(λ) ≤ εimp

XAC(λ) +∆ such that

|Pr2[G⇒ 1]− Pr3[G⇒ 1]| ≤ Advmpr-ccca
KEM,B2

(λ). (5)

On input pkkem, B2 selects H1,H2 and Kx itself and embeds pkkem in pk =

(pkkem,H1, H2,K
x). In the first phase, B2 calls ADec(·)

1 (pk). To respond the de-
cryption query Dec(C = (ψ1, · · · , ψ`, T )) submitted by A, B2 simulates Dec
until it needs to call KDec(skkem, ψη) to decapsulate ψη. Since B2 does not pos-
sess skkem relative to pkkem, B2 is not able to invoke KDec itself. Then B2 submits
a Odec(pred, ψη) query to its own oracle Odec where pred(·) := XVer(H1(·), T ).
Clearly, this predicate is a PPT one. If the response of Odec is ⊥, B2 sets m′η to
0. Otherwise B2 sets m′η to 1.
Case 1: Odec(XVer(H1(·), T ), ψη) = ⊥. This happens if and only if

ψη ∈ ψenc ∨ XVer(H1(KDec(skkem, ψη)), T ) = 0.

In the first phase, B2 has not submitted any Oenc query yet and ψenc is empty.
So ψη /∈ ψenc. In this case, Odec(XVer(H1(·), T ), ψη) = ⊥ if and only if

XVer(H1(KDec(skkem, ψη)), T ) = 0.

Therefore B2 perfectly simulates the Dec oracle in G2(G3) by setting m′η ← 0.
Case 2: Odec(XVer(H1(·), T ), ψη) 6= ⊥. This happens if and only if

ψη /∈ ψenc ∧ XVer(H1(KDec(skkem, ψη)), T ) = 1.

For the same reason as case 1, the condition ψη /∈ ψenc always holds. In this case,
Odec(XVer(H1(·), T ), ψη) 6= ⊥ if and only if XVer(H1(KDec(skkem, ψη)), T ) = 1.
Therefore B2 perfectly simulates the Dec oracle in G2(G3) by setting m′η ← 1.

In either case, B2 can perfectly simulate the Dec oracle for A1. At the end of
this phase, B2 gets A1’s output (α, a1). Then B2 calls m←$M(α) and simulates
algorithm SimCtGen(pk).

– If mi,j = 1, B2 proceeds just like gameG2(G3), i.e., (ψi,j , γi,j)←$ KEnc(pkkem)
and set Ki,j ← H1(γi,j).
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– If mi,j = 0, B2 submits an Oenc() query to its own oracle and gets the
response (ψ, γ) (ψ is added into set ψenc). Then B2 sets (ψi,j , γi,j)← (ψ, γ).
If b = 1, (ψ, γ) is the output of KEnc(pkkem), B2 perfectly simulates SimCtGen(pk)
to generate challenge ciphertexts C in G2.
If b = 0, (ψ, γ) is uniformly over Ψ ×Γ , B2 perfectly simulates SimCtGen(pk)
to generate challenge ciphertexts C in G3.

In the second phase, B2 calls ADec/∈C(·)
2 (a1,C) to get (I, a2). Upon an decryption

query Dec/∈C(C = (ψ1, · · · , ψ`, T )) submitted by A2, B2 responds almost in the
same way as in the first phase, except that B2 has to deal with the case of
∃ψη ∈ ψenc. This case does happen: even if C = (ψ1, · · · , ψ`, T ) /∈ C, it is still
possible that ∃ψη ∈ {ψi}i∈[`] with ψη ∈ ψenc. In this case, there is no chance for
B2 to submit an Odec(pred, ψη) query for a useful response because the response
will always be ⊥. However, it does not matter. By the specification of G2(G3),
m′η should be set to the output of XVer(Ki,j , T ) which B2 can perfectly do.

Note that the execution of algorithm SimOpen in game G2(G3) does not need
all information about R. Only those randomnesses with respect to mi,j = 1 are
needed. Now that B2 does have I,mI ,C,K and part of R (for mi,j = 1), it can

call SimOpen(I,mI ,C,R,K) to get R̂I .

In the third phase, B2 calls ADec/∈C(·)
3 (a2,mI , R̂I) to get outA. The Dec/∈C

query submitted by A in this phase is responded by B2 in the same way as in
the second phase. Finally, B2 outputs R(m, I, outA).

According to the above analysis, B2 perfectly simulates G2 for A if b = 1 and
perfectly simulates G3 for A if b = 0. Moreover, for γ ←$ Γ , H1(γ) is ∆-close to
uniform by leftover hash lemma since H1 is universal. Then

Pr
γ←$Γ

[pred(γ) = 1] = Pr
γ←$Γ

[XVer(H1(γ), T ) = 1] ≤ εimp
XAC(λ) +∆.

By the definition of uncertainty, we have.

uncertB2(λ) ≤ εimp
XAC(λ) +∆. (6)

Thus (5) follows.
Game G3 −G4. G4 is almost the same as G3 except for one change in the
SimCtGen algorithm. In the SimCtGen algorithm, if mi,j = 0,
• in G3, Ki,j ← H1(γi,j) for γi,j ←$ Γ ;
• in G4, Ki,j is uniformly selected from XK.
Since H1 is universal, by leftover hash lemma and a union bound, we have

that

|Pr3[G⇒ 1]− Pr4[G⇒ 1]| ≤ (n`) ·∆. (7)

Game G4 −G5. G5 is almost the same as G4 except for one change in the Dec
oracle. More precisely, to reply a Dec/∈C(C = (ψ1, · · · , ψ`, T )) query such that
∃(i, j) ∈ [n]× [`], η ∈ [`] s.t. mi,j = 0 ∧ ψη = ψi,j ,
• in G4, we set m′η ← XVer(Ki,j , T );
• in G5, we set m′η ← 0 directly.
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Suppose ψη = ψi,j ∈ Ci = (ψi,1, · · · , ψi,`, Ti) where Ti = XAuth(Ki,1, · · · ,Ki,`+1).
There are two cases according to whether T = Ti.
Case 1: T = Ti. In this case, since C /∈ C, we have that (ψ1, · · · , ψ`) 6=
(ψi,1, · · · , ψi,`). Note that Ky

i = H2(ψi,1, · · · , ψi,`) and Ky′ = H2(ψ1, · · · , ψ`). If
Ky
i = Ky′, a collision for H2 occurs, both G4 and G5 abort. Otherwise, we must

have Ky′ 6= Ky
i , hence K ′`+1 = (Kx,Ky′) 6= (Kx,Ky

i ) = Ki,`+1. Since XAC is
semi-unique and XVer(Ki,`+1, T ) = 1, it holds that XVer(K ′`+1, T ) 6= 1 which
implies that m′η = 0. In this case, the responses of Dec/∈C make no difference in
G4 and G5.
Case 2: T 6= Ti. Note that all the information about Ki,j is leaked to A only
through Ti in game G4. Thus, the probability that XVer(Ki,j , T ) = 1 for T 6= Ti
will be no more than εsubXAC(λ).

By a union bound, we have that

|Pr4[G⇒ 1]− Pr5[G⇒ 1]| ≤ ` ·Qdec · εsubXAC(λ). (8)

Game G5 −G6. G6 is almost the same as G5 except for one change in the Dec
oracle. More precisely, for a Dec(C = (ψ1, · · · , ψ`, T )) query such that ∃(i, j) ∈
[n]× [`] s.t. mi,j = 0 ∧ ψη = ψi,j for any η ∈ [`],
• in G5, we set m′η ← 0 directly;
• in G6, we proceed exactly the same as the decryption algorithm, i.e., setting

m′η ← XVer(H1(γ′η), T ), where γ′η = KDec(skkem, ψη).
We will reduce the indistinguishability between game G5 and G6 to the RER

security of KEM. More precisely, we can build a PPT adversary B3 with T(B3) ≈
T(A) and with uncertainty uncertB3(λ) ≤ εimp

XAC(λ) +∆ such that

|Pr5[G⇒ 1]− Pr6[G⇒ 1]| ≤ AdvrerKEM,B3
(λ). (9)

On input pkkem, B3 selects H1,H2 and Kx itself and embeds pkkem in pk =

(pkkem,H1, H2,K
x). In the first phase, B3 calls ADec(·)

1 (pk). To respond the de-
cryption query Dec(C = (ψ1, · · · , ψ`, T )) submitted by A, B3 simulates Dec
until it needs to call KDec(skkem, ψη) to decapsulate ψη. Since B3 does not hold
skkem relative to pkkem, B3 is not able to invoke KDec itself. Then B3 submits
a Ocha(pred, ψ) query to its own oracle Ocha where pred(·) := XVer(H1(·), T )
and ψ = ψη. Clearly, this predicate is a PPT one. Since ψran is empty set
in this phase, the condition ψ /∈ ψran will always hold and B3 will get a bit
β = pred(KDec(skkem, ψ)) = XVer(H1(KDec(skkem, ψη)), T ) in return. Then B3
sets m′η ← β and perfectly simulates Dec for A in this phase.

At the end of this phase, B3 gets A’s output (α, a1). Then B3 calls m ←$

M(α) and then simulates algorithm SimCtGen(pk) as follows. B3 first outputs 1n`

and get ψran = {ψran
1 , · · · , ψran

n` } which are n` random encapsulations. During
the generation of the challenge ciphertexts, B3 sets (ψi,j ,Ki,j) according to m.

– If mi,j = 1, B3 sets (ψi,j , γi,j)←$ KEnc(pkkem) and sets Ki,j ← H1(γi,j).
– If mi,j = 0, B3 sets ψi,j ← ψran

(i−1)`+j and Ki,j ←$ XK. Since (i, j) ∈ [n]× [`],

the subscript (i− 1)`+ j ∈ {1, · · · , n`} is well defined.
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Then B3 proceeds just like algorithm SimCtGen(pk) in game G5(G6).

In the second phase, B3 calls ADec/∈C(·)
2 (a1,C) to get (I, a2). To respond the

decryption query Dec/∈C(C = (ψ1, · · · , ψ`, T )) submitted by A, B3 proceeds
just like game G5(G6). When a decapsulation of ψη is needed, B3 submits a
Ocha(pred, ψη) query to its own oracle Ocha where pred(·) := XVer(H1(·), T ).
After that, B3 will get a bit β in return and B3 sets m′η ← β. Note that

– In case of ψη /∈ ψran, m′η = XVer(H1(KDec(skkem, ψη)), T ), which is exactly
how m′η is computed in both game G5 and G6.

– In case of ψη ∈ ψran, there must exist (i, j) ∈ [n] × [`] s.t. mi,j = 0 ∧ ψη =
ψi,j . Thus m′η = XVer(H1(KDec(skkem, ψη)), T ) if b = 1 and m′η = 0 if b = 0.
The former case is exactly how m′η is computed in game G6 and the latter
case is exactly how m′η is computed in game G5.

As a result, B3 perfectly simulates Dec/∈C in the second phase of game G5 for
A if b = 0 and perfectly simulates Dec/∈C in the second phase of game G6 for A
if b = 1. After B3 gets (I, a2), B3 is able to call SimOpen(I,mI ,C,R,K) to get

R̂I for the similar reason as in the proof of G2 −G3.

In the third phase, B3 calls ADec/∈C(·)
3 (a2,mI , R̂I) to get outA. The Dec/∈C

query submitted by A in this phase is responded using the same way as in the
second phase. Finally, B3 outputs R(m, I, outA).

Thus B3 perfectly simulates G6 for A if b = 1 and perfectly simulates G5 for
A if b = 0. Similar to (6), uncertB3(λ) ≤ εimp

XAC(λ) +∆. Thus (9) follows.
Game G6 −G7. G7 is almost the same as G6 except for one change in the
SimOpen algorithm. More precisely,
• in G6, r̂Ki,j is the output of Sample−1XK(K̂i,j) where K̂i,j ←$ ReSamp(Ti, j);

• in G7, r̂Ki,j is the output of Sample−1XK(Ki,j) for the original Ki,j generated
in algorithm SimCtGen.

In game G6 and G7, before the invocation of algorithm SimOpen, only Ti
leaks information about Ki,j to A when mi,j = 0. Since XAC is δ(λ)-strong,

the statistical distance between the resampled K̂i,j ←$ ReSamp(Ti, j) and the
original Ki,j is at most δ(λ). By a union bound, we have that

|Pr6[G⇒ 1]− Pr7[G⇒ 1]| ≤ (n`) · δ(λ). (10)

Game G7 −G8. G8 is almost the same as G7 except for the dropping of the
collision check added in G1. Similar to the proof of G0 −G1, we can show that

|Pr7[G⇒ 1]− Pr8[G⇒ 1]| ≤ AdvcrH,B1
(λ). (11)

Game G8 −G9. G9 is almost the same as G8 except for one change in SimOpen.
More precisely,
• in G8, the opened randomness is a “reverse sampled” randomness, i.e.,

r̂Ki,j ←$ Sample−1XK(Ki,j) and r̂ψi,j ←$ Sample−1Ψ (ψi,j);

• in G9, the opened randomness (r̂Ki,j , r̂
ψ
i,j) is changed to be the original

randomness used to sample Ki,j and ψi,j , i.e., (r̂Ki,j , r̂
ψ
i,j)← (rKi,j , r

ψ
i,j).
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This change is conceptual since Ψ and XK are ESE domains. Thus

Pr8[G⇒ 1] = Pr9[G⇒ 1]. (12)

Game G9. Game G9 is exactly the real experiment Expso-cca-realPKE,A,n,M,R(λ). Thus

Pr9[G⇒ 1] = Pr
[
Expso-cca-realPKE,A,n,M,R(λ) = 1

]
. (13)

Finally, Theorem 1 follows from (2, 3, 4, 5, 7, 8, 9, 10, 11, 12) and (13). �

5 Instantiations

We give two instantiations of KEM with mPR-CCCA security and RER security.

5.1 KEM from MDDH

We present a KEM which is extracted from the multi-challenge IND-CCA secure
PKE proposed by Gay et al. in [7]. The KEM KEMmddh = (KGen,KEnc,KDec)
is shown in Figure 7.

Suppose G = (G, q, P ) ←$ GGen(1λ) and H is a hash generator outputting
functions H : Gk → {0, 1}λ. For a vector y ∈ Z3k

q , we use y ∈ Zkq to denote the

upper k components and y ∈ Z2k
q to denote the lower 2k components.

KGen(1λ) :

M←$ U3k,k,H←$ H(1λ).

k1,0, · · · ,kλ,1 ←$ Z3k
q

pkkem ←
(

G,H, [M]

([M>kj,β ])0≤β≤1
1≤j≤λ

)
skkem ← (kj,β)1≤j≤λ,0≤β≤1

Return (pkkem, skkem)

KEnc(pkkem) :

r←$ Zkq , [y]← [M]r

τ ← H([y])

γ ← r> ·
∑λ
j=1[M>kj,τj ]

Return (ψ ← [y], γ)

//Ψ = G3k, Γ = G

KDec(skkem, ψ) :

ψ = [y]

τ ← H([y])

kτ ←
∑λ
j=1 kj,τj

γ ← [y>] · kτ
Return γ

Fig. 7. The KEM KEMmddh = (KGen,KEnc,KDec) extracted from [7].

Perfectly correctness of KEMmddh is straightforward. See the full version [21]
for the proofs of its tight mPR-CCCA security and tight RER security.

5.2 KEM from Qualified Proof System with Compact Public Key

First we recall the definition of a proof system described in [8].

Definition 7 (Proof System). Let L = {Lpars} be a family of languages in-
dexed by public parameters pars, with Lpars ⊆ Xpars and an efficiently computable
witness relation R. A proof system PS = (PGen,PPrv,PVer,PSim) for L consists
of a tuple of PPT algorithms.
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– PGen(pars). It outputs a public key ppk and a secret key psk.
– PPrv(ppk, x, w). On input a statement x ∈ L and a witness w with R(x,w) =

1, it deterministically outputs a proof Π ∈ Π and a key K ∈ K.
– PVer(ppk, psk, x,Π). On input ppk, psk, x ∈ X and Π, it deterministically

outputs b ∈ {0, 1} together with a key K ∈ K if b = 1 or ⊥ if b = 0.
– PSim(ppk, psk, x). Given ppk, psk, x ∈ X , it deterministically outputs a proof
Π and a key K ∈ K.

Next we recall the definition of a qualified proof system.

Definition 8 (Qualified Proof System [8]). Let PS = (PGen,PPrv,PVer,PSim)
be a proof system for a family of languages L = Lpars. Let Lsnd = {Lsnd

pars} be a

family of languages, such that Lpars ⊆ Lsnd
pars. We say that PS is Lsnd-qualified, if

the following properties hold.

– Completeness: For all possible public parameters pars, for all statements
x ∈ L and all witnesses w such that R(x,w) = 1, Pr[PVer(ppk, psk, x,Π)] =
1, where (ppk, psk)←$ PGen(pars) and (Π,K)←$ PPrv(ppk, x, w).

– Perfect zero-knowledge: For all possible public parameters pars, all key
pairs (ppk, psk) in the output range of PGen(pars), all statements x ∈ L and
all witnesses w with R(x,w) = 1, we have PPrv(ppk, x, w) = PSim(ppk, psk, x).

– Unique of the proofs: For all possible public parameters pars, all key pairs
(ppk, psk) in the output range of PGen(pars) and all statements x ∈ X , there
exists at most one Π∗ such that PVer(ppk, psk, x,Π∗) = 1.

– Constrained Lsnd-Soundness: For any stateful PPT adversary A, con-
sider the soundness experiment in Figure 8 (where PSim and PVer are im-
plicitly assumed to have access to ppk).

Expcsnd
Lsnd,PS,A(λ):

win = 0

(ppk, psk)←$ PGen(pars)

AOsim(),Over(·,·,·)(ppk)

Osim():

x←$ Lsnd\L
(Π,K)← PSim(psk, x)

Return (x,Π,K)

Over(x,Π, pred):

(v,K)← PVer(psk, x,Π)

If v = 1 ∧ pred(K) = 1:

If x ∈ L:

Return K

Else:

win =

{
0 If x ∈ Lsnd

1 Otherwise

Abort game

Return ⊥

Fig. 8. Experiment used in the definition of constrained Lsnd-soundness of PS.

Let Qver be the total number of Over queries, which is independent of the
environment without loss of generality. Let predi : K ∪ {⊥} → {0, 1} be the
predicate submitted by A in the i-th query, where predi(⊥) = 0 for all i. The
uncertainty of A is defined as
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uncertA(λ) := 1
Qver

∑Qver

i=1 PrK←$K[predi(K) = 1].

We say constrained Lsnd-soundness holds for PS if for each PPT adversary
A with negligible uncertainty, AdvcsndLsnd,PS,A(λ) is negligible, where

AdvcsndLsnd,PS,A(λ) := Pr[win = 1 in Expcsnd
Lsnd,PS,A(λ)]

We omit the definition for Lsnd-indistinguishability of two proof systems

and the definition for L̃snd-extensibility of a proof system (See [8] and also our
full version [21] for details). Here we define a new property for qualified proof
system, which stresses that the simulated proof Π for a random x ∈ Lsnd\L is
pseudorandom when providing verification oracle for only x ∈ L.

Definition 9 (Pseudorandom Simulated Proof of Qualified Proof Sys-
tem). Let PS = (PGen,PPrv,PVer,PSim) be a Lsnd-qualified proof system for
a family of languages L. Let A be a stateful adversary and b ∈ {0, 1} be a

bit. Define the following experiment Exppr-proof-bPS,A (λ) in Figure 9. We say PS has
pseudorandom simulated proof if for each PPT adversary A, the advantage

Advpr-proofPS,A (λ) :=
∣∣∣Pr
[
Exppr-proof-0PS,A (λ) = 1

]
− Pr

[
Exppr-proof-1PS,A (λ) = 1

]∣∣∣ is negl.

Exppr-proof-b
PS,A (λ)://b ∈ {0, 1}

(ppk, psk)←$ PGen(pars)

b′ ←$ AOsim(),Over(·,·)(ppk)

Return b′

Osim():

x←$ Lsnd\L
Π0 ←$ Π

(Π1,K)← PSim(psk, x)

Return (x,Πb)

Over(x,Π):

(v,K)← PVer(psk, x,Π)

If x /∈ L ∨ v = 0:

Return ⊥
Return K

Fig. 9. Experiment used in the definition of pseudorandom simulated proof of PS.

The Qualified Proof System in [8]. First we explain how the public pa-
rameters pars are sampled. Fix some k ∈ N, invoke G ←$ GGen(1λ) where
G = (G, q, P ). Let D2k,k be a fixed matrix distribution, we sample A ←$ D2k,k

and A0 ←$ U2k,k where A and A0 are both full rank. Additionally select
A1 ∈ Z2k×k

q according to U2k,k with the restriction A0 = A1. Let H0 and H1

be universal hash function generators returning functions h0 : Gk2+1 → Zk×kq

and h1 : Gk+1 → Zkq respectively. Let h0 ←$ H0 and h1 ←$ H1. Let pars ←
(k,G, [A], [A0], [A1], h0, h1) be the public parameters and we assume pars is an
implicit input of all algorithms. The languages are defined as L:= span([A]),

Lsnd := span([A]) ∪ span([A0]) and L̃snd := span([A]) ∪ span([A0]) ∪ span([A1]).
The construction8 of Lsnd-qualified proof system PS = (PGen,PPrv,PVer,PSim)

in [8] is shown in Figure 10.

8 This construction in Figure 10 is an updated version of [8] from a personal commu-
nication.
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According to Theorem 1 of [8], PS is Lsnd-qualified and L̃snd-extensible, both
admitting tight security reductions to the MDDH assumption. More precisely,
AdvcsndLsnd,PS,A(λ),Advcsnd

L̃snd,P̃S,A
(λ) ≤ 2k · Advmddh

D2k,k,GGen,B(λ) + 2−Ω(λ), AdvPS-ind
Lsnd ≤

2−Ω(λ).

PGen(pars):

KX ←$ Z(k2+1)×2k
q

Ky ←$ Z(k+1)×2k
q

[PX]← KX[A] ∈ G(k2+1)×k

[Py]← Ky[A] ∈ G(k+1)×k

ppk← ([PX], [Py])

psk← (KX,Ky)

Return (ppk, psk)

PSim(ppk, psk, [c]):

X← h0(KX[c])

y← h1(Ky[c])

[π]← [A0] ·X + [c] · y>

[K]← [A0] ·X + [c] · y>

[κ]← trace([K])

Return ([π], [κ])

PPrv(ppk, [c], r):

X← h0([PX]r) ∈ Zk×kq

y← h1([Py]r) ∈ Zkq
[π]← [A0] ·X + [c] · y> ∈ Gk×k

[K]← [A0] ·X + [c] · y> ∈ Gk×k

[κ]← trace([K]) ∈ G
Return ([π], [κ])

PVer(ppk, psk, [c], [π∗]):

([π], [κ])← PSim(ppk, psk, [c])

Return

{
(1, [κ]) If [π] = [π∗]

(0,⊥) Otherwise

Fig. 10. Construction of the Lsnd-qualified proof system PS =
(PGen,PPrv,PVer,PSim) in [8].

We now prove that PS has pseudorandom simulated proof with Theorem 2.

Theorem 2. The Lsnd-qualified proof system PS in Figure 10 has pseudoran-
dom simulated proof if Uk-MDDH assumption holds. Specifically, for each PPT
adversary A, we can build a PPT adversary B with T(B) ≤ T(A) + (Qsim +
Qver) · poly(λ) such that the advantage

Advpr-proofPS,A (λ) ≤ 2Advmddh
Uk,GGen,B(λ) + 2−Ω(λ).

where Qsim(Qver) is the total number of Osim(Over) queries made by A and
poly(λ) is a polynomial independent of T(A).

Proof of Theorem 2.
For a fixed PPT adversary A, consider an experiment Exppr-proofPS,A (λ) which

first uniformly selects b←$ {0, 1}, then calls Exppr-proof-bPS,A (λ) and gets its output
b′. It is straightforward that

Advpr-proofPS,A (λ) = 2
∣∣∣Pr[b′ = b in Exppr-proofPS,A (λ)]− 1

2

∣∣∣ .
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Now we rewrite Exppr-proofPS,A (λ) in Figure 11 and make changes to it gradually
through game G0 to G3. Games G0 −G3 are defined as follows.

Exppr-proof
PS,A (λ):G0 G1 −G3

b←$ {0, 1}

V←$ Z(k2+1)×k
q

KX ←$ Z(k2+1)×2k
q

Ky ←$ Z(k+1)×2k
q

[PX]← KX[A]

[Py]← Ky[A]

ppk← ([PX], [Py])

b′ ←$ AOsim(),Over(·,·)(ppk)

Return b′

Osim(): G0 G1 G2 G3

r←$ Zkq , [c]← [A0]r

Π0 ←$ Gk×k

X← h0(KX[c])

X← h0([Vr])

X←$ Zk×kq

y← h1(Ky[c])

Π1 ← [A0] ·X + [c] · y>

Π1 ←$ Gk×k

Return ([c], Πb)

Over([c], Π∗): G0 −G3

X← h0(KX[c])

y← h1(Ky[c])

Π ← [A0] ·X + [c] · y>

[K]← [A0] ·X + [c] · y>

[κ]← trace([K])

If

[
[c] /∈ span([A])

∨Π 6= Π∗

]
:

Return ⊥
Return [κ]

Fig. 11. Games G0 −G3 in the proof of Theorem 2.

Game G0. This game is the same as Exppr-proofPS,A (λ). Then

Advpr-proofPS,A (λ) = 2

∣∣∣∣Pr0[b′ = b]− 1

2

∣∣∣∣ . (14)

Game G0 −G1. G1 is almost the same as G0 except for the Osim oracle.
• In G0, X = h0(KX[c]), where [c] = [A0]r and r←$ Zkq for each Osim query.

• In G1, X = h0([Vr]), where (i) a fresh r is uniformly chosen from Zkq for

each Osim query; (ii) V is uniformly chosen from Z(k2+1)×k
q beforehand but will

be fixed for each Osim query.
Define U := KXA0, so (PX|U) = KX(A|A0). Note that, the square ma-

trix (A|A0) is of full rank with probability 1− 2−Ω(λ), then the entropy of KX

is transferred to (PX|U) intactly. Recall that KX is uniform over Z(k2+1)×2k
q .

Therefore, (PX|U) is uniform over Z(k2+1)×2k
q as well. Consequently, U is uni-

formly distributed over Z(k2+1)×k
q even conditioned on PX.

In G0, the Over oracle rejects all [c] /∈ [span(A)]. Therefore, the information of
KX leaked throughOver is characterized by the public key PX. Together with the
fact that [c] = [A0]r inOsim ofG0 andG1, the computation of KX[c] = [KXA0]r

in Osim of G0 can be replaced with [V]r for V ←$ Z(k2+1)×k
q in G1. Thus we

have
|Pr0[b′ = b]− Pr1[b′ = b]| ≤ 2−Ω(λ). (15)

Game G1 −G2. G2 is the same as G1 except for the Osim oracle.
• In G1, X = h0([Vr]) is computed with the same V but a fresh r←$ Zkq .

• In G2, X is uniformly selected from Zk×kq for each Osim oracle.



Tightly SIM-SO-CCA Secure PKE from Standard Assumptions 23

We will show that

|Pr1[b′ = b]− Pr2[b′ = b]| ≤ Advmddh
Uk,GGen,B(λ) + 2−Ω(λ). (16)

To prove (16), we define two intermediate games G′1 and G′′1 .
G′1 is the same as G1 except for the generation of r in Osim. For each Osim query,
− in G1, r←$ Zkq ;

− in G′1, r←Ws with a fresh s←$ Zkq but the same W, which is uniformly

selected from Zk×kq beforehand.

Since W is invertible with probability 1− 2−Ω(λ), we have that

|Pr1[b′ = b]− Pr1′ [b
′ = b]| ≤ 2−Ω(λ). (17)

G′′1 is the same with G′1 except for the Osim oracle. For each Osim query,
− G′1 sets [c]← A0[W]s and X← h0([VW]s), where s←$ Zkq ;

− G′′1 sets [c]← A0[r] and X← h0([u]), where r←$ Zkq ,u←$ Zk2+1
q .

Note that, with overwhelming probability, [B] = [ W
VW ] distributes uniformly

over G(k2+k+1)×k. Then we can build an adversary B and show that

|Pr1′ [b
′ = b]− Pr1′′ [b

′ = b]| ≤ Advmddh
Uk,GGen,B(λ) + 2−Ω(λ). (18)

To prove (18), we construct an adversary B′ and show that

|Pr1′ [b
′ = b]− Pr1′′ [b

′ = b]| ≤ AdvQsim-mddh
Uk2+k+1,k,GGen,B′(λ). (19)

Upon receiving a challenge (G, [B] ∈ G(k2+k+1)×k, [H] := ([h1| · · · |hQsim
]) ∈

G(k2+k+1)×Qsim) for the Qsim-fold Uk2+k+1,k-MDDH problem, B′ simulates game
G′1(G′′1). In the simulation of the i-th Osim oracle query for i ∈ [Qsim], B′ embeds
[hi] in [c] with [c]← A0[hi]. Then B′ embeds [hi] in X with X← h0([hi]).

If [hi] is uniformly chosen from span([B]) for all i ∈ [Qsim], then [hi] =
[ W
VW ] si, [hi] = [W]si and [hi] = [VW]si with si ←$ Zkq . In this case, B′

perfectly simulates G′1. If [hi] is uniformly chosen from Gk2+k+1 for all i ∈ [Qsim],
then both [hi] and [hi] are uniform. In this case, B′ perfectly simulates G′′1 .

From above, (19) follows. Then, (18) follows from (19) and the random self-
reducibility property of the MDDH problem.

In G′′1 , X ← h0([u]) for a uniform u ←$ Zk2+1
q . Since h0 is universal, by

leftover hash lemma and a union bound, we have that

|Pr1′′ [b
′ = b]− Pr2[b′ = b]| ≤ Qsim

2
√
q

= 2−Ω(λ). (20)

Then (16) follows from (17, 18) and (20).

Game G2 −G3. G3 is the same as G2 except for the Osim oracle.
For each Osim query,
• in G2, Π1 = [A0] ·X + [c] · y> for [c] = [A0]r and a fresh X←$ Zk×kq ;
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• in G3, Π1 is uniformly selected from Gk×k.
Note that in G2,

Π1 = [A0] ·X + [c] · y> = [A0](X + r · y>).
Due to the uniformness of X, Π1 has the same distribution as [A0]X. Since A0

is an invertible matrix, [A0]X is uniformly distributed over Gk×k. Thus we have

Pr2[b′ = b] = Pr3[b′ = b]. (21)

Game G3. In G3, Π0 distributes identically to Π1 and

Pr3[b′ = b] =
1

2
. (22)

Finally, Theorem 2 follows from (14, 15, 16, 21) and (22). �

(pkkem, skkem)←$ KGen(1λ):

(ppk, psk)←$ PGen(pars)

k0,k1 ←$ Z2k
q , [p>0 ]← k>0 [A] ∈ G1×k, [p>1 ]← k>1 [A] ∈ G1×k

Return pkkem ← (ppk, [p>0 ], [p>1 ]), skkem ← (psk,k0,k1)

(ψ, γ)←$ KEnc(pkkem):

r←$ Zkq , [c]← [A]r ∈ G2k

(Π, [κ])←$ PPrv(ppk, [c], r)

τ ← H([c]) ∈ {0, 1}λ ⊆ Zq
γ ← ([p>0 ] + τ [p>1 ]) · r + [κ] ∈ G

Return (ψ ← ([c], Π), γ)

//Ψ = G2k ×Gk×k, Γ = G

γ/⊥ ← KDec(skkem, ψ):

Parse ψ = ([c], Π)

(v ∈ {0, 1}, [κ])← PVer(psk, [c], Π)

τ ← H([c]) ∈ {0, 1}λ ⊆ Zq
γ ← (k>0 + τk>1 ) · [c] + [κ] ∈ G

Return

{
γ If v = 1

⊥ Otherwise

Fig. 12. Construction of KEMqps = (KGen,KEnc,KDec) in [8]

KEM from Qualified Proof System. The construction of the qualified PS
based KEM KEMqps = (KGen,KEnc,KDec) from [8] is shown in Figure 12. Sup-
pose H is a hash generator outputting functions H : Gk → {0, 1}λ. The param-
eters pars used in this construction are specified in Section 5.2.

Theorem 2 in [8] has shown that KEMqps is IND-CCCA secure. Now we prove
that KEMqps is mPR-CCCA secure (through Theorem 3) and is RER secure
(through Theorem 4), both admitting tight security reductions.

Theorem 3. The KEM KEMqps in Figure 12 is mPR-CCCA secure if the D2k,k-
MDDH assumption holds, H outputs collision-resistant hash function, PS is Lsnd-

qualified, L̃snd-extensible and has pseudorandom simulated proof. Specifically, for
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each PPT adversary A with negligible uncertainty uncertA(λ), we can build PPT
adversaries B1, · · · ,B7 with T(B1) ≈ · · · ≈ T(B7) ≤ T(A)+(Qenc+Qdec)·poly(λ)
and uncertB4

(λ) = uncertB6
(λ) = uncertA(λ), such that the advantage

Advmpr-ccca
KEMqps,A(λ) ≤ 2AdvcrH,B1

(λ) + (4λ+ 3k)Advmddh
D2k,k,GGen,B2

(λ)

+ 7Advmddh
Uk,GGen,B3

(λ) + AdvcsndLsnd,PS,B4
(λ) + AdvPS-ind

Lsnd,PS,P̃S,B5
(λ)

+ λAdvcsnd
L̃snd,P̃S,B6

(λ) + 2Advpr-proofPS,B7
(λ)

+ ((λ+ 2) ·Qenc + 3) ·Qdec · uncertA(λ) + 2−Ω(λ).

where Qenc(Qdec) is the total number of Oenc(Odec) queries made by A and
poly(λ) is a polynomial independent of T(A).

Proof of Theorem 3. For a fixed PPT adversary A with negligible uncertainty
uncertA(λ), consider an experiment Expmpr-ccca

KEMqps,A(λ) which first randomly selects

b←$ {0, 1}, then calls Expmpr-ccca-b
KEMqps,A (λ) and gets its output b′. It is straightforward

that Advmpr-ccca
KEMqps,A(λ) = 2

∣∣∣Pr[b′ = b in Expmpr-ccca
KEMqps,A(λ)]− 1

2

∣∣∣ . Then we rewrite ex-

periment Expmpr-ccca
KEMqps,A(λ) in Figure 13 and make changes to it gradually through

game G0 to G9 which are defined as follows.

Game G0. This game is identical to Expmpr-ccca
KEMqps,A(λ). Then

Advmpr-ccca
KEMqps,A(λ) = 2

∣∣∣∣Pr0[b′ = b]− 1

2

∣∣∣∣ . (23)

Game G0 −G1. G1 is the same as G0 except that an additional rejection rule
is added in Odec. More precisely, in G1, we use a set T to log all the tags
τb = H([cb]) used in oracle Oenc, and any Odec(pred, ψ = ([c], Π)) query will be
rejected if τ = H([c]) ∈ T .

Lemma 1.

|Pr0[b′ = b]− Pr1[b′ = b]| ≤ AdvcrH,B1
(λ) +

k

2
· Advmddh

D2k,k,GGen,B2
(λ)

+
1

2
Advmddh

Uk,GGen,B3
(λ) +

3

2
Qdec · uncertA(λ) + 2−Ω(λ).

We refer to the full version [21] for the proof of this lemma.
Game G1 −G2. G2 is almost the same as G1 except for two changes in Oenc.
The first change is that PPrv is replaced with PSim. The second change is that
skKEM is used to calculate γ1. More precisely, for [c1] = [A]r1 in oracle Oenc,
• in G1, (Π1, [κ1])← PPrv(ppk, [c1], r1), γ1 ← ([p>0 ] + τ1[p>1 ]) · r1 + [κ1];
• in G2, (Π1, [κ1])← PSim(psk, [c1]), γ1 ← (k>0 + τ1k

>
1 ) · [c1] + [κ1].

Due to the perfect zero-knowledge property of PS, we have PPrv(ppk, [c1], r1) =
PSim(psk, [c1]). Meanwhile, [p>0 ] = k>0 [A] and [p>1 ] = k>1 [A], so we have ([p>0 ]+
τ1[p>1 ]) · r1 + [κ1] = (k>0 + τ1k

>
1 ) · [c1] + [κ1].
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Expmpr-ccca
KEMqps,A(λ):

G0 G1 −G5 G6 G7 −G9

b←$ {0, 1} T ← ∅ [v]←$ Zkq
(ppk, psk)←$ PGen(pars)

k0,k1 ←$ Z2k
q

[p>0 ]← k>0 [A], [p>1 ]← k>1 [A]

pkkem ← (ppk, [p>0 ], [p>1 ])

b′ ←$ AOenc(),Odec(·,·)(pkkem)

Return b′

Odec(pred, ψ = ([c], Π)):

G0 G1 −G4 G5 −G9

(v, [κ])← PVer(psk, [c], Π)

τ ← H([c]) ∈ {0, 1}λ ⊆ Zq
γ ← (k>0 + τk>1 ) · [c] + [κ]

If


([c], Π) ∈ ψenc

∨ v = 0

∨ pred(γ) = 0

∨[c] /∈ span([A])

∨τ ∈ T

:

Return ⊥
Return γ

Oenc(): G0 G1

�� ��G2 G3 G4G5�
�

�
�G6

�� ���� ��G7

�� ���� ��G8

�� ���� ��G9

(ψ0, γ0)←$ Ψ × Γ
ψ0 = ([c0], Π0)

τ0 ← H([c0])

r1 ←$ Zkq
[c1]← [A]r1 [c1]← [A0]r1

[c1]←$ G2k

(Π1, [κ1])← PPrv(ppk, [c1], r1)�� ��(Π1, [κ1])← PSim(psk, [c1])

Π1 ←$ Gk×k

ψ1 ← ([c1], Π1)

ψenc ← ψenc ∪ {ψb}
τ1 ← H([c1]) ∈ {0, 1}λ ⊆ Zq
T ← T ∪ {τb}
γ1 ← ([p>0 ] + τ1[p>1 ]) · r1 + [κ1]�� ��γ1 ← (k>0 + τ1k

>
1 ) · [c1] + [κ1]

γ1 ← [v>r1] + τ1k
>
1 [c1] + [κ1]�

�
�



�



�
	u1 ←$ Zq

γ1 ← [u1] + τ1k
>
1 [c1] + [κ1]

Return (ψb, γb)

Fig. 13. Game G0 −G9 in the proof of Theorem 3.

These changes are only conceptual, so G1 is identical to G2 and

Pr1[b′ = b] = Pr2[b′ = b]. (24)

Game G2 −G3. G3 is the same as G2 except for one difference in Oenc.
• In game G2, [c1] is uniform over span([A]) for each Oenc query.
• In game G3, [c1] is uniform over G2k for each Oenc query.
We can build an adversary B2 and show that

|Pr2[b′ = b]− Pr3[b′ = b]| ≤ k · Advmddh
D2k,k,GGen,B2

(λ) + 2−Ω(λ). (25)

The reduction is straightforward, since B2 can simulate G2(G3) by generating
the secret key itself and embed its own challenge in [c1]. We omit the details.

We refer to the full version [21] for the proof of this lemma.
Game G3 −G4. G4 is the same as G3 except for one difference in Oenc.
• In game G3, [c1] is uniform over G2k for each Oenc query.
• In game G4, [c1] is uniform over span([A0]) for each Oenc query.
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We can build an adversary B3 and show that

|Pr3[b′ = b]− Pr4[b′ = b]| ≤ Advmddh
Uk,GGen,B3

(λ) + 2−Ω(λ). (26)

The reduction is straightforward and the proof of (26) is almost the same as (25).

Game G4 −G5. G5 is almost the same as G4 except that a rejection rule is
added in Odec. More precisely, in G5, an Odec(pred, ψ = ([c], Π)) query is directly
rejected if [c] /∈ span([A]). We have that∣∣Pr4[b′ = b]− Pr5[b′ = b]

∣∣ ≤ 1

2
AdvcsndLsnd,PS,B4(λ) +

1

2
AdvPS-ind

Lsnd,PS,P̃S,B5
(λ) +Qenc · 2−Ω(λ)

+2λ · Advmddh
D2k,k,GGen,B2(λ) +

λ

2
Advcsnd

L̃snd,P̃S,B6
(λ) +

λ+ 2

2
·Qenc ·Qdec · uncertA(λ) (27)

The proof of (27) is the same as Lemma 9 in [8]. We refer [8] for details.

Game G5 −G6. G6 is almost the same as G5 except for one difference in Oenc.

• In game G5, γ1 = (k>0 + τ1k
>
1 ) · [c1] + [κ1] for each Oenc query.

• In game G6, γ1 = [v>r1] + τ1k
>
1 [c1] + [κ1] where v is uniformly chosen

from Zkq beforehand but will be fixed for each Oenc query.
We have that

|Pr5[b′ = b]− Pr6[b′ = b]| ≤ 2−Ω(λ). (28)

The proof of (28) is almost the same as (15), and is put in our full version [21].

Game G6 −G7. G7 is almost the same as G6 except for one difference in Oenc.

• In game G6, γ1 = [v>r1] + τ1k
>
1 [c1] + [κ1] for each Oenc query.

• In game G7, γ1 ← [u1] + τ1k
>
1 [c1] + [κ1] where u1 ←$ Zq for each Oenc

query. In other words, γ1 is uniform for each Oenc query in G7. We have that

|Pr6[b′ = b]− Pr7[b′ = b]| ≤ Advmddh
Uk,GGen,B3

(λ) + 2−Ω(λ). (29)

The proof of (29) is almost the same as that of (16). We can set r1 = Ws and
[B] =

[
W

v>W

]
∈ G(k+1)×k which has the distribution Uk+1,k overwhelmingly.

Then we can reduce the indistinguishability between G6 and G7 to the Qenc-fold
Uk+1,k-MDDH assumption. We omit the detailed proof here.

Note that, in game G7, [κ1] is not needed any longer since we can just select
a uniform γ1 for each Oenc query.

Game G7 −G8. G8 is almost the same as G7 except for one difference in Oenc.
• In game G7, Π1 is the output of PSim(psk, [c1]) for each Oenc query.
• In game G8, Π1 is uniform selected for each Oenc query.
We can build an adversary B7 and show that

|Pr7[b′ = b]− Pr8[b′ = b]| ≤ Advpr-proofPS,B7
(λ). (30)

On input ppk, B7 uniformly selects b ←$ {0, 1} and sets T ← ∅. Then B7
uniformly selects k0,k1 ←$ Z2k

q and sets [p>0 ]← k>0 [A], [p>1 ]← k>1 [A], pkKEM ←
(ppk, [p>0 ], [p>1 ]). Then B7 calls AOenc(),Odec(·,·)(pkKEM) by simulating the two
oracles for A in the following way.
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– For A’s Oenc() query, B7 uniformly chooses (ψ0, γ0) and calculates τ0 just
like game G7(G8). Then B7 submits an Osim query to its own oracle and
gets ([c], Π) where [c] is uniform over Lsnd\L = span([A0]) and Π is either
an output of PSim(psk, [c]) or uniformly chosen from Π. After that B7 sets
[c1] ← [c] and Π1 ← Π. Then B7 sets ψenc, calculates τ1 from [c1] and
uniformly selects γ1 just like game G7(G8). Finally B7 returns (ψb, γb) to A.

– For A’s Odec(pred, ψ = ([c], Π)) query, B7 submits Over([c], Π) query to its
own oracle and gets the response K. If K = ⊥, B7 returns ⊥ to A. Since
K = ⊥ means [c] /∈ span([A]) or the verification PVer(psk, [c], Π) does not
pass, B7 acts exactly the same as game G7(G8) in such cases. If [κ] = K 6= ⊥,
B7 calculates τ and γ just like game G7(G8). Then B7 tests if ([c], Π) ∈ ψenc

or pred(γ) = 0 or ∨τ ∈ T happens. If so, B7 returns ⊥ to A. Otherwise B7
returns γ to A.

Finally, according to A’s output b′, B7 outputs 1 if and only if b′ = b. It is
clear that if Π is an output of PSim(psk, [c]) for each Osim query, B7 perfectly
simulates game G7 for A. And if Π is uniformly chosen from Π for each Osim

query, B7 perfectly simulates game G8 for A. Thus (30) follows.

Game G8 −G9. G9 is the same as G8 except for one difference in Oenc.
• In game G8, [c1] is uniform selected from span([A0]) for each Oenc query.
• In game G9, [c1] is uniform selected from G2k for each Oenc query.
We can build an adversary B3 and show that

|Pr8[b′ = b]− Pr9[b′ = b]| ≤ Advmddh
Uk,GGen,B3

(λ) + 2−Ω(λ). (31)

The reduction is straightforward and the proof of (31) is the same as the proof
for (25). We omit the details here.

Game G9. In game G9, (ψ1, Π1) is uniform over Ψ × Γ for each Oenc query,
which distributes exactly the same as (ψ0, Π0). Thus we have

Pr9[b′ = b] =
1

2
. (32)

Finally, Theorem 3 follows from (23), Lemma 1, (24)−(32). �

Theorem 4. The KEM KEMqps in Figure 12 is RER secure. Specifically, for
each PPT adversary A with negligible uncertainty uncertA(λ), the advantage
AdvrerKEMqps,A(λ) ≤ 2−Ω(λ).

Proof of Theorem 4. In Exprer-bKEMqps,A(λ), among all the Ocha(ψ, pred) queries sub-
mitted byA, if ψ /∈ ψran, the oracleOcha will answerA with pred(KDec(skKEM, ψ)).
Thus no information about b is leaked to A.

Therefore, we only consider thoseOcha(ψ, pred) queries such that ψ = ([c], Π) ∈
ψran. In this case, both [c] and Π are uniform.

If b = 0, Ocha(ψ, pred) will always return 0 in Exprer-0KEMqps,A(λ).
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If b = 1, Ocha(ψ, pred) will use KDec(skKEM, ψ) to decapsulate ψ. More pre-
cisely, it will invoke PVer(psk, [c], Π) to obtain (v, [κ]) and output ⊥ if v = 0.
By the proof uniqueness of PS and the uniformness of Π, the probability that
v = 1 in this query is at most 1

|Π| . Taking into account all the Qcha queries,

a union bound suggests that Ocha(ψ, pred) always outputs 0 in Exprer-1KEMqps,A(λ)

except with probability at most Qcha

|Π| = 2−Ω(λ). Thus

AdvrerKEMqps,A(λ) =
∣∣∣Pr
[
Exprer-0KEMqps,A(λ) = 1

]
− Pr

[
Exprer-1KEMqps,A(λ) = 1

]∣∣∣ ≤ 2−Ω(λ).
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