
Local Non-Malleable Codes in the
Bounded Retrieval Model

Dana Dachman-Soled ?, Mukul Kulkarni, and Aria Shahverdi

University of Maryland, College Park, USA
{danadach@ece., mukul@terpmail., ariash@}umd.edu

Abstract. In a recent result, Dachman-Soled et al. (TCC ’15) proposed
a new notion called locally decodable and updatable non-malleable codes,
which informally, provides the security guarantees of a non-malleable
code while also allowing for efficient random access. They also considered
locally decodable and updatable non-malleable codes that are leakage-
resilient, allowing for adversaries who continually leak information in
addition to tampering.
The bounded retrieval model (BRM) (cf. [Alwen et al., CRYPTO ’09]
and [Alwen et al., EUROCRYPT ’10]) has been studied extensively in
the setting of leakage resilience for cryptographic primitives. This threat
model assumes that an attacker can learn information about the secret
key, subject only to the constraint that the overall amount of leaked in-
formation is upper bounded by some value. The goal is then to construct
cryptosystems whose secret key length grows with the amount of leak-
age, but whose runtime (assuming random access to the secret key) is
independent of the leakage amount.
In this work, we combine the above two notions and construct local non-
malleable codes in the split-state model, that are secure against bounded
retrieval adversaries. Specifically, given leakage parameter `, we show
how to construct an efficient, 3-split-state, locally decodable and up-
datable code (with CRS) that is secure against one-time leakage of any
polynomial time, 3-split-state leakage function whose output length is
at most `, and one-time tampering via any polynomial-time 3-split-state
tampering function. The locality we achieve is polylogarithmic in the
security parameter.

1 Introduction

Non-malleable codes were introduced by Dziembowski, Pietrzak and Wichs [39]
as a relaxation of error-correcting codes, and are useful in settings where privacy—
but not necessarily correctness—is desired. Informally, a coding scheme is non-
malleable against a tampering function if by tampering with the codeword, the

? This work is supported in part by an NSF CAREER Award #CNS-1453045,
by a research partnership award from Cisco and by financial assistance award
70NANB15H328 from the U.S. Department of Commerce, National Institute of Stan-
dards and Technology.



function either keeps the underlying message unchanged or changes it to an un-
related message. The main application of non-malleable codes proposed in the
literature is achieving security against leakage and tampering attacks on memory
(so-called physical attacks or hardware attacks) [58,57], although non-malleable
codes have also found applications in other areas of cryptography [26,25,46] and
theoretical computer science [21].

In this work, we go beyond considering non-malleable codes in the context
of physical and/or hardware attacks and consider the problem of providing data
assurance in a network environment. Our main focus is on providing privacy and
integrity for large amounts of dynamic data (such as a large medical database
with many authorized users), while allowing for efficient, random access to the
data. We are interested in settings where all persistent data is assumed vulner-
able to attack and there is no portion of memory that is assumed to be fully
protected. We protect against bounded-retrieval adversaries, who may “leak”
(i.e. download) large amounts of data, as long as the total amount leaked is
bounded a priori.

In the following, we provide context for the contribution of this work by
discussing (1) the limitations of standard non-malleable codes, (2) the recent
notion of locally decodable and updatable non-malleable codes (LDUNMC) [29]
(for settings where large amounts of dynamic data must be protected) and (3)
the reason previous constructions of LDUNMC fall short in our setting.

Drawbacks of standard non-malleable codes. Standard non-malleable codes are
useful for protecting small amounts of secret data stored on a device (e.g. cryp-
tographic secret key) but unfortunately are not suitable in settings where, say,
an entire database must be protected. This is due to the fact that non-malleable
codes do not allow for random access: Once the database is encoded via a non-
malleable code, in order to access just a single location, the entire database must
first be decoded, requiring a linear scan over the database. Similarly, to update
a single location, the entire database must be decoded, updated and re-encoded.

Locally decodable and updatable non-malleable codes (LDUNMC). In a recent
result, [29] proposed a new notion called LDUNMC, which informally speaking,
provides the security guarantees of a non-malleable code while also allowing for
efficient random access (i.e. allowing to decode/update a particular position i of
the underlying message via DECC(i)/UPDATEC(i)). In more detail, we consider
a database D = D1, . . . , Dn consisting of n blocks, and an encoding algorithm
ENC(D) that outputs a codeword C = C1, . . . , Cn̂ consisting of n̂ blocks. As
introduced by Katz and Trevisan [54], local decodability means that in order
to retrieve a single block of the underlying database, one does not need to read
through the whole codeword but rather, one can access just a few locations
of the codeword. In 2014, Chandran et al. [17] introduced the notion of local
updatability, which means that in order to update (or “re-encode”) a single
block of the underlying database, one only needs to update a few blocks of the
codeword.

2



As observed by [29], achieving these locality properties requires a modifica-
tion of the definition of non-malleability: Suppose a tampering function f only
modifies one block of the codeword, then it is likely that the output of the de-
coding algorithm, DEC, remains unchanged in most locations. (Recall DEC gets
as input an index i ∈ [n] and will only access a few blocks of the codeword
to recover the i-th block of the database, so it may not detect the modifica-
tion.) In this case, the (overall) decoding of the tampered codeword f(C) (i.e.

(DECf(C)(1), . . . ,DECf(C)(n))) can be highly related to the original message,
which intuitively means it is highly malleable.

To handle this, [29] consider a more fine-grained experiment. They require
that for any tampering function f (within some class), there exists a simulator
that computes a vector of decoded messages D∗ and a set of indices I ⊆ [n]. Here
I denotes the coordinates of the underlying messages that have been tampered
with. If I = [n], then the simulator thinks that the decoded messages are D∗,
which should be unrelated to the original messages. On the other hand, if I ( [n],
the simulator thinks that all the indices not in I remain unchanged, while those
in I become ⊥. More formally, the output of the experiment is as follows:

1. If I = [n] then output the simulator’s output D∗, else
2. If I 6= [n] then for all i ∈ I, set D′(i) = ⊥ and for i /∈ I, set D′(i) = D(i),

where D(i) is the ith block of current underlying message D. Output D′.

This means the tampering function can do one of the following:

1. It destroys block(s) of the underlying messages—i.e. causes DEC to output
⊥ on those blocks—while keeping the other blocks unchanged, OR

2. If it modifies a block of the underlying message to a valid encoding, then
it must have modified all blocks to encodings of unrelated messages, thus
destroying the original message.

It turns out, as shown by [29], that the above is sufficient for achieving
tamper-resilience for RAM computations. Specifically, the above (together with
an ORAM scheme) yields a compiler for any RAM program with the guarantee
that any adversary who gets input/output access to the compiled RAM program
Π running on compiled database D and can additionally apply tampering func-
tions f ∈ F to the database D adaptively throughout the computation, learns
no more than what can be learned given only input/output access to Π running
on database D. Dachman-Soled et al. in [29] considered LDUNMC that are also
leakage-resilient, thus allowing for adversaries who continually leak information
about D in addition to tampering.

Drawbacks of LDUNMC. The final construction in [29] achieved a leakage re-
silient, LDUNMC in the split-state and relative leakage model. In the split-state
model, the codeword C is divided into sections called split-states and it is as-
sumed that adversarial tampering and leakage on each section is independent.
In the relative leakage model, the amount of information the adversary can leak
is at most ` bits, and all parameters of the system (including complexity of

3



DEC/UPDATE) scale with `. Thus, a main drawback of the construction of [29]
is that, since their result is in the relative leakage model, the efficiency of the
DEC/UPDATE procedures scales with the amount of leakage ` allowed from one
of the two split-states, which gives rise to the following dilemma: If the amount
of leakage, `, is allowed to be large, e.g. ` := Ω(n) · log |Σ̂| bits, where log |Σ̂| is
the number of bits in each block of the codeword, then locality is compromised,
since DEC/UPDATE must now have complexity that scales with Ω(n) · log |Σ̂|
and thus will need to read/write to at least Ω(n) data blocks. On the other
hand, if it is required that DEC/UPDATE have locality at most polylog(n), then
it means that leakage of at most ` bits, where ` := c · polylog(n) · log |Σ̂|, for
some c < 1, can be tolerated. In this work—motivated by a network setting,
in which the adversary typically corrupts a server and modifies memory while
downloading large amounts of data—we allow the adversary’s leakage budget
to be much larger than the complexity of DEC/UPDATE. We do assume that
if an adversary surpasses its budget, its behavior will be detected and halted
by network security monitors. Thus, an adversary cannot simply download the
entire encoded database (in which case security would be impossible to achieve)
without being caught.

1.1 Our Contributions and Results

Our first contribution is the conceptual contribution of introducing the notion
of locally decodable and updatable non-malleable codes in the BRM, which we
believe to be well-motivated, for the reasons discussed above.

We then construct LDUNMC in the split-state model, that are secure against
bounded retrieval adversaries. The bounded retrieval model (BRM) (cf. [10,9])
has been studied extensively in the setting of leakage resilience for crypto-
graphic primitives (e.g. public key encryption, digital signatures and identifi-
cation schemes). This threat model assumes that an attacker can repeatedly
and adaptively learn information about the secret key, subject only to the con-
straint that the overall amount of leaked information is upper bounded by some
value. Cryptosystems in the BRM have the property that while the secret key
length grows with the amount of leakage, the runtime (assuming random access
to the secret key) is independent of the leakage amount. Thus, the parameters
of interest in a bounded retrieval model cryptosystem are the following: (1) The
leakage parameter `, which gives the upper bound on the overall amount of leak-
age; (2) The locality t of the scheme which determines the number of locations
of the secret key that must be accessed to perform an operation (e.g. decryption
or signing); and (3) The relative leakage α := `/|sk|, which gives the ratio of
the amount of leakage to secret key length. Since we consider bounded retrieval
adversaries in the context of locally decodable and updatable codes, our threat
model differs from the standard BRM threat model in the following ways:

– We consider the protection of arbitrary data (not limited to the secret key
of a cryptosystem).

4



– We allow adversarial tampering in addition to bounded leakage and do not
assume that any portion of memory is tamper-proof1.

– We assume that both leakage and tampering are split-state, i.e. that the
leakage/tampering functions are applied independently to different sections
of memory.

In our setting, we retain the same parameters of interest `, t, α as above, with
the only differences that each split-state must be able to tolerate at least ` bits
of leakage and the overall relative leakage, α is taken to be the minimum relative
leakage over all split-states, where the relative leakage for each split-state is
computed as the maximum amount of allowed leakage for that split-state (which
may be greater than `) divided by the size of that split-state.

We additionally restrict ourselves to a one-time tampering and leakage model
(we discuss below the difficulties of extending to a fully continuous setting),
where the experiment proceeds as follows: The adversary interacts with a chal-
lenger in an arbitrary polynomial number of rounds and may adaptively choose
two rounds i, j where i ≤ j, specifying a single leakage function g ∈ G in round i
and a single tampering function f ∈ F in round j. The adversary gets to observe
the leakage in round i before specifying tampering function f in round j. At the
end of the experiment, the entire decoding of the (corrupted) codeword in each
round is released in addition to the leakage obtained in each round. Our security
requirement follows the ideal/real paradigm and requires that a simulator can
simulate the output of the leakage as well as the decoding of each position in
each round, without knowing the underlying encoded message. More precisely, as
in the definition of [29], in each round the simulator outputs a vector of decoded
data D∗ along with a set of indices I ⊆ [n]. Here I denotes the coordinates of
the underlying messages that have been tampered with. If I = [n], then the
simulator must output a complete vector of decoded messages D∗. On the other
hand, if I ( [n], the simulator gets to output “same” for all messages not in I,
while those in I become ⊥. When the output of the real and ideal experiments
are compared, positions designated as “same” are replaced with either the orig-
inal data in that position or with the most recent value placed in that position
by an update instruction. We next state our main result:

Theorem 1 (Informal). Under standard assumptions we have that for security
parameter λ ∈ N and ` := `(λ), there exists an efficient, 3-split-state, LDUNMC
(with CRS) in the bounded retrieval model that is secure against one-time tam-
pering and leakage for tampering class F and leakage class G, where

– F consists of all efficient, 3-split-state functions f = (f1, f2, f3).
– G consists of all efficient, 3-split-state functions g = (g1, g2, g3), such that
g1, g2, g3 each output at most ` bits.

The scheme has locality t := t(λ) ∈ polylog(λ) and relative leakage α := α(λ) ∈
1
8 − o(1).

1 [37] also allowed for tampering in the BRM setting, but required portions of memory
to be completely tamper-proof.

5



In fact, the number of bits leaked from the third split-state can be much
larger than ` and, in particular, will depend on the total size of the data being
stored. The above theorem guarantees that, regardless of the size of the database,
the relative leakage (for all three split-states) will be at least 1

8 − o(1).
The above theorem can be instantiated assuming the existence of collision-

resistant hash functions with subexponential security, NIZK with simulation
sound extractability and identity-based hash proof systems, which can be real-
ized from a variety of assumptions including standard assumptions in bilinear
groups and lattices.

To obtain our result of a RAM-compiler against 3-split-state adversaries in
the BRM, we note that using the same construction and proof of Theorem
4.6 in [29], we obtain a tamper and leakage resilient compiler TLR-RAM =
(CompMem,CompNext) that is one-time tamper and leakage resilient w.r.t. func-
tion families F ,G above, given an ORAM compiler that is access-pattern hiding
and a one-time non-malleable and leakage resilient LDUNMC w.r.t. function fam-
ilies F ,G as above. Moreover, the locality of the final compiled program, is t · t′,
where t is the locality of the underlying LDUNMC and t′ is the locality of the
underlying ORAM.

Applications. Our encoding scheme can be used to protect data privacy and
integrity while a RAM program is being computed on it in situations where:
(1) the data is stored across at least 3 servers, (2) the attacker can corrupt all
servers and launch a fully coordinated attack, (3) the attacker cannot down-
load too much data from any of the servers at once. (3) can be justified either
by assuming that the attacker has limited storage capacity or that an attacker
who tries to download too much data will be detected by network security mon-
itors. The advantage of using our approach of LDUNMC versus simply using
encryption to achieve privacy and a Merkle tree to achieve integrity is that our
approach allows tampering and leakage on all persistent data, whereas the for-
mer approach requires certain parts of memory (e.g. the parts storing the secret
keys for encryption/decryption and the root of the Merkle tree) to be leak and
tamper-free.

Difficulty of achieving continual tampering and leakage in the BRM setting. In
order to achieve continual security in the BRM model an attacker must be pre-
vented from running an attack in which it internally simulates the decode algo-
rithm by leaking the required information from the appropriate split-state each
time a read request is issued (this would trivially break privacy). The overall
leakage of such an attack is bounded—and so it will always qualify as a BRM
attack—since the local decodability property guarantees that only a small num-
ber of locations will be read. Indeed, our construction is vulnerable to such an
attack: We store the first part of the secret key in one split-state, the second part
of the secret key in a second split-state and ciphertexts in the third split-state.
An attacker can first leak a target ciphertext from the third split-state, learn the
locations required for decryption from the first split-state, leak those locations,
then learn the locations required for decryption from the second split-state and

6



leak those locations. It is unlikely (over the coins of update) that during this
three-round attack any of the relevant locations in the first and second split-
states are overwritten by the updater, since the few locations accessed by an
update are randomly distributed. Thus, after three rounds of leakage the at-
tacker has sufficient information to decrypt the target ciphertext. We leave open
the question of whether such an attack can be generalized to show an impossi-
bility result for continual LDUNMC in the BRM.

1.2 Techniques

Our construction proceeds in three stages:

Leakage Only (2-split-state construction). Here the attacker submits a single
split-state leakage function g := (g1, g2) and is not allowed to tamper. To achieve
security, we encrypt the database block-by-block using a CPA-secure public key
encryption (PKE) scheme in the BRM model. The codeword then has two split-
states: The first contains the secret key and the second contains the ciphertexts.
The locality and relative leakage of the scheme will be the same as that of the
underlying encryption scheme. Even though the leakage is on both the secret
key and ciphertexts, regular PKE in the BRM is sufficient since the leakage
g := (g1, g2) on both split-states is submitted simultaneously.

Leakage and Partial Tampering (2-split-state construction). Here the attacker
submits a split-state leakage function g := (g1, g2) followed by a split-state tam-
pering function f = (f1, f2), where f1 is required to be the identity function. In
terms of the previous construction, this means that the attacker gets to tamper
with the ciphertexts only, but not the secret key. A first attempt to extend the
previous construction is to use a CCA-secure PKE scheme in the BRM instead
of a CPA-secure scheme. This will allow the simulator to use the CCA oracle to
decrypt any encrypted blocks of the database that have been modified via tam-
pering, thus ruling out mauling attacks on any individual block. Unfortunately, it
does not prevent mauling attacks across blocks. Namely, some encrypted blocks
can be replaced with fresh valid encryptions while others remain the same, lead-
ing to a valid, decoded database which is different, but correlated to the original
data. To prevent this, we tie together the encrypted blocks in the database using
a Merkle tree and store the Merkle tree in the second split-state along with the
ciphertexts. During decode and update, we check that the relevant ciphertext
block is consistent with the Merkle root. Unfortunately, this still does not work
since the tampering function f2 can be used to update the Merkle tree and root
to be consistent with the modified ciphertexts at the leaves. Therefore, we addi-
tionally store a secret key for a signature scheme in the BRM model in the first
split-state and include a signature on the root of the Merkle tree in the second
split-state, which is verified during each decode and update. Note, however, that
existentially unforgeable signatures are impossible in the BRM model, since an
attacker can always use its leakage query g1 to learn a signature on a new mes-

7



sage. Nevertheless, so-called entropic signatures are possible [10,11]2. Entropic
signatures guarantee unforgeability for message distributions that have high en-
tropy, even conditioned on the adversary’s view after receiving the output of g1

but before receiving the output of g2. Thus, to argue non-malleability we show
that either (1) The ciphertexts contained in the second split-state are all low
entropy, conditioned on the adversary’s view after receiving the output of g1 but
before receiving the output of g2. In this case, it means that I = [n], i.e. all
the ciphertexts have been modified and so the decryption across all blocks will
lead to an unrelated database or (2) At least one ciphertext has high entropy,
conditioned on the adversary’s view after receiving the output of g1 but before
receiving the output of g2. In this case, we argue that the root of the Merkle tree
has high entropy and so an adversary who produces a forged signature violates
the entropic security of the BRM signature scheme. We refer reader to the full
version of the paper [27] for further details.

Full Leakage and Tampering (3-split-state construction). When trying to extend
the above construction to allow tampering on the secret (and public) keys, it
becomes clear that the entire secret key cannot be stored in a single split-state
due to the following trivial attack: The adversary leaks a single ciphertext from
the second split-state using leakage function g2 and subsequently tampers with
the first split-state using a tampering function f1 such that f1 does nothing if
the leaked ciphertext decrypts to 0, and otherwise erases the entire contents
of the first split-state. Such an attack clearly breaks non-malleability, since the
entire codeword will decode properly if the leaked block contained a 0, and de-
code to ⊥ otherwise. To overcome this attack, we introduce a third split-state:
We store the secret keys across the first two split-states and store the public
keys and ciphertexts in the third. We also replace the CCA-secure public key
encryption scheme in the BRM with a new primitive we introduce called CCA
secure SS-BRM public key encryption, which may be of independent interest
(See Subsection 2.2 for the definition and the full version of the paper [27] for a
construction and security proof). Given leakage parameter `, such an encryption
scheme stores the secret key in a split-state and guarantees CCA security even
under ` bits of split-state leakage both before and after seeing the challenge
ciphertext. The final construction is as follows: The first split-state stores the
first part of secret key of the SS-BRM PKE scheme, the secret key of the BRM
signature scheme, and a Merkle tree of the former two keys with root R1. The
second split-state stores the second part of the secret key of the SS-BRM PKE
scheme, and a Merkle tree of the key with root R2. The third split-state contains
the ciphertexts, Merkle tree and signature on the root as in the previous con-
struction and, in addition, stores a simulation-sound NIZK proof of knowledge

2 The constructions cited above are in the random oracle model. However, as discussed
in the full version of the paper [27], the primitive we require is slightly weaker than
regular entropic signatures in the BRM and can be constructed in a straightforward
manner in the standard model, without use of random oracles. For conceptual sim-
plicity we present our constructions and state our theorems in terms of the existence
of entropic signatures in the BRM.

8



of the pre-images of R1 and R2, with local verifiability (this is the reason a CRS
is necessary). The property of local verifiability is necessary to ensure locality
of decode/update and is achieved by using a probabilistically checkable proof
(PCP) on top of a regular NIZK. Note that while computation of the PCP is
expensive, this need only be done a single time, during the encode procedure,
but the proof remains static during decode/update. Decode/update proceed as
in the previous construction and additionally, during each decode/update, the
proof is verified using the local verifier. Each time a location is accessed in the
first or second split-state during decode/update, the corresponding locations in
the Merkle tree of the first and second split-state are checked and compared with
the R1 and R2 values contained in the proof statement in the third split-state.
If they do no match, an error is outputted. In the security proof, we reduce a
leakage/tampering adversary A to an adversary A′ against the SS-BRM PKE
scheme. To achieve this, when A submits its tampering query f = (f1, f2, f3),
A′ will use its post challenge leakage query to output a bit corresponding to
each leaf block in the first and second split-state indicating whether the block
is consistent with the corresponding Merkle root, R1 or R2. Now in order to
decode and update there are two cases, if the hash values R1 or R2 change, then
the statement of the NIZK changes and a candidate encryption and signature
secret key can be extracted from the proof. If the public keys, R1 and R2 do not
change, then the candidate encryption and signature secret keys are the orig-
inal keys and the CCA oracle can be used for decryption. In addition, during
each decode/update, before the candidate secret keys are used to perform the
decryption or signing operation, the post-challenge leakage is used to verify that
the corresponding blocks needed to perform the operation are consistent with
the R1 and R2 values contained in the proof. If yes, the candidate key is used
to decrypt or sign. If not, then an error is produced. See Section 3.

On 2 vs 3 split-states. A natural question is whether we can reduce the number
of split-states to 2, which would be optimal. Towards answering this question,
recall our newly introduced notion CCA secure SS-BRM public key encryption,
(described in the previous section), which given leakage parameter `, stores the
secret key in a split-state and guarantees CCA security even under ` bits of
split-state leakage before and after seeing the challenge ciphertext. This notion
gives rise to a 3-split-state construction of LDUNMC in the BRM model, since
each split-state of the key and the ciphertext must be stored separately. We note
that our construction of CCA secure SS-BRM public key encryption, given in
the full version [27] achieves a stronger notion of security, where the secret key
sk := sk1||sk2 is split into two parts and two phases of leakage are allowed: In
the first phase, leakage is allowed on sk1 and on (sk2, c), where c is the chal-
lenge ciphertext. Then, the challenge ciphertext is given to the adversary and an
additional leakage query is allowed on sk1 and on sk2. While this notion seems
useful for achieving 2-split-state construction of LDUNMC in the BRM model,
since sk1 can be stored in one split-state and (sk2, c) in the other, this approach
does not work for our construction (as we elaborate below). We therefore choose
to present the simpler notion of CCA secure SS-BRM public key encryption in

9



Subsection 2.2 and we refer reader to the full version of the paper [27] for the
construction/security proof.

The above does not help in reducing our construction from 3 to 2 split-states
since our proof requires one of the split-states (which contains the ciphertexts,
the Merkle tree, the signature on the root and the simulation-sound NIZK proof
of knowledge) to be entirely public, and thus must be stored in a separate state,
apart from both sk1 and sk2. This allows us to fully simulate the entire contents of
the split-state after the tampering function has been applied, which enables us to
use the NIZK knowledge extractor to extract the encryption and signature secret
keys from the (tampered) NIZK proof (as described previously). We cannot rely
on the BRM security of the encryption/signature scheme to instead leak the
extracted witness, since the witness corresponds to the encryption and signature
secret keys, which are required to be larger than the allowed leakage bound, `,
in order for security of the encryption/signature scheme to be possible.

1.3 Related Work

Non-Malleable Codes. The concept of non-malleability, introduced by Dolev,
Dwork and Naor [34] has been applied widely in cryptography, in both the com-
putational and information-theoretic setting. Error-correcting codes and early
works on tamper resilience [45,50] gave rise to the study of non-malleable codes.
The notion of non-malleable codes was formalized in the seminal work of Dziem-
bowski, Pietrzak and Wichs [39]. Split state classes of tampering functions intro-
duced by Liu and Lysyanskaya [62], have subsequently received much attention
with a sequence of improvements achieving reduced number of states, improved
rate, or other desirable features [36,3,20,2,7,1,56]. Recently [12,13,6,19,41] gave
efficient constructions of non-malleable codes for “non-compartmentalized” tam-
pering function classes. Other works on non-malleable codes and memory tam-
pering attacks include [52,42,23,4,51,16,5,53].

There are also several inefficient, existential or randomized constructions for
much more general classes of functions in addition to those above [39,22,44].
Choi et al. [24], in the context of designing UC secure protocols via tamperable
hardware tokens, consider a variant of non-malleable codes which has determin-
istic encoding and decoding. In contrast, our work relies on both randomized
encoding and decoding, as does the recent work of [12]. Chandran et al. [17]
introduced the notion of locally updatable and locally decodable codes. This
was extended by Dachman-Soled et al. [29] who introduced the notion of locally
decodable and updatable non-malleable codes with the application of construct-
ing compilers that transform any RAM machine into a RAM machine secure
against leakage and tampering. This application was also studied by Faust et
al. [43]. Recently, Chandran et al. [18] studied information-theoretic local non-
malleable codes. Dachman-Soled et al. [28] gave tight upper and lower bounds
on the construction of LDUNMC.

Memory Leakage Attacks. Recently, the area of Leakage Resilient Cryptography
has received much attention by the community. Here, the goal is to design cryp-
tographic primitives resistant to arbitrary side-channel attacks, permitting the

10



adversary to learn information about the secret key adaptively, as long as the
total amount of leaked information is bounded by some leakage parameter `. The
majority of the results are in the Relative Leakage Model, which allows the sys-
tems parameters to depend on ` with aim of making ` as large as possible relative
to the length of the secret key. Akavia et al. [8] started the study of side-channel
attacks in the public-key setting by showing Regev’s encryption scheme [67] is
leakage resilient in the relative leakage model. Naor and Segev [63] constructed
new public-key schemes based on non-lattice assumptions, which allowed for
more leakage and achieved CCA security. Katz and Vaikuntanathan [55] subse-
quently developed signature schemes in the relative leakage model.

The Bounded Retrieval Model (BRM). Introduced in [30,35], the model assumes
a bound ` on the overall amount of information learned by the adversary during
the lifetime of the system (usually by setting ` very large). This model differs
from the relative leakage model since it ensures that all the system parameters,
except the length of the secret key, are independent of `. Dziembowski [35],
constructed a symmetric key authenticated key agreement protocol in Random
Oracle model for the BRM setting, which was subsequently extended to stan-
dard model [15]. Password authentication and secret sharing in the BRM, was
studied in [30], and [38] respectively. Non-interactive symmetric key encryption
schemes using partially compromised keys were constructed by [66] implicitly
and by [31] explicitly. The first public key cryptosystems in the BRM were pro-
vided by [10] who built leakage-resilient identification schemes, leakage-resilient
signature schemes (in the random oracle model), and provided tools for convert-
ing schemes in relative leakage model to the BRM. Recently, Faonio et al. [40]
presented a construction of another weaker variant of leakage resilient signature
schemes (introduced by [65]); in BRM using random oracles. The first PKE
scheme in the BRM was provided by [9] based on assumptions like lattices,
quadratic residuosity and bilinear maps. Alwen et al. [11] provide an excellent
survey of various leakage resilient primitives in BRM.

2 Preliminaries

in this section we introduce the preliminaries on local non-malleable codes, RAM
and bounded retrieval model.

2.1 Preliminaries on Local Non-Malleable Codes

In this section we first review the notion of decodable and updatable codes. We
then present one time tampering and leakage experiment.

Definition 1 (Locally Decodable and Updatable Code). Let Σ, Σ̂ be sets
of strings, and n, n̂, p, q be some parameters. An (n, n̂, p, q) locally decodable and
updatable coding scheme consists of three algorithms (ENC,DEC,UPDATE) with
the following syntax:

The encoding algorithm ENC (perhaps randomized) takes input an n-block
(in Σ) database and outputs an n̂-block (in Σ̂) codeword.

11



The (local) decoding algorithm DEC takes input an index in [n], reads at
most p blocks of the codeword, and outputs a block of the database in Σ. The
overall decoding algorithm simply outputs (DEC(1),DEC(2), . . . ,DEC(n)).

The (local) updating algorithm UPDATE (perhaps randomized) takes inputs
an index in [n] and a string in Σ ∪{ε}, and reads/writes at most q blocks of
the codeword. Here the string ε denotes the procedure of refreshing without
changing anything.

Let C ∈ Σ̂n̂ be a codeword. For convenience, we denote DECC ,UPDATEC

as the processes of reading/writing individual blocks of the codeword, i.e. the
codeword oracle returns or modifies an individual block upon a query. Recall
that C is a random access memory where the algorithms can read/write to the
memory C at individual different locations.

Definition 2 (Correctness). An (n, n̂, p, q) locally decodable and updatable
coding scheme (with respect to Σ, Σ̂) satisfies the following properties. For any
database D = (D1, D2, . . . , Dn) ∈ Σn, let C = (C1, C2, . . . , Cn̂)← ENC(D) be a
codeword output by the encoding algorithm. Then we have:

for any index i ∈ [n], Pr[DECC(i) = Di] = 1, where the probability is over
the randomness of the encoding algorithm.

for any update procedure with input (i, v) ∈ [n]×Σ ∪ {ε} and for all j ∈ N,

let C(j+1) be the resulting codeword by running UPDATEC
(j)

(i, v). Then we

have Pr[DECC
(j+1)

(i) = v] = 1, where the probability is over the encoding
and update procedures. Moreover, the decodings of the other positions remain
unchanged.

Following [29], our definition includes a third party called the updater, who
reads the underlying messages and decides how to update the codeword. This
notion captures the RAM program computing on the underlying, unencoded
data. The adversary learns the location that the updater updated the messages,
but not the content of the updated messages.

Our experiment is interactive and consists of rounds: The adversary adap-
tively chooses two rounds i, j such that i ≤ j, submits a leakage function in
round i, gets its output and then submits a tampering function in round j. We
assume WLOG that at the end of each round, the updater runs UPDATE, and
the codeword will be somewhat updated and refreshed. The security experiment
then considers the decoding of the entire message after each round.

Definition 3 (One Time Tampering and Leakage Experiment). Let λ
be the security parameter, F ,G be some families of functions. Let (ENC, DEC,
UPDATE) be an (n, n̂, p, q)-locally decodable and updatable coding scheme with
respect to Σ, Σ̂. Let U be an updater that takes input a database D ∈ Σn and
outputs an index i ∈ [n] and v ∈ Σ ∪{ε}. Flags Leaked and Tampered will be set
to 0 and let r be the total number of rounds. Then for any blocks of databases
D = (D1, D2, . . . , Dn) ∈ Σn, and any (non-uniform) adversary A, any updater
U define the following experiment TamperLeakA,U,D:

12



Let D(0) = D. The challenger first computes an initial encoding C(0) ←
ENC(D).

Then the following procedure repeats, at each round j, recall C(j) be the
current codeword and D(j) be the underlying database:

– The updater computes (i(j), v) ← U(D(j)) for the challenger. The chal-

lenger runs UPDATEC
(j)

(i(j), v).

– A sends either a tampering function f ∈ F and/or a leakage function
g ∈ G or ⊥ to the challenger.

– if Leaked is 0 and g is sent by A, the challenger sends back a leakage
` = g(C(j+1)) and sets Leaked to 1.

– if Leaked is 1, Tampered is 0 and f is sent by A, the challenger replaces
the codeword with f(C(j+1)) and sets Tampered to 1.

– if Leaked is 1, Tampered is 1, ignore any function sent by A.

– We define D(j+1) def
=
(

DECC
(j+1)

(1), . . . ,DECC
(j+1)

(n)
)

. Where C(j+1)

is the tampered codeword.

– A may terminate the procedure at any point.

Let r be the total number of rounds. At the end, the experiment outputs(
`,D(0), . . . , D(r)

)
.

Definition 4 (One Time Non-malleability and Leakage Resilience
against Attacks). An (n, n̂, p, q)-locally decodable and updatable coding scheme
with respect to Σ, Σ̂ is non-malleable against F and leakage resilient against
G if for all ppt (non-uniform) adversaries A, and ppt updater U , there exists
some ppt (non-uniform) simulator S such that for any D = (D1, . . . , Dn) ∈ Σn,
TamperLeakA,U,D is (computationally) indistinguishable to the following ideal
experiment IdealS,U,D:

The experiment proceeds in rounds. Let D(0) = D be the initial database.

At each round j, the experiment runs the following procedure:

– At the beginning of each round, the updater runs (i(j), v) ← U(D(j))
and sends the index i(j) to the simulator. If v = ε, set D(j+1) := D(j)

otherwise the experiment updates D(j+1) as follows: D(j+1) := D(j) for
all coordinates except i(j), and set D(j+1)[i(j)] := v.

– S outputs (I(j+1),w(j+1)), where I(j+1) ⊆ [n].

– Define

D(j+1) =

{
w(j+1) if I(j+1) = [n]
D(j+1)|I(j+1) := ⊥, D(j+1)|Ī(j+1) := D(j+1)|Ī(j+1) otherwise

where x|I denotes the coordinates x[v] where v ∈ I, and bar denotes
complement.

Let r be the total number of rounds. S outputs ` and the experiment outputs(
`,D(0), . . . , D(r)

)
.

13



2.2 Preliminaries on RAM and Primitives in the BRM

We define random access machine, public key encryption in BRM and signature
schemes in the BRM and introduce a new construction called Split-State Public
Key Encryption in Bounded Retrieval Model (SS-BRM-PKE).

Preliminaries on Random Access Machines. We consider RAM programs
to be interactive stateful systems 〈Π, state, D〉, where Π denotes a next instruc-
tion function, state denotes the current state stored in registers, and D denotes
the content of memory. Upon input state and a value d, the next instruction func-
tion outputs the next instruction I and an updated state state′. The initial state
of the RAM machine, state, is set to (start, ∗). We denote by AD(x), the execution
of RAM algorithm A with random access to array D and explicit input x. We
define operator Access which outputs the access patterns of AD(x), and denote

by I the locations in D accessed by AD(x). Thus, we write I
Access←−−−− AD(x).

Public Key Encryption in the BRM. A public key encryption scheme (E)
in the BRM consists of the algorithms (KeyGen, Encrypt, Decrypt), which are all
parameterized by a security parameter λ and a leakage parameter `. The syntax
and correctness property of an encryption scheme follow the standard notion
of public-key encryption. We define the following CPA game, with leakage `,
between an adversary A and a challenger.

– Key Generation: The challenger computes (pk, sk) ← KeyGen(1λ, 1`) and
gives pk to the adversary A.

– Leakage: The adversary A selects a PPT function g : {0, 1}∗ → {0, 1}`
and gets g(sk) from the challenger.

– Challenge: The adversary A selects two messages m0, m1. The challenger
chooses b ← {0, 1} uniformly at random and gives c ← Encryptpk(mb) to
the adversary A.

– Output: The adversary A outputs a bit b′ ∈ {0, 1}. We say that A wins
the game if b′ = b.

For any adversary A, the advantage of A in the above game is defined as

AdvCPA
E,A (λ, `)

def
= |Pr[A wins]− 1

2 |.

Definition 5 (Leakage-Resilient PKE). [9] A public-key encryption scheme
E is leakage-resilient, if for any polynomial `(λ) and any PPT adversary A, we
have AdvCPA

E,A (λ, `(λ)) = negl(λ).

Definition 6 (PKE in the BRM). [9] We say that a leakage-resilient PKE
scheme is a PKE in the BRM, if the public-key size, ciphertext size, encryption-
time and decryption-time (and the number of secret-key bits read by decryption)
are independent of the leakage-bound `. More formally, there exist polynomials
pksize, ctsize, encT, decT, such that, for any polynomial ` and any (pk, sk) ←
KeyGen(1λ, 1`), m ∈ M, c ← Encryptpk(m), the scheme satisfies:

1. Public-key size is |pk| ≤ O(pksize(λ)), ciphertext size is |c| ≤ O(ctsize(λ, |m|)).

14



2. Run-time of Encryptpk(m) is ≤ O(encT(λ, |m|)).
3. Run-time of Decryptsk(c), and the number of bits of sk accessed is
≤ O(decT(λ, |m|)).

The relative-leakage of the scheme is α
def
= `
|sk| .

Alwen et al. [9] give a generic transformation to construct a CCA-secure PKE
scheme in the BRM using Naor-Young “double encryption” paradigm.

Signature Scheme in BRM. Consists of three algorithms: (Gen,Sign,Verify).
Attacker is separated into two parts, first part, A1, will interact with leakage
oracle and signing oracle and output an arbitrary hint for the second part, A2.
A2 only accesses signature oracle and tries to forge the signature of a message.
The Entropic Unforgeability attack Game EUGλ` is as follows:

1. Challenger select (vk, help, skσ)← Gen(1λ) and gives vk to A1.
2. Adversary A1 is given access to signing oracle Sskσ (·) and leakage oracle

Oλ,`skσ
(.) and outputs a hint v ∈ {0, 1}∗.

3. Adversary A2 is given access to hint v and signing oracle Sskσ (·) and outputs
message, signature pair (m,σ).

We define the advantage of the attacker A = (A1,A2) to be the probability that
Verifyvk(m,σ) = 1 and that the signing oracle was never queried with m.

Definition 7 (Signature Scheme). [10] Let V iewA1 be a random variable
denoting the view of A1 which includes its random coin and the responses it
gets from signing oracle and leakage oracle. Let MSGA2

be a random variable
of the messages output by A2 in EUGλ` . Adversary A = (A1,A2) is entropic

if H̃∞(MSGA2
| V iewA1

) ≥ λ for security parameter λ. We say a signature
scheme is entropically unforgeable with leakage ` if the advantage of adversary
A in EUGλ` is negligible in λ.
Remark 1. Entropic signatures in the BRM can be constructed in the random
oracle (RO) model (cf. [10,11]). Combining a signature scheme in the relative
leakage model (with additional properties) such as [55] with the leakage ampli-
fication techniques of [10], it may be possible to construct entropic signatures in
the BRM without RO. However, as discussed in full version of the paper [27],
the primitive we require is slightly weaker than regular entropic signatures in
the BRM and can be constructed in a straightforward manner in the standard
model, without RO. Nevertheless, for conceptual simplicity we present our con-
structions and state our theorems in terms of the existence of entropic signatures
in the BRM.

Split-State Public Key Encryption in the BRM (SS-BRM-PKE) We de-
fine a new primitive called as Split-State Public Key Encryption in Bounded
Retrieval Model (SS-BRM-PKE) with the following properties:

1. The secret key sk is stored in the split-state sk1||sk2 and the adversary is
allowed to obtain leakage on sk1 and sk2 independently.

15



2. The encryption scheme is secure in the bounded retrieval model, as defined
in Definition 6 with respect to the split-state leakage.

3. The encryption scheme is chosen plaintext attack (CPA)-secure even in the
presence of adversary who can observe the access pattern of the blocks of pk
and sk1||sk2 accessed during encryption and decryption procedure.

4. The scheme is CPA-secure against an adversary getting additional split-state
leakage (bounded) on the secret key, even after receiving the ciphertext.

Formally, a public key encryption scheme (E) in the SS-BRM consists of the
algorithms (KeyGen, Encrypt, Decrypt), which are all parameterized by a security
parameter λ and a leakage parameter `. The syntax and correctness property of
an encryption scheme follow the standard notion of public-key encryption. We
define the following semantic-security game (SS-BRM-PKE-CPA) with leakage `
between an adversary A and a challenger.

– Key Generation: The challenger computes (pk, sk1||sk2) ← KeyGen(1λ, 1`)
and gives pk to the adversary A.

– Message Commitment: The adversary A selects two messages m0, m1.
– Pre-challenge Leakage: The adversary A selects a PPT function g :=

(g1, g2) : {0, 1}∗ × {0, 1}∗ → {0, 1}` × {0, 1}` and gets L1 := g1(sk1),
L2 := g2(sk2) from the challenger.

– Challenge: The challenger chooses b ← {0, 1} uniformly at random and
gives c ← Encryptpk(mb) to the adversary A.

– Encryption Access Patterns: The challenger also sends the access pattern
(i(1), i(2), . . . , i(t)) corresponding to the encryption procedure, to A.

– Post-challenge Leakage: The adversary A selects a PPT function g′ :=
(g′1, g

′
2) : {0, 1}∗×{0, 1}∗ → {0, 1}`×{0, 1}` and gets L′1 := g′1(L1, L2, c, sk1),

L′2 := g′2(L1, L2, c, sk2) from the challenger.
– Decryption Access Patterns: The challenger also sends the access pattern

(S1, S2)
Access←−−−− Decryptsk1||sk2(c), to A. Si is a set of indices sij of ski for

i ∈ {1, 2} and j ∈ [n], where |sk1| = |sk2| = n. Also, |Si| = t, where t is the
number of locations of sk1 and sk2 required to be accessed to decrypt any
ciphertext.

– Output: The adversary A outputs a bit b′ ∈ {0, 1}. We say that A wins
the game if b′ = b.

For any adversary A, the advantage of A in the above game is defined as

AdvSS-BRM-PKE-CPA
E,A (λ, `)

def
= |Pr[Awins]− 1

2 |. It should be noted that the decryp-
tion access patterns indicating which parts of secret key were accessed during
the decryption must be provided to the adversary only after the leakage infor-
mation, otherwise the adversary can simply ask for the leakage on the secret key
positions “relevant” to the decryption of the challenge ciphertext.

Chosen Ciphertext Attack (CCA) security for SS-BRM-PKE can be defined as
the natural analogue of the above SS-BRM-PKE-CPA security experiment above.
We refer reader to full version of the paper [27] for the formal definition and the
construction. Given a SS-BRM-PKE-CPA scheme, a SS-BRM-PKE-CCA scheme
can be constructed via the double encryption paradigm (cf. [64,60,9]).

16



2.3 Additional Preliminaries

In this section we present definitions which are being used in the constructions.

Definition 8 (Entropy). The min-entropy of a random variable X is defined
as H∞(X) = − log(maxx Pr [X = x]). The conditional min-entropy of a random
variable X, conditioned on the experiment E is H̃∞(X|E) =
− log(maxA Pr

[
AE(·)() = X

]
). In the special case that E is a non-interactive

experiment which simply outputs a random variable Z, it is written as H̃∞(X|Z).

Definition 9 (Seed-Dependent Condenser [33]). An efficient function
Cond : {0, 1}n × {0, 1}d → {0, 1}m is a seed-dependent ([H∞ ≥ k] →ε [H∞ ≥
k′], t)-condenser if for all probabilistic adversaries A of size at most t who take a
random seed S ← {0, 1}d and output (using more coins) a sample X ← A(S) of
entropy H∞(X|S) ≥ k, the joint distribution (S,Cond(X;S)) is ε-close to some
(S,R), where H∞(R|S) ≥ k′.

We present the collision resistant hash function and Merkle Tree which are
being used to prevent mauling attacks.

Definition 10 (Collision-Resistant Hash Function Family [33]). A fam-
ily of hash functions H := {h : {0, 1}∗ → {0, 1}m} is (t, δ)-collision-resistant if
for any (non-uniform) attacker B of size at most t,

Pr [H(X1) = H(X2) ∧ X1 6= X2] ≤ δ where H ← H and (X1, X2)← B(H).

Theorem 2 (Theorem 4.1 [33]). Fix any β > 0. If H is a (2t, 2β−1/2m)-

collision-resistant hash function family, then Cond(X;H)
def
= H(x) for H ← H

is a seed-dependent (([H∞ ≥ m−β+1] → [H∞ ≥ m−β+log ε]), t)-condenser.

Definition 11 (Merkle Tree). Let h : X × X → X be a hash function that
maps two blocks of messages to one.3 A Merkle Tree Treeh(M) takes as input
a message M = (m1,m2, . . . ,mn) ∈ Xn. Then it applies the hash on each pair
(m2i−1,m2i), resulting in n/2 blocks. Then again, it partitions the blocks into
pairs and applies the hash on the pairs, which results in n/4 blocks. This is
repeated log n times, resulting a binary tree with hash values, until one block
remains. We call this value the root of Merkle Tree denoted Rooth(M), and the
internal nodes (including the root) as Treeh(M). Here M can be viewed as leaves.

Theorem 3. Assuming h is a collision resistant hash function. Then for any
message M = (m1,m2, . . . ,mn) ∈ Xn, any polynomial time adversary A,

Pr
[
(m′i, pi) ← A(M,h) : m′i 6= mi, pi is a consistent path with Rooth(M)

]
≤

negl(λ).
Moreover, given a path pi passing through the leaf mi; and a new value m′i,

there is an algorithm that computes Rooth(M ′) in time poly(log n, λ), where
M ′ = (m1, . . . ,mi−1,m

′
i,mi+1, . . . ,mn).

3 Here we assume |X | is greater than the security parameter.

17



In the following we present simulation-sound extractable NIZK proof for
which an efficient construction can be found in [47].

Definition 12 (NIZK Proof System). Let R be an efficiently computable
binary relation. For pairs (x,w) ∈ R we call x the statement and w the witness.
Let L be the language consisting of statements in R. A proof system for a relation
R consists of a crs generation algorithm (CRSGEN), prover (P) and verifier (V),
which satisfy completeness and soundness properties as follows.

Definition 13 (Completeness). For all x ∈ L and all the witnesses w

Pr [V(crs, x, π ← P(crs, x, w)) = 1] ≥ 1− negl(λ)

Definition 14 (Computational Zero-Knowledge). We call (CRSGEN,P,V)
an NIZK proof for relation R if there exists a polynomial time simulator S =
(S1,S2) such that for all non-uniform polynomial time adversaries A we have

Pr
[
crs← CRSGEN(1λ) : AP(crs,.,.)(crs) = 1

]
c
≈

Pr
[
(crs, τ)← S1(1λ) : AS(crs,τ,.,.)(crs) = 1

]
where S(crs, τ, x, w) = S2(crs, τ, x) for (x,w) ∈ R and both oracles output failure
if (x,w) /∈ R.

Definition 15 (Simulation-Sound Extractability [47]). Consider an NIZK
proof of knowledge (CRSGEN,P,V,S1,S2, E1, E2). Let SE1 be an algorithm that
outputs (crs, τ, ξ) such that it is identical to S1 when restricted to the first two
parts (crs, τ). We say the NIZK proof is simulation sound if for all non-uniform
polynomial time adversaries we have

Pr[(crs, τ, ξ)←SE1(1λ); (x, π)← AS2(crs,τ,·)(crs, ξ);w ← E2(crs, ξ, x, π) :

(x, π) /∈ Q and (x,w) /∈ R and V(crs, x, π) = 1] ≈ 0
(1)

where Q is the list of simulation queries and responses (xi, πi).

Definition 16 (Probabilistically Checkable Proofs [14]). For functions
r, q : N → N we say that a probabilistic oracle machine V is a (r, q)-PCP
verifier if, on input a binary string x of length n and given oracle access to a
binary string π, V runs in time 2O(r(n)), tosses r(n) coins, makes q(n) queries to
π, and outputs either 1 (accept) or 0 (reject). A language L belongs in the class
PCPs[r(n), q(n)] if there exists a (r, q)-PCP verifier VL such that the following
holds:

1. Completeness: If x ∈ L then there exists π such that PrR[V πL (x;R) = 1] = 1.
2. Soundness: If x /∈ L then for every π it holds that PrR[V πL (x;R) = 1] < 1/2.

Theorem 4 (PCP Theorem). NP = PCP[O(log n), O(1)].

18



To achieve negligible soundness, we can run the verifier polylogarithmic
number of times in parallel, which results in polylogarithmic number of ver-
ifier queries to the proof, π. In [14], they give constructions of PCPs with
the above properties, which also allow for knowledge extraction. I.e., assum-
ing PrR[V πL (x;R) = 1] ≥ 1/2, there is an efficient extractor which, given π, can
extract a witness w for the statement x ∈ L.

3 Achieving Full One-Time Tamper and Leakage
Resilience (OT-TLR)

We next present our construction to achieve full resilience against one time
leakage and tampering attacks. The relevant definitions can be found in Subsec-
tion 2.3. As a preliminary step, we present a construction for achieving resilience
against one time leakage and partial tampering attacks and we refer to full ver-
sion of the paper [27] for the details of the construction.

Construction Π = (ENC,DEC,UPDATE). Let E = (KeyGen,Encrypt,Decrypt)
be a CCA-secure SS-BRM-PKE scheme, V = (Gen,Sign,Verify) be a signature
scheme in the BRM and H is a family of collision resistance hash functions and
ΠNIZK , ΠPCP which are NIZK and PCP proof systems, respectively. Then we
consider the following coding scheme:

Preprocessing. crs← CRSGEN(1λ) and h← H are sampled and CRS := (crs, h)
is published. Note that the size of CRS depends on security parameter, but not
on the size of the database nor on the leakage parameter `. Note that CRS is
implicit input to all algorithms.

ENC(D): On input database D = (D1, D2, . . . , Dn) ∈ Σn:

– Choose (pk, sk1
ε, sk2

ε) ← E .KeyGen(1λ, 1`), where sk1
ε ∈ Σ̂n′1 , sk2

ε ∈ Σ̂n′2 , and
define skε := (sk1

ε||sk2
ε), (vk, skσ)← V.Gen(1λ).

– Set D̃0 := 0.

– Compute D̃i ← E .Encryptpk(Di) for i ∈ [n]. Let D̃ := D̃0, . . . , D̃n. Set4

TD̃ := Treeh(D̃), σ := V.Signskσ (RD̃), where RD̃ := Rooth(TD̃).

– Construct the hash tree for secret keys sk1
ε, skσ, Tsk1 = Treeh(sk1

ε, skσ) and
Rsk1 := Rooth(Tsk1). Repeat the same procedure for secret key sk2

ε and
compute Tsk2 = Treeh(sk2

ε) and Rsk2 := Rooth(Tsk2).

– For the statement xNIZK = (pk, vk)|| “I know pre-images of hashesRsk1 , Rsk2”
and witness w = (skε||skσ) construct the proof
πNIZK ← ΠNIZK .P(crs, xNIZK , w).

– For the statement xPCP = “I know an accepting NIZK proof for the
statement xNIZK”, construct a proof πPCP ← ΠPCP .P(crs, xPCP , πNIZK).

4 We additionally pad the tree T with dummy leaves consisting of uniform random
values to ensure that the relative leakage on the second split state, C2 is at least 1

6
.

19



– Output codeword C := (C1, C2, C3) ∈ Σ̂n1 × Σ̂n2 × Σ̂n3 , where

C1 := (sk1
ε, skσ, Tsk1 , Rsk1) C2 := (sk2

ε, Tsk2 , Rsk2)

C3 := (pk, vk, D̃, TD̃, RD̃, σ, πPCP )

DECC(i): On input i ∈ [n]:

– Parse C := (sk1
ε, skσ, Tsk1 , Rsk1 , sk2

ε, Tsk2 , Rsk2 , pk, vk, D̃, TD̃, RD̃, σ, πPCP ).

– Check whether D̃0 := 0. If not, output ⊥ and terminate.
– Read path pi in TD̃, corresponding to leaf i and use pi to recompute R̂ =

Rooth(pi).
– Check that R̂ := RD̃. If not, output ⊥ and terminate.

– Check that V.Verifyvk(RD̃, σ) = 1. If not, output ⊥ and terminate.
– Run ΠPCP .V(crs, xPCP , πPCP ) if outputs 0, output ⊥ and terminate.
– For each accessed location of sk1

ε and sk2
ε, read the paths in Tsk1 and Tsk2 ,

respectively. Compute R̂sk1 = Rooth(Tsk1), R̂sk2 = Rooth(Tsk2) and verify
that R̂sk1 = Rsk1 and R̂sk2 = Rsk2 for each of them. If any of the verification
failed, output ⊥ and terminate.

– Output Di := E .Decryptsk
1
ε||sk

2
ε(D̃i).

UPDATEC(i, v): On inputs an index i ∈ [n], and a value v ∈ Σ:

– Run DECC(i). If it outputs ⊥, set D̃0 := 1, write back to memory and
terminate.

– Parse C := (sk1
ε, skσ, Tsk1 , Rsk1 , sk2

ε, Tsk2 , Rsk2 , pk, vk, D̃, TD̃, RD̃, σ, πPCP ).

– Set D̃′i ← E .Encryptpk(v) Let D̃′ := D̃0, . . . , D̃i−1, D̃
′
i, D̃i+1, . . . , D̃n.

– Read path pi in TD̃, corresponding to leaf i and use (pi, D̃
′
i) to compute a

new path p′i (that replaces D̃i by D̃′i). Set R′
D̃

= Rooth(p′i). Let T ′
D̃

denote
the updated tree.

– Compute σ′ := V.Signskσ (R′
D̃

).

– For each accessed location of skσ read the paths in Tsk1 . Compute R̂sk1 =
Rooth(Tsk1) and verify that R̂sk1 = Rsk1 for each of them. If any of the
verification failed, output ⊥ and terminate.

– Write back (D̃′i, T
′
D̃
, p′i, R

′
D̃
, σ′) yielding updated codeword C ′ := (C ′1, C

′
2, C

′
3)

where
C ′1 := (sk1

ε, skσ, Tsk1 , Rsk1) C ′2 := (sk2
ε, Tsk2 , Rsk2)

C ′3 := (pk, vk, D̃′, T ′
D̃′
, R′

D̃′
, σ′, πPCP ).

Locality of the construction. DEC and UPDATE must read the entire CRS,
whose size depends only on security parameter λ and not on the size of the
data. In addition, using the SS-BRM-PKE scheme, refer to full version [27] for
construction, (along with sub-exponentially hard PRG), and the PCP of [14],
DEC and UPDATE must make polylog(λ) number of random accesses to C.

Remark 2. Note that although computing the PCP proof πPCP is expensive, it
is only done a single time, during ENC, but remains static during UPDATE.

20



Theorem 5. For security parameter λ ∈ N, leakage parameter ` := `(λ), al-
phabet Σ such that log |Σ| ∈ Ω(λ), and database size n := n(λ): Assume
E = (KeyGen,Encrypt,Decrypt) is a CCA-secure SS-BRM PKE scheme with
leakage parameter 2`+ λ and relative leakage α < 1, V = (Gen,Sign,Verify) is a
signature scheme in the BRM with leakage parameter 2`+λ and relative leakage
α < 1, H is a family of collision resistant hash functions with sub-exponential
security, and ΠNIZK , ΠPCP are NIZK with simulation-sound extractability and
PCP proof systems, respectively. Then Π is a one-time tamper and leakage re-
silient locally decodable and updatable code taking messages in Σn to codewords
in Σ̂n1 × Σ̂n2 × Σ̂n3 , which is secure against tampering class

F̄ def
=

{
f : Σ̂n1 × Σ̂n2 × Σ̂n3 → Σ̂n1 × Σ̂n2 × Σ̂n3 and |f | ≤ poly(λ), s. t. :

f = (f1, f2, f3), f1 : Σ̂n1 → Σ̂n1 , f2 : Σ̂n2 → Σ̂n2 , f3 : Σ̂n3 → Σ̂n3 .

}
,

and is leakage resilient against the class

Ḡ def
=


g : Σ̂n1 × Σ̂n2 × Σ̂n3 → {0, 1}` × {0, 1}` × {0, 1}

n3·log |Σ̂|
6

and |g| ≤ poly(λ), s.t. :

g = (g1, g2, g3), g1 : Σ̂n1 → {0, 1}`, g2 : Σ̂n2 → {0, 1}`,
g3 : Σ̂n3 → {0, 1}

n3·log |Σ̂|
6 .

 .

Moreover, Π has relative leakage α
8 − o(1).

Proof. To prove the theorem, for any efficient adversary A, we must construct a
simulator S, such that for any initial database D ∈ Σn and any efficient updater
U , the experiment of one time attack TamperLeakA,U,D is indistinguishable
from the ideal experiment IdealS,U,D.

The simulator S first samples random coins for the updater U , so its output
just depends on its input given the random coins. Then S works as follows:

Initially S samples (pk, sk1
ε, sk2

ε)← E .KeyGen(1λ, 1`), (vk, skσ)← V.Gen(1λ),
crs ← CRSGEN(1λ) and h ← H, sets D̃0 = 0 and generates n encryptions
of 0, i.e., D̃1, D̃2, . . . , D̃n where D̃i ← E .Encryptpk(0) for i ∈ [n]. Let D̃(1) :=

D̃0, D̃1, . . . , D̃n. S computes T
(1)

D̃
:= Treeh(D̃(1)). Let σ(1) = V.Signskσ (R

(1)

D̃
),

where R
(1)

D̃
is the root of the tree T

(1)

D̃
. S computes Tski := Treeh(ski) for

i ∈ {1, 2}, Rski denotes the root of the tree Tski . S keeps global variables
flag, Leaked,Tampered = 0.

At each round j, let C(j) := (C
(j)
1 , C

(j)
2 , C

(j)
3 ), where

C
(j)
1 := (sk1

ε, skσ, Tsk1 , Rsk1) C
(j)
2 := (sk2

ε, Tsk2 , Rsk2)

C
(j)
3 := (pk, vk, D̃(j), T

(j)

D̃
, R

(j)

D̃
, σ(j), πPCP ),

denote the current simulated codeword stored by S and let w(j) denote the

simulator’s output in the previous round. In the first round, w
(0)
i := same

for all i ∈ [n]. In each round, S does the following:

21



Simulating Update:

– If flag = 0, S does the following: Receives an index i(j) ∈ [n] from the

updater. Runs UPDATEC
(j)

(i(j), 0). Let C(j+1) be the resulting codeword
after the update.

– If flag = 1, S does the following: Computes (i(j), v) ← U(w(j)) on his

own, and runs UPDATEC
(j)

(i(j), v). Let C(j+1) be the resulting codeword
after the update.

Simulating the Round’s Output:

– S sets (D̃0, D̃1, . . . , D̃n) := D̃(j+1).

– S emulates the adversaryA and receives g1, g2, g3 ∈ Ḡ and f1, f2, f3 ∈ F̄ .

– If Leaked is 0, then S computes `1 := g1(sk1
ε, skσ, Tsk1 , Rsk1), `2 :=

g2(sk2
ε, Tsk2 , Rsk2), `3 := g3(pk, vk, D̃(j+1), T

(j+1)

D̃
, R

(j+1)

D̃
, σ(j+1), πPCP )

sets ` := (`1, `2, `3) and sets Leaked to 1.

– If Leaked = 1 and Tampered = 0, S computes C ′ = (C ′1, C
′
2, C

′
3) where

C ′1 := (sk
′1
ε , sk′σ, T

′
sk1 , R

′
sk1) := f1(C1) C ′2 := (sk

′2
ε , T

′
sk2 , R

′
sk2) := f2(C2)

C ′3 := (pk′, vk′, D̃′, T ′
D̃′
, R′

D̃′
, σ′, π′PCP ) := f3(C3).

and sets Tampered to 1.

– If flag = 0, S does the following:

• S sets I(j+1) = {u : ∀u ∈ [n] s.t. D̃′u 6= D̃u ∨ DECC
′
(u) = ⊥}, i.e.

the indices where D̃′ is not equal to D̃ or where decode evaluates to
⊥. S sets I(j+1) = [n] if x′NIZK 6= xNIZK . If I(j+1) = [n], S sets
flag := 1. If I(j+1) 6= [n], S outputs {`,w(j+1)}, where w(j+1)[i] = ⊥
for i ∈ I(j+1) and w(j+1)[i] = same for i /∈ I(j+1).

– If flag = 1, S simulates the real experiment faithfully: For i ∈ [n], S sets

w(j+1)[i] := DEC(C′)(i), i.e. running the real decoding algorithm. Then
S outputs {`,w(j+1)}.

To show TamperLeakA,U,D ≈ IdealS,U,D, we consider several hybrids.

Hybrid H0: This is exactly the experiment IdealS,U,D.

Hybrid H1: Change πPCP to a simulated proof, using ZK property of the un-
derlying NIZK.

Claim 3.1. H0
c
≈ H1.

Event EV3: xNIZK 6= x′NIZK , the verifier accepts, but the extractor fails to
extract the witness from πPCP .

The following claim is due to the simulation-sound extractability property of
the proof system.

Claim 3.2. EV3 occurs with negligible probability in hybrid H1.

22



Hybrid H2: We use the knowledge extractor of the PCP and NIZK to extract
sk′ε, sk′σ. Everything in the decoding algorithm remains the same up to the final
bullet in which the decryption is done by using sk′ε, instead of using the contents
of memory. Everything in the update algorithm also remains the same up to
second to last bullet, where signing will now be done with sk′σ, instead of using
the contents of memory.

The following claim is due to collision resistance of h.

Claim 3.3. H1
c
≈ H2.

Hybrid H3: The simulator does not encrypt all 0’s (i.e. E .Encryptpk(0)); instead,
it encrypts the real messages.

Claim 3.4. H2
c
≈ H3.

Proof. Assume there exists an efficient adversary A distinguishing hybrids H2

and H3 with non-negligible advantage. We construct an efficient adversary A′
breaking the SS-BRM-PKE-CCA security of the encryption scheme E . A′ par-
ticipates externally in the security game for the SS-BRM PKE scheme (See
Subsection 2.2 for definition) while internally instantiating A. We next describe
A′:
A′ receives pk from Key Generation of its external challenger.

A′ samples (vk, skσ) ← V.Gen(1λ), h ← H, (crs′, τ, ξ) ← SE1(1λ). A′ sets
CRS := (crs′, h).

Let D1, . . . , Dn denote the initial contents of the database. A′ runs the
updater (with fixed coins, as described above) to obtain all the updates
D′1, . . . , D

′
p in advance (where p := p(λ) for polynomial p(·) denotes the run-

time of the Updater). A′ submits vectors of messages D0,D1, of dimension
n+ p, as Message Commitment. Where D0 is a vector of all 0’s and D1

corresponds to the messages as described above.

A′ instantiatesA on input CRS and waits to receive leakage query (g1, g2, g3)
from A.

Upon receiving leakage query (g1, g2, g3), A′ submits the following Pre-
challenge split-state leakage query to its challenger:

G1(sk1
ε) := (Rooth(Treeh(sk1

ε, skσ)), g1(sk1
ε, skσ, Tsk1 , Rsk1))

G2(sk2
ε) := (Rooth(Treeh(sk2

ε), g2(sk2
ε, Tsk2 , Rsk2)),

where Rsk1 := Rooth(Treeh(sk1
ε, skσ)) and Rsk2 := Rooth(Treeh(sk2

ε)).

A′ receives in return the output of its leakage queries (Rsk1 ||`1, Rsk2 ||`2)
as well as challenge ciphertexts D̃i, i ∈ [n] and D̃′j , j ∈ [p]. Let D̃(1) :=

(D̃1, . . . , D̃n, D̃
′
1, . . . , D̃

′
p). A′ computes T

(1)

D̃
:= Treeh(D̃(1)) and computes

σ(1) = V.Signskσ (R
(1)

D̃
), where R

(1)

D̃
:= Rooth(Treeh(D̃(1))). A′ keeps global

variables flag, Leaked,Tampered = 0.

23



A′ uses the simulated proof π′NIZK ← S2(crs′, τ, xNIZK = (Rsk1 , Rsk2)) to
construct the simulated PCP proof π′PCP . Note thatA′ now knows the entire

contents of the third partition of the codeword, C3 := (pk, vk, D̃(1), T
(1)

D̃
, R

(1)

D̃′
,

σ(1), π′PCP )). Also note that we assume the proof π′PCP contains the state-
ment x′PCP (and thus also x′NIZK) to be proven, which includes the hash
values Rsk1 , Rsk2 .

A′ rewinds A back to the beginning and instantiates A.

At each round j, let

C
(j)
3 := (pk, vk, D̃(j), T

(j)

D̃
, R

(j)

D̃
, σ(j), π′PCP )

denote the third partition of the current simulated codeword stored by A′.
We maintain the invariant that A′ knows the entire contents of C

(j)
3 , for

j ∈ [p]. Let w(j) denote the simulator’s output in the previous round. In the

first round, w
(0)
i := same for all i ∈ [n]. In each round, A′ does the following:

Simulating Update:
– If flag = 0, A′ does the following: Computes the next index i(j) ∈ [n]

generated by the updater. Runs UPDATE
C(j)

(i(j),⊥, D̃′j). Let C(j+1) be
the resulting codeword after the update.

– If flag = 1, A′ does the following: Computes (i(j), v) ← U(w(j)) on

his own, and runs UPDATE
C(j)

(i(j), v,⊥). Let C(j+1) be the resulting
codeword after the update.

Simulating the Round’s Output:

– A′ sets (D̃0, D̃1, . . . , D̃n) := D̃(j+1), TD̃ := T
(j+1)

D̃
, and RD̃ := R

(j+1)

D̃

and σ = σ(j+1).

– A′ emulates the adversary A and receives g1, g2, g3 ∈ Ḡ, f1, f2, f3 ∈ F̄ .

– If Leaked is 0, then A′ computes `3 := g3(C
(j+1)
3 ) (recall `1, `2 were

received previously), returns ` := (`1, `2, `3) to A and sets Leaked to 1.

– If Leaked is 1 and Tampered is 0, then A′ computes C ′3 := f3(C
(j+1)
3 ),

and sets Tampered to 1. A′ submits the following Post-challenge split-

state leakage query to its challenger: F1(sk1
ε) := f ′1(sk1

ε, skσ, R
(j+1)

sk1
) and

F2(sk2
ε) := f ′2(sk2

ε, R
(j+1)

sk2
), where f ′1 computes C ′1 := f1(C

(j+1)
1 ) and

then outputs a vector η1 ∈ {0, 1}n
′
1 such that for all i ∈ [n′1], η1[i] = 1 if

the path pi in the Merkle tree in C ′1 is consistent with the root contained

in π′PCP and 0 otherwise. Similarly, f ′2 computes C ′2 := f2(C
(j+1)
2 ) and

then outputs a vector η2 ∈ {0, 1}n
′
2 such that for all i ∈ [n′2], η2[i] = 1

if the path pi in in the Merkle tree in C ′2 is consistent with the root
contained in π′PCP and 0 otherwise.

– A′ additionally receives the Decryption Access Patterns for the chal-

lenge ciphertexts, i.e. , (S1
i , S

2
i )

Access←−−−− E .Decryptsk
1
ε||sk

2
ε(D̃i), i ∈ [n] and

(S1
j , S

2
j )

Access←−−−− E .Decryptsk
1
ε||sk

2
ε(D̃′j), j ∈ [p].

24



– If flag = 0, A′ does the following:

• A′ sets I(j+1) = {u : ∀u ∈ [n] s.t. D̃′u 6= D̃u ∨ DEC
C′

(u) = ⊥}, i.e.
the indices where D̃′ is not equal to D̃ or where decode evaluates
to ⊥. A′ checks π′PCP and sets I(j+1) = [n] if x′NIZK 6= xNIZK . If
I(j+1) = [n], A′ sets flag := 1. If I(j+1) 6= [n], S outputs {`,w(j+1)},
where w(j+1)[i] = ⊥ for i ∈ I(j+1) and w(j)[i] = same for i /∈ I(j+1).

– If flag = 1, A′ sets w(j+1)[i] := DEC
(C′)

(i), for i ∈ [n], and outputs
{`,w(j+1)}.

Once p rounds have completed, A′ outputs whatever A does and terminates.

DEC, UPDATE are defined as follows.

DEC
C

(i): On input i ∈ [n] in round j ∈ [p]:

– Parse C3 := (pk′, vk′, D̃, TD̃, RD̃, σ, π
′
PCP ).

– Check whether D̃0 := 0. If not, output ⊥ and terminate.

– Read path pi in TD̃, corresponding to leaf i and use pi to recompute

R̂ = Rooth(pi).

– Check that R̂ := RD̃. If not, output ⊥ and terminate.

– Check that V.Verifyvk
′
(RD̃, σ) = 1. If not, output ⊥ and terminate.

– Run VPCP (crs′, π′PCP ) if outputs 0, output ⊥ and terminate.

– Let (S1
j ,S2

j ) be decryption access patterns; ∀s1 ∈ S1
j and ∀s2 ∈ S2

j , if

η1[s1] = 1 and η2[s2] = 1 then continue. Else, output ⊥ and terminate.

– If x′NIZK 6= xNIZK output Di := E .Decryptsk
′
ε(D̃i), where

sk′ε ← ΠNIZK .E2(crs′, ξ, πNIZK) is the secret key extracted from the
proof π′PCP . E2 is the witness extractor similar to Definition 15. Else,

compute Di := E .Decryptskε(D̃i), by querying the decryption oracle for
the CCA secure SS-BRM-PKE with the original secret key.

UPDATE
C

(i, v, D̃′j): On inputs an index i ∈ [n], a value v ∈ Σ and a cipher-

text D̃′j ∈ Σ̂ in round j ∈ [p]:

– Run DEC
C

(i). If it outputs ⊥, set D̃0 := 1, write back to memory and
terminate.

– Parse C3 := (pk′, vk′, D̃, TD̃, RD̃, σ, π
′
PCP ).

– If v = ⊥, Let D̃′ := D̃0, . . . , D̃i−1, D̃
′
j , D̃i+1, . . . , D̃n. Read path pi in TD̃,

corresponding to leaf i and use (pi, D̃
′
j) to compute a new path p′i (that

replaces D̃i by D̃′j). Set RD̃′ = Rooth(p′i). Let TD̃′ denote the updated
tree.

– If v 6= ⊥, set D̃′′i ← E .Encryptpk
′
(v). Otherwise, set D̃′′i := D̃′j . Let D̃′ :=

D̃0, . . . , D̃i−1, D̃
′′
i , D̃i+1, . . . , D̃n. Read path pi in TD̃, corresponding to

leaf i and use (pi, D̃
′′
i )) to compute a new path p′i (that replaces D̃i by

D̃′′i ). Set RD̃′ = Rooth(p′i). Let TD̃′ denote the updated tree.

– Let Sσj
Access←−−−− V.Signskσ (RD̃′); ∀s ∈ Sσj , if η1[s] = 1 then continue.

Else, output ⊥ and terminate.

25



– If x′NIZK 6= xNIZK Compute σ′ := V.Signsk′σ (R′
D̃

), where

sk′σ ← E2(crs, ξ, πNIZK) is the secret key extracted from the proof
π′PCP . E2 is the witness extractor similar to Definition 15. Otherwise,

compute σ′ := V.Signskσ (R′
D̃

), where where skσ is the original secret key.

– Write back (D̃′i, p
′
i, RD̃′ , σ

′) yielding updated codeword

C ′3 := (pk′, vk′, h, D̃′, TD̃′ , RD̃′ , σ
′, π′PCP ).

If D̃i, i ∈ [n] and D̃′j , j ∈ [p] are encryptions of all 0’s then the view of A is

identical to its view in Hybrid H2. Alternatively, if D̃i, i ∈ [n] and D̃′j , j ∈ [p]
are encryptions of the honest data values, then the view of A is identical to
its view in Hybrid H3. Thus, if A distinguishes with non-negligible advantage,
then A′ distinguishes encryptions of all 0’s from encryptions of correct data with
non-negligible advantage, breaking the CCA security of the encryption scheme
and resulting in contradiction.

Hybrid H4: In the case that pk, vk are changed and flag = 1, go back to using
sk1
ε and sk2

ε for decryption .

The following claim is due to collision resistance of h.

Claim 3.5. H3
c
≈ H4.

Hybrid H5: Go back to using the real crs and real proof πPCP .

The following claim is due to the zero knowledge property of the proof system.

Claim 3.6. H4
c
≈ H5.

Hybrid H6: This is exactly the experiment TamperLeakA,U,D.

Claim 3.7. H5
c
≈ H6.

Proof. The only difference between H5 and real experiment is the case where

flag = 0, D̃′u 6= D̃u and DECC′(u) 6= ⊥,

(S would output ⊥ at position u whereas real experiment would output

DECC
′
(u) 6= ⊥) which can only happen if events EV1 or EV2 occur (see Figure 1

for their definition).

We next claim that both events occur with negligible probability, thus show-
ing that Hybrids H5 and H6 differ with negligible probability.

Claim 3.8. EV1 and EV2 occur with negligible probability in H5.

We omit the proof of the above claim since it is nearly identical to the
corresponding claims in the proof of the construction for partial one-time tamper
and leakage resilience and we refer reader to the full version of the paper [27] for
that proof.

This completes the proof of Theorem 5.

26



Event EV1:

– pk′||vk′ = pk||vk. (otherwise flag = 1)
– I(j+1) 6= [n]. (otherwise flag = 1)
– R′ 6= R(j+1).
– Verify(vk, R′, σ′) = 1.

Event EV2:

– pk′||vk′ = pk||vk. (otherwise flag = 1)
– I(j+1) 6= [n]. (otherwise flag = 1)
– R′ = R(j+1).
– For some i ∈ I(j+1), we have that for
D̃′

i and corresponding path p′i, R
′
D̃

=
Rooth(p′i).

Fig. 1: Events EV1 and EV2.

References

1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.:
Optimal computational split-state non-malleable codes. In: Kushilevitz and Malkin
[59], pp. 393–417

2. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions
and applications. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC. pp.
459–468. ACM Press (Jun 2015)

3. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combi-
natorics. In: Shmoys, D.B. (ed.) 46th ACM STOC. pp. 774–783. ACM Press
(May / Jun 2014)

4. Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-
malleable codes. In: Dodis and Nielsen [32], pp. 398–426

5. Aggarwal, D., Kazana, T., Obremski, M.: Inception makes non-malleable codes
stronger. Cryptology ePrint Archive, Report 2015/1013 (2015), http://eprint.
iacr.org/2015/1013

6. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes against bit-wise tampering and permutations. In: Gennaro, R.,
Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 538–557.
Springer, Heidelberg (Aug 2015)

7. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and per-
mutations. In: Dodis and Nielsen [32], pp. 375–397

8. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (Mar 2009)

9. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key en-
cryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (May 2010)

10. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi [48], pp. 36–54

11. Alwen, J., Dodis, Y., Wichs, D.: Survey: Leakage resilience and the bounded
retrieval model. In: Kurosawa, K. (ed.) ICITS 09. LNCS, vol. 5973, pp. 1–18.
Springer, Heidelberg (Dec 2010)

12. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for
bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron, J.S. (eds.) EURO-
CRYPT 2016, Part II. LNCS, vol. 9666, pp. 881–908. Springer, Heidelberg (May
2016)

27

http://eprint.iacr.org/2015/1013
http://eprint.iacr.org/2015/1013


13. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from
average-case hardness: AC0, decision trees, and streaming space-bounded tamper-
ing. Cryptology ePrint Archive, Report 2017/1061 (2017), http://eprint.iacr.
org/2017/1061

14. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete efficiency of
probabilistically-checkable proofs. In: Boneh, D., Roughgarden, T., Feigenbaum,
J. (eds.) 45th ACM STOC. pp. 585–594. ACM Press (Jun 2013)

15. Cash, D., Ding, Y.Z., Dodis, Y., Lee, W., Lipton, R.J., Walfish, S.: Intrusion-
resilient key exchange in the bounded retrieval model. In: Vadhan, S.P. (ed.)
TCC 2007. LNCS, vol. 4392, pp. 479–498. Springer, Heidelberg (Feb 2007)

16. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise
non-malleable codes. Cryptology ePrint Archive, Report 2015/129 (2015), http:
//eprint.iacr.org/2015/129

17. Chandran, N., Kanukurthi, B., Ostrovsky, R.: Locally updatable and locally de-
codable codes. In: Lindell [61], pp. 489–514

18. Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic local non-
malleable codes and their applications. In: Kushilevitz and Malkin [59], pp. 367–392

19. Chattopadhyay, E., Li, X.: Non-malleable codes and extractors for small-depth
circuits, and affine functions. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th
ACM STOC. pp. 1171–1184. ACM Press (Jun 2017)

20. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-
state tampering. In: 55th FOCS. pp. 306–315. IEEE Computer Society Press (Oct
2014)

21. Chattopadhyay, E., Zuckerman, D.: Explicit two-source extractors and resilient
functions. In: Wichs and Mansour [69], pp. 670–683

22. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: Naor, M.
(ed.) ITCS 2014. pp. 155–168. ACM (Jan 2014)

23. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: Lindell [61], pp. 440–464

24. Choi, S.G., Kiayias, A., Malkin, T.: BiTR: Built-in tamper resilience. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 740–758. Springer,
Heidelberg (Dec 2011)

25. Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: Sim-
pler, shorter, stronger. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A, Part I.
LNCS, vol. 9562, pp. 306–335. Springer, Heidelberg (Jan 2016)

26. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: Dodis and Nielsen [32], pp.
532–560

27. Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Locally decodable and updatable
non-malleable codes in the bounded retrieval model. Cryptology ePrint Archive,
Report 2017/303 (2017), https://eprint.iacr.org/2017/303

28. Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Tight upper and lower bounds for
leakage-resilient, locally decodable and updatable non-malleable codes. In: Fehr,
S. (ed.) PKC 2017, Part I. LNCS, vol. 10174, pp. 310–332. Springer, Heidelberg
(Mar 2017)

29. Dachman-Soled, D., Liu, F.H., Shi, E., Zhou, H.S.: Locally decodable and updat-
able non-malleable codes and their applications. In: Dodis and Nielsen [32], pp.
427–450

30. Di Crescenzo, G., Lipton, R.J., Walfish, S.: Perfectly secure password protocols in
the bounded retrieval model. In: Halevi and Rabin [49], pp. 225–244

28

http://eprint.iacr.org/2017/1061
http://eprint.iacr.org/2017/1061
http://eprint.iacr.org/2015/129
http://eprint.iacr.org/2015/129
https://eprint.iacr.org/2017/303


31. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In:
Mitzenmacher, M. (ed.) 41st ACM STOC. pp. 621–630. ACM Press (May / Jun
2009)

32. Dodis, Y., Nielsen, J.B. (eds.): TCC 2015, Part I, LNCS, vol. 9014. Springer,
Heidelberg (Mar 2015)

33. Dodis, Y., Ristenpart, T., Vadhan, S.P.: Randomness condensers for efficiently
samplable, seed-dependent sources. In: Cramer, R. (ed.) TCC 2012. LNCS, vol.
7194, pp. 618–635. Springer, Heidelberg (Mar 2012)

34. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal on
Computing 30(2), 391–437 (2000)

35. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi
and Rabin [49], pp. 207–224

36. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol.
8043, pp. 239–257. Springer, Heidelberg (Aug 2013)

37. Dziembowski, S., Kazana, T., Wichs, D.: Key-evolution schemes resilient to space-
bounded leakage. In: Rogaway [68], pp. 335–353

38. Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In: 48th FOCS.
pp. 227–237. IEEE Computer Society Press (Oct 2007)

39. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.C.
(ed.) ICS 2010. pp. 434–452. Tsinghua University Press (Jan 2010)

40. Faonio, A., Nielsen, J.B., Venturi, D.: Fully leakage-resilient signatures revisited.
Theor. Comput. Sci. 660(C), 23–56 (Jan 2017), https://doi.org/10.1016/j.tcs.
2016.11.016

41. Faust, S., Hostáková, K., Mukherjee, P., Venturi, D.: Non-malleable codes for
space-bounded tampering. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II.
LNCS, vol. 10402, pp. 95–126. Springer, Heidelberg (Aug 2017)

42. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell [61], pp. 465–488

43. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage resilient
von neumann architecture. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp.
579–603. Springer, Heidelberg (Mar / Apr 2015)

44. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes
and key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E.
(eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg
(May 2014)

45. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: Theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (Feb 2004)

46. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
Wichs and Mansour [69], pp. 1128–1141

47. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol.
4284, pp. 444–459. Springer, Heidelberg (Dec 2006)

48. Halevi, S. (ed.): CRYPTO 2009, LNCS, vol. 5677. Springer, Heidelberg (Aug 2009)
49. Halevi, S., Rabin, T. (eds.): TCC 2006, LNCS, vol. 3876. Springer, Heidelberg

(Mar 2006)
50. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: Keeping

secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 308–327. Springer, Heidelberg (May / Jun 2006)

29

https://doi.org/10.1016/j.tcs.2016.11.016
https://doi.org/10.1016/j.tcs.2016.11.016


51. Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes.
In: Dodis and Nielsen [32], pp. 451–480

52. Kalai, Y.T., Kanukurthi, B., Sahai, A.: Cryptography with tamperable and leaky
memory. In: Rogaway [68], pp. 373–390

53. Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Four-state non-malleable codes with
explicit constant rate. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS,
vol. 10678, pp. 344–375. Springer, Heidelberg (Nov 2017)

54. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-
correcting codes. In: 32nd ACM STOC. pp. 80–86. ACM Press (May 2000)

55. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (Dec 2009)

56. Kiayias, A., Liu, F.H., Tselekounis, Y.: Practical non-malleable codes from l-more
extractable hash functions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) ACM CCS 16. pp. 1317–1328. ACM Press (Oct 2016)

57. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 104–
113. Springer, Heidelberg (Aug 1996)

58. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO’99. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (Aug 1999)

59. Kushilevitz, E., Malkin, T. (eds.): TCC 2016-A, Part II, LNCS, vol. 9563. Springer,
Heidelberg (Jan 2016)

60. Lindell, Y.: A simpler construction of cca2-secure public-key encryption under
general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 241–254. Springer, Heidelberg (May 2003)

61. Lindell, Y. (ed.): TCC 2014, LNCS, vol. 8349. Springer, Heidelberg (Feb 2014)
62. Liu, F.H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.

In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (Aug 2012)

63. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi
[48], pp. 18–35

64. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: 22nd ACM STOC. pp. 427–437. ACM Press (May 1990)

65. Nielsen, J.B., Venturi, D., Zottarel, A.: Leakage-resilient signatures with graceful
degradation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 362–379.
Springer, Heidelberg (Mar 2014)

66. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (Apr 2009)

67. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC. pp. 84–93. ACM Press
(May 2005)

68. Rogaway, P. (ed.): CRYPTO 2011, LNCS, vol. 6841. Springer, Heidelberg (Aug
2011)

69. Wichs, D., Mansour, Y. (eds.): 48th ACM STOC. ACM Press (Jun 2016)

30


	Local Non-Malleable Codes in theBounded Retrieval Model

