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Abstract. Attribute-based signature (ABS), originally introduced by
Maji et al. (CT-RSA’11), represents an essential mechanism to allow for
fine-grained authentication. A user associated with an attribute x can
sign w.r.t. a given public policy C only if his attribute satisfies C, i.e.,
C(x) = 1. So far, much effort on constructing bilinear map-based ABS
schemes have been made, where the state-of-the-art scheme of Sakai et
al. (PKC’16) supports the very wide class of unbounded circuits as poli-
cies. However, construction of ABS schemes without bilinear maps are
less investigated, where it was not until recently that Tsabary (TCC’17)
showed a lattice-based ABS scheme supporting bounded circuits as poli-
cies, at the cost of weakening the security requirement.
In this work, we affirmatively close the gap between ABS schemes based
on bilinear maps and lattices by constructing the first lattice-based ABS
scheme for unbounded circuits in the random oracle model. We start our
work by providing a generic construction of ABS schemes for unbounded-
circuits in the random oracle model, which in turn implies that one-way
functions are sufficient to construct ABS schemes. To prove security,
we formalize and prove a generalization of the Forking Lemma, which
we call “general multi-forking lemma with oracle access”, capturing the
situation where the simulator is interacting with some algorithms he can-
not rewind, and also covering many features of the recent lattice-based
ZKPs. This, in fact, was a formalization lacking in many existing anony-
mous signatures from lattices so far (e.g., group signatures). Therefore,
this formalization is believed to be of independent interest. Finally, we
provide a concrete instantiation of our generic ABS construction from
lattices by introducing a new Σ-protocol, that highly departs from the
previously known techniques, for proving possession of a valid signature
of the lattice-based signature scheme of Boyen (PKC’10).

1 Introduction

1.1 Background

Attribute-based signature (ABS) was introduced by [MPR11] as a versatile tool
allowing a signer to anonymously authenticate a message M w.r.t. a public sign-
ing policy C only if the signer has a signing key associated to an attribute
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x ∈ {0, 1}∗ that satisfies C, i.e., C(x) = 1. An attribute-based signature scheme
reveals no information on the signer’s identity or the attribute other than the fact
that the signature is valid, hence the anonymity property of ABS schemes. One of
the central research themes on ABS is to expand the expressiveness of the class of
policies that can be supported by the schemes. In the bilinear map setting, there
has been a long line of interesting works, including ABS schemes for threshold
policy (e.g., [HLLR12]), boolean formula (e.g., [MPR11,OT11,OT13,EGK14])
and the current state-of-the-art; unbounded circuits [SAH16].1

On the other hand, the constructions of ABS schemes without bilinear maps,
in particular ABS schemes from lattices, are much less investigated. To the
best of our knowledge, there are only two major works concerning lattice-based
ABS schemes [EE16,Tsa17]. Rachid et al. [EE16] construct a lattice-based ABS
scheme for boolean formulas using a non-interactive zero-knowledge (NIZK)
proof system as the main building block, following one of the most promising
ways of constructing ABS schemes [MPR11,EGK14,SAH16]. Informally, a sig-
nature for a signer with attribute x is simply a zero-knowledge proof attesting to
the fact that he has a certificate corresponding to the attribute x issued by the
authority and that the policy C associated to the message M satisfies C(x) = 1.
Although this approach has been very effective in the bilinear map setting where
[SAH16] were able to obtain ABS schemes for unbounded circuits, this has not
been the case for lattices. One of the main reasons behind this is the lack of effi-
cient lattice-based NIZK proof systems for a wide enough language. In particular,
we only have efficient NIZK proof systems tailored for specific languages, such
as proving possession of a solution to the short integer solution (SIS) problem
or the learning with errors (LWE) problem [LNSW13], proving possession of a
valid signature of the Boyen digital signature scheme [Boy10,LLNW14,LNW15]
and so on, which in general does not seem strong enough for constructing ABS
schemes. Recently, [YAL+17] showed (informally) how to construct lattice-based
NIZK proof systems for languages accepted by monotone span programs, how-
ever, this still does not seem strong enough to use as a building block for ABS
schemes supporting unbounded circuits as policies.

Tsabary [Tsa17] constructs lattice-based ABS schemes following a different
approach; they show equivalence between a homomorphic signature (HS) scheme
and a (message-policy) ABS scheme. Therefore, based on the HS construction of
Gorbunov et al. [GVW15], they achieve a lattice-based ABS scheme for bounded
circuits that does not make use of NIZK proof systems.2 Here, by bounded, we
mean that the required hardness assumptions on the LWE and/or SIS problems
grow exponentially in the depth of the circuit, e.g., to base the security of the

1 In our paper, we only consider message-policy ABS schemes. Recall that using
universal circuits, we can convert message-policy ABS schemes into key-policy ABS
schemes [BF14], where the functionality of the secret keys and messages are reversed.

2 We note that the ABS scheme presented in [Tsa17] does not fulfill the standard secu-
rity requirements of (message-policy) ABS schemes as originally defined in [MPR11];
achieving either unforgeability or anonymity in its full capacity comes at the cost of
getting a much weaker version of the other, i.e., one has to choose between single-
key-selective-unforgeability, or leaking information about the signing key.
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ABS scheme under a polynomial LWE assumption, we need to restrict the depth
of the circuit to be O(log λ), where λ is the security parameter. However, it seems
challenging to improve their techniques to ABS schemes for unbounded circuits,
due to the inherent noise-growth incurred by the homomorphic operations of
matrices while computing the circuit gate-by-gate. The only known method of
overcoming these O(log λ) depth barrier concerning homomorphic operations is
the bootstrapping technique of fully homomorphic encryptions [Gen09], however,
it is still an open problem whether there is a signature analogue of this technique.

1.2 Our Contribution

In this paper, we affirmatively close the gap between the state-of-the-art ABS
schemes based on bilinear maps and lattices by constructing the first lattice-
based ABS scheme for unbounded circuits in the random oracle model. We start
by providing a general construction of ABS schemes supporting unbounded-
circuits as policies. We then give an instantiation in the lattice setting showing
that all the building blocks required by our generic construction is obtainable
from lattices. We stress that, despite the expressiveness of the signing policy,
we manage to prove the security of our scheme under surprisingly mild SIS
and LWE assumptions with polynomial modulus size q = Õ(ℓλ1.5), where ℓ
denotes the length of the inputs to the circuits. Specifically, the required hardness
assumptions are independent of the depth of the circuits that express the policies.
Furthermore, the sizes of the public parameter, signing keys and signatures are
Õ(ℓλ2), Õ(λ) and Õ((ℓλ+|C|)λ2), respectively, where |C| is the size of the circuit
(i.e., policy) associated to the message.

To this end we prepare two new tools equipped for the lattice setting: we
provide a generalization of the forking lemma of [PS00] which we call the general
multi-forking lemma with oracle access and further construct a new lattice-based
NIZK proof system for proving possession of a valid Boyen signature [Boy10] that
departs from the previously known techniques (e.g., [LLNW14,LNW15]). Below,
we give a more detailed overview of the techniques we used in our work.

Generic Construction of ABS for Unbounded Circuits. We propose a
generic construction of ABS schemes supporting unbounded depth circuits as
policies in the random oracle model3, which employs the following primitives as
its building blocks; a commitment scheme, a digital signature scheme and a Σ-
protocol for a sufficiently wide relation. As a separate theoretical contribution,
since all of the above primitives are implied from one-way functions, our result
implies that one-way functions are sufficient to construct an ABS scheme for
unbounded circuits in the random oracle model. Here, the random oracle is used
only to convert the underlying Σ-protocol into a NIZK proof system via the
Fiat-Shamir transformation [FS86].

At a high level, the generic construction of our ABS scheme follows closely the
bilinear map based construction of [SAH16] (which is non-generic and proven in
the standard model). We briefly review the construction in slightly more detail;

3 In this paper, we only consider circuits that do not have random oracle gates.
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first, the attribute authority issues a signature σ on an attribute x ∈ {0, 1}ℓ
to certify that a signer is indeed authorized to sign a message on behalf of that
attribute. Then, to sign anonymously, the signer produces a zero-knowledge proof
attesting to the following two facts:

(I) the signature σ issued by the authority is valid, and
(II) the corresponding secret attribute x satisfies the circuit C associated to the

message M.

However, in spite of the similarities shared with the construction of [SAH16],
the security proof of our construction requires a rather sensitive and technical
analysis, which calls for new tools. This difficulty mainly stems from the fact
that security proofs relying on the Fiat-Shamir-based NIZK proof systems are
often times not as simple as the construction appears to be and in some cases
the intuition may fail, e.g., [BPW12,BFW16].

Our proof of security of the generic ABS scheme relies on our generalization
of the forking lemma of [PS00], which we call the general multi-forking lemma
with oracle access. Our forking lemma can be seen as a generalization and a
simplification of the general forking lemma of [BN06] and the improved forking
lemma of [BPVY00]. In particular, we analyze the output behavior of an algo-
rithm when run multiple times on related inputs, instead of when only run twice
as in [BN06], while also providing it with oracle access to a deterministic algo-
rithm. Recall that the original forking lemma of [PS00] applies to Fiat-Shamir
type signature schemes and roughly states that, if there exists a valid forger
A, then one can rewind A initialized with the same randomness tape to find
two accepting transcripts with the same commitment but different challenges,
leading, via the special soundness property of Σ-protocols, to extract the secret
signing key from the transcripts and hence a proof of security of the signature
scheme in the random oracle model.

First, we require the forking lemma to analyze the output behavior of an
algorithm on multiple runs to capture the situation arising in the recent lattice-
based NIZK proof systems (e.g., [LNSW13,LLNW14,LNW15]) where the ex-
tractor of the underlying Σ-protocol requires more than two valid transcripts to
extract a witness. Although the improved forking lemma of [BPVY00] captures
this multiplicity of the forking lemma of a particular El Gamal-type signature
scheme, it seems hard to apply in situations like ours where we are not deal-
ing with regular signature schemes. Our forking lemma, similar to the one of
[BN06], divorces the probabilistic essence of the forking lemma from any par-
ticular application context. Furthermore, our forking lemma provides worst-case
rather than expected-time guarantees; the improved forking lemma of [BPVY00]
roughly states that an expected O(1/ϵ) repeated executions of a forger A with
advantage ϵ is required to extract a valid witness. We believe this feature to be
more suitable for standard assumptions that are defined for PPT algorithms, as
also stated in [BN06].

Second, and more importantly, our forking lemma allows the algorithm A
that can be rewinded, to have oracle access to some algorithm O that cannot be
rewinded. This is a useful feature for the forking algorithm to have in situations
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where the simulator cannot rewind all the algorithms which he is interacting
with. This may be easiest to explain with a concrete example; in particular,
when we reduce the eu-cma security of the underlying digital signature scheme
to the security of our ABS scheme, the simulator (which is the eu-cma adversary)
simulates the view of an ABS security game to the ABS adversaryA, and answers
the queries made by A using its eu-cma challenger O. At some point when A
outputs a forgery for the ABS security game, the simulator hopes to extract
the witness from the forgery and use it to win his own eu-cma security game.
However, for this particular situation, the problem with all the previous forking
lemmas is that the simulator will not be able to run the forking algorithm in
the specified way; the simulator can rewind A to a particular point where the
fork happens, however, the simulator cannot rewind the eu-cma challenger O
in the same way, since it is outside the simulator’s (i.e., eu-cma adversary’s)
control. Then, since the behavior of A is implicitly dependent on the behavior of
the eu-cma challenger, the standard forking lemma does not provide meaningful
analysis of the output of A on multiple runs. We therefore present a general
multi-forking lemma with oracle access to capture these situations where the
simulator is restricted to rewinding only some of the algorithms he is interacting
with. We note that in case one is willing to use some algebraic problem such as
the SIS or LWE problem as the underlying hardness assumption, these situations
do not show up, since once given a fixed problem instance, the simulator can
reuse it in every run to simulate the view to A.

Finally, one of the benefits of using the Fiat-Shamir-based NIZK proof system
is that we do not have to rely on the dummy attribute technique of those ABS
schemes based on Goth-Sahai NIZK proof systems [MPR11,SAH16] to prove
adaptive unforgeability and hence obtaining a more efficient signing algorithm.
At a high level, this is because Fiat-Shamir based NIZK proof systems can be
simulation-sound and extractable at the same time, whereas Goth-Sahai NIZK
proof systems can only be instantiated to have one of the two properties. There-
fore, during the proof of adaptive unforgeability, since the simulator needs to
set up the common reference string in the extractable mode to extract a witness
from the forgery, the simulator has to rely on these extra dummy attributes,
which are never used in the actual scheme, to simulate signatures (i.e., proofs).

Instantiation from Lattices. To instantiate our generic ABS construction
from lattices, we require three primitives: a signature scheme, a commitment
scheme, and a Σ-protocol for a relation capturing the aforementioned items (I)
and (II). As for the signature scheme, we can use the simple and efficient lattice-
based signature scheme of Boyen [Boy10], which has been extensively studied in
the lattice-based NIZK literatures. In particular, Ling et al. [LNSW13] provides
an efficient Σ-protocol for proving possession of a valid Boyen signature (i.e.,
item (I)). However, unfortunately, it is not known whether the Σ-protocol of
Ling et al. can be extended to prove circuit satisfiability, which is what we require
in item (II), and in fact, recent subsequent results of [LLM+16,YAL+17] suggest
that they are not powerful enough to capture circuit satisfiability. On the other
hand, Xie et al. [XXW13] provides a lattice-based Σ-protocol for proving NP
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relations via arithmetic circuit satisfiability, which is what we exactly require in
item (II), however, it does not seem possible to simply combine the two different
types of Σ-protocols of [LNSW13] and [XXW13].

To this end, in this paper we present a new Σ-protocol for proving possession
of a valid Boyen signature by expressing the verification algorithm of the Boyen
signature as a simple arithmetic circuit that is compatible with the Σ-protocol
of Xie et al. Specifically, since both items (I) and (II) can now be represented
as arithmetic circuits, we can use the Σ-protocol of Xie et al. to obtain our
desired Σ-protocol. The main observation is that, most operations that show
up in lattice-based cryptography are composed of simple arithmetic operations
such as matrix multiplications, and therefore naturally leads to simple arith-
metic circuit representations. For our particular case, the verification algorithm
of the Boyen signature scheme essentially boils down to checking two simple
conditions; whether a vector z satisfies ∥z∥∞ ≤ β and Az = u mod q, where
we intentionally dismiss the message for simplicity. As it can be seen, the latter
equation is readily expressed by a very simple arithmetic circuit. On the other
hand, the first inequality requires some extra work, however, this too can be
expressed as an simple arithmetic circuit without much overhead by efficiently

encoding predicates such as x
?
∈ {−1, 0, 1} into arithmetic circuits.

2 Preliminaries

2.1 Commitment Schemes with Gap Openings

We define a standard commitment scheme that supports an additional notion
we call gap openings. This additional notion will make it conceptually easier
when we combine it with gap-Σ-protocols, which we later define. Informally,
a commitment scheme with a gap opening is a standard commitment scheme
where there may exist additional valid openings that are never created during
the commitment algorithm.

Definition 1 (Commitments). A commitment scheme with message spaceM
and commitment space C is a triple of PPT algorithms (C.Gen,C.Com,C.Open)
of the following form:

C.Gen(1λ) → pk : The key generation algorithm takes as input the security
parameter 1λ and outputs a public commitment key pk.

C.Com(pk,M) → (c, d) : The commitment algorithm takes as inputs the com-
mitment key pk and message M ∈ M, and outputs a commitment/opening
pair (c, d). We denote DCom(pk,M) as the set of all possible outputs of this
algorithm under fixed pk and M.

C.Open(pk,M, c, d)→ 1\0 : The deterministic opening algorithm takes as inputs
the commitment key pk, message M and commitment/opening pair (c, d) as
inputs and outputs 1 or 0. We denote DG-Com(pk,M) as the set of all possible
pairs (c, d) this algorithm outputs 1 under fixed pk and M.
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Here, we require the commitment scheme to satisfy the following correct-
ness notion: for all M ∈ M, pk ← C.Gen(1λ), (c, d) ← C.Com(pk,M) we have
C.Open(pk,M, c, d) = 1.

It is clear that we have DCom(pk,M) ⊆ DG-Com(pk,M) for all pk and M ∈ M.
We say the commitment scheme has a gap-opening when DCom ⊂ DG-Com. We
require the following security notions for a commitment scheme:

Binding. We call the scheme unconditionally (resp. computationally) binding
if for all (resp. PPT) algorithm A, we have the following:

Pr[pk← C.Gen(1λ); (c,M,M′, d, d′)← A(pk) :
C.Open(pk,M, c, d) = C.Open(pk,M′, c, d′) = 1 ∧M ̸= M′] ≤ negl(λ)

Note that even though such a pair (c, d) may never be outputted by the com-
mitment algorithm C.Com, the binding property must hold even for adversaries
that output (c, d) ∈ DG-Com(pk,M)\DCom(pk,M).

Hiding.We call the scheme unconditionally (resp. computationally) hiding if for
all (resp. PPT) algorithm A and any message M ∈M, we have the following:4

Pr[pk← C.Gen(1λ); b← {0, 1}; c0 ← C; (c1, d)← C.Com(pk,M);

b′ ← A(pk,M, cb) : b = b′] ≤ 1/2 + negl(λ)

2.2 Digital Signature Schemes.

In this paper, we use deterministic digital signature schemes; a scheme where
the randomness of the signing algorithm is derived from the secret key and mes-
sage. We briefly recall the standard syntax and security notions, and refer the
full version for the exact definition. A deterministic digital signature scheme is a
tuple of PPT algorithms (S.KeyGen, S.Sign, S.Verify), such that the key genera-
tion algorithm S.KeyGen outputs a verification key vk and a signing key sk. The
deterministic signing algorithm S.Sign on input the signing key sk and a message
x outputs a signature σ, and the verification algorithm S.Verify verifies the sig-
nature σ using the verification key vk. We consider the standard security notion
of existential unforgeability under an adaptive chosen message attack (eu-cma).

2.3 Arithmetic Circuit Representation

Here, we explain how we represent an arithmetic circuit. Let C be an arithmetic
circuit over a ring R having ℓ input wires, one output wire and N gates. Here the
gates are labelled by either + (addition) or × (product) gates. The input wires
are indexed by 1, · · · , ℓ, the internal wires are indexed by ℓ+1, · · · , ℓ+N−1 and
the output wire has index ℓ+N . We assume each gate takes only two incoming

4 We assume that the commitment space C is efficiently sampleable. Namely, as long as
the hiding property holds, C may be larger than the set of all possible commitments.
These situations come up in many of the lattice-based commitment schemes.
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wires with multiple fan-out wires, where all the fan-out wires are indexed with
the same index. We specify the topology of an arithmetic circuit by a function
topo : {ℓ+1, · · · , ℓ+N} → {+,×}×{1, · · · , ℓ+N−1}×{1, · · · , ℓ+N−1}. They
map a non-input wire to its first and second incoming wires in which these three
wires are connected by either a gate labelled by + or ×. For (⋆, i1, i2)← topo(i),
we require that i1, i2 < i where ⋆ ∈ {+,×}.

2.4 Attribute-Based Signature Scheme

An attribute-based signature scheme supporting the class of arithmetic circuits
C = {Cλ}λ∈N and message space {0, 1}∗ is defined by the following four proba-
bilistic polynomial time algorithms (Setup,KeyGen,Sign,Verify):

Setup(1λ, 1ℓ) → (mpk,msk) : The setup algorithm takes as input the security
parameter 1λ and the input length 1ℓ of the circuits in Cℓ, and outputs the
master public key mpk and the master secret key msk.

KeyGen(mpk,msk,x) → skx : The signing key generation algorithm takes as
input the master public key mpk, the master secret key msk and an attribute
x ∈ {0, 1}ℓ, and outputs a signing key skx.

Sign(mpk, skx, C,M) → Σ : The signing algorithm takes as input the master
public key mpk, a secret key skx associated with an attribute x, a circuit
C ∈ Cℓ and a message M ∈ {0, 1}∗, and outputs a signature σ.

Verify(mpk,M, C,Σ)→ Valid/Invalid : The verification algorithm takes as input
the master public key mpk, a message M, a circuit C and a signature Σ, and
outputs Valid or Invalid.

Correctness. We require the following correctness condition to hold: for all
λ, ℓ ∈ N, x ∈ {0, 1}ℓ, C ∈ Cℓ such that C(x) = 1, it holds with all but negligi-
ble probability that Verify(mpk,M, C, Sign(mpk, skx, C,M)) = Valid, where the
probability is taken over the randomness used in (mpk,msk)← Setup(1λ, 1ℓ) and
skx ← KeyGen(mpk,msk,x).

We require two types of security notions for attribute-based signature schemes.

Definition 2 (Privacy). The security notion of privacy for an attribute-based
signature scheme is defined by the following game between a challenger and an
adversary A:

Setup. The challenger runs (mpk,msk) ← Setup(1λ, 1ℓ) and gives (mpk,msk)
to A.

Challenge. A outputs a message M ∈ {0, 1}∗, two attributes x0,x1 ∈ {0, 1}ℓ
and a circuit C ∈ Cℓ such that C(x0) = C(x1) = 1 to the challenger.
The challenger first runs skxβ

← KeyGen(mpk,msk,xβ) for β = 0, 1. Then,
it picks a random bit b ← {0, 1} and returns to A the signature Σ∗ ←
Sign(mpk, skxb

, C,M) along with the two secret keys (skx0 , skx1).
Forgery. Finally, A outputs a guess b′ ∈ {0, 1} for b.
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The advantage of A is defined as |Pr[b′ = b]− 1/2|. We say that the attribute-
based signature scheme is computationally private if the advantage of any PPT
algorithm A is negligible. We say it is unconditionally private if the advantage
of any (possibly inefficient) algorithm A is negligible.

Definition 3 (Unforgeability). The security notion of adaptively unforgeable
for an attribute-based signature scheme is defined by the following game between
a challenger and an adversary A:

Setup. The challenger runs (mpk,msk)← Setup(1λ, 1ℓ) and gives mpk to A.
Queries. A may adaptively make the following queries to the challenger:

- Signing. A submits a signing query on any attribute, message and circuit
tuple (x,M, C) such that C(x) = 1 to the challenger. The challenger
runs skx ← KeyGen(mpk,msk,x). Then, it returns the signature Σ ←
Sign(mpk, skx, C,M) to A.

- Key reveal. A submits a key reveal query on any attribute x to the chal-
lenger. The challenger returns the signing key skx ← KeyGen(mpk,msk,x)
to A.

Forgery. Finally, A outputs a signature (M∗, C∗, Σ∗).

The adversary A wins the game if the following three conditions hold:

(i) Verify(mpk,M∗, C∗, Σ∗) = Valid,
(ii) Adversary A did not submit a key reveal query for x such that C∗(x) = 1,
(iii) Adversary A did not submit a signing query on (x,M∗, C∗) for any x such

that C∗(x) = 1

The advantage of A is defined as the probability of A winning the above game.
We say that the attribute-based signature scheme is adaptively unforgeable if the
advantage of any PPT algorithm A is negligible.

2.5 General Multi-Forking Lemma with Oracle Access

Here we state and prove an extended version of the forking lemma of [PS00],
which will play a central role in our proof of security of our ABS scheme. Our
forking lemma analyzes the output behavior of an algorithmA when run multiple
times on related inputs, instead of when only run twice, while also providing it
with oracle access to a deterministic algorithm O.

Lemma 1 (General Multi-Forking Lemma with Oracle Access). Fix an
integer q ≥ 1 and a set H of size h ≥ 2. Let A be a randomized algorithm that has
oracle access to some deterministic algorithm O, where on input par, h1, · · · , hq,
algorithm A returns a pair; the first element is an integer in the range 0, · · · , q
and the second element is what we refer to as a side output. Let IG be a random-
ized algorithm called the input generator. The accepting probability of A, denoted
acc, is defined as the probability that J ≥ 1 in the experiment below:

(par, par)← IG; h1, · · · , hq ← H; (J, σ)← AO(par,·)(par, h1, · · · , hq).



10

For a positive integer ℓ ≥ 2, the forking algorithm F
O(par,·)
A,ℓ associated to AO(par,·)

is a randomized oracle algorithm that takes input par and proceeds as in Fig. 1,
where {ϵk}k∈[ℓ] denotes an arbitrary set of strings. Let

frk = Pr[(par, par)← IG; (b, {σk}k∈[ℓ])← F
O(par,·)
A,ℓ (par) : b = 1].

Then,

frk ≥ acc ·

((
acc

q

)ℓ−1

− f(ℓ)

h

)
, (1)

where f(ℓ) is some universal positive valued function that only depends on the
value ℓ.

Algorithm F
O(par,·)
A,ℓ (par)

Pick coin ρ for A at random.

h
(1)
1 , · · · , h(1)

q ←H
(I(1), σ(1))← AO(par,·)(par, h

(1)
1 , · · · , h(1)

q ; ρ)

if I(1) = 0 then return (0, {ϵk}k∈[ℓ])
for k = 2 to ℓ do

h
(k)

I(1)
, · · · , h(k)

q ← H
(I(k), σ(k))← AO(par,·)(par, h

(1)
1 , · · · , h(1)

I(1)−1
, h

(k)

I(1)
, · · ·h(k)

q ; ρ)

if I(1) = I(k) and h
(k)

I(1)
̸= h

(k′)

I(1)
for all k, k′ ∈ [ℓ] then

return (1, {σ(k)}k∈[ℓ])
else

return (0, {ϵk}k∈[ℓ]).

Fig. 1. Description of the forking algorithm F
O(par,·)
A,ℓ .

Proof. For any input x = (par, par), denote acc(x) as the probability that J ≥ 1
in the following experiment:

h1, · · · , hq ← H; (J, σ)← AO(par,·)(par, h1, · · · , hq).

Also, let frk(x) = Pr[(b, {σk}k∈[ℓ])← F
O(par,·)
A,ℓ (par) : b = 1]. We claim that there

exists some universal positive valued function f(ℓ) such that for all x,

frk(x) ≥ acc(x) ·

((
acc(x)

q

)ℓ−1

− f(ℓ)

h

)
. (2)

By taking the expectation of frk(x) over x = (par, par) ← IG and using the
fact E[acc(x)ℓ] ≥ E[acc(x)]ℓ (which follows from Jensen’s inequality), we obtain
Eq. (1). Therefore, to prove the claim, we must prove Eq. (2). Now, for any
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input x, with the probabilities taken over the coin tosses of F
O(par,·)
A,ℓ (par), frk(x)

is equivalent to the following.

Pr
[
(I(1) = I(k) for all k ∈ [ℓ]) ∧ (I(1) ≥ 1) ∧ (h

(k)

I(1) ̸= h
(k′)

I(1) for all k, k′ ∈ [ℓ])
]

≥Pr
[
(I(1) = I(k) for all k ∈ [ℓ]) ∧ (I(1) ≥ 1)

]
− Pr

[
(I(1) ≥ 1) ∧ (h

(k)

I(1) = h
(k′)

I(1) for some k, k′ ∈ [ℓ])
]

=Pr
[
(I(1) = I(k) for all k ∈ [ℓ]) ∧ (I(1) ≥ 1)

]
− Pr

[
(I(1) ≥ 1)

]
· (1−

ℓ−1∏
k=1

h− k

h
)

Here, we can rewrite 1−
∏ℓ−1

k=1
h−k
h = 1

h ·
(∑ℓ−2

k=0 αk(ℓ) · 1
hk

)
, where (αk(ℓ))

ℓ−2
k=0

are functions that only depend on ℓ. Since h ≥ 1, we can always upper bound
the right hand side by f(ℓ)/h using some positive valued function f(ℓ) that only
depends on ℓ, where for example, we can use f(ℓ) = (ℓ − 1) ·max{|αk(ℓ)|}ℓ−2

k=0.
Here, note that f(ℓ) is some universal function that depends neither on A nor
O. Therefore, we can further rewrite the inequality as follows:

frk(x) ≥ Pr
[
(I(1) = I(k) for all k ∈ [ℓ]) ∧ (I(1) ≥ 1)

]
− acc(x) · f(ℓ)

h
.

Hence, it remains to show that Pr
[(
I(1) = I(k) for all k ∈ [ℓ]

)
∧
(
I(1) ≥ 1

)]
≥

acc(x)ℓ/qℓ−1. Let R denote the set from which A draws its random coins. For
each i ∈ [q], let Xi : R×Hi−1 → [0, 1] be defined by setting Xi(ρ, h1, · · · , hi−1)
to

Pr[hi, · · · , hq ← H ; (J, σ)← AO(par,·)(par, h1, · · · , hq; ρ) : J = i]

for all ρ ∈ R and h1, · · · , hi−1 ∈ H. Here, regard Xi as a random variable over
the uniform distribution on its domain. Then,

Pr
[
(I(1) = I(k) for all k ∈ [ℓ]) ∧ (I(1) ≥ 1)

]
=

q∑
i=1

Pr
[
I(k) = i for all k ∈ [ℓ]

]
=

q∑
i=1

(
Pr[I(1) = i] ·

ℓ∏
k=2

Pr[I(k) = i | I(1) = i]
)

(3)

=

q∑
i=1

∑
ρ,h1,··· ,hi−1

Xi(ρ, h1, · · · , hi−1)
ℓ · 1

|R| · |H|i−1

=

q∑
i=1

E[Xℓ
i ] ≥

q∑
i=1

E[Xi]
ℓ. (4)

Here Eq. (3) follows from independence of I(k) and I(k
′) for k, k′ ∈ [2, ℓ], and

Eq. (4) follows from Jensen’s inequality where we use the fact that f(x) = xℓ is
a convex function. Finally, using Holder’s inequality, we obtain

q∑
i=1

E[Xi]
ℓ ≥ 1

qℓ−1
·

(
q∑

i=1

E[Xi]

)ℓ

=
1

qℓ−1
· acc(x)ℓ.



12

This completes the proof of Eq. (1), hence concluding our claim.

Remarks. As can be checked from the proof, we can set the function f(ℓ) so
that in case ℓ = 2, we have f(2) = 1. Therefore, by setting the deterministic
oracle O to be an oracle that outputs nothing, the above lemma implies the
general forking lemma of [BN06].

3 Gap-Σ-Protocols and Non-Interactive Zero-Knowledge
Proofs

Before presenting the main tools we use in this paper, we first recall the definition
of languages and relations. A language L ⊆ {0, 1}∗ is said to have polynomial
time recognizable relation R ⊆ {0, 1}∗ × {0, 1}∗ if L = {x | ∃w s.t. (x,w) ∈ R}
where |w| ≤ poly(|x|). We call the string w a witness to the statement x ∈ L.

3.1 Gap-Σ-Protocols

Σ-protocols are a special type of 3-round interactive proof systems that is also
a proof of knowledge. Below, we define (a special type of) the gap-Σ-protocol,
which is a generalization of the standardΣ-protocol where we allow the extracted
witness to lie in a slightly larger space than the actual witness being proven
during the protocol. Furthermore, the special soundness is defined for cases where
more than 2 valid transcripts are required to extract a witness. These non-
standard formalizations are required, since most of the lattice-based Σ-protocols
are not captured by the standard formalizations.

Definition 4 (Gap-Σ-protocols). Let m be an integer constant and t an
integer-valued function of the security parameter. Let (P,V) be a two-party pro-
tocol, where V is PPT, and let L,L′ ⊆ {0, 1}∗ be languages with witness relations
R,R′ such that R ⊆ R′. Then (P,V) is called a gap-Σm,t-protocol for relations
(R,R′) with challenge space C = {0, 1, · · · ,m − 1}t, if it satisfies the following
conditions:

- 3-move form: The protocol is of the following form:

· The prover P, on input (x,w) ∈ R, sends a commitment α to V.
· The verifier V samples a challenge β ← C and sends it to P.
· The prover P sends a response γ to V, and V decides to accept of reject based
on the protocol transcript (α, β, γ).

The protocol transcript (α, β, γ) is called a valid transcript if the verifier V
accepts the protocol run.

- Completeness: Whenever (x,w) ∈ R, V accepts with probability 1.
- Soundness: If (x,w) ̸∈ R, then any cheating (possibly inefficient) prover P∗

succeeds with probability at most (m−1
m )t. We call this value the soundness

error.
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- Special gap-soundness: There exists a PPT algorithm E (the knowledge ex-
tractor) which takes m valid transcripts {(α, βi, γi)}i∈[m] for some statement
x ∈ L, where there exists at least one index j ∈ [t] such that {βi,j}i∈[m] =
{0, 1, · · · ,m−1} as inputs, and outputs w such that (x,w) ∈ R′. Here βi,j de-
notes the j-th value of the string βi. Note that the knowledge extractor outputs
a witness in the gap relation.

- Special honest-verifier zero-knowledge (HVZK): There exists a PPT
algorithm S (the HVZK simulator) taking x ∈ L as input, that outputs (α, β, γ)
whose distribution is indistinguishable from an accepting protocol transcript
generated by a real protocol run. Although no guarantees on the outputs are
made, the simulator S is also defined over the inputs x ̸∈ L.

We call the gap-Σm,t-protocol computationally (resp. statistically) special HVZK
if the simulated transcript is computationally (resp. statistically) indistinguish-
able from a real transcript.

Lastly, we say the gap-Σ-protocol has high-commitment entropy if for all
(x,w) ∈ R and α, the probability that an honestly generated commitment by P
takes on the value α is negligible.

We omit the subscript (m, t) of the gap-Σm,t-protocol whenever it is irrele-
vant to the context. Occasionally, we omit t and simply write gap-Σm-protocol
to emphasize that the soundness error is negligible in the security parameter. We
note that the standard Σ-protocol is a special case of the gap-Σ-protocol where
m = 2,R = R′. In this case the soundness error will simply be 2−t and special
gap-soundness implies special soundness, since if there exists an index j ∈ [t] for
which the binary strings (i.e., the challenges) differ, then it implies that the two
challenges are different. Finally, we assume without loss of generality that all of
the gap-Σ-protocols we consider in this paper have high-commitment entropy,
since the condition can be easily met by appending a super-logarithmic number
of public random bits to the commitments.

Often times, the gap in the relations allows for much more efficient schemes,
and do not affect their usefulness in practice as long as R′ is still a sufficiently
hard relation, e.g., [FO97,DF02,AJLA+12,BCK+14]. We note that for simplicity,
in this paper we only consider gap-Σ-protocols that are complete with proba-
bility 1. Namely, our formalization does not capture those gap-Σ-protocols that
are based on the rejection sampling technique such as [Lyu09,Lyu12,BCK+14].5

Finally, we formally describe the Fiat-Shamir transformation [FS86] which
is a technique to make any (gap-)Σ-protocol into a non-interactive proof system
by using a cryptographic hash function.

5 Note that we intentionally disregard [BKLP15] from our work. Although they offer
an attractive rejection sampling-based gap-Σ-protocol for proving arbitrary arith-
metic operations that are more efficient than those of [XXW13] which we use in
Sec. 5, we were not able to verify the correctness of their proof sketch. In particular,
the knowledge extractor for the protocol for proving multiplicative relations could
not be constructed as stated in their paper.
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Definition 5. Let (P,V) be a gap-Σ-protocol with relation (R,R′), and H(·)
a hash function with range equal to the verifier’s challenge space C. The Fiat-
Shamir transformation of gap-Σ is the non-interactive proof system (PH ,VH)
defined as follows:

PH(x,w) : Run P(x,w) to obtain a commitment α, and compute β ← H(x, α).
Then complete the run of P with β as the challenge to get the response γ.
Finally output the pair (α, γ)

VH(x, α, γ) : Compute β = H(x, α) and return the output of V(α, β, γ).

3.2 Non-Interactive Zero-Knowledge Proof Systems

We formalize the notion of non-interactive zero-knowledge (NIZK) proof systems
in the explicitly programmable random oracle model [Wee09], where the zero-
knowledge (ZK) simulator is allowed to explicitly program the random oracle. We
follow the notations provided in [FKMV12] for presentation. Namely, we model
the ZK simulator of a NIZK proof system as a stateful PPT algorithm S that can
operate in two modes: (h, st)← S(1, st, q) takes care of answering random oracle
queries, and (π, st)← S(2, st, x) simulates the proof. Here, the calls to S(1, · · · )
and S(2, · · · ) share the common state st that is updated after each invocation of
the simulator. Furthermore, we define three algorithms S1,S2, Ŝ2 that run simu-
lator S internally: S1(q) returns the first output of (h, st)← S(1, st, q), S2(x,w)
ignores the second input w and returns the first output of (π, st)← S(2, st, x) if
and only if (x,w) ∈ R (or equivalently x ∈ L), and Ŝ2(x) is essentially the same
as S2(x,w) except that it does not take a second input w and is also defined for
inputs such that x ̸∈ L. Observe that S2 and Ŝ2 are identical for inputs x ∈ L,
and unlike S2, Ŝ2 may be invoked to simulate proofs for invalid statements.

Definition 6 (Non-Interactive Zero-Knowledge Proof System). Let R
be a relation with an associated language LR. We say a non-interactive proof
system (P,V) is a statistical NIZK proof system for language LR with a (PPT)
ZK simulator S in the random oracle model, if for any algorithm D we have∣∣∣Pr[DH(·),PH(·,·)(1λ) = 1]− Pr[DS1(·),S2(·,·)(1λ) = 1]

∣∣∣ = negl(λ),

where H(·) is modeled as a random oracle, and both P and S2 output ⊥ if
(x,w) ̸∈ R. It is called a computational NIZK proof system in case the above
holds only for all PPT algorithms D.

It is a well known fact that in the random oracle model, the Fiat-Shamir
transformation of any Σ-protocol is a NIZK proof system. It is straightforward
to prove that it is also the case for gap-Σ-protocols, as we state in the following
lemma.

Lemma 2 (Fiat-Shamir NIZK Proof Systems). Let (P,V) be a gap-Σ-
protocol with relation (R,R′) that is computationally (resp. statistically) special
HVZK, and H(·) a hash function with range equal to the verifier’s challenge space
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C. Then, in the random oracle model, the non-interactive proof system (PH ,VH)
obtained by the Fiat-Shamir transformation of gap-Σ is a computational (resp.
statistical) non-interactive zero-knowledge proof system for the language LR.

Proof (Proof sketch.). To prove that the proof system (PH ,VH) is a NIZK proof
system for the language LR, it suffices to show that there exists a ZK simulator
S as in the above Def. 6. Below, we construct S by invoking the HVZK simulator
SΣ of the underlying gap-Σ-protocol (P,V):

- S(1, st, q = (x, α))→ (h = β, st) : To answer random oracle queries, it searches
the table TH kept in the state st whether an output for q = (x, α) is already
defined. If so it returns the previously defined assigned value. If not, it sam-
ples a uniformly random value β ← C and stores (q = (x, α), h = β) in the
table. Note that this corresponds to algorithm S1.

- S(2, st, x)→ (π = (α, β, γ), st) : To simulate a proof for the statement x ∈ LR,
it runs the HVZK simulator SΣ on input x to obtain a proof (α, β, γ). Then,
it updates the table TH by adding (q = (x, α), h = β). If TH happens to
be already defined on input q = (x, α), S aborts. This completely specifies
algorithm S2 as required. Observe that the simulator S can also be run
on statements x ̸∈ LR using the above method, since SΣ is well-defined
for x ∈ L as well. In particular, the above description for S also specifies
algorithm Ŝ2 as well.

Since, we only consider gap-Σ-protocols with high-commitment entropy, the
probability of simulator S aborting is negligible, which ends the proof sketch.

In the following, we use the above algorithm S as the ZK simulator for a
NIZK proof system (PH ,VH) based on the Fiat-Shamir transformation of a gap-
Σ-protocol (P,V). Note that we do not explicitly define the soundness property
of the NIZK proof system, since this property will be implicitly implied when
we construct a knowledge extractor during the security proof.

4 Generic Construction of Attribute-based Signatures

Preparation. Before presenting our construction, we describe the relations and
languages we require for our NIZK proof system. Our construction relies on a
gap-Σ-protocol for the relations (RABS,R′

ABS) defined below and employs the
Fiat-Shamir transformation provided in Def. 5 to turn it in into a NIZK proof
system. In the following, xi for i ∈ [ℓ+1, ℓ+N − 1] denotes the values assigned
to the i-th (internal) wire of C on input x = (x1, · · · , xℓ) and vkSign, pkCom
denotes the verification key and public commitment key of the underlying digital
signature scheme and commitment scheme, respectively. Then the relation RABS

is defined as follows:

RABS =
{(

statement =
(
vkSign, pkCom, C ∈ Cℓ, cσ, (ci)

ℓ+|C|−1
i=1

)
,

witness =
(
x = (x1, · · · , xℓ), σ, dσ, (di)

ℓ+|C|−1
i=1

))∣∣∣
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the committed values in cσ, (ci)
ℓ+|C|−1
i=1 satisfy the following conditions:

- S.Verify(vkSign,x, σ) = 1

- xi = xi1 ⋆i xi2 for i ∈ [ℓ+ 1, ℓ+ |C| − 1] for (⋆i, i1, i2)← topoC(i)

- 1 = x(ℓ+|C|)1 ⋆ℓ+|C| x(ℓ+|C|)2 for (⋆ℓ+|C|, i(ℓ+|C|)1 , i(ℓ+|C|)2)← topoC(ℓ+ |C|)

- (cσ, dσ) ∈ DCom(pkCom, σ) and (ci, di) ∈ DCom(pkCom, xi) for i ∈ [ℓ+ |C| − 1]
}

Here, recall that DCom(pkCom,M) is the set of all possible outputs of the com-
mitment algorithm C.Com(pkCom,M). We simply define the corresponding lan-
guage LABS as the language induced by the relation RABS. Furthermore, the
gap-relation R′

ABS is defined analogously to RABS except that we replace the last
condition as follows:

- (cσ, dσ) ∈ DG-Com(pkCom, σ) ∧ (ci, di) ∈ DG-Com(pkCom, xi) for i ∈ [ℓ+ |C| − 1]

The only difference between the two relations are the condition on the com-
mitment and opening pairs. In the latter, it is only required that the pairs are
in the set DG-Com(·) and not in the more restricted set DCom(·). Recall that
DG-Com(pkCom,M) is the set of all commitment and opening pairs that the open-
ing algorithm outputs 1 on message M. As we noted in Sec. 3.1, we require this
gap-relation R′

ABS purely for technical reasons, since in many of the lattice-based
Σ-protocols we can only extract witnesses that lie in a slightly larger space than
the actual witnesses being proven in the actual protocol. Similarly to above, we
define the language L′

ABS as the language induced by the relation R′
ABS.

For simplicity, in the following we omit vkSign and pkCom from the statement,
since they are fixed by the Setup algorithm and all signers use the same vkSign
and pkCom.

Construction. Here, we provide our attribute-based signature scheme for un-
bounded (arithmetic) circuits. In the following, assume a digital signature scheme
(S.KeyGen, S.Sign, S.Verify), a commitment scheme (C.Gen,C.Com,C.Open) and
a NIZK proof system for the relation RABS.

Setup(1λ, 1ℓ) : On input the security parameter 1λ and the input length 1ℓ

for the family of circuits Cℓ, generate a verification key and a signing key
(vkSign, skSign) ← S.KeyGen(1λ, 1ℓ) and a public commitment key pkCom ←
C.Gen(1λ). Then output

mpk = (vkSign, pkCom,H(·), G(·)) and msk = (skSign).

Here, H(·) and G(·) are hash functions used by the NIZK proof system and
by algorithm Sign, respectively, which are programmed as random oracles in
the security reduction. Further, we assume the output space of G(·) to be
{0, 1}ℓ.6

6 Here, we do not explicitly define the input and output space of the hash functions,
since it may differ according to the underlying NIZK proof system being used.
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KeyGen(mpk,msk,x) : On input x = (x1 · · · , xℓ) ∈ {0, 1}ℓ, create a signature
on the attribute x ∈ {0, 1}ℓ by running σ ← S.Sign(skSign,x). Then, output
the secret key as skx = (x, σ).

Sign(mpk, skx, C,M) : On input message M ∈ {0, 1}⋆ and circuit C ∈ Cℓ with
an associating topology topoC proceed as follows:
1. Compute h = (h1, · · · , hℓ)← G(M, C)7 and create a new circuit Ĉ ∈ Cℓ

with two dummy gates connected to each of the input wires of C. Namely,
to the input wires i ∈ [ℓ] of C, we add a series composition of two addition
gates where one gate adds hi and the other gate adds −hi; on input xi

to the i-th input wire of Ĉ, it first evaluates to xi+hi and then evaluates
back to xi, on which point it gets fed to the i-th (input) wire of C. Here,
the value h is hard-wired into Ĉ, and is considered as one of the internal
wires. Further, let N be the number of gates |Ĉ|.

2. Compute the assignment to each non-input wires in Ĉ(x1, · · · , xℓ): for all
i ∈ [ℓ+1, ℓ+ (N − 1)], compute (⋆i, i1, i2)← topo(i) where ⋆i ∈ {+,×},
and denote the newly created values (xi)

ℓ+N−1
i=ℓ+1 in ascending order as{

xi = xi1 + xi2 if ⋆i = +

xi = xi1 · xi2 if ⋆i = ×
.

3. Create a commitment (cσ, dσ) ← C.Com(pkCom, σ) of the signature σ.
Furthermore, for all i ∈ [ℓ + N − 1], create a commitment (ci, di) ←
C.Com(pkCom, xi) that commits to the value of each wire in Ĉ (except
for the output wire).

4. Generate a NIZK proof π proving that the committed values satisfy rela-
tion RABS. Concretely, it generates a proof for the following conditions.8

• The attribute x = (x1, · · · , xℓ) committed to (ci)
ℓ
i=1 and the signa-

ture σ committed to cσ satisfy the following verification equation:

S.Verify(vkSign,x, σ) = 1. (5)

• For all i ∈ [ℓ+1, ℓ+N − 1], the value xi committed to ci satisfy the
following equation: {

xi = xi1 + xi2 if ⋆i = +

xi = xi1 · xi2 if ⋆i = ×
. (6)

• The values x(ℓ+N)1 and x(ℓ+N)2 committed to c(ℓ+N)1 and c(ℓ+N)2 ,
respectively, satisfy the following equation:{

1 = x(ℓ+N)1 + x(ℓ+N)2 if ⋆ℓ+N = +

1 = x(ℓ+N)1 · x(ℓ+N)2 if ⋆ℓ+N = ×
. (7)

7 Here, we assume that we can encode C uniquely into a binary string.
8 Note that we intentionally dismiss the conditions (c, d) ∈ DCom(pkCom, ⋆) as in the
overview, i.e., proving knowledge of a valid opening, since they will be implicitly
proven by the fact that the committed messages satisfy Eq. (5 - 7).
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5. Finally, output Σ =
(
cσ, (ci)

ℓ+N−1
i=1 , π

)
.

Verify(mpk,M, C,Σ) : Compute h← G(M, C) and construct the circuit Ĉ as in
Step 1 of the Sign algorithm. Then, verify the proof with respect to the circuit
Ĉ. Output Valid if the proof is verified valid, and output Invalid otherwise.

Correctness. Observe that Ĉ(x) = C(x) for all M,x. Therefore, the correctness
of the scheme follows simply from the correctness of the underlying NIZK proof
system. In particular, a signer that has a certified attribute x such that C(x) = 1
can properly generate a proof proving Eq. (5 - 7).

4.1 Security Analysis

Theorem 1 (Privacy). Assume a statistically hiding commitment scheme with
gap-openings and a statistically special HVZK gap-Σ-protocol for relations (RABS,
R′

ABS). Then, converting the gap-Σ-protocol into a Fiat-Shamir NIZK proof sys-
tem, the above attribute-based signature scheme is statistically private in the
random oracle model. In case either the hiding property or the special HVZK
property only holds computationally, then we obtain computational privacy.

The proof follows naturally from the zero-knowledge property of the NIZK proof
system, and is deferred the full version.

Theorem 2 (Adaptive Unforgeability). Assume a computationally hiding
and a statistically binding commitment scheme with gap openings, a compu-
tationally special HVZK gap-Σm-protocol9 for relations (RABS,R′

ABS) and an
eu-cma secure (deterministic) digital signature scheme. Then, by converting the
gap-Σm-protocol into a Fiat-Shamir NIZK proof system, the above attribute-
based signature scheme is adaptively unforgeable in the random oracle model.

Proof. Assume there exists a PPT adversary BABS that wins the adaptive un-
forgeability game with advantage ϵ = ϵ(λ). Furthermore, let QH = QH(λ) be the
number of unique random oracle queries BABS makes to H(·) that is bounded by
some polynomial in the security parameter λ. Our proof proceeds in a sequence
of games, where Xi denotes the event the adversary wins in Gamei. Our final
goal is to construct an adversary BSign that breaks the eu-cma security of the
underlying digital signature scheme by using BABS. For our Fiat-Shamir NIZK
proof system, we use the ZK simulator S that we have defined in Lem. 2.

Gamereal : This game is identical to the real adaptive unforgeability game where
all the random oracle queries to H(·) and G(·) are answered randomly by
the challenger. At the end of the game, BABS outputs a valid forged signature
(M∗, C∗, Σ∗) with probability Pr[Xreal] = ϵ.

9 Here, recall that we write gap-Σm-protocol, when we make explicit of the fact that
m valid transcripts are requried for special gap-soundness to hold. Furthermore, this
notation also implies that the soundness error is negligible (See Sec. 3.1).
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Game1 : In this game, we change the way the challenger answers the random
oracle queries to H(·) and the signing queries. Namely, we use the ZK sim-
ulator S associated to the NIZK proof system to answer these. Recall that
simulator S has two modes for running the two oracles S1 and Ŝ2. When
BABS submits a random oracle query to H(·), the challenger relays this to
oracle S1 and returns the value outputted by S1 to BABS. Here, the ran-
dom oracle queries to G(·) are answered by the Game1 challenger as in the
previous game. Furthermore, when BABS submits a signing query on an at-
tribute, message and circuit tuple (x,M, C) such that C(x) = 1, it first runs
skx = (x, σ) ← KeyGen(mpk,msk,x) and constructs the circuit Ĉ with N
gates using h ← G(M, C) as in Step 1 of the Sign algorithm. Then it pro-
ceeds with Step 2 and 3 to create commitments

(
cσ, (ci)

ℓ+N−1
i=1

)
along with

valid openings
(
dσ, (di)

ℓ+N−1
i=1

)
. Finally, it invokes Ŝ2 on input the statement(

Ĉ, cσ, (ci)
ℓ+N−1
i=1

)
∈ LABS

10 and obtains a proof π, and returns the signa-

ture Σ =
(
cσ, (ci)

ℓ+N−1
i=1 , π

)
to BABS. Here, the simulated proofs of Ŝ2 are

distributed negligibly close to the actual proofs in Gamereal by the definition
of the NIZK proof system (See Def. 6), and the fact that the oracles S2
and Ŝ2 are equivalent in case the statement to be proven is in the language.
Hence, |Pr[Xreal]− Pr[X1]| = negl(λ).

Game2 : In this game, we change the way the challenger creates the commit-
ment for the signature σ produced during the signing query. In the previous
game, when BABS submitted a signing query on an attribute, message and
circuit tuple (x,M, C) such that C(x) = 1, the challenger created a proper
commitment cσ for the signature σ following Step 3 of the Sign algorithm,
i.e., (cσ, dσ)← Com(pkCom, σ). In this game, however, the Game2 challenger
will instead sample a random value c in the commitment space CCom and sets
cσ = c. Then, as in Game2, it invokes Ŝ2 on input

(
Ĉ, cσ, (ci)

ℓ+N−1
i=1

)
and ob-

tains a proof π, and returns the signature Σ =
(
cσ, (ci)

ℓ+N−1
i=1 , π

)
to BABS.

Here, recall that oracle Ŝ2 is defined to simulate proofs for false statements
that are not in the language LABS as well. Then, the differences in the view
of the adversary in Game1 and Game2 are computationally indistinguishable
due to the computationally hiding property of the commitment scheme.11 In
other words, we have |Pr[X1]− Pr[X2]| = negl(λ).

Game3 : In this game, we add an additional winning condition for adversary
BABS to satisfy. Namely, when BABS outputs a forgery (M∗, C∗, Σ∗), the
Game3 challenger checks if the random oracle G(·) was ever queried on a
message-circuit pair (M, C) ̸= (M∗, C∗) such that Ĉ = Ĉ∗. Note that this
implies G(M, C) = G(M∗, C∗). Hereafter, we say BABS wins if and only if

10 Recall we ignore the public parameters vkSign and pkCom from the statement for
simplicity.

11 More formally, we create qsign hybrid games and swap the commitments of the
signature to a random value in the commitment space one hybrid game at a time
until we have swapped every signature commitments into the desired random form,
where qsign is the number of signature queries BABS makes.
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in addition to the winning condition of the previous game, there are no
such message-circuit pairs. Since, the output values of the random oracle
G(·) are uniformly random over {0, 1}ℓ for ℓ = poly(n), the probability
that a collision occurs for different message-circuit pairs is negligible. Hence,
|Pr[X2]− Pr[X3]| = negl(λ). Below, we denote ϵ3 = Pr[X3].

In the following, we define the algorithms A and O to be used in the forking

algorithm F
O(par,·)
A,m of the generfal multi-forking lemma with oracle access (See

Lem. 1). Looking ahead, the forking algorithm will be used by adversary BSign
to win the eu-cma security of the underlying digital signature scheme.

To provide the full description of algorithms A and O, we first define the
input generator IG, the set H and the integer q, which are required to define the
inputs for A and O. First, the input generator IG outputs (par, par) where par
constitutes of the verification key vkSign, public commitment key pkCom and any
extra auxiliary parameters required to specify the ABS scheme (e.g., the family of
circuits), and par is simply the signing key skSign. Here, vkSign, skSign and pkCom are
generated by running (vkSign, skSign)← S.KeyGen(1λ, 1ℓ) and pkCom ← C.Gen(1λ).
Furthermore, we define the set H to be the verifier’s challenge space CΣ of the
underlying gap-Σm-protocol, and set q as QH ; the number of unique random
oracle queries made to H(·) by BABS. To summarize, A will be given par and
h1, · · · , hQH

∈ H as input.

We next specify how algorithms A and O run. First, the deterministic algo-
rithm O is simply defined as the signing algorithm of the underlying determinis-
tic digital signature scheme; O(par, ·) = S.Sign(skSign, ·). Here, O is deterministic
since the signing algorithm is deterministic once fixed a signing key skSign. Next,
we define A as the randomized algorithm that simulates Game3 and outputs
a small modification of the forgery returned by BABS. We first explain how A
simulates Game3: A essentially runs the Game3 challenger, BABS and the ZK
simulator S internally, with two conceptual changes concerning the Game3 chal-
lenger and the ZK simulator S. In particular the Game3 challenger is modified
to an algorithm which we call the Game′3 challenger, so that it does not run
(vkSign, skSign)← S.KeyGen(1λ, 1ℓ) anymore. Instead of generating (vkSign, skSign)
on its own, the Game′3 challenger is provided with vkSign by A, and no longer
possesses skSign. Whenever the Game′3 challenger requires to run the signing algo-
rithm S.Sign(skSign, ·), A simply invokes O(par, ·) = S.Sign(skSign, ·), which it has
oracle access to, and returns whatever outputtd by O to the Game′3 challenger.
Furthermore, the ZK simulator S (See Lem. 2) is modified in a way so that it
does not sample a random value hi ← CΣ when invoked on a random oracle
query to H(·). Concretely, on the i-th unique random oracle query to H(·), it
simply outputs the value hi provided by A.12 This is only a conceptual change,
since CΣ = H and hi are sampled uniformly overH. Therefore, the above changes
do not alter the view of BABS. Hence the advantage of BABS winning the game

12 More formally, we can think the state st provided to the ZK simulator S includes
(hi)

QH
i=1, assuming without loss of generality that S knows the bound on the number

of query made by BABS.
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simulated by A is exactly the same as of Game3. Finally, we describe the output
of A. In particular, at the end of the simulation of Game3, BABS outputs a valid
forgery (M∗, C∗, Σ∗) where Σ∗ =

(
c∗σ, (c

∗
i )

ℓ+N−1
i=1 , π∗) with probability ϵ3. In the

following let χ∗ denote the statement (Ĉ∗, c∗σ, (c
∗
i )

ℓ+N−1
i=1 ), where Ĉ∗ is the circuit

with N gates constructed from C∗ in Step 1 of the Sign algorithm. Since this is a
valid forgery, we must have χ∗ ∈ LABS. Given the forgery of BABS, A first parses
the proof π∗ as (α∗, γ∗), where α∗, γ∗ are the commitment and response of the
underlying gap-Σm-protocol (See Def. 5), respectively. A then checks whether
H(·) was queried on (χ∗, α∗). If not it outputs (0, ϵ1). Otherwise, there exists
an index i∗ ∈ [QH ] for which the challenge H(χ∗, α∗) is set to hi∗ . In this case,
it outputs (i∗, (α∗, hi∗ , γ

∗, χ∗,M∗, C∗)). Now, since A simulates Game3 perfectly
and the probability of BABS outputting a valid forgery without knowledge of the
output of H(χ∗, α∗) (i.e., the challenge) is negligible, we have

acc = Pr
[
(i∗, (α∗, hi∗ , γ

∗, χ∗,M∗, C∗))← AO(par,·)(par, h1, · · · , hQH
) : i∗ ≥ 1

]
≥ ϵ3 − negl(λ), (8)

where the probability is taken over the choice of (par, par), (hi)
QH

i=1 and the ran-
domness used by A.

Finally we construct an adversary BSign against the eu-cma security of the

underlying digital signature scheme using the forking algorithm F
O(par,·)
A,m . In par-

ticular the advantage of BSign will be ϵm3 /Qm−1
H − negl(λ) for a constant m.

Hence, assuming the eu-cma security of the digital signature scheme, ϵ3 is neg-
ligible. Therefore, since ϵ = ϵ3 ± negl(λ), we conclude that ϵ is negligible, thus
completing the proof. Below, let CSign be the challenger for the eu-cma game of
the underlying digital signature scheme. Also, let vkSign be the verification key
given to BSign and skSign be the signing key used by CSign to answer the signature
queries. In particular, CSign uses the signing algorithm S.Sign(skSign, ·) to answer
signature queries made be BABS. Now, given vkSign, BSign runs pkCom ← C.Gen(1λ)
and prepares par, i.e., the input to A provided by the input generator IG. This
can be done efficiently since par constitutes only of public values: vkSign, pkCom
and some other public auxiliary parameters specifying the ABS scheme. Since
the forking algorithm only requires oracle access to the deterministic algorithm
O(par, ·) = S.Sign(skSign, ·), which is provided by CSign, BSign can properly run the

forking algorithm F
O(par,·)
A,m (par) as specified. Note that par, par are distributed ex-

actly as the output of the input generator IG defined above. Now, due to the
general multi-forking lemma with oracle access (Lem. 1), we obtain the following
pairs with probability frk:(

1,
{
α(k), h(k), γ(k), χ(k),M(k), C(k)

}
k∈[m]

)
, (9)

where χ(k) =
(
Ĉ(k), c

(k)
σ , (c

(k)
i )ℓ+N−1

i=1

)
k∈[m]

. Here, by Eq. (1) of Lem. 1, we have

frk ≥ acc ·

((
acc

QH

)m−1

− f(m)

|CΣ |

)
=

accm

Qm−1
H

− negl(λ), (10)
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where CΣ is the output range of H(·) that is super-polynomially large, m is
a constant representing the number of valid transcripts we require to extract a
witness and f(m) is a universal positive valued function that only depends on m,
i.e., a constant value when viewed as a funtion on the security parameter λ. Now,
we argue that for all k ∈ [m], the values of the commitments α(k) and statements
χ(k) are equivalent, respectively. Let i∗ ∈ [QH ] be the index outputted by A in

the first run inside the forking algorithm F
O(par,·)
A,m (par). Then, up until the i∗-th

unique random oracle query to H(·), the behavior of BABS is the same for every
run, since we fix the randomness being used by the challenger Game′3, BABS
and the ZK simulator S. This implies that whatever submitted by BABS on the
i∗-th unique random oracle query to H(·), which is the pair (α(k), χ(k)), must
be the same in every run. Let us denote this as (α∗, χ∗ = (Ĉ∗, c∗σ, (c

∗
i )

ℓ+N−1
i=1 )).

Therefore, by running F
O(par,·)
A,m (par), BSign obtains m valid transcript of the form(

α∗, h(k), γ(k), χ∗,M∗, C∗)
k∈[m]

where M∗, C∗ are the same in every run as well,

due to the winning condition we added in Game3 and the fact that Ĉ∗ is the
same in every run.

Next, we show that BSign can properly extract a witness from the valid tran-
scripts using the knowledge extractor of the underlying gap-Σm-protocol (See
special gap-soundness of Def. 4). Recall that the range of the random oracle
H(·) is CΣ = {0, 1, · · · ,m−1}t for some constant m and an integer-valued func-
tion t that is poly-logarithmic in the security parameter λ. Now, by Def. 4, in
order to extract a witness there needs to exist at least one index j ∈ [t] such

that {h(k)
j }k∈[m] = {0, 1, · · · ,m − 1}. Since each h(k) are sampled uniformly

random over CH = {0, 1, · · · ,m − 1}t, the probability of no such j ∈ [t] exist-
ing is (1 − m!

mm )t, which is negligible in the security parameter for our choices
of m, t. Therefore, with all but negligible probability, BSign is able to extract a
witness (x∗, σ∗, d∗σ, (d

∗
i )

ℓ+N−1
i=1 ) in the gap-language L′

ABS from the m valid tran-
scripts. Furthermore, since we use a statistically binding commitment scheme,
the (x∗, σ∗) pair extracted from the transcripts are the actual pairs used by BABS
to create a forgery, with all but negligible probability.

Finally, we show that (x∗, σ∗) is a valid signature forgery that allows BSign to
win the eu-cma game between the challenger CSign. Namely, we show that x∗ was
never queried as the key reveal query by BABS in all of the m runs of A. Note that
the only situationA invokes the signing oracleO(par, ·) = S.Sign(skSign, ·) is when
BABS submits a key reveal query to the Game′3 challenger. This is because we
altered the game in Game2 so that the ZK simulator is used to answer the signing
queries made by BABS. Now, since BABS outputs a valid forgery we have Ĉ∗(x∗) =
1. Then, by the way we construct Ĉ∗(x∗) in Step 1 of the Sign algorithm, we have
C(x∗) = 1 as well. On the other hand, due to the winning condition of BABS,
BABS must have never made a key reveal query on x∗ such that C∗(x∗) = 1 (in
any of the runs). Therefore, we conclude that x∗ was never queried to the Game′3
challenger by BABS in any of the runs of A; (x∗, σ∗) is a valid forgery. Hence,
combining Eq. (8) and (10), the advantage of BSign is ϵm3 /Qm−1

H − negl(λ).
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4.2 Implications

Since a computationally hiding and statistically binding commitment scheme,
a deterministic digital signature scheme and a computationally special HVZK
Σ-protocols for any NP-language are all implied from one-way functions (See for
example [Nao91,Rom90,PSV06]), we obtain the following lemma as an implica-
tion of our above result:

Lemma 3. If one-way functions exist, then there exist computationally private
and adaptive unforgeable attribute-based signature schemes for unbounded cir-
cuits in the random oracle model.

5 ABS for Unbounded Circuits from Lattices

In this section, we provide an efficient instantiation of our generic ABS construc-
tion for unbounded circuits from lattices. In particular, we prepare a lattice-based
signature scheme and a commitment scheme with gap-openings, and construct
an associating lattice-based gap-Σ-protocol for the relationRABS. We believe our
gap-Σ-protocol for proving possession of a valid signature, which departs from
the previously known stern-type protocol of [LNSW13], to have applications in
other contexts such as group signatures.

5.1 Preparing Tools

We present the underlying lattice-based digital signature scheme and commit-
ment scheme with gap-openings that we use as building blocks for our lattice-
based ABS scheme.

Digital Signature Scheme. Here, we review the lattice-based digital signature
scheme of Boyen [Boy10] with an improved security reduction by [MP12]. Below,
we provide a deterministic version of Boyen’s signature scheme, where the signing
algorithm uses a PRF for generating the required randomness. We defer the
formal definition of lattices and PRFs to the full version. In the following, by
lattice convention, we use the dimension of the lattice n to denote the security
parameter.

Theorem 3. Let n,m, q be positive integers such that m ≥ 2n log q. Let α, β
be positive reals such that α = Ω(

√
ℓn log q log n) and β = αω(

√
logm). Then,

the following algorithms (S.KeyGen, S.Sign, S.Verify) form a deterministic digital
signature scheme with message space M = {0, 1}ℓ that is eu-cma secure under
hardness of the SIS∞

n,m,q,ℓÕ(n)
problem.

S.KeyGen(1n, 1ℓ) : It samples a matrix A ∈ Zn×m
q with a trapdoor TA ∈ Zm×m

using algorithm TrapGen(1n, 1m, q). It also samples matrices Ai ← Zn×m
q

for i ∈ [0, ℓ], a vector u ∈ Zn
q and generates a seed for a PRF by running

r ← PRF.Gen(1n). Finally it outputs the verification key vk and signing key
sk as

vk = (A,A0, · · · ,Aℓ,u), sk = (TA, r).
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S.Sign(sk,x) : On input the message x ∈ {0, 1}ℓ, it first constructs the matrix

Ax = A0 +
∑ℓ

i=1 xiAi ∈ Zn×m
q , where xi is the i-th bit of x. Then using

TA, it samples a short vector z ∈ Z2m such that [A|Ax]z = u mod q using
algorithm SampleLeft(A,Ax,u,TA, α), where the output of PRF.Eval(r,x) is
used as the randomness. Finally, it outputs σ = z as the signature.

S.Verify(vk,x, σ) : It first checks that x ∈ {0, 1}ℓ. Next, it checks whether
[A|Ax]z = u mod q and ∥z∥∞ ≤ β. It outputs 1 if all the above check
passes, otherwise it outputs 0.

Commitment Scheme. Here, we present the commitment scheme of [XXW13]
with minor modification. In the following let [·||·] denote the vertical concatena-
tion of vectors.

Theorem 4. Let n, m̄, q be positive integers such that m̄ ≥ 3n, q a prime. Fur-
ther, let γ, γ′ be positive reals such that q ≥ (4γ + 1)2 and γ ≥ γ′ω(log n).13

Then, the following algorithms (C.Gen,C.Com,C.Open) form a computationally
hiding and statistically binding commitment scheme with gap openings under the
hardness of the LWEn,m̄,q,DZ,γ problem. Here the message spaceM is Zq and the
commitment space C is Zm̄

q .

C.Gen(1n) : It samples B← Z(n+1)×m̄
q and outputs pk = B.

C.Com(pk,M) : For a message M ∈ Zq, it samples a random vector s ← Zn
q .

Then, it samples e ← DZm̄,γ′ until ∥e∥∞ ≤ γ holds.14 Finally, it outputs
(c, d) = (B⊤[s||M] + e mod q, (s, e)).

C.Open(pk,M, c, d) : It first checks if M ∈ Zq. It then parses d = (s, e) and
checks if c = B⊤[s||M] + e mod q and ∥e∥∞ ≤ 2γ hold. If all the check
passes it outputs 1, otherwise it outputs 0.

Observe that the above commitment scheme has gap-openings; although the
commitment algorithm C.Com only samples vectors e such that ∥e∥∞ ≤ γ, the
opening algorithm C.Open accepts e such that γ < ∥e∥∞ ≤ 2γ as well.

Furthermore, [XXW13] provides three gap-Σ-protocols for proving useful
relations over committed values: ΣOpen for proving knowledge of a valid opening
and ΣAdd, ΣMult

15 for proving arithmetic relations (over Zq) of committed values.
We additionally construct one useful gap-Σ-protocol ΣEqTo⋆ for proving that
a commitment opens to a specific value. The details of the construction are
provided in the full version. Then, the above commitment scheme is equipped
with the following four basic gap-Σ-protocols.

13 Here, we use Lem. 4 of [LLNW14] instead of Lem. 1 of [XXW13] to optimize the
required parameters of the commitment scheme.

14 For our parameter selection, this procedure will end in a constant number of trials
with all but negligible probability.

15 In their paper, they present two protocols for proving arithmetic relations, however,
in our paper we only consider the more efficient protocol in [XXW13], Sec. 4.3.
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Theorem 5. The commitment scheme with gap openings in Theorem 4 has as-
sociating computationally special HVZK gap-Σ-protocols (ΣOpen, ΣEqTo⋆, ΣAdd,
ΣMult) for the following four relations:

ROpen = {(pk, c), (M, d) | (c, d) ∈ DCom(pk,M)},
REqTo⋆ = {(pk, c,M), d | (c, d) ∈ DCom(pk,M)},
RAdd = {(pk, (ci)3i=1), ((Mi, di)

3
i=1) | M3 = M1 +M2

∧ (ci, di) ∈ DCom(pk,Mi) for i ∈ [3]},
RMult = {(pk, (ci)3i=1), ((Mi, di)

3
i=1) | M3 = M1 ·M2

∧ (ci, di) ∈ DCom(pk,Mi) for i ∈ [3]}.

The gap-relations (Σ′
Open, Σ

′
EqTo⋆, Σ

′
Add, Σ

′
Mult) are defined similarly except that

the set DG-Com is used instead of DCom.

The above gap-Σ-protocols of [XXW13] additionally require internally a
standard commitment scheme, which is used by the prover in the first round
to send a commitment to the verifier. Although, we can use the commitment
scheme of [XXW13] provided above, we use the more efficient lattice-based com-
mitment scheme of Kawachi et al. [KTX08] to instantiate the gap-Σ-protocols.
In this case, the communication costs of ΣOpen, ΣEqTo⋆ are ω(m̄ log q log γ log n)
and ΣAdd, ΣMult are ω(m̄ log3 q log γ log n).

Remark 1. The above four basic gap-Σ-protocols can be composed in parallel
to obtain a gap-Σ-protocol for larger relations, e.g., provided with commitments
(ci)

4
i=1 of the values (Mi)

4
i=1 satisfying M4 =

∑3
i=1 Mi, we can prove this relation

by creating one extra auxiliary commitment caux forMaux = M1+M2 and running
two ΣAdd in parallel for the statement pairs (pk, c1, c2, caux) and (pk, caux, c3, c4).

5.2 ABS for Unbounded Circuits Based on Lattices

To instantiate the generic ABS construction in Sec. 4 from lattices, it is sufficient
to prove that the above digital signature scheme and commitment scheme are
equipped with a gap-Σ-protocol for the relation RABS. Therefore, below we aim
at constructing a gap-Σ protocol for proving Eq. (5), (6) and (7) in our ABS
construction, where the attribute x and Boyen signatures σ are committed using
the commitment scheme of [XXW13]. Here, taking the above Rem. 1 into con-
sideration, a gap-Σ-protocol for proving Eq. (6) and (7), which are essentially
proving that the circuit is computed correctly, can be constructed by simply
composing the basic gap-Σ-protocols ΣEqTo⋆, ΣAdd, ΣMult in parallel. In more de-
tail, we use ΣAdd and ΣMult to prove that we computed each gates correctly, and
use ΣEqTo⋆ to prove that the value associated to the output wire is equal to 1.
Therefore, in the following, we only focus on how to construct a gap-Σ-protocol
for proving Eq. (5); we construct a gap-Σ-protocol for proving possession of a
valid Boyen-signature using ΣEqTo⋆, ΣAdd, ΣMult. Here, we stress that we cannot
simply use the gap-Σ-protocol for proving possession of a valid Boyen-signature
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of [LNSW13] for our purpose, since their protocol does not allow us to efficiently
prove possession of messages satisfying complex arithmetic relations.16 In other
words, since Eq. (5) and (6) share the same witness x = (x1, · · · , xℓ), we will
not be able to combine the different types of gap-Σ-protocols of [LNSW13] and
[XXW13] to construct a gap-Σ protocol for the relation RABS.

To summarize, our goal is to construct a gap-Σ-protocol for proving pos-
session of a valid Boyen signature σ = z = [z1, · · · , z2m]⊤ ∈ Z2m, where x
= (x1, · · · , xℓ) ∈ {0, 1}ℓ is viewed as the message, provided the verification key
vkSign and the commitments to the signature σ and message x. Then, since the
basic gap-Σ-protocols of Thm. 4 allows for parallel composition, our desired gap-
Σ-protocol for the relation RABS is obtained by composing the gap-Σ protocol
for the Boyen signature with the gap-Σ-protocols for Eq. (6) and (7) together.
Below, we assume the commitment cσ of the signature is provided in the form
(c̄k)k∈[2m] where each c̄i is a commitment of the k-th element zk ∈ Z of z (viewed
as an element in Zq), and the commitment of the message cx is provided in the
form (ci)i∈[ℓ] where each ci is a commitment of the value xi ∈ {0, 1}. Now, due
to the verification algorithm of the Boyen signature scheme, proving a signature
is valid is equivalent to proving the following three statements:

x ∈ {0, 1}ℓ ⇐⇒ xi ∈ {0, 1} for i ∈ [ℓ], (11)

∥z∥∞ ≤ β ⇐⇒ |zk| ≤ β for k ∈ [2m], (12)[
A|A0 +

ℓ∑
i=1

xiAi

]
z = u mod q, . (13)

Below we construct gap-Σ-protocols respectively for the above equations by
converting each of them into an arithmetic circuit, and using the basic gap-Σ-
protocols provided in Thm. 4 as building blocks to prove the satisfiability of each
circuit.

Gap-Σ-Protocol for Proving Eq. (11). It is sufficient to prove that for every
i ∈ [ℓ], the commitment ci ← C.Com(pk, xi) opens to either 0 or 1. To do so, we
first create auxiliary commitments czero ← C.Com(pk, 0) and gi ← C.Com(pk, x2

i )
for i ∈ [ℓ]. Then using the commitments (ci)i∈[ℓ] and the auxiliary commitments,
and combining the basic gap-Σ-protocols ΣEqTo⋆, ΣAdd and ΣMult together, we
construct a gap-Σ-protocol for proving the following statement for all i ∈ [ℓ]:

czero opens to 0 ∧ x2
i = xi · xi ∧ 0 = x2

i − xi

Since all arithmetic operations are over the finite field Zq, the only xi that satisfy
the above relations are xi = 0 or 1. Therefore, the above gap-Σ-protocol indeed
proves Eq. (11). The total communication cost is ω(ℓm̄ log3 q log γ log n)17.
16 The subsequent works of [LLM+16,YAL+17] allow proving possession of a valid

Boyen-signature while also proving possession of messages satisfying some simple
arithmetic relations. However, their protocols are not strong enough to prove arbi-
trary circuits in zero-knowledge.

17 Note that ω(f(X)) denotes any function that grows asymptotically faster than
f(X), e.g., log2(X) = ω(log(X)).
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Gap-Σ-Protocol for Proving Eq. (12). Here, for simplicity of the protocol, we
assume that β can be written as 2ζ −1 for some positive integer ζ. Equivalently,
ζ = log(β+1). This does not harm the efficiency nor the security of the signature
scheme by much, since given any β, there always exists a value of the form 2ζ−1
in between β and 2β.

First, we prepare some notations. For k ∈ [2m], let zk,j be the j-th bit
of the binary representation of zk ∈ Z for j ∈ [ζ]. Note that, we extend the
standard binary decomposition to negative integers as well in the obvious way.
In particular, we can bit decompose any zk ∈ [−β, β] as zk =

∑ζ
j=1 2

j−1zk,j ,

where zk,j ∈ {−1, 0, 1}.18 Further, set wk,j = 2j−1zk,j for j ∈ [ζ] and wk,[j′] =∑j′

j=1 wk,j for j′ ∈ [2, ζ]. Finally, define wk,[1] = wk,1. Next, create the fol-
lowing auxiliary commitments for k ∈ [2m]: czero ← C.Com(pk, 0), ccoeff,j ←
C.Com(pk, 2j−1), c̄k,j,µ ← C.Com(pk, zµk,j), hk,j ← C.Com(pk, wk,j) for µ ∈ [3],
j ∈ [ζ], and hk,[j′] ← C.Com(pk, wk,[j′]) for j′ ∈ [2, ζ]. Then, using the commit-
ments (c̄k)k∈[2m], the auxiliary commitments and composing the gap-Σ-protocols
ΣEqTo⋆, ΣAdd and ΣMult together, we construct a gap-Σ-protocol for the following
statement for all k ∈ [2m], j ∈ [ζ] and j′ ∈ [2, ζ]:19

czero opens to 0 ∧ ccoeff,j opens to 2j ∧ z2k,j = zk,j · zk,j ∧ z3k,j = z2k,j · zk,j ∧
0 = z3k,j − zk,j ∧ wk,j = 2j−1 · zk,j ∧ wk,[j′] = wk,j′ + wk,[j′−1] ∧ 0 = zk − wk,[ζ].

We check that the above statement is equivalent to Eq. (12), i.e., each zk
satisfy |zk| ≤ β for all k ∈ [2m]. First, since q is a prime, the only zk,j
satisfying z3k,j − zk,j = 0 over Zq are −1, 0, 1. Hence, the above statement
proves that zk,j ∈ {−1, 0, 1}. Furthermore, when zk,j ∈ {−1, 0, 1}, we have

|zk| ≤
∑ζ

j=1 2
j−1 |zk,j | ≤ 2ζ−1 = β. Therefore, if the above statement holds,

then we must have |zk| ≤ β for all k ∈ [2m]. The total communication cost is
ω(mm̄ log β log3 q log γ log n).

Gap-Σ-Protocol for Proving Eq. (13). We first prepare some notations. Let
as,k (resp., ai,s,k) denote the (s, k1)-th (resp., (s, k2 −m)-th) entry of A (resp.,
Ai) ∈ Zn×m

q , for s ∈ [n], k1 ∈ [m] (resp., k2 ∈ [m+ 1, 2m]) and i ∈ [0, ℓ]. Then,
observe that we can rewrite Eq. (13) using the following equations for s ∈ [n]:

m∑
k1=1

as,k1 · zk1 +

2m∑
k2=m+1

(
a0,s,k2 +

ℓ∑
i=1

xi · ai,s,k2

)
· zk2 = us (14)

Next, we prepare some auxiliary values for s ∈ [n] in order to prove the above
equations using the gap-Σ-protocols ΣEqTo⋆, ΣAdd and ΣMult: wi,s,k2 = xi ·ai,s,k2 ,

18 A subtly is that unlike standard bit decomposition, the bit representation is not
unique anymore, e.g., 11 can be decomposed as (1, 1, 0, 1) or (−1, 0, 1, 1). However,
this will not affect our following argument.

19 Since we prove czero opens to 0 in the above gap-Σ-protocol for proving Eq. (11),
we will not require this when we compose the gap-Σ-protocols together. The same
holds for the aforementioned gap-Σ-protocol for proving Eq. (13).
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w[i′],s,k2
=
∑i′

i=1 wi,s,k2 , as,k2 = a0,s,k2 + w[ℓ],s,k2
for i ∈ [ℓ], i′ ∈ [2, ℓ], k2 ∈

[m + 1, 2m], bs,k = as,k · zk for k ∈ [2m], bs,[k′] =
∑k′

k1=1 bs,k1 for k′ ∈ [2,m],

bs,[k′] =
∑k′

k2=m+1 bs,k2
for k′ ∈ [m+2, 2m] and ts = bs,[m]+bs,[2m]. Further define

w[1],s,k2
= w1,s,k2 , bs,[1] = bs,1 and bs,[m+1] = bs,m+1. Next, we create auxiliary

commitments for the related values for s ∈ [n]: cmat,s,k1
← C.Com(pk, as,k1

),
cmat,i,s,k2 ← C.Com(pk, ai,s,k2) for i ∈ [0, ℓ], k1 ∈ [m], k2 ∈ [m+1, 2m], ωi,s,k2 ←
C.Com(pk, wi,s,k2), ω[i′],s,k2

← C.Com(pk, w[i′],s,k2
), αs,k2 ← C.Com(pk, as,k2) for

i ∈ [ℓ], i′ ∈ [2, ℓ], k2 ∈ [m + 1, 2m], βs,k ← C.Com(pk, bs,k) for k ∈ [2m],
βs,[k′] ← C.Com(pk, bs,[k′]) for k

′ ∈ [2,m]∪ [m+2, 2m]. Then, using the commit-

ment (ci)
ℓ
i=1, (c̄k)k∈[2m], the auxiliary commitments and composing the gap-Σ-

protocols ΣEqTo⋆, ΣAdd and ΣMult together, we construct a gap-Σ-protocol for the
following statement for all s ∈ [n], i ∈ [ℓ], i′ ∈ [2, ℓ], k1 ∈ [m], k2 ∈ [m+ 1, 2m],
k ∈ [2m], k′ ∈ [2,m] ∪ [m+ 2, 2m]:

czero opens to 0 ∧
cmat,s,k1

, cmat,0,s,k2
, cmat,i,s,k2

opens to as,k, a0,s,k, ai,s,k, respectively ∧
wi,s,k2 = xi · ai,s,k2 ∧ w[i′],s,k2

= wi′,s,k2 + w[i′−1],s,k2
∧

as,k2 = a0,s,k2 + w[ℓ],s,k2
∧ bs,k = as,k · zk ∧ bs,[k′] = bs,k′ + bs,[k′−1] ∧

ts = bs,[m] + bs,[2m] ∧ 0 = us − ts

The above statement can be checked that it is equivalent to proving Eq. (14) for
s ∈ [n]. The total communication cost is ω(ℓnmm̄ log3 q log γ log n).

Gap-Σ-Protocol for RABS. To summarize, we obtain a gap-Σ-protocol for
proving possession of a valid Boyen signature by composing the gap-Σ-protocols
for proving Eq. (11-13) together. Then, by composing this protocol with the
aforementioned gap-Σ-protocols for proving Eq. (6) and (7), we obtain our de-
sired gap-Σ-protocol for the relation RABS where the total communication cost
is ω((m(ℓn+log β)+ |C|)m̄ log3 q log γ log n). Here, |C| is size of the circuit (i.e.,
policy) associated to the message. Thus, we obtain our lattice-based ABS scheme
for unbounded circuits in the random oracle model by instantiating the generic
ABS construction in Sec. 4 with our gap-Σ protocol for RABS.
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