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𝐀𝐛𝐬𝐭𝐫𝐚𝐜𝐭. This paper presents two non-generic and practically efficient
private key multi-input functional encryption (MIFE) schemes for the
multi-input version of the inner product functionality that are the first
to achieve simultaneous message and function privacy, namely, the full-
hiding security for a non-trivial multi-input functionality under well-
studied cryptographic assumptions. Our MIFE schemes are built in bi-
linear groups of prime order, and their security is based on the standard
𝑘-Linear (𝑘-LIN) assumption (along with the existence of semantically
secure symmetric key encryption and pseudorandom functions). Our con-
structions support polynomial number of encryption slots (inputs) with-
out incurring any super-polynomial loss in the security reduction. While
the number of encryption slots in our first scheme is apriori bounded, our
second scheme can withstand an arbitrary number of encryption slots.
Prior to our work, there was no known MIFE scheme for a non-trivial
functionality, even without function privacy, that can support an un-
bounded number of encryption slots without relying on any heavy-duty
building block or little-understood cryptographic assumption.

𝐊𝐞𝐲𝐰𝐨𝐫𝐝𝐬: multi-input functional encryption, inner products, full-hiding
security, unbounded arity, bilinear maps

1 Introduction

Functional encryption (FE) [12,36] is a new vision of modern cryptography that
aims to overcome the potential limitation of the traditional encryption schemes,
namely, the so called “all-or-nothing” control over decryption capabilities, i.e.,
parties holding the legitimate decryption key can recover the entire message en-
crypted within a ciphertext, whereas others can learn nothing. Specifically, FE
offers additional flexibility by supporting restricted decryption keys which enable
decrypters to learn specific functions of encrypted messages, without revealing
any additional information. More precisely, an FE scheme for a function family
ℱ involves a setup authority which holds a master secret key and publishes pub-
lic system parameters. An encrypter uses the public parameters (along with a
secret encryption key provided by the setup authority in case of a private key
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scheme) to encrypt its message 𝑚 belonging to some supported message space
ℳ, creating a ciphertext ct. A decrypter may obtain a private decryption key
sk corresponding to some function 𝑓 ∈ ℱ from the setup authority provided the
authority deems that the decrypter is entitled for that key. Such a decryption
key sk corresponding to certain decryption function 𝑓 can be used to decrypt
a ciphertext ct encrypting some message 𝑚 to recover 𝑓(𝑚). The basic secu-
rity requirement for an FE scheme is the privacy of encrypted messages against
collusion of decrypters, i.e., an arbitrary number of decrypters cannot jointly
retrieve any more information about an encrypted message beyond the union of
what they each can learn individually.

Multi-input functional encryption (MIFE), introduced by Goldwasser et al.
[23], is a generalization of FE to the setting of multi-input functions. An MIFE
scheme has several encryption slots, and messages can be encrypted to different
slots independently. A MIFE decryption key for an 𝑛-input function 𝑓 simultane-
ously decrypts a set of 𝑛 ciphertexts, each of which is encrypted with respect to
one of the 𝑛 input slots associated with 𝑓 , to unveil the joint evaluation of 𝑓 on
the 𝑛 messages encrypted within those 𝑛 ciphertexts. Just like single-input FE
the primary security requirement for an MIFE scheme as well is the privacy of
encrypted messages against collusion attacks. However, unlike single-input FE,
the formalization of this security notion in case of MIFE is somewhat subtle. In
their pioneering work, Goldwasser et al. [23] presented a rigorous framework to
formally capture message privacy for MIFE, both in the public key and in the
private key regimes.

MIFE is particularly useful in scenarios where informations, which need to
be processed together during decryption, become available at different points
of time or are supplied by different parties. In fact, MIFE can be employed in a
wide range of applications pertaining to computation and mining over encrypted
data coming from multiple sources. Examples include executing search queries
over encrypted data-bases, processing encrypted streaming data, non-interactive
differentially private data releases, multi-client delegation of computations to
external servers, and many more. All of these applications are in fact relevant in
both the public key and the private key regimes.

In view of its countless practical applications, a series of recent works have at-
tempted to construct MIFE schemes based on various cryptographic tools. These
constructions can be broadly classified into two categories. The first line of re-
search has tried to build MIFE schemes for general multi-input functionalities,
e.g., arbitrary polynomial-size circuits [23, 6, 13, 24, 28] or Turing machines [7].
Unfortunately however, all suchMIFE constructions rely on highly strong crypto-
graphic primitives like indistinguishability obfuscation [8,20], single-input FE for
general circuits [20,21], or multilinear maps [19,17], neither of which is currently
instantiable using efficient building blocks or under well-studied cryptographic
assumptions. Consequently, a second line of research have emerged whose focus
is to design concretely efficient MIFE schemes based on standard assumptions
for specific multi-input functionalities, e.g., comparison [16,31,15] or multi-input
inner product [27, 30, 3]. However, majority of the existing works on MIFE have
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concentrated merely on achieving the basic security notion, namely, message
confidentiality.

Unfortunately, message confidentiality is not sufficient in several advanced
applications of FE, rather privacy also needs to be ensured for the functions for
which the decryption keys are issued. This is especially important in situations
where the decryption functions themselves contain sensitive informations. Con-
sider the following scenario: Suppose a hospital subscribes to an external cloud
server for storing medical records of its patients. In order to ensure confidential-
ity of the records and, at the same time, remotely perform various computations
on the outsourced data from time to time, a promising choice for the hospital
is to use an FE scheme to encrypt the records locally prior to uploading to the
cloud server. Now, suppose the hospital wishes to retrieve the list of all patients
who is receiving treatment for a certain chronic disease from the cloud server.
For this, the hospital needs to provide the cloud server a decryption key for
the corresponding functionality. However, if the FE scheme used by the hospi-
tal possesses no function privacy, then the cloud server would get to know the
functionality from the decryption key provided by the hospital. Thus, after per-
forming the assigned computation, if the cloud server notices the name of some
celebrity in the obtained list of patients, it would at once understand that the
particular celebrity is suffering from such a chronic disease, and it may leak the
information to the media possibly for financial gain. This is clearly undesirable
from the privacy point of view.

In order to address such scenarios, several recent works have studied the
notion of function privacy in the context of FE, both in the single-input setting
[38,4,14,25,10,11,9,18,39,27,33,32] and in the multi-input setting [13,6,28,32].
Intuitively, function privacy demands that the decryption keys leak no additional
information about the functions embedded within them, beyond what is revealed
through decryption. However, it has been observed that the extent to which
function privacy can be realized differs dramatically between the public key
and the private key regimes. In fact, in the public key setting, where anyone
can encrypt messages, only a weak form of function privacy can be realized
[10, 11, 25]. More precisely, in order to capture function privacy for FE in the
public key setting, the framework must assume that the functions come from
a certain high-entropy distribution. On the contrary, function-private FE (both
the single-input and the multi-input versions) has been shown to possess great
potentials in the private key setting, not only as a stand-alone feature, but also
as a very useful building block [5, 6, 29, 33, 32, 28]. Consequently, the research
on function-private FE has been focused primarily on the private key setting.
However, despite of its immense theoretical and practical significance, so far,
there are only a handful of function-private FE schemes available in the literature
that can be implemented in practice [9,18,39,27,33,32], and all of them have been
designed for single-input functions, precisely, inner products. In case of function-
private MIFE, the only known concrete construction is the recent one due to
Lin [32]. She has constructed a private key function-private MIFE scheme for
computing inner products of arbitrary polynomial degree, where standard inner
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product is a degree 2 function. However, her construction employs multilinear
maps, and thus is currently uninstantiable in practice.

In this work, our goal is to design practical private key function-private MIFE
scheme supporting a polynomial number of encryption slots, incurring only poly-
nomial loss in the security reduction. Goldwasser et al. [23] have already shown
that private keyMIFE for general functionalities supporting a polynomial number
of encryption slots is equivalent to full-fledged indistinguishability obfuscation.
Hence, it seems impossible to design such highly expressiveMIFE scheme without
a sub-exponential security loss [22]. In fact, all existing private key MIFE schemes
for general functionalities [23,13,6,28] do suffer from at least a quasi-polynomial
security loss to support even a poly-logarithmic number of encryption slots.
Hence, we concentrate on a specific multi-input functionality that has a wide
range of real-life applications, namely, the natural multi-input generalization of
the inner product functionality. This functionality has been first considered by
Abdalla et al. [3]. Concretely, a multi-input inner product function 𝑓{ #»𝑦 𝜄}𝜄∈𝑆

is
associated with a set 𝑆 of encryption slot indices and vectors #»𝑦 𝜄 ∈ ℤ𝑚 for all
𝜄 ∈ 𝑆. It takes as input a set of vectors { #»𝑥 𝜄}𝜄∈𝑆 with the same index set 𝑆,
where #»𝑥 𝜄 ∈ ℤ𝑚 for all 𝜄 ∈ 𝑆, and outputs

∑︀
𝜄∈𝑆

#»𝑥 𝜄 · #»𝑦 𝜄, where
#»𝑥 𝜄 · #»𝑦 𝜄 represents

the inner product of the vectors #»𝑥 𝜄 and
#»𝑦 𝜄 over ℤ. It is required that the norm

of each component inner product #»𝑥 𝜄 · #»𝑦 𝜄 is smaller than some upper bound B.
Observe that this functionality is different from the high-degree inner product
functionality considered by Lin [32]. The multi-input inner product functionality
captures various important computations arising in the context of data-mining,
e.g., computing weighted mean of informations supplied by different parties.
Please refer to [3] for a comprehensive exposure of the practical significance of
the multi-input inner product functionality.

Abdalla et al. [3] have presented an MIFE scheme for the multi-input inner
product functionality described above in the private key setting, using bilinear
groups of prime order. Their construction supports a fixed polynomial number of
encryption slots and multi-input inner product functions associated with a fixed
index set 𝑆 of polynomial size, as well as incurs only a polynomial loss in the
security reduction. Precisely, the index set 𝑆 in their construction is of the form
𝑆 = [𝑛] = {1, . . . , 𝑛}, where 𝑛 is the number of encryption slots – a polynomial
determined at the time of setup, for the multi-input inner product functions.
Their construction achieves adaptive message privacy against arbitrary collusion,
as per the framework of Goldwasser et al. [23], in the standard model under the
well-studied 𝑘-Linear (𝑘-LIN) assumption [37]. Prior to the work of Abdalla et
al. [3], two independent works, namely, [27, 30] were able to realize a two-input
variant of their result, of which [27] achieved it in the generic group model.
However, none of these constructions guarantee function privacy. In fact, in
their paper [3], Abdalla et al. have posed the construction of a function-private
MIFE scheme for the multi-input inner product functionality based on the 𝑘-LIN
assumption in prime order bilinear groups as an open problem.
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𝐎𝐮𝐫 𝐂𝐨𝐧𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧𝐬

In this paper we solve the above open problem. More specifically, we construct
two concretely efficient standard-model private key MIFE schemes for the multi-
input inner product functionality in prime order bilinear groups that are the
first to achieve function privacy under well-studied cryptographic assumptions.
In fact, our constructions achieve the unified notion of message and function
privacy, namely, the full-hiding security, formulated by Brakerski et al. [13] in
the context of private key MIFE by combining the corresponding notion in the
context of private key single-input FE [4, 14] with the framework for message
privacy of MIFE [23], under the 𝑘-LIN assumption (along with the existence
of semantically secure symmetric key encryption and pseudorandom functions).
Both of our constructions support polynomial number of encryption slots and
are free from any super-polynomial loss in the security reduction. Our MIFE
schemes withstands any polynomial number of decryption key queries and any
polynomial number of ciphertext queries for each encryption slot. We employ the
elegant technique of dual pairing vector spaces (DPVS) introduced by Okamoto
and Takashima [34,35], and are implementable using both symmetric and asym-
metric bilinear groups. Just like [3], our first construction supports an apriori
fixed number of encryption slots and a fixed slot index set for the multi-input
inner product functions. These limitations are removed in our second construc-
tion. More precisely, our second construction is capable of supporting an apriori
unbounded number of encryption slots and multi-input inner product functions
with arbitrary slot index sets of any polynomial size. In fact, this construc-
tion is the first MIFE scheme for a non-trivial functionality with an unbounded
number of encryption slots, built using efficient cryptographic tools and under
well-studied complexity assumptions. The only prior MIFE construction which
achieves this feature [7] has been designed using heavy machineries and relies
on little-understood cryptographic assumption like public-coin differing input
obfuscation [26]. Moreover, the MIFE construction of [7] has been developed in
public key setting and possesses no function privacy.

Our MIFE constructions are very efficient. When instantiated under the Sym-
metric External Diffie-Hellman (SXDH) assumption (𝑘 = 1 version of the 𝑘-LIN
assumption) and a symmetric key encryption (SKE) whose secret key size is 𝜆
bits, the ciphertexts of our bounded MIFE scheme consist of 2𝑚 + 3 group ele-
ments and a 𝜆-bit string, while the decryption keys consist of 𝑛(2𝑚+ 3) group
elements. We would like to mention that these group elements are encrypted by
SKE. The master secret key comprises of 𝑛(2𝑚+3)2 elements of the underlying
finite field and 𝑛 𝜆-bit strings. The encryption incurs one encryption of SKE and
2𝑚+3 exponentiations, while key generation algorithm incurs one encryption of
SKE and 𝑛(2𝑚+3) exponentiations. On the other hand, the decryption algorithm
involves (𝑛 + 1) executions of the decryption algorithm of SKE and 𝑛(2𝑚 + 3)
pairing operations followed by an exhaustive search step over a polynomial-size
range of possible values. Here, 𝑚 and 𝑛 respectively denote the length of the vec-
tors and the size of the index set associated with the multi-input inner product
functionality. Observe that these figures are already in close compliance with the
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𝑛-fold extension of the most efficient standard-model full-hiding single-input FE
construction for inner products known till date, namely, the scheme by Lin [32]
(which is also designed under the SXDH assumption). The exhaustive search step
in the decryption algorithm is reminiscent of all currently known bilinear-map-
based FE constructions for inner products, both in the single-input and in the
multi-input settings. In unbounded scheme, the ciphertext size and decryption
key size are the same as bounded scheme, while the master secret key consists of
two pseudorandom function (PRF) keys and (2𝑚+3)2 elements of the underlying
finite field. The encryption incurs two PRF evaluations and 2𝑚+ 3 exponentia-
tions, while the key generation algorithm incurs 𝑛 executions of the encryption
algorithm of SKE, 2𝑛 PRF evaluations, and 𝑛(2𝑚+ 3) exponentiations. The de-
cryption algorithm, on the other hand, involves 𝑛 executions of the decryption
algorithm of SKE and 𝑛(2𝑚 + 3) pairing operations followed by an exhaustive
search step similar to the bounded scheme.

𝐎𝐮𝐫 𝐓𝐞𝐜𝐡𝐧𝐢𝐪𝐮𝐞𝐬

We now explain the principal ideas underlying our MIFE constructions for the
multi-input inner product functionality. In order to simplify the exposition, we
ignore many technicalities in this overview.

𝐎𝐮𝐫 𝐛𝐨𝐮𝐧𝐝𝐞𝐝-𝐚𝐫𝐢𝐭𝐲 𝐬𝐜𝐡𝐞𝐦𝐞: Since, the multi-input inner product function-
ality is a multi-input generalization of its single-input version, a natural first
step is to explore whether we can obtain a private key full-hiding 𝑛-input MIFE
scheme for inner products by executing 𝑛 parallel copies of a private key full-
hiding FE scheme for inner products. The most efficient such scheme available
in the literature is the one due to Lin [32], which is based on the SXDH as-
sumption. However, the construction is built upon the Decisional-Diffie-Hellman
(DDH)-based construction of Abdalla et al. [1] and is not readily amenable to
the general 𝑘-LIN assumption. Moreover, the construction is built in a two step
approach, namely, first constructing an FE scheme for inner products achieving
only a weaker form of function privacy, and then bootstrapping to the full-
hiding security by using the conversion of Lin and Vaikuntanathan [33]. We
want to avoid such an approach, rather our goal is to design a direct construc-
tion of full-hiding MIFE for multi-input inner products. So, we start with the
full-hiding single-input inner-product FE scheme proposed by Tomida et al. [39].
This construction is direct, and while originally presented under a variant of the
Decisional Linear (DLIN) assumption, seems naturally generalizable to the 𝑘-LIN
assumption. Further, in terms of efficiency, this construction is next to the con-
struction of Lin [32] among the standard-model private key function-private FE
constructions available in the literature [9, 18, 39, 32]. Besides, this construction
has the flexibility of being implementable in both symmetric and asymmetric
bilinear groups.

First, let us briefly review the construction and proof idea of Tomida et
al. [39]. We assume familiarity with the DPVS framework for the rest of this
section. (The background on DPVS is provided in Section 2.3.) The master secret
key msk in the construction of Tomida et al. [39] consists of a pair of dual
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orthogonal bases (𝔹,𝔹*) of a (2𝑚+5)-dimensional DPVS, where 𝑚 is the length
of the ciphertext and decryption key vectors. Out of the 2𝑚 + 5 dimensions,
𝑚 + 4 dimensions are utilized in the real construction, while the rest are used
in performing various hybrid transitions in the security proof. Note that the use
of such hidden dimensions is a powerful feature of the DPVS framework, and it
has been proven to be instrumental in deducing various complex security proofs
in the literature. The ciphertext ct of [39] encrypting an 𝑚-dimensional vector
#»𝑥 is given by ct = ( #»𝑥 ,

#»
0𝑚,

#»
0 2, 𝜙1, 𝜙2, 0)𝔹, where 𝜙1, 𝜙2

U←− 𝔽𝑞. On the other
hand, the decryption key sk corresponding to some 𝑚-dimensional vector #»𝑦 is

of the form sk = ( #»𝑦 ,
#»
0𝑚, 𝛾1, 𝛾2,

#»
0 2, 0)𝔹* , where 𝛾1, 𝛾2

U←− 𝔽𝑞. Here, ( #»𝑣 )𝕎, for
any vector #»𝑣 with entries in 𝔽𝑞 and any basis 𝕎 of a DPVS, signifies the linear
combination of the members of 𝕎 using the entries of #»𝑣 as coefficients. The
decryption algorithm works by computing 𝑒(ct, sk) followed by performing an
exhaustive search step over a specified polynomial-size range to determine the
output. The correctness readily follows by the dual orthogonality property of
(𝔹,𝔹*).

Recall that in the full-hiding security experiment for single-input inner prod-
uct FE [4,14], first the challenger ℬ sets up the system and samples a random bit

𝛽
U←− {0, 1}. Next, the adversary 𝒜 is allowed to adaptively make any polynomial

number of ciphertext and decryption key queries to ℬ. In order to make a cipher-
text query, 𝒜 submits a pair of message vectors ( #»𝑥 0,

#»𝑥 1) to ℬ, while to make a
decryption key query, 𝒜 submits a pair of vectors ( #»𝑦 0,

#»𝑦 1) to ℬ. Depending on
the random bit 𝛽, ℬ returns respectively an encryption of #»𝑥𝛽 and a decryption
key for vector #»𝑦 𝛽 to the adversary in response to the respective queries. Finally,
the adversary has to correctly guess the random bit 𝛽 to win the experiment.
The restriction on the queries of 𝒜 is that for all pairs of vectors ( #»𝑥 0,

#»𝑥 1) for
which a ciphertext query is made and for all pairs of vectors ( #»𝑦 0,

#»𝑦 1) for which
a decryption key query is made, it should hold that #»𝑥 0 · #»𝑦 0 = #»𝑥 1 · #»𝑦 1.

In order to prove security of the construction of [39] in the above full-hiding
model, the following hybrid transitions are performed: The initial hybrid is the
real full-hiding experiment with the challenge bit 𝛽 = 0, i.e., where the forms
of the ciphertexts and decryption keys returned to 𝒜 are respectively ct* =
( #»𝑥 0,

#»
0𝑚,

#»
0 2, 𝜙1, 𝜙2, 0)𝔹 and sk* = ( #»𝑦 0,

#»
0𝑚, 𝛾1, 𝛾2,

#»
0 2, 0)𝔹* , while the final hy-

brid corresponds to the real full-hiding experiment with 𝛽 = 1, i.e., where the
forms of the ciphertexts and decryption keys returned to the adversary are of the
form ct* = ( #»𝑥 1,

#»
0𝑚,

#»
0 2, 𝜙1, 𝜙2, 0)𝔹 and sk* = ( #»𝑦 1,

#»
0𝑚, 𝛾1, 𝛾2,

#»
0 2, 0)𝔹* respec-

tively. Towards achieving this change, first, applying a combination of a computa-
tional change using the DLIN assumption, in conjunction with a conceptual trans-
formation of the underlying bases, the form of the ciphertexts are altered one by
one to ct* = ( #»𝑥 0,

#»𝑥 1,
#»
0 2, 𝜙1, 𝜙2, 0)𝔹. In the next step, applying another combi-

nation of computational and conceptual changes, the form of the queried decryp-
tion keys are changed one by one to the form sk* = (

#»
0𝑚, #»𝑦 1, 𝛾1, 𝛾2,

#»
0 2, 0)𝔹* .

This is the most subtle transition step, and this is where we have to rely crucially
on the restriction of the security model. More precisely, observe that before alter-
ing the decryption keys, decrypting the queried ciphertexts using the queried de-
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cryption keys result in #»𝑥 0 · #»𝑦 0, whereas after the transformation, the decryption
results are #»𝑥 1 · #»𝑦 1. However, thanks to the restriction of the full-hiding security
experiment, we can ensure that the decryption results in the two cases are the
same, and thus the change cannot be detected through decryption. After this
step, the forms of ciphertexts and decryption keys are further altered respectively
to ct* = ( #»𝑥 1,

#»𝑥 0,
#»
0 2, 𝜙1, 𝜙2, 0)𝔹 and sk* = ( #»𝑦 1,

#»
0𝑚, 𝛾1, 𝛾2,

#»
0 2, 0)𝔹* , with the

help of another conceptual basis transformation. Once this step is executed, the
forms of the queried ciphertexts are changed to ct* = ( #»𝑥 1,

#»
0𝑚,

#»
0 2, 𝜙1, 𝜙2, 0)𝔹

using a reverse transformation to the one used in the first step. Observe that
this last step takes us to the experiment corresponding to 𝛽 = 1.

Let us now consider an MIFE scheme for the 𝑛-input inner product function-
ality obtained by an 𝑛-fold extension of the above single-input scheme. More
precisely, consider an 𝑛-input MIFE scheme having the following specifications:
The master secret key msk consists of 𝑛 independently generated master secret
keys for the single-input scheme, i.e., msk = {msk𝜄 = (𝔹𝜄,𝔹*𝜄 )}𝜄∈[𝑛]. The cipher-
text of some vector #»𝑥 𝜄 with respect to index 𝜄 ∈ [𝑛] is simply a single-input
FE ciphertext for #»𝑥 𝜄 with respect to msk𝜄, i.e., the ciphertext has the form

ct𝜄 = (𝜄, 𝒄𝜄 = ( #»𝑥 𝜄,
#»
0𝑚,

#»
0 2, 𝜙𝜄,1, 𝜙𝜄,2, 0)𝔹𝜄), where 𝜙𝜄,1, 𝜙𝜄,2

U←− 𝔽𝑞. On the other
hand, a decryption key associated with a set of 𝑛 vectors { #»𝑦 𝜄}𝜄∈[𝑛] is given by a
set of 𝑛 decryption keys {sk𝜄}𝜄∈[𝑛], where sk𝜄 is the single-input FE secret key

for #»𝑦 𝜄 with respect to msk𝜄, i.e., sk = {𝒌𝜄 = ( #»𝑦 𝜄,
#»
0𝑚, 𝛾𝜄,1, 𝛾𝜄,2,

#»
0 2, 0)𝔹*

𝜄
}𝜄∈[𝑛],

where 𝛾𝜄,1, 𝛾𝜄,2
U←− 𝔽𝑞 for all 𝜄 ∈ [𝑛]. To decrypt a set of 𝑛 ciphertexts {ct𝜄}𝜄∈[𝑛]

using a decryption key sk, one first computes
∏︀

𝜄∈[𝑛]
𝑒(𝒄𝜄,𝒌𝜄), and then performs an

exhaustive search step. It is easy to see that the correctness follows analogously
to the single-input case.

However, one can readily observe that the above 𝑛-input extension is not
secure. In particular, the construction leaks partial information. Precisely, no-
tice that for each 𝜄 ∈ [𝑛], one can easily recover #»𝑥 𝜄 · #»𝑦 𝜄 by computing 𝑒(𝒄𝜄,𝒌𝜄),
whereas ideally one should only be able to learn

∑︀
𝜄∈[𝑛]

#»𝑥 𝜄 · #»𝑦 𝜄. Abdalla et al. [3]

also faced a similar challenge while constructing their MIFE scheme by building
on a single input inner product FE scheme. In order to overcome this prob-
lem, they introduced additional randomness within ciphertexts and decryption
keys. Precisely, in order to generate a ciphertext for vector #»𝑥 𝜄 with respect to

index 𝜄 ∈ [𝑛], they encrypted the vector ( #»𝑥 𝜄, 𝑧𝜄), where 𝑧1, . . . , 𝑧𝑛
U←− 𝔽𝑞 are

included within the master secret key. Similarly, while preparing a decryption

key for a set of 𝑛 vectors { #»𝑦 𝜄}𝜄∈[𝑛], they sampled a random value 𝑟
U←− 𝔽𝑞,

and generated single-input FE decryption keys for the vectors ( #»𝑦 𝜄, 𝑟) for all

𝜄 ∈ [𝑛], and additionally create the component 𝑘𝑇 = 𝑔

∑︀
𝜄∈[𝑛]

𝑧𝜄𝑟

𝑇 . We attempt
to apply their trick to our setting. More precisely, we modify our MIFE con-
struction as follows: We add one additional dimension in the dual orthogonal
bases (𝔹𝜄,𝔹*𝜄 ) for each 𝜄 ∈ [𝑛], i.e., they are now (2𝑚 + 6)-dimensional. A ci-
phertext encrypting the vector #»𝑥 𝜄 with respect to index 𝜄 ∈ [𝑛] is of the form



Full-Hiding (Unbounded) MIPE from the 𝑘-LIN Assumption 9

ct𝜄 = (𝜄, 𝒄𝜄 = ( #»𝑥 𝜄,
#»
0𝑚, 𝑧𝜄,

#»
0 2, 𝜙𝜄,1, 𝜙𝜄,2, 0)𝔹𝜄

), where 𝑧1, . . . , 𝑧𝑛
U←− 𝔽𝑞 are parts

of msk, and the decryption key corresponding to a set of 𝑛 vectors { #»𝑦 𝜄}𝜄∈[𝑛]

is given by sk = ({𝒌𝜄 = ( #»𝑦 𝜄,
#»
0𝑚, 𝑟, 𝛾𝜄,1, 𝛾𝜄,2,

#»
0 2, 0)𝔹*

𝜄
}𝜄∈[𝑛], 𝑘𝑇 = 𝑔

∑︀
𝜄∈[𝑛]

𝑧𝜄𝑟

𝑇 ). De-

cryption works by first computing [
∏︀

𝜄∈[𝑛]
𝑒(𝒄𝜄,𝒌𝜄)]/𝑘𝑇 = 𝑔

∑︀
𝜄∈[𝑛]

#»𝑥 𝜄· #»𝑦 𝜄

𝑇 , and then

performing an exhaustive search step to recover
∑︀

𝜄∈[𝑛]

#»𝑥 𝜄 · #»𝑦 𝜄.

Let us now consider the security of the modified construction. For simplicity,
assume that the adversary queries a single decryption key and a single ciphertext
for each of the 𝑛 encryption slots. The full-hiding security model for private key
MIFE [13] is an extension of its single-input counter part, but is significantly
more complicated compared to it. Analogous to the single-input case, in this
multi-input security model, in order to make a ciphertext query for the 𝜄th slot,
the adversary has to submit a pair of vectors ( #»𝑥 𝜄,0,

#»𝑥 𝜄,1), whereas for making
a decryption key query, the adversary has to submit a pair of sets of 𝑛 vectors
({ #»𝑦 𝜄,0}𝜄∈[𝑛], { #»𝑦 𝜄,1}𝜄∈[𝑛]). However, unlike the single-input setting, now the re-
striction on the queries is that

∑︀
𝜄∈[𝑛]

#»𝑥 𝜄,0 · #»𝑦 𝜄,0 =
∑︀

𝜄∈[𝑛]

#»𝑥 𝜄,1 · #»𝑦 𝜄,1. Let us try to

argue security of our modified construction by taking a similar path to that taken
by Tomida et al. [39]. We start with the case where the challenge bit 𝛽 = 0, i.e.,
when the ciphertexts and decryption key returned to the adversary have the form
ct*𝜄 = (𝜄, 𝒄*𝜄 = ( #»𝑥 𝜄,0,

#»
0𝑚, 𝑧𝜄,

#»
0 2, 𝜙𝜄,1, 𝜙𝜄,2, 0)𝔹𝜄

), for 𝜄 ∈ [𝑛], and sk* = ({𝒌*𝜄 =

( #»𝑦 𝜄,0,
#»
0𝑚, 𝑟, 𝛾𝜄,1, 𝛾𝜄,2,

#»
0 2, 0)𝔹*

𝜄
}𝜄∈[𝑛], 𝑘𝑇 = 𝑔

∑︀
𝜄∈[𝑛]

𝑧𝜄𝑟

𝑇 ). Just like [39], first, using a
combination of computational changes using the DLIN assumption, in conjunc-
tion with a conceptual transformation to the underlying bases, we can alter the
forms of all the ciphertexts to ct*𝜄 = (𝜄, 𝒄*𝜄 = ( #»𝑥 𝜄,0,

#»𝑥 𝜄,1, 𝑧𝜄,
#»
0 2, 𝜙𝜄,1, 𝜙𝜄,2, 0)𝔹𝜄

).
After this step is done, we would have to change the form of the queried decryp-
tion key sk* so that the first 2𝑚 coefficients of each 𝒌*𝜄 become (

#»
0𝑚, #»𝑦 𝜄,1). In

order to achieve this change, we first perform a computational change to 𝒌*𝜄 , for
each 𝜄 ∈ [𝑛], with the help of the DLIN assumption to 𝒌*𝜄 = ( #»𝑦 𝜄,0,

#»
0𝑚, 𝑟, 𝛾𝜄,1, 𝛾𝜄,2,

#»
0 2, 𝜔𝜄)𝔹*

𝜄
, where 𝜔𝜄

U←− 𝔽𝑞 for all 𝜄 ∈ [𝑛]. Next, we need to perform a concep-
tual transformation to the underlying bases in each slot so that the first two
𝑚 blocks of each 𝒌*𝜄 gets interchanged. However, this conceptual change would
generate the term #»𝑥 𝜄,0 · #»𝑦 𝜄,0 − #»𝑥 𝜄,1 · #»𝑦 𝜄,1 in the (2𝑚 + 6)th coefficient of each
ciphertext ct𝜄. In the single-input case, such a term vanishes by the restriction
on the ciphertext and decryption key queries. But, unlike the single-input case,
now #»𝑥 𝜄,0 · #»𝑦 𝜄,0 is not guaranteed to be equal to #»𝑥 𝜄,1 · #»𝑦 𝜄,1 for all 𝜄 ∈ [𝑛], and
hence the term in the (2𝑚+ 6)th coefficient does not vanish.

In order to overcome this problem, we modify the above construction by
introducing a different randomness in each of the 𝑛 component of the decryption
key rather than using a same shared randomness across all the 𝑛 components.
More precisely, a decryption key corresponding to a set of 𝑛 vectors { #»𝑦 𝜄}𝜄∈[𝑛] has

the form sk = ({𝒌𝜄 = ( #»𝑦 𝜄,
#»
0𝑚, 𝑟𝜄, 𝛾𝜄,1, 𝛾𝜄,2,

#»
0 2, 0)𝔹*

𝜄
}𝜄∈[𝑛], 𝑘𝑇 = 𝑔

∑︀
𝜄∈[𝑛]

𝑧𝜄𝑟𝜄

𝑇 ), where
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𝑟𝜄
U←− 𝔽𝑞 for all 𝜄 ∈ [𝑛]. First, observe that this modification does not affect the

correctness. Now, with this modification, we can resolve the above problem as
follows: In the above conceptual change step, we transform the underlying bases
in such a way that not only the first two 𝑚 blocks of each 𝒌*𝜄 gets interchanged,
but also each 𝑟𝜄 gets altered to ̃︀𝑟𝜄, where ̃︀𝑟𝜄 = 𝑟𝜄 + [ #»𝑥 𝜄,0 · #»𝑦 𝜄,0 − #»𝑥 𝜄,1 · #»𝑦 𝜄,1]/𝑧𝜄.
Observe that the ̃︀𝑟𝜄’s are also distributed uniformly and independently over 𝔽𝑞

since 𝑟𝜄’s are so. Also, this new basis transformation will create the additional
term [ #»𝑥 𝜄,1 · #»𝑦 𝜄,1− #»𝑥 𝜄,0 · #»𝑦 𝜄,0] in the (2𝑚+6)th coefficient of the queried ciphertext
in each slot that would cancel out the term [ #»𝑥 𝜄,0· #»𝑦 𝜄,0− #»𝑥 𝜄,1· #»𝑦 𝜄,1]. Further, notice
that

∑︀
𝜄∈[𝑛]

𝑧𝜄̃︀𝑟𝜄 = ∑︀
𝜄∈[𝑛]

𝑧𝜄𝑟𝜄 by the restriction of the full-hiding security experiment

of the multi-input setting, namely,
∑︀

𝜄∈[𝑛]

#»𝑥 𝜄,0 · #»𝑦 𝜄,0 =
∑︀

𝜄∈[𝑛]

#»𝑥 𝜄,1 · #»𝑦 𝜄,1.

Note that our actual construction and security proof, which is presented
under the general 𝑘-LIN assumption, is more subtle. In our actual construction,
we observe that replacing the 𝑧𝜄 values with the scalar 1 and choosing the 𝑟𝜄
values associated with a decryption key under the restriction that

∑︀
𝜄∈[𝑛]

𝑟𝜄 = 0

is sufficient to argue the security proof. As a result of this modification, we are
able to remove the 𝑘𝑇 component from the decryption keys. Also, in the actual
construction, we reduce the dimension of the underlying bases further by making
a more careful use of the randomness.

𝐎𝐮𝐫 𝐮𝐧𝐛𝐨𝐮𝐧𝐝𝐞𝐝-𝐚𝐫𝐢𝐭𝐲 𝐬𝐜𝐡𝐞𝐦𝐞: In our bounded-arity scheme, the setup al-
gorithm makes 𝑛 random dual orthogonal bases for 𝑛-input case, and stores them
as a master secret key. The first problem is how to make these bases unbound-
edly from a master secret key, whose size is independent from 𝑛. Considering
that our scheme is private-key MIPE, to get an idea of making them from a
pseudorandom function is not difficult. That is, we prepare a randomly chosen
pseudorandom function key as a master secret key in a setup phase, and in
encryption or key generation, we can generate dual orthogonal bases from the
pseudorandom function with its input being the slot index when they are needed.
Actually, this naive idea works in a conditional full-hiding security model, where
for each decryption key, all indices included in the decryption keys are queried in
ciphertext query. The crucial point is that, for some decryption key queried by
the adversary, if all indices that are included in the decryption key are queried in
ciphertext query, then all corresponding vectors must satisfy some restrictions
to avoid a trivial attack. Concretely, for each decryption key sk𝑆 for a index
set 𝑆 and vectors { #»𝑦 𝜄}𝜄∈𝑆 , all vectors #»𝑥 𝜄 for slot 𝜄 ∈ 𝑆 queried in ciphertext
query, satisfy the following restriction s.t.

∑︀
𝜄∈𝑆

#»𝑥 𝜄,0 · #»𝑦 𝜄,0 =
∑︀
𝜄∈𝑆

#»𝑥 𝜄,1 · #»𝑦 𝜄,1. When

we construct our bounded-arity scheme, we first construct a scheme that is se-
cure in the conditional full-hiding security model, and then we convert it into
one that has full-hiding security with no conditions by a generic transformation,
similarly to Abdalla et. al. [3]. We leverage such a restriction in the proof of the
underlying scheme.
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In the conversion, we prepare a random bit string 𝑘𝜄 for each index. Next, we
encrypt all decryption keys and ciphertexts of the underlying scheme with SKE
using 𝐾 =

⨁︀𝑛
𝜄=1 𝑘𝜄 as a secret key. Then, we append the random bit string 𝑘𝜄 to

ciphertexts for index 𝜄. By the construction, if there exist some indices that are
not queried in ciphertext query, an adversary cannot compute 𝐾 and all cipher-
texts and decryption keys are completely hidden from the adversary. Therefore
we can exclude such a situation and focus on the conditional full-hiding security
model. However, this generic transformation does not work in the unbounded
arity-case, because a set of ciphertexts (or indices) needed for decryption differs
by each decryption key. Then we do not know how to convert an unbounded-
arity scheme secure under the conditional full-hiding security model into one
with full-hiding security.

To solve this problem, we introduce a new construction and new proof tech-
niques. Our solution inherits the spirit of the above technique due to Abdalla
et. al. [3], but is not completely generic. The basic scheme is that making use of
pseudorandom functions as mentioned earlier. Then we introduce another pseu-
dorandom function, which takes an index of slots 𝜄 as an input and outputs a
random bit string 𝑘𝜄, which is assigned for each index. Those bit strings are ap-
pended to corresponding ciphertexts like the above generic transformation, but
we do not encrypt ciphertexts with SKE, or even cannot because it is impossible
to decide which indices are needed for decryption in the unbounded case. Instead
we encrypt each decryption key with SKE, using the all bit strings corresponding
to the index set of decryption key, as a secret key of SKE in some way. We can see
that if there are some indices which are not queried in ciphertext query (we call
such indices as absent indices), then the decryption keys which contain absent
indices will be completely hidden from the adversary. It is because to obtain the
secret keys of SKE, the adversary needs all bit strings 𝑘𝜄 (or ciphertexts) for the
corresponding indices.

In this construction, however, we cannot use a generic transformation because
ciphertexts are not encrypted with SKE. Instead we consider a series of hybrids
in the same manner as bounded-arity case for the security proof. During the
hybrids, we encounter the problem that there are some decryption keys that
have absent indices, and therefore these decryption keys and ciphertexts might
not satisfy the restriction as explained above. To solve the problem, we leverage
the power of SKE, and it enables us to go the hybrids ahead. More precisely,
for the decryption keys that have absent indices, we use the power of SKE, and
for the other decryption keys, we use the power of the basic scheme. But here,
if we define the secret key of SKE to encrypt a decryption key for a set 𝑆 as⨁︀

𝜄∈𝑆 𝑘𝜄, likely to the generic transformation of the bounded case, we realize
that we cannot make a reduction algorithm for SKE. This problem is mainly
due to the flexibleness of decryption keys, that is, a set, which can be associated
with secret keys, is not determined in the scheme. Observe that in the bounded
case, the set is determined as {1, . . . , 𝑛}. Consider the case where the adversary
has a decryption key for a set {1, 2, 3} (say 𝐾123), one for {1, 2} (say 𝐾12) and
a ciphertext for index 3. Then the adversary cannot compute the secret key for
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these decryption keys, i.e., 𝐾123 =
⨁︀3

𝜄=1 𝑘𝜄 and 𝐾12 =
⨁︀2

𝜄=1 𝑘𝜄. However, the
adversary has 𝑘3, which is appended to the ciphertext for index 3, and knows
𝐾123 = 𝐾12 ⊕ 𝑘3. This correlation becomes a obstacle for the reduction. To
circumvent this obstacle, we introduce another encrypting method. That is, we
iteratively encrypt a decryption key with SKE, making each bit strings 𝑘𝜄 be a
secret key. Then such a correlation does not appear over every decryption key.

The final difficulty is that the adversary asks for decryption keys and ci-
phertexts in adaptive manner. Consequently, the challenger cannot know which
type a queried decryption key will be, one that has absent indices or one does
not, at the point where the decryption key is queried. Then we need to care-
fully construct reduction algorithms and evaluate successful probabilities of the
reductions.

𝐂𝐨𝐧𝐜𝐮𝐫𝐫𝐞𝐧𝐭 𝐖𝐨𝐫𝐤

Concurrently and independently to our work, Abdalla et al. [2] have also con-
sidered the problem of constructing function-private MIFE scheme for the multi-
input inner product functionality supporting a polynomial number of encryp-
tion slots under standard assumption. They have first presented a semi-generic
scheme that achieves the full-hiding security only in a selective sense. They have
subsequently overcome the selective restriction in a concrete instantiation of
their semi-generic construction. However, similar to our first MIFE scheme, their
construction can only support an apriori fixed number of encryption slots and a
fixed slot index set for the multi-input inner product functions. Their concrete
adaptively full-hiding MIFE scheme is built in prime order bilinear group setting
under the 𝑘-MDDH assumption, which subsumes the 𝑘-LIN assumption used
in our construction. When instantiated under the SXDH assumption, while our
construction contains 4𝑛(𝑚2 − 1) more field elements in the master secret key,
it involves 2 and 2𝑛+ 1 less group elements in ciphertexts and decryption keys
respectively compared to their scheme. On the other hand, our scheme incurs
2 and 2𝑛 + 1 less exponentiations in encryption and key generation procedures
respectively, as well as requires 2𝑛 less pairing operations during decryption
compared to theirs. Recall that 𝑚 and 𝑛 respectively denote the length of the
vectors and the size of the index set associated with the multi-input inner prod-
uct functionality.

2 Preliminaries

In this section we present various definitions and decisional problems used in
this paper.

2.1 Notations

Let 𝜆 ∈ ℕ denotes the security parameter and 1𝜆 be its unary encoding. Let ℕ
and ℤ denote the set of all positive integers and the set of all integers respectively,
while 𝔽𝑞, for any prime power 𝑞 ∈ ℕ, denotes the finite field of integers modulo
𝑝. For 𝑠 ∈ ℕ and 𝑡 ∈ ℕ ∪ {0} (with 𝑡 < 𝑠), we let [𝑠] = {1, . . . , 𝑠} and [𝑡, 𝑠] =

{𝑡, . . . , 𝑠}. For any set 𝑍, 𝑧
U←− 𝑍 represents the process of uniformly sampling
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an element 𝑧 from the set 𝑍, and |𝑍| signifies the size or cardinality of 𝑍. For a
probabilistic algorithm ℛ, we denote by 𝜘 = ℛ(𝛩;𝛷) the output of ℛ on input

𝛩 and the content of the random tape being 𝛷, while 𝜘 R←− ℛ(𝛩) represents
the process of sampling 𝜘 from the output distribution of ℛ on input 𝛩 with
a uniform random tape. On the other hand, for any deterministic algorithm 𝒟,
𝜘 = 𝒟(𝛩) denotes the output of 𝒟 on input 𝛩. We use the abbreviation PPT to
mean probabilistic polynomial-time. We assume that all the algorithms are given
the unary representation 1𝜆 of the security parameter 𝜆 as input and will not
write 1𝜆 explicitly as input of the algorithms when it is clear from the context.
For any finite field 𝔽𝑞 and 𝑚 ∈ ℕ, let #»𝑣 denotes a vector (𝑣(1), . . . , 𝑣(𝑚)) ∈ ℤ𝑚

or 𝔽𝑚
𝑞 , where 𝑣(𝑗) ∈ ℤ or 𝔽𝑞 respectively, for all 𝑗 ∈ [𝑚]. The all zero vectors

in 𝔽𝑚
𝑞 will be denoted by

#»
0𝑚. For any two vectors #»𝑣 , #»𝑤 ∈ ℤ𝑚 or 𝔽𝑚

𝑞 , #»𝑣 · #»𝑤
stands for the inner product of the vectors #»𝑣 and #»𝑤 over the integers, i.e.,
#»𝑣 · #»𝑤 =

∑︀
𝑗∈[𝑚]

𝑣(𝑗)𝑤(𝑗) ∈ ℤ. For any multiplicative cyclic group 𝔾 of order 𝑞

and any generator 𝑔 ∈ 𝔾, let 𝒖 represents the 𝑚-dimensional vector of group

elements (𝑔𝑣
(1)

, . . . , 𝑔𝑣
(𝑚)

) ∈ 𝔾𝑚, for some #»𝑣 ∈ 𝔽𝑚
𝑞 . By 𝟏𝑚

𝔾 we denote the 𝑚-
dimensional vector (1𝔾, . . . , 1𝔾) ∈ 𝔾𝑚, where 1𝔾 represents the identity element
of the group 𝔾. We use 𝐴 = (𝑎𝑗,𝑡) to represent a matrix with entries 𝑎𝑗,𝑡 ∈ 𝔽𝑞.
By 𝐴⊺ we will signify the transpose of the matrix 𝐴, while by 𝐴* the matrix
(𝐴−1)⊺. Let GL(ℓ,𝔽𝑞) denotes the set of all ℓ× ℓ invertible matrices over 𝔽𝑞. A
function negl : ℕ → ℝ+ is said to be negligible if for every 𝑐 ∈ ℕ, there exists
𝑇 ∈ ℕ such that for all 𝜆 ∈ ℕ with 𝜆 > 𝑇 , |negl(𝜆)| < 1/𝜆𝑐.

2.2 Some Essential Cryptographic Tools

𝐃𝐞fi𝐧𝐢𝐭𝐢𝐨𝐧 𝟐.𝟏 (𝐏𝐬𝐞𝐮𝐝𝐨𝐫𝐚𝐧𝐝𝐨𝐦 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧𝐬: PRFs): A pseudorandom func-
tion family ℱ = {ℱ𝜆}𝜆∈ℕ with key space 𝒦 = {𝒦𝜆}𝜆∈ℕ, domain 𝒳 = {𝒳𝜆}𝜆∈ℕ,
and range 𝒴 = {𝒴𝜆}𝜆∈ℕ is a function family that consists of functions 𝐹𝜆 :
𝒦𝜆 × 𝒳𝜆 → 𝒴𝜆. Let ℛ𝜆 be a set of functions consists of all functions whose
domain and range are 𝒳𝜆 and 𝒴𝜆 respectively. For all PPT adversary 𝒜, the
following condition holds;

Advprf𝒜 (𝜆) =
⃒⃒⃒
Pr[1

R←− 𝒜𝐹 (𝐾,·)]− Pr[1
R←− 𝒜𝑅(·)]

⃒⃒⃒
≤ negl(𝜆),

where 𝐹 ∈ ℱ𝜆, 𝐾
U←− 𝒦𝜆, and 𝑅

U←− ℛ𝜆.

𝐃𝐞fi𝐧𝐢𝐭𝐢𝐨𝐧 𝟐.𝟐 (𝐒𝐲𝐦𝐦𝐞𝐭𝐫𝐢𝐜 𝐊𝐞𝐲 𝐄𝐧𝐜𝐫𝐲𝐩𝐭𝐢𝐨𝐧: SKE): A symmetric key en-
cryption consists of a tuple of three PPT algorithms (SKE.KeyGen, SKE.Encrypt,
SKE.Decrypt). SKE.KeyGen takes 1𝜆 as an input and outputs a secret key 𝐾.
SKE.Encrypt takes a secret key 𝐾 and a message 𝑚 and outputs a ciphertext 𝑐.
SKE.Decrypt takes a secret key 𝐾 and a ciphertext 𝑐 and outputs a message 𝑚′.
Correctness of SKE is that

Pr[𝑚 = 𝑚′|𝐾 R←− SKE.KeyGen,𝑚′ = SKE.Decrypt(𝐾,SKE.Encrypt(𝐾,𝑚))] = 1.

A semantically secure symmetric key encryption scheme satisfies the following
condition. For all PPT adversary 𝒜,

Advske𝒜 (𝜆) =
⃒⃒⃒
Pr[1

R←− 𝒜𝒪0(·)]− Pr[1
R←− 𝒜𝒪1(·)]

⃒⃒⃒
≤ negl(𝜆),
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where an oracle 𝒪𝛽∈{0,1} chooses a random secret key 𝐾 as 𝐾
R←− SKE.KeyGen

and when it takes a pair of messages (𝑚0,𝑚1), it returns SKE.Encrypt(𝐾,𝑚𝛽).

2.3 Bilinear Groups and Dual Pairing Vector Spaces

𝐃𝐞fi𝐧𝐢𝐭𝐢𝐨𝐧 𝟐.𝟑 (𝐁𝐢𝐥𝐢𝐧𝐞𝐚𝐫 𝐆𝐫𝐨𝐮𝐩): A bilinear group params𝔾 = (𝑞,𝔾1,𝔾2,
𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) is a tuple of a prime integer 𝑞 ∈ ℕ; cyclic multiplicative groups
𝔾1,𝔾2,𝔾𝑇 of order 𝑞 each with polynomial-time computable group operations;
generators 𝑔1 ∈ 𝔾1, 𝑔2 ∈ 𝔾2; and a polynomial-time computable non-degenerate
bilinear map 𝑒 : 𝔾1 ×𝔾2 → 𝔾𝑇 , i.e., 𝑒 satisfies the following two properties:

– Bilinearity : 𝑒(𝑔𝜁1 , 𝑔
𝜂
2 ) = 𝑒(𝑔1, 𝑔2)

𝜁𝜂 for all 𝜁, 𝜂 ∈ 𝔽𝑞.
– Non-degeneracy : 𝑒(𝑔1, 𝑔2) ̸= 1𝔾𝑇

, where 1𝔾𝑇
denotes the identity element of

the group 𝔾𝑇 .

𝐃𝐞fi𝐧𝐢𝐭𝐢𝐨𝐧 𝟐.𝟒 (𝐃𝐮𝐚𝐥 𝐏𝐚𝐢𝐫𝐢𝐧𝐠 𝐕𝐞𝐜𝐭𝐨𝐫 𝐒𝐩𝐚𝐜𝐞𝐬: DPVS [𝟑𝟒, 𝟑𝟓]): A dual
pairing vector space (DPVS) params𝕍 = (𝑞,𝕍1,𝕍2, 𝔾𝑇 ,𝔸1,𝔸2, 𝑒) by the direct
product of a bilinear group params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) is a tuple of a
prime integer 𝑞; 𝑚-dimensional vector spaces 𝕍𝜒 = 𝔾𝑚

𝜒 over 𝔽𝑞, for 𝜒 ∈ [2],
under vector addition ‘⊞’ and scalar multiplication ‘∘’ defined componentwise;

canonical bases 𝔸𝜒 = {𝒂𝜒,𝑗 = (

𝑗−1⏞  ⏟  
1𝔾𝜒 , . . . , 1𝔾𝜒 , 𝑔𝜒,

𝑚−𝑗⏞  ⏟  
1𝔾𝜒 , . . . , 1𝔾𝜒)}𝑗∈[𝑚] of 𝕍𝜒, for

𝜒 ∈ [2], where 1𝔾𝜒 is the identity element of the group 𝔾𝜒, for 𝜒 ∈ [2]; and a

pairing 𝑒 : 𝕍1 × 𝕍2 → 𝔾𝑇 defined by 𝑒(𝒗,𝒘) =
∏︀

𝑗∈[𝑚]

𝑒(𝑔𝑣
(𝑗)

1 , 𝑔𝑤
(𝑗)

2 ) ∈ 𝔾𝑇 , for all

𝒗 = (𝑔𝑣
(1)

1 , . . . , 𝑔𝑣
(𝑞)

1 ) ∈ 𝕍1, 𝒘 = (𝑔𝑤
(1)

2 , . . . , 𝑔𝑤
(𝑞)

2 ) ∈ 𝕍2. Observe that the newly
defined map 𝑒 is also non-degenerate bilinear, i.e., 𝑒 satisfies the following two
properties:

– Bilinearity : 𝑒(𝜇 ∘ 𝒗, 𝜂 ∘𝒘) = 𝑒(𝒗,𝒘)𝜇𝜂, for 𝜇, 𝜂 ∈ 𝔽𝑞, 𝒗 ∈ 𝕍1, and 𝒘 ∈ 𝕍2.
– Non-degeneracy : If 𝑒(𝒗,𝒘) = 1𝔾𝑇

for all 𝒘 ∈ 𝕍2, then 𝒗 = 𝟏𝑚
𝔾1
.

We will often omit the symbol ‘∘’ for scalar multiplication and abuse ‘+’ for
the vector addition ‘⊞’ when it is clear from the context. For any set 𝕎 =
{𝒘1, . . . ,𝒘𝑚} of vectors in 𝕍𝜒, for 𝜒 ∈ [2], and any vector #»𝑣 ∈ 𝔽𝑚

𝑞 , let ( #»𝑣 )𝕎
represents the vector in 𝕍𝜒 formed by the linear combination of the members
of 𝕎 with the entries of #»𝑣 as the coefficients, i.e., ( #»𝑣 )𝕎 =

∑︀
𝑗∈[𝑚]

𝑣(𝑗)𝒘𝑗 ∈ 𝕍𝜒.

Also, for any vector 𝒗 ∈ 𝕍𝜒, for 𝜒 ∈ [2], and any matrix 𝐴 = (𝑎𝑗,𝑡) with
entries 𝑎𝑗,𝑡 ∈ 𝔽𝑞, for 𝑗, 𝑡 ∈ [𝑚], we denote by 𝒗𝐴 the 𝑚-dimensional vector

(𝑔

∑︀
𝑗∈[𝑚]

𝑎𝑗,1𝑣
(𝑗)

𝜒 , . . . , 𝑔

∑︀
𝑗∈[𝑚]

𝑎𝑗,𝑚𝑣(𝑗)

𝜒 ) ∈ 𝕍𝜒. The DPVS generation algorithm 𝒢dpvs
takes input the unary encoded security parameter 1𝜆, a dimension value 𝑚 ∈ ℕ,
along with a bilinear group params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)

R←− 𝒢bpg(), and
outputs a description params𝕍 = (𝑞,𝕍1, 𝕍2,𝔾𝑇 ,𝔸1,𝔸2, 𝑒) of DPVS with 𝑚-
dimensional 𝕍1 and 𝕍2.

We now describe random dual orthogonal basis generator 𝒢ob [34,35] in Fig. 2.1.
This algorithm would be utilized as a sub-routine in our constructions.
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𝒢ob(𝑚, params𝕍, 𝜈): This algorithm takes as input the unary encoded security parameter 1𝜆,

a dimension value 𝑚 ∈ ℕ, a 𝑚-dimensional DPVS params𝕍 = (𝑞,𝕍1,𝕍2,𝔾𝑇 ,𝔸1,𝔸2, 𝑒)
R←−

𝒢dpvs(𝑚, params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)), along with a random value 𝜈
U←− 𝔽𝑞∖{0}, and per-

forms the following operations:

1. It first samples random 𝐵 = (𝑏𝑗,𝑡)
U←− GL(𝑚, 𝔽𝑞).

2. Next, it computes 𝐵★ = (𝑏*𝑗,𝑡) = 𝜈𝐵*.

3. For all 𝑗 ∈ [𝑚], let
#»
𝑏 𝑗 and

#»
𝑏 *

𝑗 represent the 𝑗th row-vectors of 𝐵 and 𝐵★ respectively. It

computes 𝒃𝑗 = (
#»
𝑏 𝑗)𝔸1 , 𝒃

*
𝑗 = (

#»
𝑏 *

𝑗 )𝔸2 , for 𝑗 ∈ [𝑚], and sets

𝔹 = {𝒃1, . . . , 𝒃𝑚},𝔹*
= {𝒃*

1 , . . . , 𝒃
*
𝑚}.

Clearly 𝔹 and 𝔹* form bases of the vector spaces 𝕍1 = 𝔾𝑚
1 and 𝕍2 = 𝔾𝑚

2 respectively. Also,
note that 𝔹 and 𝔹* are dual orthogonal in the sense that for all 𝑗, 𝑗′ ∈ [𝑚],

𝑒(𝒃𝑗 , 𝒃
*
𝑗′ ) =

{︂
𝑔𝑇 , if 𝑗 = 𝑗′

1𝔾𝑇
, otherwise

,

where 𝑔𝑇 = 𝑒(𝑔1, 𝑔2)
𝜈 .

4. It returns (𝔹,𝔹*).

𝐅𝐢𝐠. 𝟐.𝟏: Dual Orthogonal Basis Generator 𝒢ob

2.4 Complexity Assumptions

𝐀𝐬𝐬𝐮𝐦𝐩𝐭𝐢𝐨𝐧 𝟏 (𝒌-𝐋𝐢𝐧𝐞𝐚𝐫: 𝒌-LIN [𝟑𝟕]): Fix a number 𝜒 ∈ [2]. The 𝑘-LIN

problem is to guess a bit 𝛽
U←− {0, 1} given 𝜀𝛽 = (params𝔾, 𝑔

𝜉1
𝜒 , . . . , 𝑔𝜉𝑘𝜒 , 𝑔𝛿1𝜉1𝜒 , . . . ,

𝑔𝛿𝑘𝜉𝑘𝜒 ,ℜ𝛽); where params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)
R←− 𝒢bpg(); 𝜉1, . . . , 𝜉𝑘, 𝜎

U←−

𝔽𝑞∖{0}; 𝛿1, . . . , 𝛿𝑘
U←− 𝔽𝑞; and ℜ𝛽 = 𝑔

∑︀
𝑗∈[𝑘]

𝛿𝑗

𝜒 or 𝑔
𝜎+

∑︀
𝑗∈[𝑘]

𝛿𝑗

𝜒 according as 𝛽 = 0 or
1. The 𝑘-LIN assumption states that for any PPT algorithm 𝒜, for any security
parameter 𝜆, the advantage of ℱ in deciding the 𝑘-LIN problem,

Adv𝑘-lin𝒜 (𝜆) =
⃒⃒⃒
Pr[1

R←− 𝒜(𝜀0)]− Pr[1
R←− 𝒜(𝜀1)]

⃒⃒⃒
≤ negl(𝜆),

for some negligible function negl.

We now define a set of decisional problems. We rely on the hardness of these
problems for deriving security of our constructions. We justify the reducibility of
the hardness of these problems to that of the 𝑘-LIN problem in the full version
of this paper.

𝐃𝐞fi𝐧𝐢𝐭𝐢𝐨𝐧 𝟐.𝟓 (Problem 1): Problem 1 is to guess a bit 𝛽
U←− {0, 1} given

𝜚𝛽 = (params𝕍, 𝑔𝑇 , {̂︀𝔹𝜄, ̂︀𝔹*𝜄 }𝜄∈[𝑛], {𝜰 𝜄,𝛽}𝜄∈[𝑛]); where params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 ,

𝑔1, 𝑔2, 𝑒)
R←− 𝒢bpg(); params𝕍 = (𝑞,𝕍1,𝕍2,𝔾𝑇 ,𝔸1,𝔸2, 𝑒)

R←− 𝒢dpvs(2𝑚 + 2𝑘 +

1, params𝔾); 𝜈
U←− 𝔽𝑞∖{0}; 𝑔𝑇 = 𝑒(𝑔1, 𝑔2)

𝜈 ;(𝔹𝜄,𝔹*𝜄 )
R←− 𝒢ob(2𝑚+2𝑘+1, params𝕍, 𝜈);̂︀𝔹𝜄 = {𝒃𝜄,1, . . . , 𝒃𝜄,2𝑚+1, 𝒃𝜄,2𝑚+𝑘+1, . . . , 𝒃𝜄,2𝑚+2𝑘}, ̂︀𝔹*𝜄 = {𝒃*𝜄,1, . . . , 𝒃*𝜄,2𝑚+𝑘}, for

𝜄 ∈ [𝑛]; 𝛼1, . . . , 𝛼𝑘
U←− 𝔽𝑞; ℑ

U←− 𝔽𝑞∖{0}; and 𝜰 𝜄,𝛽 = (
#»
0 2𝑚+𝑘, 𝛼1, . . . , 𝛼𝑘, 0)𝔹𝜄 or

(
#»
0 2𝑚+𝑘, 𝛼1, . . . , 𝛼𝑘,ℑ)𝔹𝜄

according as 𝛽 = 0 or 1. For any PPT algorithm 𝒜, the
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advantage of 𝒜 in deciding Problem 1 is defined as

Advp1𝒜 (𝜆) =
⃒⃒⃒
Pr[1

R←− 𝒜(𝜚0)]− Pr[1
R←− 𝒜(𝜚1)]

⃒⃒⃒
.

𝐃𝐞fi𝐧𝐢𝐭𝐢𝐨𝐧 𝟐.𝟔 (Problem 1∗): Problem 1* is to guess a bit 𝛽
U←− {0, 1} given

𝜚𝛽 = (params𝕍, 𝑔𝑇 , {̂︀𝔹𝜄, ̂︀𝔹*𝜄 }𝜄∈[𝑛], {𝜰 𝜄,𝛽}𝜄∈[𝑛]); where params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1,

𝑔2, 𝑒)
R←− 𝒢bpg(); params𝕍 = (𝑞,𝕍1,𝕍2,𝔾𝑇 ,𝔸1,𝔸2, 𝑒)

R←− 𝒢dpvs(2𝑚 + 2𝑘 + 1,

params𝔾); 𝜈
U←− 𝔽𝑞∖{0}; 𝑔𝑇 = 𝑒(𝑔1, 𝑔2)

𝜈 ; (𝔹𝜄,𝔹*𝜄 )
R←− 𝒢ob(2𝑚+2𝑘+1, params𝕍, 𝜈),

for 𝜄 ∈ [𝑛]; ̂︀𝔹𝜄 = {𝒃𝜄,1, . . . , 𝒃𝜄,2𝑚+1, 𝒃𝜄,2𝑚+𝑘+1, . . . , 𝒃𝜄,2𝑚+2𝑘}, ̂︀𝔹*𝜄 = {𝒃*𝜄,1, . . . ,
𝒃*𝜄,2𝑚+𝑘, 𝒃

*
𝜄,2𝑚+2𝑘+1}, for 𝜄 ∈ [𝑛]; 𝛼1, . . . , 𝛼𝑘

U←− 𝔽𝑞; ℑ
U←− 𝔽𝑞∖{0}; and 𝜰 𝜄,𝛽 =

(
#»
0 2𝑚, 𝛼1, . . . , 𝛼𝑘,

#»
0 𝑘, 0)𝔹*

𝜄
or (

#»
0 2𝑚, 𝛼1, . . . , 𝛼𝑘,

#»
0 𝑘,ℑ)𝔹*

𝜄
according as 𝛽 = 0 or 1,

for 𝜄 ∈ [𝑛]. For any PPT algorithm 𝒜, the advantage of 𝒜 in deciding Problem 1*

is defined as

Advp1*𝒜 (𝜆) =
⃒⃒⃒
Pr[1

R←− 𝒜(𝜚0)]− Pr[1
R←− 𝒜(𝜚1)]

⃒⃒⃒
.

2.5 Notion of Full-Hiding Multi-Input Inner Product Func-
tional Encryption

𝐃𝐞fi𝐧𝐢𝐭𝐢𝐨𝐧 𝟐.𝟕 (𝐌𝐮𝐥𝐭𝐢-𝐈𝐧𝐩𝐮𝐭 𝐈𝐧𝐧𝐞𝐫 𝐏𝐫𝐨𝐝𝐮𝐜𝐭 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧𝐚𝐥𝐢𝐭𝐲): An unbounded-

arity multi-input inner product function family ℱ𝑚,B
𝜆 = {ℱ𝑚,B

𝑆 }, for some

𝑚,B ∈ ℕ, consists of the sub-families ℱ𝑚,B
𝑆 of bounded-arity multi-input inner

product functions, where each subfamily ℱ𝑚,B
𝑆 is parameterized with an index

set 𝑆 ⊆ [𝑡(𝜆)] for any polynomial 𝑡, and contains functions 𝑓{ #»𝑦 𝜄}𝜄∈𝑆
: (ℤ𝑚)|𝑆| →

ℤ associated with sets of vectors { #»𝑦 𝜄}𝜄∈𝑆 such that each vector #»𝑦 𝜄 ∈ ℤ𝑚, where
𝑓{ #»𝑦 𝜄}𝜄∈𝑆

({ #»𝑥 𝜄}𝜄∈𝑆) =
∑︀
𝜄∈𝑆

#»𝑥 𝜄 · #»𝑦 𝜄, for all sets of vectors { #»𝑥 𝜄}𝜄∈𝑆 such that each

vector #»𝑥 𝜄 ∈ ℤ𝑚 and the norm of the inner product | #»𝑥 𝜄 · #»𝑦 𝜄| ≤ B for all 𝜄 ∈ 𝑆.

Without loss of generality, when dealing with MIFE for some bounded-arity
multi-input inner product function family ℱ𝑚,B

𝑆 , we consider the associated
index set 𝑆 to be [𝑛], and denote the function family as ℱ𝑚,B

𝑛 , where 𝑛 = |𝑆|.

𝐃𝐞fi𝐧𝐢𝐭𝐢𝐨𝐧 𝟐.𝟖 (𝐅𝐮𝐥𝐥-𝐇𝐢𝐝𝐢𝐧𝐠 𝐏𝐫𝐢𝐯𝐚𝐭𝐞 𝐊𝐞𝐲 𝐁𝐨𝐮𝐧𝐝𝐞𝐝-𝐀𝐫𝐢𝐭𝐲 𝐌𝐮𝐥𝐭𝐢-𝐈𝐧𝐩𝐮𝐭
𝐈𝐧𝐧𝐞𝐫 𝐏𝐫𝐨𝐝𝐮𝐜𝐭 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧𝐚𝐥 𝐄𝐧𝐜𝐫𝐲𝐩𝐭𝐢𝐨𝐧: FH-MIPE): A full-hiding private
key bounded-arity multi-input inner product functional encryption scheme for
an inner product function family ℱ𝑚,B

𝑛 consists of the following polynomial-time
algorithms:

FH-MIPE.Setup(𝑚,𝑛,B): This algorithm takes as input the unary encoded se-
curity parameter 1𝜆, along with the length 𝑚 ∈ ℕ of vectors, the arity 𝑛 ∈ ℕ
of the multi-input inner product functionality, and the bound B ∈ ℕ on the
size of each component inner products. It generates a master secret key msk
and the corresponding public parameters pp. Observe that we are consider-
ing private key setting and hence pp is not sufficient to encrypt. It merely
includes some public informations required for decryption, e.g., the group
description in a bilinear-map-based construction.
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FH-MIPE.KeyGen(pp,msk, { #»𝑦 𝜄}𝜄∈[𝑛]): On input the public parameters pp, the
master secret key msk, along with a set of 𝑛 vectors { #»𝑦 𝜄}𝜄∈[𝑛] such that
#»𝑦 𝜄 ∈ ℤ𝑚 for all 𝜄 ∈ [𝑛], this algorithm outputs a decryption key sk.

FH-MIPE.Encrypt(pp,msk, 𝜄, #»𝑥 𝜄): This algorithm upon input the public param-
eters pp, the master secret key msk, an index 𝜄 ∈ [𝑛], and a vector #»𝑥 𝜄 ∈ ℤ𝑚

𝑝 ,
outputs a ciphertext ct𝜄, which includes the index 𝜄 in the clear.

FH-MIPE.Decrypt(pp, sk, {ct𝜄}𝜄∈[𝑛]): On input the public parameters pp, a de-
cryption key sk, along with a set of 𝑛 ciphertexts {ct𝜄}𝜄∈[𝑛], where for all

𝜄 ∈ [𝑛], ct𝜄 is a ciphertext prepared for the 𝜄th index, this algorithm either
outputs a value 𝛬 ∈ ℤ or the distinguished symbol ⊥ indicating failure.

The algorithm FH-MIPE.Decrypt is deterministic while all the others are prob-
abilistic. The algorithms satisfy the following correctness and security require-
ments.

■ 𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐧𝐞𝐬𝐬: An FH-MIPE scheme is correct if for any security parame-
ter 𝜆 ∈ ℕ, any polynomial 𝑛 in 𝜆, any 𝑚,B ∈ ℕ, any two sets of 𝑛 vectors
{ #»𝑥 𝜄}𝜄∈[𝑛], { #»𝑦 𝜄}𝜄∈[𝑛] such that #»𝑥 𝜄,

#»𝑦 𝜄 ∈ ℤ𝑚 with | #»𝑥 𝜄 · #»𝑦 𝜄| ≤ B for all 𝜄 ∈ [𝑛], we
have

Pr
[︀
FH-MIPE.Decrypt(pp, sk, {ct𝜄}𝜄∈[𝑛]) =

∑︁
𝜄∈[𝑛]

#»𝑥 𝜄 · #»𝑦 𝜄 :

(pp,msk)
R←− FH-MIPE.Setup(𝑚,𝑛,B);

sk
R←− FH-MIPE.KeyGen(pp,msk, { #»𝑦 𝜄}𝜄∈[𝑛]);

{ct𝜄
R←− FH-MIPE.Encrypt(pp,msk, 𝜄, #»𝑥 𝜄)}𝜄∈[𝑛]

]︀
≥ 1− negl(𝜆),

for some negligible function negl.

■ 𝐅𝐮𝐥𝐥-𝐇𝐢𝐝𝐢𝐧𝐠 𝐒𝐞𝐜𝐮𝐫𝐢𝐭𝐲: The (indistinguishability-based) full-hiding security
notion for a private key bounded-arity FH-MIPE scheme is formalized through

the experiment Exptfh-mipe𝒜 (𝛽), for random 𝛽
U←− {0, 1}, which involves a PPT

adversary 𝒜 and a PPT challenger ℬ. The experiment is described below:

𝐒𝐞𝐭𝐮𝐩: ℬ generates (pp,msk)
R←− FH-MIPE.Setup(𝑚,𝑛,B) and provides pp to

𝒜.
𝐐𝐮𝐞𝐫𝐲 𝐏𝐡𝐚𝐬𝐞: 𝒜 is allowed to adaptively make any polynomial number of
queries of the following two types in arbitrary order:
– Decryption key query : In response to the 𝑖th decryption key query of 𝒜

corresponding to a pair of sets of vectors ({ #»𝑦 𝜄,𝑖,0}𝜄∈[𝑛], { #»𝑦 𝜄,𝑖,1}𝜄∈[𝑛]) such
that #»𝑦 𝜄,𝑖,0,

#»𝑦 𝜄,𝑖,1 ∈ ℤ𝑚 for all 𝜄 ∈ [𝑛], ℬ forms a decryption key sk*𝑖
R←−

FH-MIPE.KeyGen(pp, msk, { #»𝑦 𝜄,𝑖,𝛽}𝜄∈[𝑛]) and hands sk*𝑖 to 𝒜.
– Ciphertext query : To answer a ciphertext query of 𝒜 for the 𝜄th index

corresponding to a pair of vectors ( #»𝑥 𝜄,𝑡𝜄,0,
#»𝑥 𝜄,𝑡𝜄,1) ∈ (ℤ𝑚)2, ℬ prepares a

ciphertext ct*𝜄,𝑡𝜄
R←− FH.MIPE.Encrypt(pp,msk, #»𝑥 𝜄,𝑡𝜄,𝛽) and gives ct*𝜄,𝑡𝜄 to

𝒜.
Let the total number of decryption key query made by 𝒜 be 𝑞key(≥ 0) and
the total number of ciphertext query made for the 𝜄th index be 𝑞ct,𝜄(≥ 0).
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The restrictions on the queries of 𝒜 are that if 𝑞ct,𝜄 ≥ 1 for all 𝜄 ∈ [𝑛], then
for all 𝑖 ∈ [𝑞key] and for all (𝑡1, . . . , 𝑡𝑛) ∈ [𝑞ct,1]× . . .× [𝑞ct,𝑛], we must have∑︀

𝜄∈[𝑛]

#»𝑥 𝜄,𝑡𝜄,0 · #»𝑦 𝜄,𝑖,0 =
∑︀

𝜄∈[𝑛]

#»𝑥 𝜄,𝑡𝜄,1 · #»𝑦 𝜄,𝑖,1. (2.1)

𝐆𝐮𝐞𝐬𝐬: 𝒜 eventually outputs a guess bit 𝛽′ ∈ {0, 1}, which is the output of the
experiment.

A private key FH-MIPE scheme is said to be full-hiding if for any PPT adversary
𝒜, for any security parameter 𝜆, the advantage of 𝒜 in the above experiment,

Advfh-mipe𝒜 (𝜆) =
⃒⃒
Pr[Exptfh-mipe𝒜 (0) = 1]− Pr[Exptfh-mipe𝒜 (1) = 1]

⃒⃒
≤ negl(𝜆),

for some negligible function negl.

𝐃𝐞fi𝐧𝐢𝐭𝐢𝐨𝐧 𝟐.𝟗 (𝐅𝐮𝐥𝐥-𝐇𝐢𝐝𝐢𝐧𝐠 𝐔𝐧𝐛𝐨𝐮𝐧𝐝𝐞𝐝 𝐏𝐫𝐢𝐯𝐚𝐭𝐞 𝐊𝐞𝐲 𝐌𝐮𝐥𝐭𝐢-𝐈𝐧𝐩𝐮𝐭 𝐈𝐧-
𝐧𝐞𝐫 𝐏𝐫𝐨𝐝𝐮𝐜𝐭 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧𝐚𝐥 𝐄𝐧𝐜𝐫𝐲𝐩𝐭𝐢𝐨𝐧: FH-UMIPE): An unbounded full-
hiding private key multi-input inner product functional encryption scheme for
an inner product function family ℱ𝑚,B

𝜆 consists of the following polynomial-time
algorithms:

FH-UMIPE.Setup(𝑚,B): This algorithm takes as input the unary encoded se-
curity parameter 1𝜆, along with the length 𝑚 ∈ ℕ of vectors, and the bound
B ∈ ℕ of each inner product values. It generates a master secret key msk
and the corresponding public parameters pp. It publishes pp, while keeps
msk to itself.

FH-UMIPE.KeyGen(pp,msk, 𝑆, { #»𝑦 𝜄}𝜄∈𝑆): On input the public parameters pp,
the master secret key msk, a set of indices 𝑆 ⊆ [𝑡(𝜆)] where 𝑡 is any poly-
nomial, along with an |𝑆|-tuple of vectors { #»𝑦 𝜄}𝜄∈𝑆 ∈ (ℤ𝑚)|𝑆|, this algorithm
provides a decryption key sk𝑆 including the set S explicitly.

FH-UMIPE.Encrypt(pp,msk, 𝜄, #»𝑥 𝜄): On input the public parameters pp, the
master secret key msk, an index 𝜄 ∈ [2𝜆], and a vector #»𝑥 𝜄 ∈ ℤ𝑚, outputs a
ciphertext ct𝜄, which includes the index 𝜄 in the clear.

FH-UMIPE.Decrypt(pp, sk𝑆 , {ct𝜄}𝜄∈𝑆): On input the public parameters pp, a
decryption key sk𝑆 associated with 𝑆, along with a tuple of |𝑆| ciphertexts
{ct𝜄}𝜄∈𝑆 , where ct𝜄 is a ciphertext prepared for the index 𝜄, a decrypter
either outputs a value 𝛬 ∈ ℕ or the distinguished symbol ⊥ indicating failure.

The algorithm FH-UMIPE.Decrypt is deterministic while all the others are prob-
abilistic. The algorithms satisfy the following correctness and security require-
ments.

■ 𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐧𝐞𝐬𝐬: An FH-UMIPE scheme is correct if for any 𝑚,B, 𝜆 ∈ ℕ, any
set of indices 𝑆 ⊆ [𝑡(𝜆)], where 𝑡 is any polynomial, any two |𝑆|-tuples of vectors
{ #»𝑥 𝜄}𝜄∈𝑆 , { #»𝑦 𝜄}𝜄∈𝑆 ∈ (ℤ𝑚)|𝑆| with | #»𝑥 𝜄 · #»𝑦 𝜄| ≤ B for all 𝜄 ∈ 𝑆, we have

Pr
[︀
FH-UMIPE.Decrypt(pp, sk𝑆 , {ct𝜄}𝜄∈𝑆) =

∑︀
𝜄∈𝑆

#»𝑥 𝜄 · #»𝑦 𝜄 :

(pp,msk)
R←− FH-UMIPE.Setup(𝑚,B);

sk𝑆
R←− FH-UMIPE.KeyGen(pp,msk, 𝑆, { #»𝑦 𝜄}𝜄∈𝑆);

{ct𝜄
R←− FH-UMIPE.Encrypt(pp, 𝜄, #»𝑥 𝜄)}𝜄∈𝑆

]︀
≥ 1− negl(𝜆)
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■ 𝐅𝐮𝐥𝐥-𝐇𝐢𝐝𝐢𝐧𝐠 𝐒𝐞𝐜𝐮𝐫𝐢𝐭𝐲: The (indistinguishability-based) full-hiding security
notion for a private key FH-UMIPE scheme is formalized through the experiment

Exptfh-umipe𝒜 (𝛽), for random 𝛽
U←− {0, 1}, which involves a PPT adversary 𝒜 and

a PPT challenger ℬ. The experiment is described below:

𝐒𝐞𝐭𝐮𝐩: ℬ generates (pp,msk)
R←− FH-UMIPE.Setup(𝑚,B) and gives pp to 𝒜.

𝐐𝐮𝐞𝐫𝐲 𝐏𝐡𝐚𝐬𝐞: 𝒜 is allowed to adaptively make any polynomial number of
queries of the following two types in arbitrary order:
– Decryption key query : In response to the 𝑖th decryption key query of 𝒜

corresponding to a set of indices 𝑆𝑖 ⊆ [𝑡(𝜆)] for any polynomial 𝑡 and
a pair of |𝑆𝑖|-tuples of vectors { #»𝑦 𝜄,𝑖,0,

#»𝑦 𝜄,𝑖,1}𝜄∈𝑆𝑖
∈ ((ℤ𝑚)|𝑆𝑖|)2, ℬ forms

a decryption key sk*𝑆𝑖,𝑖
R←− FH-UMIPE.KeyGen(pp, msk, 𝑆𝑖, { #»𝑦 𝜄,𝑖,𝛽}𝜄∈𝑆𝑖

)
and hands sk*𝑆𝑖,𝑖

to 𝒜.
– Ciphertext query : To answer a ciphertext query of 𝒜 for the 𝜄th index

corresponding to a pair of vectors ( #»𝑥 𝜄,𝑡𝜄,0,
#»𝑥 𝜄,𝑡𝜄,1) ∈ (ℤ𝑚)2, ℬ prepares a

ciphertext ct*𝜄,𝑡𝜄
R←− UFH.MIPE.Encrypt(pp,msk, #»𝑥 𝜄,𝑡𝜄,𝛽) and gives ct*𝜄,𝑡𝜄

to 𝒜.
Let the total number of decryption key query made by 𝒜 be 𝑞key(≥ 0) and
the total number of ciphertext query made for the 𝜄th index be 𝑞ct,𝜄(≥ 0).
The restrictions on the queries of 𝒜 are that for each 𝑖 ∈ [𝑞key], if 𝑞ct,𝜄 ≥ 1 for
all 𝜄 ∈ 𝑆𝑖, then for all {𝑡𝜄}𝜄∈𝑆𝑖

∈
∏︀
𝜄∈𝑆𝑖

[𝑞ct,𝜄] we must have
∑︀
𝜄∈𝑆𝑖

#»𝑥 𝜄,𝑡𝜄,0 · #»𝑦 𝜄,𝑖,0 =∑︀
𝜄∈𝑆𝑖

#»𝑥 𝜄,𝑡𝜄,1 · #»𝑦 𝜄,𝑖,1.

𝐆𝐮𝐞𝐬𝐬: 𝒜 eventually outputs a guess bit 𝛽′ ∈ {0, 1}, which is the output of the
experiment.

A private key FH-UMIPE scheme is said to be full-hiding if for any PPT adversary
𝒜, for any security parameter 𝜆, the advantage of 𝒜 in the above experiment,

Advfh-umipe𝒜 (𝜆) =
⃒⃒
Pr[Exptfh-umipe𝒜 (0) = 1]− Pr[Exptfh-umipe𝒜 (1) = 1]

⃒⃒
≤ negl(𝜆),

for some negligible function negl.

3 The Proposed Full-Hiding Bounded Multi-Input
Inner Product Functional Encryption Scheme

In this section, we present our FH-MIPE scheme.

3.1 Construction

FH-MIPE.Setup(𝑚,𝑛,B): This algorithm takes as input the unary encoded se-
curity parameter 1𝜆, the length 𝑚 ∈ ℕ of vectors, the arity 𝑛 ∈ ℕ of the
multi-input inner product functionality, and the bound B ∈ ℕ on each com-
ponent inner product. It proceeds as follows:

1. First, it generates a bilinear group params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)
R←−

𝒢bpg() with 𝑞 ≫ 𝑛B.

2. Next, it creates params𝕍 = (𝑞,𝕍1,𝕍2,𝔾𝑇 ,𝔸1, 𝔸2, 𝑒)
R←− 𝒢dpvs(2𝑚 + 2𝑘 +

1, params𝔾).
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3. Then, it samples random 𝜈
U←− 𝔽𝑞∖{0}, and computes 𝑔𝑇 = 𝑒(𝑔1, 𝑔2)

𝜈 .

4. After that, for 𝜄 ∈ [𝑛], it generates (𝔹𝜄 = {𝒃𝜄,1, . . . , 𝒃𝜄,2𝑚+2𝑘+1},𝔹*𝜄 =

{𝒃*𝜄,1, . . . , 𝒃*𝜄,2𝑚+2𝑘+1})
R←− 𝒢ob(2𝑚+ 2𝑘 + 1, params𝕍, 𝜈) and setŝ︀𝔹𝜄 = {𝒃𝜄,1, . . . , 𝒃𝜄,𝑚, 𝒃𝜄,2𝑚+1, 𝒃𝜄,2𝑚+𝑘+1, . . . , 𝒃𝜄,2𝑚+2𝑘},̂︀𝔹*𝜄 = {𝒃*𝜄,1, . . . , 𝒃*𝜄,𝑚, 𝒃*𝜄,2𝑚+1, . . . , 𝒃

*
𝜄,2𝑚+𝑘}.

5. It publishes the public parameters pp = (params𝕍, 𝑔𝑇 ), while sets the

master secret key msk = {̂︀𝔹𝜄, ̂︀𝔹*𝜄 }𝜄∈[𝑛].
FH-MIPE.KeyGen(pp,msk, { #»𝑦 𝜄}𝜄∈[𝑛]): On input the public parameters pp, the

master secret key msk, along with a set of 𝑛 vectors { #»𝑦 𝜄}𝜄∈[𝑛] such that
#»𝑦 𝜄 ∈ 𝔽𝑚

𝑞 , this algorithm executes the following steps:

1. First, it samples random 𝑟𝜄, 𝛾𝜄,1, . . . , 𝛾𝜄,𝑘−1
U←− 𝔽𝑞, for 𝜄 ∈ [𝑛], subject to

the restriction that
∑︀

𝜄∈[𝑛]
𝑟𝜄 = 0.

2. Next, for each 𝜄 ∈ [𝑛], it computes

𝒌𝜄 =
∑︀

𝑗∈[𝑚]

𝑦
(𝑗)
𝜄 𝒃*𝜄,𝑗 + 𝑟𝜄𝒃

*
𝜄,2𝑚+1 +

∑︀
𝑗∈[𝑘−1]

𝛾𝜄,𝑗𝒃
*
𝜄,2𝑚+1+𝑗

= ( #»𝑦 𝜄,
#»
0𝑚, 𝑟𝜄, 𝛾𝜄,1, . . . , 𝛾𝜄,𝑘−1,

#»
0 𝑘, 0)𝔹*

𝜄
,

by making use of ̂︀𝔹*𝜄 extracted from msk.

3. It outputs the decryption key sk = {𝒌𝜄}𝜄∈[𝑛].
FH-MIPE.Encrypt(pp,msk, 𝜄, #»𝑥 𝜄): Taking as input the public parameters pp,
the master secret key msk, an index 𝜄 ∈ [𝑛], along with a vector #»𝑥 𝜄 ∈ 𝔽𝑚

𝑞 ,
this algorithm performs the following steps:

1. It selects random 𝜙𝜄,1, . . . , 𝜙𝜄,𝑘
U←− 𝔽𝑞, and computes

𝒄𝜄 =
∑︀

𝑗∈[𝑚]

𝑥
(𝑗)
𝜄 𝒃𝜄,𝑗 + 𝒃𝜄,2𝑚+1 +

∑︀
𝑗∈[𝑘]

𝜙𝜄,𝑗𝒃𝜄,2𝑚+𝑘+𝑗

= ( #»𝑥 𝜄,
#»
0𝑚, 1,

#»
0 𝑘−1, 𝜙𝜄,1, . . . , 𝜙𝜄,𝑘, 0)𝔹𝜄

,

by utilizing ̂︀𝔹𝜄 extracted from msk.

2. It outputs the ciphertext ct𝜄 = (𝜄, 𝒄𝜄).

FH-MIPE.Decrypt(pp, sk, {ct𝜄}𝜄∈[𝑛]): This algorithm takes as input the public
parameters pp, a decryption key sk = {𝒌𝜄}𝜄∈[𝑛], and a set of 𝑛 ciphertexts
{ct𝜄 = (𝜄, 𝒄𝜄)}𝜄∈[𝑛]. It does the following:
1. It first computes 𝐿𝑇 =

∏︀
𝜄∈[𝑛]

𝑒(𝒄𝜄,𝒌𝜄).

2. Then, it attempts to determine a value 𝛬 ∈ ℤ such that 𝑔𝛬𝑇 = 𝐿𝑇 by
performing an exhaustive search over a specified polynomial-size range of
possible values. If it succeeds, then it outputs 𝛬. Otherwise, it outputs ⊥
indicating failure.

We emphasize that the polynomial running time of our decryption algorithm
is guaranteed by restricting the output to lie within a fixed polynomial-size
range. Note that similar exhaustive search step is used to determine the out-
put in the decryption algorithm of all bilinear-map-based IPE constructions
(both single and multi-input) available in the literature.
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𝐑𝐞𝐦𝐚𝐫𝐤 𝟑.𝟏: We would like to mention here that the FH-MIPE scheme de-
scribed above can be proven to achieve the full-hiding security only when the
adversary makes at least one ciphertext query for each of the 𝑛 encryption in-
dices, i.e., the restriction Eq. (2.1) is applicable. However, using a semantically
secure SKE scheme, one can generically transform any FH-MIPE scheme that
achieves full-hiding security under such restriction to one that achieves the full-
hiding security even when the adversary makes no ciphertext query for some of
the encryption slots. The transformation is rather straightforward and is pre-
sented in the full version of this paper.

■ 𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐧𝐞𝐬𝐬: The correctness of the above FH-MIPE construction can be
verified as follows: Observe that for any set of 𝑛 ciphertexts {ct𝜄 = (𝜄, 𝒄𝜄)}𝜄∈[𝑛],
where ct𝜄 = (𝜄, 𝒄𝜄) encrypts some vector #»𝑥 𝜄 ∈ 𝔽𝑚

𝑞 with respect to the index 𝜄,
for 𝜄 ∈ [𝑛], and any decryption key sk = {𝒌𝜄}𝜄∈[𝑛] corresponding to a set of 𝑛
vectors { #»𝑦 𝜄}𝜄∈[𝑛] such that #»𝑦 𝜄 ∈ 𝔽𝑚

𝑞 for all 𝜄 ∈ [𝑛], we have

𝐿𝑇 =
∏︀

𝜄∈[𝑛]
𝑒(𝒄𝜄,𝒌𝜄) = 𝑔

∑︀
𝜄∈[𝑛]

#»𝑥 𝜄· #»𝑦 𝜄

𝑇 .

This follows from the expressions of 𝒄𝜄,𝒌𝜄, for 𝜄 ∈ [𝑛], in conjunction with the fact
that for each 𝜄 ∈ [𝑛], 𝔹𝜄 and 𝔹*𝜄 are dual orthogonal bases. Thus, if

∑︀
𝜄∈[𝑛]

#»𝑥 𝜄 · #»𝑦 𝜄 is

contained within the specified polynomial-size range of possible values that the
decryption algorithm searches, then the decryption algorithm would definitely
output 𝛬 =

∑︀
𝜄∈[𝑛]

#»𝑥 𝜄 · #»𝑦 𝜄 as desired.

3.2 Security

Theorem 3.1 (Security of our FH-MIPE Scheme): Assume that the 𝑘-LIN prob-
lem is hard. Then, the FH-MIPE construction described above achieves full-hiding
security under the restriction that the adversary makes at least one ciphertext
query for each encryption index. Additionally, assuming the existance of a se-
mantically secure SKE scheme, we can generically convert the above FH-MIPE
scheme to one that achieves full-hiding security without any restriction on the
number of ciphertext queries per encryption slot. More formally, for any PPT
adversary 𝒜 against the full-hiding security of the FH-MIPE construction ob-
tained by generically converting the above FH-MIPE scheme with the help of an
SKE scheme, there exists a PPT algorithm ℬ1 against the 𝑘-LIN problem and
a PPT adversary ℬ2 against the simantic security of SKE such that for any
security parameter 𝜆, we have

Advfh-mipe𝒜 (𝜆) ≤ [4
∑︀

𝜄∈[𝑛]
𝑞ct,𝜄 + 2𝑞key]Adv

𝑘-lin
ℬ1

(𝜆) + Advskeℬ2
(𝜆).

Proof: Here, we only proof the hull-hiding security of the above FH-MIPE
scheme under the restriction that the adversary makes at least one ciphertext
query per encryption slot. The proof is structured as a hybrid argument over
a series of experiments which differ in the construction of the decryption keys
and/or ciphertexts queried by the adversary 𝒜 in the full-hiding security model
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described in Definition 2.8. In the first hybrid experiment, the queried decryp-
tion keys and ciphertexts are constructed as those in the security experiment
Exptfh-mipe𝒜 (0). We then progressively change the ciphertexts and decryption keys
in multiple hybrid steps to those in the security experiment Exptfh-mipe𝒜 (1). We
prove that each hybrid is indistinguishable from the previous one, thus proving
the full-hiding security of the above FH-MIPE construction. Let 𝑞key be the num-
ber of 𝒜’s decryption key queries and 𝑞ct,𝜄 (≥ 1), for 𝜄 ∈ [𝑛], be the number of
𝒜’s ciphertext queries for the 𝜄th index. As noted earlier, we consider 𝑞ct,𝜄 ≥ 1
for all 𝜄 ∈ [𝑛]. The hybrid experiments are described below. In these hybrids, a
part framed by a box indicates those terms which were modified in the transition
from the previous game. The sequence of hybrid experiments follow:

� 𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞 𝐨𝐟 𝐇𝐲𝐛𝐫𝐢𝐝 𝐄𝐱𝐩𝐞𝐫𝐢𝐦𝐞𝐧𝐭𝐬

Hyb𝟎: This experiment corresponds to the experiment Exptfh-mipe𝒜 (0) described
in Definition 2.8, i.e., the full-hiding security experiment where the random bit
used by the challenger ℬ to generate queried ciphertexts and decryption keys
is 𝛽 = 0. More precisely, for all 𝜄 ∈ [𝑛], 𝑡𝜄 ∈ [𝑞ct,𝜄], in response to the 𝑡𝜄

th

ciphertext query of 𝒜 with respect to index 𝜄 corresponding to pair of vectors
( #»𝑥 𝜄,𝑡𝜄,0,

#»𝑥 𝜄,𝑡𝜄,1) ∈ (𝔽𝑚
𝑞 )2, ℬ returns ct*𝜄,𝑡𝜄 = (𝜄, 𝒄*𝜄,𝑡𝜄), where

𝒄*𝜄,𝑡𝜄 = ( #»𝑥 𝜄,𝑡𝜄,0,
#»
0𝑚, 1,

#»
0 𝑘−1, 𝜙𝜄,𝑡𝜄,1, . . . , 𝜙𝜄,𝑡𝜄,𝑘, 0)𝔹𝜄 , (3.1)

and for all 𝑖 ∈ [𝑞key], to answer the 𝑖
th decryption key query of𝒜 corresponding to

pair of sets of 𝑛 vectors ({ #»𝑦 𝜄,𝑖,0}𝜄∈[𝑛], { #»𝑦 𝜄,𝑖,1}𝜄∈[𝑛]) such that #»𝑦 𝜄,𝑖,0,
#»𝑦 𝜄,𝑖,1 ∈ 𝔽𝑚

𝑞 ,
ℬ generates sk*𝑖 = {𝒌*𝜄,𝑖}𝜄∈[𝑛], where

𝒌*𝜄,𝑖 = ( #»𝑦 𝜄,𝑖,0,
#»
0𝑚, 𝑟𝜄,𝑖, 𝛾𝜄,𝑖,1, . . . , 𝛾𝜄,𝑖,𝑘−1,

#»
0 𝑘, 0)𝔹*

𝜄
, for 𝜄 ∈ [𝑛]. (3.2)

Here, params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)
R←− 𝒢bpg(); params𝕍 = (𝑞,𝕍1,𝕍2,𝔾𝑇 ,

𝔸1,𝔸2, 𝑒)
R←− 𝒢dpvs(2𝑚 + 2𝑘 + 1, params𝔾); 𝜈

U←− 𝔽𝑞∖{0}; (𝔹𝜄,𝔹*𝜄 )
R←− 𝒢ob(2𝑚 +

2𝑘+1, params𝕍, 𝜈), for 𝜄 ∈ [𝑛]; and 𝜙𝜄,𝑡𝜄,1, . . . , 𝜙𝜄,𝑡𝜄,𝑘, 𝑟𝜄,𝑖, 𝛾𝜄,𝑖,1, . . . , 𝛾𝜄,𝑖,𝑘−1
U←− 𝔽𝑞

for all 𝜄 ∈ [𝑛], 𝑡𝜄 ∈ [𝑞ct,𝜄], 𝑖 ∈ [𝑞key], such that
∑︀

𝜄∈[𝑛]
𝑟𝜄,𝑖 = 0 for all 𝑖 ∈ [𝑞key].

Hyb𝟏 𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞

Hyb𝟏,𝜾∗,𝝁𝜾∗ ,𝟏
(𝜾∗ ∈ [𝒏], 𝝁𝜾∗ ∈ [𝒒ct,𝜾∗ ]): Hyb1,0,𝑞ct,0,3 coincides with Hyb0. This

experiment is the same as Hyb1,𝜄*−1,𝑞ct,𝜄*−1,3
, if 𝜇𝜄* = 1, or Hyb1,𝜄*,𝜇𝜄*−1,3, if

𝜇𝜄* > 1, with the only exception that in response to the 𝜇𝜄*
th ciphertext query of

𝒜 with respect to index 𝜄* corresponding to pair of vectors ( #»𝑥 𝜄*,𝜇𝜄* ,0,
#»𝑥 𝜄*,𝜇𝜄* ,1) ∈

(𝔽𝑚
𝑞 )2, ℬ returns ct*𝜄*,𝜇𝜄*

= (𝜄*, 𝒄*𝜄*,𝜇𝜄*
), where

𝒄*𝜄*,𝜇𝜄*
= ( #»𝑥 𝜄*,𝜇𝜄* ,0,

#»
0𝑚, 1,

#»
0 𝑘−1, 𝜙𝜄*,𝜇𝜄* ,1, . . . , 𝜙𝜄*,𝜇𝜄* ,𝑘, 𝜌𝜄*,𝜇𝜄* )𝔹𝜄* . (3.3)

Here, 𝜌𝜄*,𝜇𝜄*
U←− 𝔽𝑞∖{0}, and the other variables are formed as in Hyb1,𝜄*−1,𝑞ct,𝜄*−1,3

or Hyb1,𝜄*,𝜇𝜄*−1,3 according as 𝜇𝜄* = 1 or 𝜇𝜄* > 1.

Hyb𝟏,𝜾∗,𝝁𝜾∗ ,𝟐
(𝜾∗ ∈ [𝒏], 𝝁𝜾∗ ∈ [𝒒ct,𝜾∗ ]): This experiment is analogous to

Hyb1,𝜄*,𝜇𝜄* ,1
except that to answer the 𝜇𝜄*

th ciphertext query of 𝒜 with re-
spect to index 𝜄* corresponding to pair of vectors ( #»𝑥 𝜄*,𝜇𝜄* ,0,

#»𝑥 𝜄*,𝜇𝜄* ,1) ∈ (𝔽𝑚
𝑞 )2,
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ℬ generates ct*𝜄*,𝜇𝜄*
= (𝜄*, 𝒄*𝜄*,𝜇𝜄*

), where

𝒄*𝜄*,𝜇𝜄*
= ( #»𝑥 𝜄*,𝜇𝜄* ,0,

#»𝑥 𝜄*,𝜇𝜄* ,1 , 1,
#»
0 𝑘−1, 𝜙𝜄*,𝜇𝜄* ,1, . . . , 𝜙𝜄*,𝜇𝜄* ,𝑘, 𝜌𝜄*,𝜇𝜄* )𝔹𝜄* . (3.4)

Here, all the variables are created as in Hyb1,𝜄*,𝜇𝜄* ,1
.

Hyb𝟏,𝜾∗,𝝁𝜾∗ ,𝟑
(𝜾∗ ∈ [𝒏], 𝝁𝜾∗ ∈ [𝒒ct,𝜾∗ ]): This experiment is exactly identical

to Hyb1,𝜄*,𝜇𝜄* ,2
with the only exception that in response to the 𝜇𝜄*

th cipher-
text query of 𝒜 with respect to the index 𝜄* corresponding to pair of vectors
( #»𝑥 𝜄*,𝜇𝜄* ,0,

#»𝑥 𝜄*,𝜇𝜄* ,1) ∈ (𝔽𝑚
𝑞 )2, ℬ returns ct*𝜄*,𝜇𝜄*

= (𝜄*, 𝒄*𝜄*,𝜇𝜄*
), where

𝒄*𝜄*,𝜇𝜄*
= ( #»𝑥 𝜄*,𝜇𝜄* ,0,

#»𝑥 𝜄*,𝜇𝜄* ,1, 1,
#»
0 𝑘−1, 𝜙𝜄*,𝜇𝜄* ,1, . . . , 𝜙𝜄*,𝜇𝜄* ,𝑘, 0 )𝔹𝜄* . (3.5)

Here, all the variables are created as in Hyb1,𝜄*,𝜇𝜄* ,2
.

Hyb𝟐 𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞

Hyb𝟐,𝝊,𝟏 (𝝊 ∈ [𝒒key]): Hyb2,0,3 coincides with Hyb1,𝑛,𝑞ct,𝑛,3. This experiment
is analogous to Hyb2,𝜐−1,3 with the only exception that in response to the

𝜐th decryption key query of 𝒜 corresponding to the pair of sets of 𝑛 vectors
({ #»𝑦 𝜄,𝜐,0}𝜄∈[𝑛], { #»𝑦 𝜄,𝜐,1}𝜄∈[𝑛]) such that #»𝑦 𝜄,𝜐,0,

#»𝑦 𝜄,𝜐,1 ∈ 𝔽𝑚
𝑞 for all 𝜄 ∈ [𝑛], ℬ gives

back sk*𝜐 = {𝒌*𝜄,𝜐}𝜄∈[𝑛], where
𝒌*𝜄,𝜐 = ( #»𝑦 𝜄,𝜐,0,

#»
0𝑚, 𝑟𝜄,𝜐, 𝛾𝜄,𝜐,1, . . . , 𝛾𝜄,𝜐,𝑘−1,

#»
0 𝑘, 𝜔𝜄,𝜐 )𝔹*

𝜄
, for 𝜄 ∈ [𝑛]. (3.6)

Here, 𝜔𝜄,𝜐
U←− 𝔽𝑞∖{0} for all 𝜄 ∈ [𝑛], such that

∑︀
𝜄∈[𝑛]

𝜔𝜄,𝜐 = 0, and all the other

variables are generated as in Hyb2,𝜐−1,3.

Hyb𝟐,𝝊,𝟐 (𝝊 ∈ [𝒒key]): This experiment is identical to Hyb2,𝜐,1 except that in

response to the 𝜐th decryption key query of 𝒜 corresponding to the pair of sets
of 𝑛 vectors ({ #»𝑦 𝜄,𝜐,0}𝜄∈[𝑛], { #»𝑦 𝜄,𝜐,1}𝜄∈[𝑛]) such that #»𝑦 𝜄,𝜐,0,

#»𝑦 𝜄,𝜐,1 ∈ 𝔽𝑚
𝑞 , ℬ returns

sk*𝜐 = {𝒌*𝜄,𝜐}𝜄∈[𝑛], where

𝒌*𝜄,𝜐 = (
#»
0𝑚, #»𝑦 𝜄,𝜐,1, ̃︀𝑟𝜄,𝜐 , 𝛾𝜄,𝜐,1, . . . , 𝛾𝜄,𝜐,𝑘−1,

#»
0 𝑘, 𝜔𝜄,𝜐)𝔹*

𝜄
, for 𝜄 ∈ [𝑛]. (3.7)

Here, ̃︀𝑟𝜄,𝜐 U←− 𝔽𝑞 for all 𝜄 ∈ [𝑛], such that
∑︀

𝜄∈[𝑛]
̃︀𝑟𝜄,𝜐 = 0, and all the variables are

generated as in Hyb2,𝜐,1.

Hyb𝟐,𝝊,𝟑 (𝝊 ∈ [𝒒key]): This experiment is analogous to Hyb2,𝜐,2 except that to

answer the 𝜐th decryption key query of 𝒜 corresponding to the pair of sets of 𝑛
vectors ({ #»𝑦 𝜄,𝜐,0}𝜄∈[𝑛], { #»𝑦 𝜄,𝜐,1}𝜄∈[𝑛]) such that #»𝑦 𝜄,𝜐,0,

#»𝑦 𝜄,𝜐,1 ∈ 𝔽𝑚
𝑞 , ℬ gives back

sk*𝜐 = {𝒌*𝜄,𝜐}𝜄∈[𝑛], where
𝒌*𝜄,𝜐 = (

#»
0𝑚, #»𝑦 𝜄,𝜐,1, ̃︀𝑟𝜄,𝜐, 𝛾𝜄,𝜐,1, . . . , 𝛾𝜄,𝜐,𝑘−1, #»

0 𝑘, 0 )𝔹*
𝜄
, for 𝜄 ∈ [𝑛]. (3.8)

Here, all the variables are generated as in Hyb2,𝜐,2.

Hyb𝟑: This experiment is identical to Hyb2,𝑞key,3 with the only exception that

for all 𝜄 ∈ [𝑛], 𝑡𝜄 ∈ [𝑞ct,𝜄], in response to the 𝑡𝜄
th ciphertext query of 𝒜 with

respect to index 𝜄 corresponding to pair of vectors ( #»𝑥 𝜄,𝑡𝜄,0,
#»𝑥 𝜄,𝑡𝜄,1) ∈ (𝔽𝑚

𝑞 )2, ℬ
returns ct*𝜄,𝑡𝜄 = (𝜄, 𝒄*𝜄,𝑡𝜄), where

𝒄*𝜄,𝑡𝜄 = ( #»𝑥 𝜄,𝑡𝜄,1,
#»𝑥 𝜄,𝑡𝜄,0 , 1,

#»
0 𝑘−1, 𝜙𝜄,𝑡𝜄,1, . . . , 𝜙𝜄,𝑡𝜄,𝑘, 0)𝔹𝜄

, (3.9)

and for all 𝑖 ∈ [𝑞key], to answer the 𝑖
th decryption key query of𝒜 corresponding to

pair of sets of 𝑛 vectors ({ #»𝑦 𝜄,𝑖,0}𝜄∈[𝑛], { #»𝑦 𝜄,𝑖,1}𝜄∈[𝑛]) such that #»𝑦 𝜄,𝑖,0,
#»𝑦 𝜄,𝑖,1 ∈ 𝔽𝑚

𝑞 ,
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ℬ generates sk*𝑖 = {𝒌*𝜄,𝑖}𝜄∈[𝑛], where

𝒌*𝜄,𝑖 = ( #»𝑦 𝜄,𝑖,1,
#»
0𝑚 , ̃︀𝑟𝜄,𝑖, 𝛾𝜄,𝑖,1, . . . , 𝛾𝜄,𝑖,𝑘−1, #»

0 𝑘, 0)𝔹*
𝜄
, for 𝜄 ∈ [𝑛]. (3.10)

Here, all the variables are generated as in Hyb2,𝑞key,3.

Hyb𝟒: This experiment corresponds to the experiment Exptfh-mipe𝒜 (1) described
in Definition 2.8, i.e., the full-hiding security experiment where the random bit
used by ℬ to generate the ciphertexts and decryption keys queried by 𝒜 is 𝛽 = 1.

� 𝐀𝐧𝐚𝐥𝐲𝐬𝐢𝐬

Let us now denote by Adv
()
𝒜 (𝜆) the advantage of the adversary 𝒜, i.e., 𝒜’s

probability of outputting 1 in Hyb, for  ∈ {0, {1, 𝜄*, 𝜇𝜄* , 𝚥}𝜄*∈[𝑛],𝜇𝜄*∈[𝑞ct,𝜄* ],𝚥∈[3],
{2, 𝜐, 𝚥}𝜐∈[𝑞key],𝚥∈[3], 3, 4}. Then, by the definitions of hybrids, we clearly have

Adv
(0)
𝒜 (𝜆) ≡ Pr[Exptfh-mipe𝒜 (0) = 1], Adv

(1,0,𝑞ct,0,3)
𝒜 (𝜆) ≡ Adv

(0)
𝒜 (𝜆), Adv

(2,0,3)
𝒜 (𝜆) ≡

Adv
(1,𝑛,𝑞ct,𝑛,3)
𝒜 (𝜆), and Adv

(4)
𝒜 (𝜆) ≡ Pr[Exptfh-mipe𝒜 (1) = 1]. Also, observe that

the transition from Hyb3 to Hyb4 is essentially the reverse transition of the
Hyb1 sequence of hybrids with #»𝑥 𝜄*,𝜇𝜄* ,0 and #»𝑥 𝜄*,𝜇𝜄* ,1 interchanged. Therefore,
it follows that

Advfh-mipe𝒜 (𝜆) ≤ 2
∑︀

𝜄*∈[𝑛]

[︀
|Adv(1,𝜄

*−1,𝑞ct,𝜄*−1,3)
𝒜 (𝜆)− Adv

(1,𝜄*,1,1)
𝒜 (𝜆)|

+
∑︀

𝜇𝜄*∈[2,𝑞ct,𝜄* ]
|Adv(1,𝜄

*,𝜇𝜄*−1,3)
𝒜 (𝜆)− Adv

(1,𝜄*,𝜇𝜄* ,1)
𝒜 (𝜆)|

+
∑︀

𝜇𝜄*∈[𝑞ct,𝜄* ],𝚥∈[2,3]
|Adv(1,𝜄

*,𝜇𝜄* ,𝚥−1)
𝒜 (𝜆)− Adv

(1,𝜄*,𝜇𝜄* ,𝚥)
𝒜 (𝜆)|

]︀
+

∑︀
𝜐∈[𝑞key]

[︀
|Adv(2,𝜐−1,3)𝒜 (𝜆)− Adv

(2,𝜐,1)
𝒜 (𝜆)|

+
∑︀

𝚥∈[2,3]
|Adv(2,𝜐,𝚥−1)𝒜 (𝜆)− Adv

(2,𝜐,𝚥)
𝒜 (𝜆)|

]︀
+|Adv(2,𝑞key,3)𝒜 (𝜆)− Adv

(3)
𝒜 (𝜆)|.

(3.11)

The fact that each term on the RHS of Eq. (3.11) is negligible is formally argued
in a sequence of lemmas presented in the full version of this paper. This completes
the proof of Theorem 3.1. ⊓⊔

4 The Proposed Full-Hiding Unbounded Multi-
Input Inner Product Functional Encryption
Scheme

In this section, we present our FH-UMIPE scheme.

4.1 Construction

For the simplicity, we consider the scheme based on the SXDH(1-Lin) in this
section. However, it is clear that we can instantiate our FH-UMIPE scheme from
𝑘-Lin assumption. We also consider the case where the vector length 𝑚 is poly-



Full-Hiding (Unbounded) MIPE from the 𝑘-LIN Assumption 25

nomial in 𝜆. Let 𝐹1 : {0, 1}𝜆 × {0, 1}𝜆 → 𝔽(2𝑚+3)×(2𝑚+3)
𝑞 and 𝐹2 : {0, 1}𝜆 ×

{0, 1}𝜆 → {0, 1}𝜆 be pseudorandom functions and (SKE.KeyGen, SKE.Encrypt,
SKE.Decrypt) be a semantically secure secret key encryption scheme whose secret
key space is {0, 1}𝜆. We require that SKE.KeyGen outputs a randomly chosen

𝜆-bit string as a secret key 𝐾, i.e., 𝐾
U←− {0, 1}𝜆. We abuse the notation such

that for a set of 𝑁 vectors of 𝑀 dimensional DPVS 𝔻 = (𝒅1, . . . ,𝒅𝑁 ) and
𝑊 ∈ GL(𝑀,𝔽𝑞), 𝔹 = 𝔻𝑊 denotes 𝔹 = (𝒅1𝑊, . . . ,𝒅𝑁𝑊 ).

FH-UMIPE.Setup(𝑚,B): It takes as input the unary encoded security parameter
1𝜆, the length 𝑚 ∈ ℕ of vectors, and the bound B ∈ ℕ. It proceeds as follows:
1. First, it generates a bilinear group params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)

R←−
𝒢bpg() with 𝑞 a 𝜆-bit prime.

2. Next, it forms params𝕍 = (𝑞,𝕍1,𝕍2,𝔾𝑇 ,𝔸1, 𝔸2, 𝑒)
R←− 𝒢dpvs(2𝑚+3, params𝔾),

samples 𝜈
U←− 𝔽𝑞∖{0}, computes 𝑔𝑇 = 𝑒(𝑔1, 𝑔2)

𝜈 , generates (𝔻,𝔻*) R←−
𝒢ob(2𝑚 + 3, params𝕍, 𝜈), and samples PRF keys 𝐾1,𝐾2

U←− {0, 1}𝜆. Then
it sets ̂︀𝔻 = (𝒅1, . . . ,𝒅𝑚,𝒅2𝑚+1,𝒅2𝑚+2), ̂︀𝔻* = (𝒅*1, . . . ,𝒅

*
𝑚,𝒅*2𝑚+1).

3. It publishes the public parameters pp = (params𝕍, 𝑔𝑇 ), while keeps the

master secret key msk = (𝐾1,𝐾2, ̂︀𝔻, ̂︀𝔻*).
FH-UMIPE.KeyGen(pp,msk, 𝑆, { #»𝑦 𝜄}𝜄∈𝑆): On input the public parameters pp,
the master secret key msk, a set of indices 𝑆 ⊆ [𝑡(𝜆)] for any polynomial 𝑡,
along with a |𝑆|-tuple of vectors { #»𝑦 𝜄}𝜄∈𝑆 ∈ (ℤ𝑚)|𝑆|, this algorithm executes
the following steps:
1. First, it creates random dual orthogonal bases for the index 𝜄 ∈ 𝑆 as

follows;

𝑊𝜄 = 𝐹1(𝐾1, 𝜄), 𝔹*𝜄 = 𝔻*𝑊 *𝜄 .
If 𝑊𝜄 for some 𝜄 ∈ 𝑆 is not a regular matrix, then it outputs ⊥ and halts.

2. Next, for each 𝜄 ∈ 𝑆, it computes decryption keys similarly to the bounded
case;

{𝑟𝜄}𝜄∈𝑆
U←− 𝔽𝑞 s.t.

∑︁
𝜄∈𝑆

𝑟𝜄 = 0, 𝒌𝜄 = ( #»𝑦 𝜄,
#»
0𝑚, 𝑟𝜄,

#»
0 2)𝔹*

𝜄
.

3. Let 𝑠𝑗 be the 𝑗th element of 𝑆 in ascending order. Then it iteratively
encrypts the decryption keys by symmetric key encryption as

𝐶1 =SKE.Encrypt(𝐹2(𝐾2, 𝑠1), {𝒌𝜄}𝜄∈𝑆),
𝐶2 =SKE.Encrypt(𝐹2(𝐾2, 𝑠2), 𝐶1),

...

𝐶|𝑆| =SKE.Encrypt(𝐹2(𝐾2, 𝑠|𝑆|), 𝐶|𝑆|−1),

and outputs sk𝑆 = (𝐶|𝑆|, 𝑆) as a decryption key for FH-UMIPE.

FH-UMIPE.Encrypt(pp,msk, 𝜄, #»𝑥 𝜄): Taking as input the public parameters pp,
the master secret key msk, an index 𝜄 ∈ [2𝜆], along with a vector #»𝑥 𝜄 ∈ ℤ𝑚,
this algorithm performs the following steps:
1. First, it creates random dual orthogonal bases for the index 𝜄 as follows;

𝑊𝜄 = 𝐹1(𝐾1, 𝜄), 𝔹𝜄 = 𝔻𝑊𝜄.
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If 𝑊𝜄 is not a regular matrix, then it outputs ⊥ and halts.

2. Otherwise, it selects random 𝜅𝜄
U←− 𝔽𝑞, computes

𝒄𝜄 = ( #»𝑥 𝜄,
#»
0𝑚, 1, 𝜅𝜄, 0)𝔹𝜄

, 𝑘𝜄 = 𝐹2(𝐾2, 𝜄),

and outputs the ciphertext ct𝜄 = (𝒄𝜄, 𝑘𝜄, 𝜄).

FH-UMIPE.Decrypt(pp, sk𝑆 , {ct𝜄}𝜄∈𝑆): A decrypter takes as input the public
parameters pp, a decryption key sk𝑆 for a set 𝑆, and a tuple of |𝑆| ciphertexts
{ct𝜄}𝜄∈𝑆 . It does the following:

1. It first decrypts decryption keys as follows;

𝐶 ′|𝑆|−1 =SKE.Decrypt(𝑘𝑠|𝑆| , 𝐶|𝑆|),

...

𝐶 ′1 =SKE.Decrypt(𝑘𝑠2 , 𝐶
′
2),

{𝒌′𝜄}𝜄∈𝑆 =SKE.Decrypt(𝑘𝑠1 , 𝐶
′
1).

2. Next, it computes 𝐿𝑇 =
∏︀
𝜄∈𝑆

𝑒(𝒄𝜄,𝒌
′
𝜄).

3. Then, it attempts to determine a value 𝛬 ∈ ℕ such that 𝑔𝛬𝑇 = 𝐿𝑇 by
performing an exhaustive search over a specified polynomial-size range of
possible values. If it succeeds, then it outputs 𝛬. Otherwise, it outputs ⊥
indicating failure.

■ 𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐧𝐞𝐬𝐬: The correctness of our unbounded scheme is presented in the
full version of this paper.

4.2 Security

Theorem 4.1 (Security of Our FH-UMIPE Scheme): Assume that 𝐹1 and 𝐹2 are
pseudorandom functions, SKE is semantically secure symmetric key encryption,
and SXDH problem is hard, then our FH-UMIPE construction achieves full-hiding
security. More formally, for any PPT adversary 𝒜 against the full-hiding security
of the proposed FH-UMIPE construction, there exists a PPT algorithm ℬ1 against
the SXDH problem, ℬ2 against the symmetric key encryption scheme, and ℬ3 and
ℬ4 against the pseudorandom functions such that for any security parameter 𝜆,
we have

Advfh-umipe𝒜 (𝜆) ≤ [4
∑︀

𝜄∈[2𝜆]
𝑞ct,𝜄 + 2𝑞key]Adv

sxdh
ℬ1

(𝜆) + 𝑛𝑚𝑎𝑥𝑞keyAdv
ske
ℬ2

(𝜆)

+ 2Advprf1ℬ3
(𝜆) + 2Advprf2ℬ4

(𝜆),

where 𝑞ct,𝜄 is the total number of ciphertext query for the index 𝜄, 𝑞key is the total
number of decryption key query, and 𝑛𝑚𝑎𝑥 is the maximum index of a decryption
key that 𝒜 queries, i.e., 𝑆𝑖 ⊆ [𝑛𝑚𝑎𝑥] for all 𝑖 ∈ [𝑞sk].

Proof: The proof of Theorem 4.1 is structured as a hybrid argument over a
series of experiments which differ in the construction of the decryption keys
and/or ciphertexts queried by the adversary 𝒜 in the full-hiding security model
described in Definition 2.9. The hybrid transition is proceeded in the similar way
to the bounded scheme, that is, first we gradually change the ciphertext form
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from ( #»𝑥 𝜄,0,
#»
0𝑚, 1, 𝜅𝜄, 0)𝔹𝜄 to ( #»𝑥 𝜄,0,

#»𝑥 𝜄,1, 1, 𝜅𝜄, 0)𝔹𝜄 . Next, we change the decryp-
tion key form from ( #»𝑦 𝜄,0,

#»
0𝑚, 𝑟𝜄,

#»
0 2)𝔹*

𝜄
to (

#»
0𝑚, #»𝑦 𝜄,1, 𝑟𝜄,

#»
0 2)𝔹*

𝜄
. Then, switch the

first 𝑚 coefficients with the second 𝑚 coefficients and restore the ciphertexts.
The proof of the ciphertexts part is almost same as that of the bounded scheme,
while the decryption key part is more complicated than the bounded one. The
hybrid experiments are described below. In these hybrids, a part framed by a box
indicates those terms which were modified in the transition from the previous
game. The sequence of hybrid experiments follow:

� 𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞 𝐨𝐟 𝐇𝐲𝐛𝐫𝐢𝐝 𝐄𝐱𝐩𝐞𝐫𝐢𝐦𝐞𝐧𝐭𝐬

Hyb𝟎: We denote the 𝑗th element of 𝑆𝑖 in ascending order by 𝑠𝑖,𝑗 . This exper-
iment is the same as Exptfh-umipe𝒜 (0) defined in Definition 2.9. That is, when the
challenger receives ( #»𝑥 𝜄,𝑡𝜄,0,

#»𝑥 𝜄,𝑡𝜄,1) from 𝒜 as a 𝑡𝜄
th ciphertext query for index 𝜄,

it returns ct*𝜄,𝑡𝜄 = (𝒄*𝜄,𝑡𝜄 , 𝑘𝜄, 𝜄), where

𝑊𝜄 = 𝐹1(𝐾1, 𝜄), 𝔹𝜄 = 𝔻𝑊𝜄,

𝜅𝜄,𝑡𝜄
U←− 𝔽𝑞, 𝒄*𝜄,𝑡𝜄 = ( #»𝑥 𝜄,𝑡𝜄,0,

#»
0𝑚, 1, 𝜅𝜄,𝑡𝜄 , 0)𝔹𝜄

, 𝑘𝜄 = 𝐹2(𝐾2, 𝜄).

On the other hand, when the challenger receives (𝑆𝑖, { #»𝑦 𝜄,𝑖,0,
#»𝑦 𝜄,𝑖,1}𝜄∈𝑆𝑖

) for 𝑖th

decryption key query, it returns sk*𝑆𝑖,𝑖
= (𝐶|𝑆𝑖|, 𝑆𝑖), where

𝑟𝜄,𝑖
U←− 𝔽𝑞 s.t.

∑︁
𝜄∈𝑆𝑖

𝑟𝜄,𝑖 = 0, 𝑊𝜄 = 𝐹1(𝐾1, 𝜄), 𝔹*𝜄 = 𝔻*𝑊 *𝜄 ,

𝒌*𝜄,𝑖 = ( #»𝑦 𝜄,𝑖,0,
#»
0𝑚, 𝑟𝜄,𝑖,

#»
0 2)𝔹*

𝜄
for 𝜄 ∈ 𝑆𝑖,

𝐶|𝑆𝑖| = SKE.Encrypt(𝐹2(𝐾2, 𝑠𝑖,|𝑆𝑖|), . . . ,SKE.Encrypt(𝐹2(𝐾2, 𝑠𝑖,1), {𝒌*𝜄,𝑖}𝜄∈𝑆𝑖
) . . .).

Hyb𝟏: In this hybrids, we replace pseudorandom functions 𝐹𝑖(𝐾𝑖, ·) for 𝑖 ∈
{1, 2} with random functions 𝑅𝑖(·)

U←− ℛ𝑖,𝜆, where ℛ𝑖,𝜆 is a set of functions
consists of all functions that have the same domain and range as 𝐹𝑖. Observe
that all dual orthogonal bases used in the ciphertexts and decryption keys queried
by 𝒜 are completely independent and random ones by each index after Hyb1.

Hyb𝟐: The all replies for the ciphertext queries are changed as follows;

𝑊𝜄 = 𝑅1(𝜄), 𝔹𝜄 = 𝔻𝑊𝜄,

𝜅𝜄,𝑡𝜄
U←− 𝔽𝑞, 𝒄*𝜄,𝑡𝜄 = ( #»𝑥 𝜄,𝑡𝜄,0,

#»𝑥 𝜄,𝑡𝜄,1 , 1, 𝜅𝜄,𝑡𝜄 , 0)𝔹𝜄
, 𝑘𝜄 = 𝑅2(𝜄),

and returns ct*𝜄,𝑡𝜄 = (𝒄*𝜄,𝑡𝜄 , 𝑘𝜄, 𝜄).

Hyb𝟑 𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞

Hyb𝟑,𝝊 (𝝊 ∈ [𝒒key]): Hyb3,0 is the same as Hyb2. The challenger replies to the

first 𝜐 decryption key queries, i.e., the 𝑖th decryption key query for all 𝑖 ≤ 𝜐, as

𝑟𝜄,𝑖
U←− 𝔽𝑞 s.t.

∑︁
𝜄∈𝑆𝑖

𝑟𝜄,𝑖 = 0, 𝑊𝜄 = 𝑅1(𝜄), 𝔹*𝜄 = 𝔻*𝑊 *𝜄 ,

𝒌*𝜄,𝑖 = (
#»
0𝑚, #»𝑦 𝜄,𝑖,1 , 𝑟𝜄,𝑖,

#»
0 2)𝔹*

𝜄
for 𝜄 ∈ 𝑆𝑖,

𝐶|𝑆𝑖| = SKE.Encrypt(𝑅2(𝑠𝑖,|𝑆𝑖|), . . . ,SKE.Encrypt(𝑅2(𝑠𝑖,1), {𝒌*𝜄,𝑖}𝜄∈𝑆𝑖
) . . .),

and returns sk*𝑆𝑖,𝑖
= (𝐶|𝑆𝑖|, 𝑆𝑖). For the other decryption key queries, the chal-

lenger replies the same way as Hyb2.
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Hyb𝟒: In this hybrid, we switch the coefficients of 1 to 𝑚th vector with those
of 𝑚+1 to 2𝑚th vector in both decryption key side and ciphertext side. Namely,
the replies for the ciphertext queries are ct*𝜄,𝑡𝜄 = (𝒄*𝜄,𝑡𝜄 , 𝑘𝜄, 𝜄), where

𝑊𝜄 = 𝑅1(𝜄), 𝔹𝜄 = 𝔻𝑊𝜄,

𝜅𝜄,𝑡𝜄
U←− 𝔽𝑞, 𝒄*𝜄,𝑡𝜄 = ( #»𝑥 𝜄,𝑡𝜄,1,

#»𝑥 𝜄,𝑡𝜄,0 , 1, 𝜅𝜄,𝑡𝜄 , 0)𝔹𝜄
, 𝑘𝜄 = 𝑅2(𝜄),

and the replies for the decryption key queries are sk*𝑆𝑖,𝑖
= (𝐶|𝑆𝑖|, 𝑆𝑖), where

𝑟𝜄,𝑖
U←− 𝔽𝑞 s.t.

∑︁
𝜄∈𝑆𝑖

𝑟𝜄,𝑖 = 0, 𝑊𝜄 = 𝑅1(𝜄), 𝔹*𝜄 = 𝔻*𝑊 *𝜄 ,

𝒌*𝜄,𝑖 = ( #»𝑦 𝜄,𝑖,1,
#»
0𝑚 , 𝑟𝜄,𝑖,

#»
0 2)𝔹*

𝜄
for 𝜄 ∈ 𝑆𝑖,

𝐶|𝑆𝑖| = SKE.Encrypt(𝑅2(𝑠𝑖,|𝑆𝑖|), . . . ,SKE.Encrypt(𝑅2(𝑠𝑖,1), {𝒌*𝜄,𝑖}𝜄∈𝑆𝑖
) . . .).

Hyb𝟓: This hybrid is the same as Exptfh-umipe𝒜 (1) defined in Definition 2.9. That
is, the replies for the ciphertext queries are ct*𝜄,𝑡𝜄 = (𝒄*𝜄,𝑡𝜄 , 𝑘𝜄, 𝜄), where

𝑊𝜄 = 𝐹1(𝐾1, 𝜄) , 𝔹𝜄 = 𝔻𝑊𝜄,

𝜅𝜄,𝑡𝜄
U←− 𝔽𝑞, 𝒄*𝜄,𝑡𝜄 = ( #»𝑥 𝜄,𝑡𝜄,1,

#»
0𝑚 , 1, 𝜅𝜄,𝑡𝜄 , 0)𝔹𝜄

, 𝑘𝜄 = 𝐹2(𝐾2, 𝜄) ,

and the replies for the decryption key queries are sk*𝑆𝑖,𝑖
= (𝐶|𝑆𝑖|, 𝑆𝑖), where

𝑟𝜄,𝑖
U←− 𝔽𝑞 s.t.

∑︁
𝜄∈𝑆𝑖

𝑟𝜄,𝑖 = 0, 𝑊𝜄 = 𝐹1(𝐾1, 𝜄) , 𝔹*𝜄 = 𝔻*𝑊 *𝜄 ,

𝒌*𝜄,𝑖 = ( #»𝑦 𝜄,𝑖,1,
#»
0𝑚, 𝑟𝜄,𝑖,

#»
0 2)𝔹*

𝜄
for 𝜄 ∈ 𝑆𝑖,

𝐶|𝑆𝑖| = SKE.Encrypt( 𝐹2(𝐾2, 𝑠𝑖,|𝑆𝑖|) , . . . ,SKE.Encrypt( 𝐹2(𝐾2, 𝑠𝑖,1) , {𝒌*𝜄,𝑖}𝜄∈𝑆𝑖
) . . .).

� 𝐀𝐧𝐚𝐥𝐲𝐬𝐢𝐬

Let us now denote by Adv
()
𝒜 (𝜆) the advantage of the adversary 𝒜, i.e., 𝒜’s

probability of outputting 1 in Hyb. Then, we can see that

Advfh-umipe𝒜 (𝜆) ≤ |Adv(0)𝒜 (𝜆)− Adv
(1)
𝒜 (𝜆)|+ |Adv(1)𝒜 (𝜆)− Adv

(2)
𝒜 (𝜆)|

+

𝑞key∑︁
𝜐=1

|Adv(3,𝜐−1)𝒜 (𝜆)− Adv
(3,𝜐)
𝒜 (𝜆)|

+ |Adv(3,𝑞key)𝒜 (𝜆)− Adv
(4)
𝒜 (𝜆)|+ |Adv(4)𝒜 (𝜆)− Adv

(5)
𝒜 (𝜆)|.

(4.1)

The fact that each term on the RHS of Eq. (4.1) is negligible is formally argued
in a sequence of lemmas in the full version of this paper. This completes the
proof of Theorem 4.1. ⊓⊔
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