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Abstract. We continue the study of statistical zero-knowledge (SZK)
proofs, both interactive and noninteractive, for computational problems
on point lattices. We are particularly interested in the problem GapSPP
of approximating the ε-smoothing parameter (for some ε < 1/2) of an
n-dimensional lattice. The smoothing parameter is a key quantity in the
study of lattices, and GapSPP has been emerging as a core problem in
lattice-based cryptography, e.g., in worst-case to average-case reductions.
We show that GapSPP admits SZK proofs for remarkably low approxima-
tion factors, improving on prior work by up to roughly

√
n. Specifically:

– There is a noninteractive SZK proof forO(log(n)
√

log(1/ε))-approximate
GapSPP. Moreover, for any negligible ε and a larger approximation
factor Õ(

√
n log(1/ε)), there is such a proof with an efficient prover.

– There is an (interactive) SZK proof with an efficient prover for
O(logn +

√
log(1/ε)/ logn)-approximate coGapSPP. We show this

by proving that O(logn)-approximate GapSPP is in coNP.
In addition, we give an (interactive) SZK proof with an efficient prover
for approximating the lattice covering radius to within an O(

√
n) factor,

improving upon the prior best factor of ω(
√
n logn).

1 Introduction

Informally, a proof system [26,5] is a protocol that allows a (possibly
unbounded and malicious) prover to convince a skeptical verifier of the
truth of some statement. A proof system is zero knowledge if the verifier
“learns nothing more” from the interaction, other than the statement’s
veracity. The system is said to be statistical zero knowledge if the revealed
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information is negligible, even to an unbounded verifier; the class of
problems having such proof systems is called SZK. Since their introduction,
proof systems and zero-knowledge have found innumerable applications
in cryptography and complexity theory. As a few examples, they have
been used in constructions of secure multiparty computation [22], digital
signatures [9], actively secure public-key encryption [39], and “ZAPs” [19].
And if a problem has an SZK (or even coAM) proof, it is not NP-hard
unless the polynomial-time hierarchy collapses [11], so interactive proofs
have been used as evidence against NP-hardness; see, e.g., [26,23,21,28].

A proof system is noninteractive [10,25] if it consists of just one mes-
sage from the prover, assuming both it and the verifier have access to a
truly random string. Noninteractive statistical zero-knowledge (NISZK)
proof systems are especially powerful cryptographic primitives: they have
minimal message complexity; they are concurrently and even “universally”
composable [15]; and their security holds against unbounded malicious
provers and verifiers, without any computational assumptions. However,
we do not understand the class NISZK of problems that have noninter-
active statistical zero-knowledge proof systems nearly as well as SZK. In
particular, while NISZK is known to have complete problems, it is not
known whether it is closed under complement or disjunction [25], unlike
SZK [48,43].

Lattices and proofs. An n-dimensional lattice is a (full-rank) discrete
additive subgroup of Rn, and consists of all integer linear combinations
of some linearly independent vectors B = {b1, . . . ,bn}, called a basis of
the lattice. Lattices have been extensively studied in computer science,
and lend themselves to many natural computational problems. Perhaps
the most well-known of these are the Shortest Vector Problem (SVP),
which is to find a shortest nonzero vector in a given lattice, and the
Closest Vector Problem (CVP), which is to find a lattice point that is
closest to a given vector in Rn. Algorithms for these problems and their
approximation versions have many applications in computer science; see,
e.g., [33,34,31,42,30,41,17]. In addition, many cryptographic primitives,
ranging from public-key encryption and signatures to fully homomorphic
encryption, are known to be secure assuming the (worst-case) hardness of
certain lattice problems (see, e.g., [37,46,20,44,14,12]).

Due to the importance of lattices in cryptography, proof systems
and zero-knowledge protocols for lattice problems have received a good
deal of attention. Early on, Goldreich and Goldwasser [21] showed that
for γ = O(

√
n/ log n), the γ-approximate Shortest and Closest Vector



Problems, respectively denoted γ-GapSVP and γ-GapCVP, have SZK proof
systems; this was later improved to coNP for γ = O(

√
n) factors [3].3

Subsequently, Micciancio and Vadhan [38] gave different SZK proofs for
the same problems, where the provers are efficient when given appropriate
witnesses; this is obviously an important property if the proof systems are
to be used by real entities as components of other protocols. Peikert and
Vaikuntanathan [45] gave the first noninteractive statistical zero-knowledge
proof systems for certain lattice problems, showing that, for example,
O(
√
n)-coGapSVP has an NISZK proof. The proof systems from [45] also

have efficient provers, although for larger Õ(n) approximation factors.

Gaussians and the smoothing parameter. Gaussian measures have become
an increasingly important tool in the study of lattices. For s > 0, the
Gaussian measure of parameter (or width) s on Rn is defined as ρs(x) =
exp(−π‖x‖2/s2); for a lattice L ⊂ Rn, the Gaussian measure of the lattice
is then

ρs(L) :=
∑
v∈L

ρs(v).

Gaussian measures on lattices have innumerable applications, including
in worst-case to average-case reductions for lattice problems [37,46], the
construction of cryptographic primitives [20], the design of algorithms for
SVP and CVP [1,2], and the study of the geometry of lattices [7,8,18,47].

In all of the above applications, a key quantity is the lattice smoothing
parameter [37]. Informally, for a parameter ε > 0 and a lattice L, the
smoothing parameter ηε(L) is the minimal Gaussian parameter that
“smooths out” the discrete structure of L, up to error ε. Formally, for
ε > 0 we define

ηε(L) := min{s > 0 : ρ1/s(L∗) ≤ 1 + ε} ,

where L∗ := {w ∈ Rn : ∀y ∈ L, 〈w,y〉 ∈ Z} is the dual lattice of L. All
of the computational applications from the previous paragraph rely in
some way on the “smoothness” of the Gaussian with parameter s ≥ ηε(L)
where 2−n � ε < 1/2.4 For example, several of the proof systems from [45]

3 As described, the proofs from [21] are statistical zero knowledge against only honest
verifiers, but any such proof can unconditionally be transformed to one that is
statistical zero knowledge against malicious verifiers [24]). We therefore ignore the
distinction for the remainder of the paper.

4 For ε = 2−Ω(n) the smoothing parameter is determined (up to a constant factor) by
the dual minimum distance, so it is much less interesting to consider as a separate
quantity. The upper bound of 1/2 could be replaced by any constant less than one.
For ε ≥ 1, ηε(L) is still formally defined, but its interpretation in terms of the
“smoothness” of the corresponding Gaussian measure over L is much less clear.



start with deterministic reductions to an intermediate problem, which
asks whether a lattice is “smooth” or well-separated.

The GapSPP problem. Given the prominence of the smoothing parameter
in the theory of lattices, it is natural to ask about the complexity of
computing it. Chung et al. [16] formally defined the problem γ-GapSPPε
of approximating the smoothing parameter ηε(L) to within a factor of γ ≥ 1
and gave upper bounds on its complexity in the form of proof systems for
remarkably low values of γ. For example, they showed that γ-GapSPPε ∈
SZK for γ = O(1 +

√
log(1/ε)/ log n). This in fact subsumes the prior

result that O(
√
n/ log n)-GapSVP ∈ SZK of [21], via known relationships

between the minimum distance and the smoothing parameter.

Chung et al. also showed a worst-case to average-case (quantum) reduc-
tion from Õ(

√
n/α)-GapSPP to a very important average-case problem in

lattice-based cryptography, Regev’s Learning With Errors (LWE), which
asks us to decode from a random “q-ary” lattice under error proportional
to α [46]. Again, this subsumes the prior best reduction for GapSVP due to
Regev. Most recently, Dadush and Regev [18] showed a similar worst-case
to average-case reduction from GapSPP to the Short Integer Solution
problem [4,37], another widely used average-case problem in lattice-based
cryptography.

In hindsight, the proof systems and reductions of [21,46,37] can most
naturally be viewed as applying to GapSPP all along. This suggests that
GapSPP may be a better problem than GapSVP on which to base the
security of lattice-based cryptography. However, both [16] and [18] left open
several questions and asked for a better understanding of the complexity
of GapSPP. In particular, while interactive proof systems for this problem
seem to be relatively well understood, nothing nontrivial was previously
known about noninteractive proof systems (whether zero knowledge or
not) for this problem.

1.1 Our Results

In this work we give new proof systems for lattice problems, and extend
the reach of prior proof systems to new problems. Our new results, and
how they compare to the previous state of the art, are as follows.

Our first main result is a NISZK proof system for γ-GapSPPε with
γ = O(log(n)

√
log(1/ε)). This improves, by a Θ(

√
n/ log n) factor, upon

the previous best approximation factor of γ = O(
√
n log(1/ε)), which

follows from [45].



Theorem 1. For any ε ∈ (0, 1/2), O(log(n)
√

log(1/ε))-GapSPPε ∈ NISZK.

In fact, we demonstrate two different proof systems to establish this
theorem (see Section 3). The first is identical to a proof system from [45],
but with a very different analysis that relies on a recent geometric theorem
of [47]. However, this proof system only works for negligible ε < n−ω(1), so
we also show an alternative that works for any ε ∈ (0, 1/2) via reduction
to the NISZK-complete Entropy Approximation problem [25].

The prover in the proof system from [45] can be made efficient at the
expense of a factor of O(

√
n log n) in the approximation factor. From this

we obtain the following.

Theorem 2. For any negligible 0 < ε < n−ω(1), there is a NISZK proof

system with an efficient prover for O
(√

n log3(n) log(1/ε)
)
-GapSPPε.

Next, we show that O(log n)-GapSPPε ∈ coNP for any ε ∈ (0, 1). This
improves, again by up to a Θ(

√
n/ log n) factor, the previous best known

result of O(1 +
√
n/ log(1/ε))-GapSPPε ∈ coNP, which follows from [7].

Theorem 3. For any ε ∈ (0, 1/2), O(log n)-GapSPPε ∈ coNP.

From this, together with the SZK protocol of [16] and the result of
Nguyen and Vadhan [40] that any problem in SZK∩NP has an SZK proof
system with an efficient prover, we obtain the following corollary. (The
proof systems in [16] do not have efficient provers.)

Corollary 1. For any ε ∈ (0, 1/2), there is an SZK proof system with an
efficient prover for O(log n+

√
log(1/ε)/ log n)-coGapSPPε.

Finally, we observe that O(
√
n)-GapCRP ∈ SZK, where GapCRP is the

problem of approximating the covering radius, i.e., the maximum possible
distance from a given lattice. For comparison, the previous best approxi-
mation factor was from [45], who showed that γ-GapCRP ∈ NISZK ⊆ SZK
for any γ = ω(

√
n log n). We obtain this result via a straightforward

reduction to O(1)-GapSPPε for constant ε < 1/2, which, to recall, is in
SZK [16]. Furthermore, since Guruswami, Micciancio, and Regev showed
that O(

√
n)-GapCRP ∈ NP ∩ coNP [27], it follows that the protocol can

be made efficient.

Theorem 4. We have O(
√
n)-GapCRP ∈ SZK. Furthermore, O(

√
n)-

GapCRP and O(
√
n)-coGapCRP each have an SZK proof system with an

efficient prover.



1.2 Techniques

Sparse projections. Our main technical tool will be sparse lattice pro-
jections. In particular, we use the determinant of a lattice, defined as
det(L) := |det(B)| for any basis B of L, as our measure of sparsity.5 It is
an immediate consequence of the Poisson Summation Formula (Lemma 3)
that det(L)1/n ≤ 2η1/2(L). Notice that this inequality formalizes the intu-
itive notion that “a lattice cannot be smooth and sparse simultaneously.”

Dadush and Regev made the simple observation that the same state-
ment is true when we consider projections of the lattice [18]. I.e., for any
projection π such that π(L) is still a lattice, we have det(π(L))1/ rank(π(L)) ≤
2η1/2(L), where rank(π(L)) is the dimension of the span of π(L). (In-
deed, this fact is immediate from the above together with the identity
(π(L))∗ = L∗ ∩ span(π(L)).) Therefore, if we define

ηdet(L) := max
π

det(π(L))1/ rank(π(L)) ,

where the maximum is taken over all projections π such that π(L) is a
lattice, then we have

ηdet(L) ≤ 2η1/2(L) . (1)

Dadush and Regev conjectured that Equation (1) is tight up to a factor of
polylog(n). I.e., up to polylog factors, a lattice is not smooth if and only
if it has a sparse projection. Regev and Stephens-Davidowitz proved this
conjecture [47], and the resulting theorem, presented below, will be our
main technical tool.

Theorem 5 ([47]). For any lattice L ⊂ Rn,

η1/2(L) ≤ 10(log n+ 2)ηdet(L) .

I.e., if η1/2(L) ≥ 10(log n+ 2), then there exists a lattice projection π such
that det(π(L)) ≥ 1.

coNP proof system. Notice that Theorem 5 (together with Equation (1))
immediately implies that O(log n)-GapSPPε is in coNP for ε = 1/2. Indeed,
a projection π such that det(π(L))1/ rank(π(L)) ≥ η1/2(L)/O(log n) can be
used as a witness of “non-smoothness.” Theorem 5 shows that such a

5 This is indeed a measure of sparsity because 1/ det(L) is the average number of
lattice points inside a random shift of any unit-volume body, or equivalently, the
limit as r goes to infinity of the number of lattice points per unit volume in a ball of
radius r.



witness always exists, and Equation (1) shows that no such witness exists
with det(π(L))1/ rank(π(L)) > 2η1/2(L). In order to extend this result to
all ε ∈ (0, 1), we use basic results about how ηε(L) varies with ε. (See
Section 4.)

NISZK proof systems. We give two different NISZK proof systems for
O(log(n)

√
log(1/ε))-GapSPPε, both of which rely on Theorem 5.

Our first proof system (shown in Figure 1, Section 3.1) uses many
vectors t1, . . . , tm sampled uniformly at random from a fundamental region
of the lattice L as the common random string. The prover samples short
vectors ei (for i = 1, . . . ,m) from the discrete Gaussian distributions over
the lattice cosets ei + L. The verifier accepts if and only if the matrix
E =

∑
eie

T
i has small enough spectral norm. (I.e., the verifier accepts if

the ei are “short in all directions.”) In fact, Peikert and Vaikuntanathan
used the exact same proof system for the different lattice problem O(

√
n)-

coGapSVP, and their proofs of correctness and zero knowledge also apply
to our setting. However, the proof of soundness is quite different: we show
that, if the lattice has a sparse projection π, then dist(π(ti), π(L)) will
tend to be fairly large. It follows that

∑
‖π(ei)‖2 = Tr

(∑
π(ei)π(ei)

T
)

will be fairly large with high probability, and therefore
∑

eie
T
i must have

large spectral norm.

Our second proof system follows from a reduction to the Entropy
Approximation problem, which asks to estimate the entropy of the output
distribution of a circuit on random input. Goldreich, Sahai, and Vad-
han [25] showed that Entropy Approximation is NISZK-complete, so that
a problem is in NISZK if and only if it can be (Karp-)reduced to approx-
imating the entropy of a circuit. If ηε(L) is small, then we know that a
continuous Gaussian modulo the lattice will be very close to the uniform
distribution, and so (a suitable discretization of) this distribution will
have high entropy. On the other hand, if ηε(L) is large, then Theorem 5
says that most of the measure of a continuous Gaussian modulo the lattice
lies in a low-volume subset of Rn/L, and so (a discretization of) this
distribution must have low entropy.

This second proof system works for a wider range of ε. In particular, the
first proof system is only statistical zero knowledge when ε is negligible in
the input size, whereas the second proof system works for any ε ∈ (0, 1/2).

1.3 Organization

The remainder of the paper is organized as follows.



– In Section 2 we recall the necessary background on lattices, proof
systems, and probability.

– In Section 3 we give two different NISZK proof systems forO(log(n)
√

log(1/ε))-
GapSPPε.

– In Section 4 we give a coNP proof system for O(log n)-GapSPPε.
– In Section 5 we show that O(

√
n)-GapCRP ∈ SZK, via a simple reduc-

tion to O(1)-GapSPP1/4.

2 Preliminaries

2.1 Notation

For any positive integer d, [d] denotes the set {1, . . . , d}. We use bold
lower-case letters to denote vectors. We write matrices in capital letters.
The ith component (column) of a vector x (matrix X) is written as xi
(Xi). The function log denotes the natural logarithm unless otherwise
specified. For x ∈ Rn, ‖x‖ :=

√
x21 + x22 + · · ·+ x2n is the Euclidean norm.

For a matrix A ∈ Rn×m, ‖A‖ := max‖x‖=1 ‖Ax‖ is the operator norm.
We write rBn

2 for the n-dimensional Euclidean ball of radius r. A set
S ⊆ Rn is said to be symmetric if −S = S. The distance from a point
x ∈ Rn to a set S ⊆ Rn is defined to be dist(x, S) = infs∈S dist(x, s). We
write S⊥ to denote the subspace of vectors orthogonal to S. For a set
S ⊆ Rn and a point x ∈ Rn, πS(x) denotes the orthogonal projection of
x onto span(S). For sets A,B ⊆ Rn, we denote their Minkowski sum by
A+B = {a + b : a ∈ A,b ∈ B}. We extend a function f to a countable
set in the natural way by defining f(A) :=

∑
a∈A f(a).

Throughout the paper, we write C for an arbitrary universal constant
C > 0, whose value might change from one use to the next.

2.2 Lattices

Here we provide some backgrounds on lattices. An n-dimensional lattice
L ⊂ Rn of rank d is the set of integer linear combinations of d linearly
independent vectors B := (b1, . . . ,bd),

L = L(B) =
{

Bz =
∑
i∈[d]

zi · bi : z ∈ Zd
}
.

We usually work with full-rank lattices, where d = n. A sublattice L′ ⊆ L
is an additive subgroup of L. The dual lattice of L, denoted by L∗, is
defined as the set

L∗ =
{

y ∈ Rn : ∀v ∈ L, 〈v,y〉 ∈ Z
}



of all integer vectors having integer inner products with all vectors in L.
It is easy to check that (L∗)∗ = L and that, if B is a basis for L, then
B∗ = B(BTB)−1 is a basis for L∗. The fundamental parallelepiped of a
lattice L with respect to basis B is the set

P(B) =
{∑
i∈[d]

cibi : 0 ≤ ci < 1
}
.

It is easy to see that P(B) is a fundamental domain of L. I.e., it tiles Rn
with respect to L. For any lattice L(B) and point x ∈ Rn, there exists a
unique point y ∈ P(B) such that y− x ∈ L(B). We denote this vector by
y = x mod B. Notice that y can be computed in polynomial time given
B and x. We sometimes write x mod L when the specific fundamental
domain is not important, and we write Rn/L for an arbitrary fundamental
domain.

The determinant of a lattice L, is defined to be det(L) =
√

det(BTB).
It is easy to verify that the determinant does not depend on the choice of
basis and that det(L) is the volume of any fundamental domain of L.

The minimum distance of a lattice L, is the length of the shortest
non-zero lattice vector,

λ1(L) := min
y∈L\{0}

‖y‖ .

Similarly, we define
λn(L) := min max

i
‖yi‖ ,

where the minimum is taken over linearly independent lattice vectors
y1, . . . ,yn ∈ L. The covering radius of a lattice L is

µ(L) := max
t∈Rn

dist(t,L) .

The Voronoi cell of a lattice L is the set

V(L) := {x ∈ Rn : ‖t‖ ≤ ‖y − t‖,∀y ∈ L \ {0}}

of vectors in Rn that are closer to 0 than any other point of L. It is easy to
check that V(L) is a symmetric polytope and that it tiles Rn with respect
to L. The following claim is an immediate consequence of the fact that an
n-dimensional unit ball has volume at most (2πe/n)n/2.

Claim. For any lattice L ⊂ Rn,

µ(L) ≥
√
n/(2πe) · det(L)1/n .



Lemma 1. For any lattice L ⊂ Rn and r ≥ 0,

|L ∩ rBn
2 | ≤ (5/

√
n)n · (r + µ(L))n

det(L)
.

Proof. For each vector y ∈ L∩ rBn
2 , notice that V(L) + y ⊆ (r+µ(L))Bn

2 .
And, for distinct vectors y,y′ ∈ L, V(L) + y and V(L) + y′ are disjoint
(up to a set of measure zero). Therefore,

vol((r+µ(L))Bn
2 ) ≥ vol

( ⋃
y∈L∩rBn2

V(L)+y
)

= |L∩rBn
2 | vol(V(L)) = |L∩rBn

2 |·det(L) .

The result follows by recalling that for any r′ > 0, vol(r′Bn
2 ) ≤ (5r′/

√
n)n.

Lemma 2 ([27]). For any lattice L ⊂ Rn,

E
t∼Rn/L

[dist(t,L)2] ≥ µ(L)2/4 ,

where t ∈ Rn/L is sampled uniformly at random.

Proof. Let v ∈ Rn such that dist(v,L) = µ(L). Notice that v − t mod L
is uniformly distributed. And, by the triangle inequality, dist(v − t,L) +
dist(t,L) ≥ dist(v,L) = µ(L). So,

E
t∼Rn/L

[dist(t,L)] =
1

2
· E
t∼Rn/L

[dist(v − t,L) + dist(t,L)] ≥ µ(L)/2 .

The result then follows by Markov’s inequality.

A lattice projection for a lattice L ⊂ Rn is an orthogonal projection
π : Rn → Rn defined by π(x) := πS⊥(x) for lattice vectors S ⊂ L.

Claim. For any L ⊂ Rn and any lattice projection π, π(L) is a lattice.
Furthermore, if t ∈ Rn/L is sampled uniformly at random, then π(t) is
uniform mod π(L).

Proof. The first statement follows from the well known fact that, if W =
spanS for some set of lattice vectors S ⊂ L, then there exists a basis B :=
(b1, . . . ,bn) of L such that span(b1, . . . ,bk) = W , where k := dimW .
(See, e.g., [35].) From this, it follows immediately that π(bk+1), . . . π(bn)
are linearly independent and π(L) is the lattice spanned by these vectors,
where π := πS⊥ .



The second statement follows from the following similarly well known
fact. Let b̃i := π{b1,...,bi−1}⊥(bi) be the Gram-Schmidt vectors of the basis
B described above. Then, the hyperrectangle

R̃ :=
{∑

i

aib̃i : −1/2 < ai ≤ 1/2
}

is a fundamental domain of the lattice. (See, e.g., [6]) I.e., for each t ∈
Rn/L, there is a unique representative t̃ ∈ R̃ with t̃ ≡ t mod L. The result
then follows by noting that, if t̃ ∈ R̃ is chosen uniformly at random, then
clearly π(t̃) ∈ π(R̃) is uniform in π(R̃), which is a fundamental region of
π(L).

2.3 Gaussian Measure

Here we review some useful background on Gaussians over lattices. For
a positive parameter s > 0 and vector x ∈ Rn, we define the Gaussian
mass of x as ρs(x) = e−π‖x‖

2/s2 . For a measurable set A ⊆ Rn, we define
γs(A) = s−n

∫
A ρs(x) dx. It is easy to see that γs(Rn) = 1 and hence γs is

a probability measure. We define the discrete Gaussian distribution over
a countable set A as

DA,s(x) =
ρs(x)

ρs(A)
, ∀x ∈ A .

In all cases, the parameter s is taken to be one when omitted. The following
lemma is the Poisson Summation Formula for the Gaussian mass of a
lattice.

Lemma 3. For any (full-rank) lattice L and s > 0,

ρs(L) =
1

det(L)
· ρ1/s(L∗) .

We will also need Banaszczyk’s celebrated lemma [7, Lemma 1.5].

Lemma 4 ([7]). For any lattice L ⊂ Rn, shift vector t ∈ Rn, and r ≥
1/
√

2π,

ρ((L+ t) \
√
nBn

2 ) ≤
(√

2πer2e−πr
2)n · ρ(L) .

Micciancio and Regev introduced a lattice parameter called the smooth-
ing parameter. For an n-dimensional lattice L and ε > 0, the smoothing
parameter ηε(L) is defined as the smallest s such that ρ1/s(L∗) ≤ 1 + ε.
The motivation for defining smoothing parameter comes from the following
two facts [37].



Claim. For any lattice L ⊂ Rn, shift vector t ∈ Rn, ε ∈ (0, 1), and
parameter s ≥ ηε(L),

1− ε
1 + ε

· ρs(L) ≤ ρs(L − t) ≤ ρs(L) .

Lemma 5. For any lattice L, c ∈ Rn and s ≥ ηε(L),

∆((Ds mod B), U(Rn/L)) ≤ ε/2 ,

where Ds is the continuous Gaussian distribution with parameter s and
U(Rn/L) denotes the uniform distribution over Rn/L.

We use the following epsilon-decreasing tool which has been introduced
in [16].

Lemma 6 ([16], Lemma 2.4). For any lattice L ⊂ Rn and any 0 <
ε′ ≤ ε < 1,

ηε′(L) ≤
√

log(1/ε′)/ log(1/ε) · ηε(L) .

Proof. We may assume without loss of generality that ηε(L) = 1. Notice
that this implies that λ1(L∗) ≥

√
log(1/ε)/π. Then, for any s ≥ 1,

ρ1/s(L∗\{0}) =
∑

exp(−π(s2−1)‖w‖2)·ρ(w) ≤ exp(−π(s2−1)λ1(L)2)ρ(L∗\{0}) ≤ εs2 .

Setting s :=
√

log(1/ε′)/ log(1/ε) gives the result.

Lemma 7. For any lattice L ⊂ Qn with basis B whose bit length is
β and any ε ∈ (0, 1/2), we have ηε(L(B)) ≤ 2poly(β)

√
log(1/ε), and

λn(L) ≤ 2µ(L) ≤ 2poly(β).

2.4 Sampling from the Discrete Gaussian

For any B = (b1, . . . ,bn) ∈ Rn×n, let

‖B̃‖ := max
i
‖π{b1,...,bi−1}⊥(bi)‖ ,

i.e., ‖B̃‖ is the length of the longest Gram-Schmidt vector of B.
We recall the following result from a sequence of works due to Klein [32];

Gentry, Peikert, and Vaikuntanathan [20]; and Brakerski et al. [13].

Theorem 6. There is an efficient algorithm that takes as input a basis
B ∈ Qn×n and any parameter s ≥ ‖B̃‖

√
log n and outputs a sample from

DL,s, where L ⊂ Rn is the lattice generated by B.



Corollary 2. There is an efficient algorithm that takes as input a (basis
for a) lattice L ⊂ Qn and parameter s ≥ 2nηε(L) and outputs a sample
from DL,s.

Proof. Combine the above with the celebrated LLL algorithm [33], which
in particular allows us to find a basis for L with ‖B̃‖ ≤ 2n/2ηε(L).

We also need the following result, which is implicit in [7]. See, e.g., [18]
for a proof.

Lemma 8. For any lattice L ⊂ Rn and ε ∈ (0, 1/2),

λn(L) ≤ 2µ(L) ≤
√
n · ηε(L) .

In particular, there exists a basis B of L with ‖B̃‖ ≤ λn(L) ≤
√
n ·η1/2(L).

Corollary 3. For any lattice L ⊂ Qn with basis B, there exists prepro-
cessing P whose size is polynomial in the bit length of B and an efficient
algorithm that, on input P and s ≥

√
n log n · η1/2(L) outputs a sample

from DL,s.

Proof. By Lemma 8, there exists a basis B′ with ‖B̃′‖ ≤
√
n · η1/2(L). By

Lemma 7, the bit length of B′ is polynomial in the bit length of B. We
use this as our preprocessing P . The result then follows by Theorem 6.

2.5 Computational Problems

Here we define two promise problems that will be considered in this paper.

Definition 1 (Covering Radius Problem). For any approximation
factor γ = γ(n) ≥ 1, an instance of γ-GapCRP is a (basis for a) lattice
L ⊂ Qn. It is a YES instance if µ(L) ≤ 1 and a NO instance if µ(L) > γ.

Definition 2 (Smoothing Parameter Problem). For any approxi-
mation factor γ = γ(n) ≥ 1 and ε = ε(n) > 0, an instance of γ-GapSPPε
is a (basis for a) lattice L ⊂ Qn. It is a YES instance if ηε(L) ≤ 1 and a
NO instance if ηε(L) > γ.

We will need the following result from [16].

Theorem 7. For any ε ∈ (0, 1/2), γ-GapSPPε is in SZK for γ = O(1 +√
log(1/ε)/ log(n)).6

6 In [16], this result is proven only for ε < 1/3. However, it is immediate from,
e.g., Lemma 6 that the result can be extended to any ε < 1/2.



2.6 Noninteractive Proof Systems

Definition 3 (Noninteractive Proof System). A pair (P, V ) is a
noninteractive proof system for a promise problem Π = (ΠYES, ΠNO)
if P is a (possibly unbounded) algorithm and V is a polynomial-time
algorithm such that

– Completeness: for every x ∈ ΠYES
n , Pr[V (x, r, P (x, r)) accepts] ≥ 1−ε;

and
– Soundness: for every x ∈ ΠNO

n , Pr[∃ π : V (x, r, π) accepts] ≤ ε,

where n is the input length, ε = ε(n) ≤ negl(n), and the probabilities are
taken over r, which is sampled uniformly at random from {0, 1}poly(n).

A noninteractive proof system (P, V ) for a promise problem Π =
(ΠYES, ΠNO) is statistical zero knowledge if there exists a probabilistic
polynomial-time algorithm S (called a simulator) such that for all x ∈
ΠYES, the statistical distance between S(x) and (r, P (x, r)) is negligible
in n. The class of promise problems having noninteractive statistical zero-
knowledge proof systems is denoted NISZK.

2.7 Probability

The entropy of a random variable X over a countable set S is given by

H(X) :=
∑
a∈S

Pr[X = a] · log2(1/Pr[X = a]) .

We will also need the Chernoff-Hoeffding bound [29].

Lemma 9 (Chernoff-Hoeffding bound). Let X1, . . . , Xm ∈ [0, 1] be
independent and identically distributed random variables with X := E[Xi].
Then, for any s > 0,

Pr
[
mX −

∑
Xi ≥ s

]
≤ exp(−s2/(2m)) .

Finally, we will need a minor variant of the above inequality.

Lemma 10. Let X1, . . . , Xm ∈ R be independent (but not necessarily
identically distributed) random variables. Suppose that there exists an
α ≥ 0 and s > 0 such that for any r > 0,

Pr[|Xi| ≥ r] ≤ α exp(−r2/s2) .

Then, for any r > 0,

Pr
[∑

X2
i ≥ r

]
≤ (1 + α)m exp(−r/(2s2)) .



Proof. For any index i, we have

E[exp(X2
i /(2s

2))] = 1 +
1

s2
·
∫ ∞
0

r exp(r2/(2s2)) Pr[|Xi| ≥ r] dr

≤ 1 +
α

s2
·
∫ ∞
0

r exp(−r2/(2s2)) dr

= 1 + α .

Since the Xi are independent, it follows that

E
[
exp

(∑
X2
i /(2s

2)
)]

= E
[∏

i

exp(X2
i /(2s

2))
]
≤ (1 + α)m .

The result then follows by Markov’s inequality.

3 Two NISZK Proofs for GapSPP

Recall the definition

ηdet(L) := max
π

det(π(L))1/ rank(π(L)) .

We will also need the following definition from [18],

Cη(n) := sup
L

η1/2(L)

ηdet(L)
,

where the supremum is taken over all lattices L ⊂ Rn. In this notation,
Theorem 5 is equivalent to the inequality

Cη(n) ≤ 10(log n+ 2) .

We note that the true value of Cη(n) is still not known. (In particular, the
best lower bound is Cη(n) ≥

√
log(n)/π + o(1), which follows from the

fact that η1/2(Zn) =
√

log(n)/π + o(1).) We therefore state our results in
terms of Cη(n).

3.1 An Explicit Proof System

We first consider the NISZK proof system for
√
n-coGapSVP due to [45],

shown in Figure 1. We show that this is actually also a NISZK proof
system for O(

√
log(1/ε) · log n)-GapSPPε for negligible ε. (In Section 3.2,

we show a different proof system that works for all ε ∈ (0, 1/2), also with
an approximation factor of O(log(n)

√
log(1/ε)).)



NISZK proof system for GapSPP.

Common Input: A basis B for a lattice L ⊂ Qn.
Random Input : m vectors t1, . . . , tm ∈ P(B), sampled uniformly at random.
Prover P : Sample m vectors e1, . . . , em ∈ Rn independently from DL+ti , and

output them as the proof.
Verifier V : Accept if and only if ei ≡ ti mod L for all i and

∥∥∑ eie
T
i

∥∥ ≤ 3m.

Fig. 1: The non-interactive zero-knowledge proof system for GapSPP,
where m := 100n.

Theorem 8. For any ε ≤ negl(n), γ-GapSPPε is in NISZK for

γ := O(Cη(n)
√

log(1/ε)) ≤ O(log(n)
√

log(1/ε))

via the proof system shown in Figure 1.

We will prove in turn that the proof system is statistical zero knowledge,
complete, and sound. In fact, the proofs of statistical zero knowledge and
completeness are nearly identical to the corresponding proofs in [45].

To prove the zero-knowledge property of the proof system, we con-
sider the simulator that behaves as follows. Let e1, . . . , em ∈ Rm be
sampled independently from the continuous Gaussian centered at 0. Let
t1, . . . , tm ∈ P(B) such that ei ≡ ti mod L. The simulator then outputs
t1, . . . , tm as the random input and e1, . . . , em as the proof.

Lemma 11 (Statistical zero knowledge). For any ε ∈ (0, 1) and
lattice L ⊂ Qn with ηε(L) ≤ 1, the output of the simulator described above
is within statistical distance εm of honestly generated random input and
an honestly generated proof as in Figure 1. In particular, the proof system
in Figure 1 is statistical zero knowledge for negligible ε.

Proof. Notice that, conditioned on the random input ti, the distribution
of ei is exactly DL+ti,s. So, we only need to show that the random input
t1, . . . , tm ∈ P(B) chosen by the simulator is within statistical distance
εm of uniform. Indeed, this follows from Lemma 5 and the union bound.

The proof of completeness is a bit tedious and nearly identical to proofs
of similar statements in [3,45,18]. We include a proof in Appendix A.

Lemma 12 (Completeness). For any lattice L ⊂ Qn with η1/2(L) ≤ 1,
the proof given in Figure 1 will be accepted except with negligible probability.
I.e., the proof system is complete.



Soundness. We now show the soundness of the proof system shown in
Figure 1, using Theorem 5. We note that [18] contains an implicit proof of a
very similar result in a different context. (Dadush and Regev conjectured a
form of Theorem 5 and showed a number of implications [18]. In particular,
they showed that with non-negligible probability over a single uniformly
random shift t ∈ Rn/L, there is no list of vectors e1, . . . , em ∈ L+ t with
small covariance.)

Theorem 9. For any lattice L ⊂ Rn with basis B satisfying η1/2(L) ≥
100Cη(n) (and in particular any lattice with η1/2(L) ≥ 1000(log(n) + 2)),
if t1, . . . , tm are sampled uniformly from Rn/L, then the probability that
there exists any proof e1, . . . , em with ei ≡ t mod L and∥∥∥∑ eie

T
i

∥∥∥ ≤ 3m

is at most exp(−Ω(m2)).

Proof. By the definition of Cη(n) there is a lattice projection π such
that det(π(L)) ≥ 100k, where k := rank(π(L)). For any e1, . . . , em with
ei ≡ ti mod L, we have∥∥∥∑ eie

T
i

∥∥∥ ≥ ∥∥∥∑π(ei)π(ei)
T
∥∥∥

≥ 1

k
Tr
(∑

π(ei)π(ei)
T
)

=
1

k

∑
‖π(ei)‖2

≥ 1

k

∑
dist(π(ti), π(L))2 ,

where the first inequality on the spectral norms follows from the fact that
〈u, π(ei)〉 = 〈π(u), π(ei)〉 and ‖π(u)‖ ≤ ‖u‖; the second inequality follows
from the fact that the spectral norm is the largest eigenvalue and the trace
is the sum of the k eigenvalues; and the equality is by definition of trace.

Now by Lemma 2.2, π(ti) is uniformly distributed mod π(L), and
therefore by Lemma 2,

E[dist(π(ti), π(L))2] ≥ µ(π(L))2/4.

Furthermore, since the ti are independent and identically distributed with
dist(π(ti), π(L)) ≤ µ(π(L)), we can apply the Chernoff-Hoeffding bound
(Lemma 9) to get

Pr
[∑

dist(π(ti), π(L))2 ≤ mµ(π(L))2/5
]
≤ exp(−Cm2) .



The result follows by noting that µ(π(L))2/(5k) ≥ 3 by Section 2.2,
together with the fact that det(π(L)) ≥ 100k.

Corollary 4 (Soundness). For any ε ∈ (0, 1/2) and lattice L ⊂ Rn
with basis B satisfying n ≥ 2 and ηε(L) ≥ 100Cη(n)

√
log(1/ε) (and

in particular any lattice with ηε(L) ≥ 1000(log(n) + 2)
√

log(1/ε)), if
t1, . . . , tm are sampled uniformly from P(B), then the probability that
there exists a proof e1, . . . , em with ei ≡ t mod L and∥∥∥∑ eie

T
i

∥∥∥ ≤ 3m

is at most exp(−Ω(m2)). In other words, the proof system in Figure 1 is
exp(−Ω(m2))-statistically sound.

Proof. By Lemma 6, we have η1/2 ≥ 100Cη(n), and the result follows from
Theorem 9.

Making the prover efficient. Finally, following [45] we observe that the
prover in the proof system shown in Figure 1 can be made efficient if we
relax the approximation factor. In particular, if ηε(L) ≤ 1/

√
n log n, then

by Corollary 3, there is in fact an efficient prover. Theorem 2 then follows
immediately from the above analysis.

3.2 A Proof via Entropy Approximation

We recall from Goldreich, Sahai, and Vadhan [25] the Entropy Approxima-
tion problem, which asks us to approximate the entropy of the distribution
obtained by calling some input circuit C on the uniform distribution over
its input space. In particular, we recall that [25] proved that this prob-
lem is NISZK-complete. (Formally, we only need the fact that Entropy
Approximation is in NISZK.)

Definition 4. An instance of the Entropy Approximation problem is a
circuit C and an integer k. It is a YES instance if H(C(U)) > k+ 1 and a
NO instance if H(C(U)) < k − 1, where U is the uniform distribution on
the input space of C.

Theorem 10 ([25]). Entropy Approximation is NISZK-complete.

In the rest of this section, we show a Karp reduction fromO(log(n)
√

log(1/ε))-GapSPPε
to Entropy Approximation. I.e., we give an efficient algorithm that takes
as input a basis for a lattice L and outputs a circuit CL such that (1) if



ηε(L) ≤ 1, then H(CL(U)) is large; but (2) if ηε(L) ≥ C log(n)
√

log(1/ε),
then H(CL(U)) is small.

Intuitively, we want to use a circuit that samples from the continuous
Gaussian with parameter one modulo the lattice L. Then, by Lemma 2.3,
if ηε(L) ≤ 1, the resulting distribution will be nearly uniform over Rn/L.
On the other hand, we know that, with high probability, the continu-
ous Gaussian lies in a set of volume roughly one. And, by definition, if
ηε(L) ≥ Ω(Cη(n)

√
log(1/ε)), then there exists a projection π such that,

say, vol(π(Rn/L)) = det(π(L)) ≥ 100. Therefore, the projected Gaussian
lies in a small fraction of π(Rn/L) with high probability.

To make this precise, we must discretize Rn/L appropriately to, say,
(L/q)/L for some large integer q > 1 and sample from a discretized version
of the continuous Gaussian. Naturally, we choose DL/q. The following
theorem shows that DL/q mod L lies in a small subset of (L/q)/L when
η1/2(L) is large.

Theorem 11. For any lattice L ⊂ Rn with sufficiently large n and integer
q ≥ 2n(η2−n(L) + µ(L)), if η1/2(L) ≥ 1000Cη(n) (and in particular if
η1/2(L) ≥ 104(log(n) + 2)), then there is a subset S ⊂ (L/q)/L with
|S| ≤ qn/200 such that

Pr
X∼DL/q mod L

[X ∈ S] ≥ 9

10
.

Proof. It is easy to see that DL/q is statistically close to the distribution
obtained by sampling from a continuous Gaussian with parameter one
and rounding to the closest vector in L/q. (One must simply recall from
Lemma 4 that nearly all of the mass of DL/q lies in a ball of radius

√
n and

notice that for such short points, shifts of size µ(L/q) < 2−n have little
effect on the Gaussian mass.) It therefore suffices to show that the above
probability is at least 19/20 when X is sampled from this new distribution.
We write CVP(t) for the closest vector in L/q to t.

By assumption, there is a lattice projection π onto a k-dimensional
subspace such that det(π(L)) ≥ 1000k. Notice that ‖π(CVP(t))‖ ≤
‖π(t)‖ + µ(L)/q ≤ ‖t‖ + 2−n for any t ∈ Rn. In particular, if X is
sampled from a continuous Gaussian with parameter one,

Pr
[
‖π(CVP(X))‖ ≥

√
k
]
≤ Pr

[
‖π(X)‖ ≥

√
k − 2−n

]
≤ 1

20
,

where we have applied Lemma 10. But, by Lemma 1, there are at most
(q/200)k points y ∈ (π(L)/q)/π(L))∩

√
kBk

2 . Therefore, there are at most
qn/200k ≤ qn/200 points y ∈ (L/q)/L with 19/20 of the mass, as needed.



Corollary 5. For any lattice L ⊂ Rn with n ≥ 2, ε ∈ (0, 1/2), and integer
q ≥ 2, let X ∼ DL/q mod L. Then,

1. if ηε(L) ≤ 1, then H(X) > n log2 q − 2; but
2. if ηε(L) ≥ 1000Cη(n)·

√
log(1/ε) (and in particular if ηε(L) ≥ 104 log(n)

√
log(1/ε))

and q ≥ 2n(η2−n(L) + µ(L)), then H(X) < n log2 q − 6.

Proof. Suppose that ηε(L) ≤ 1. Then, by Lemma 2.3, for any y ∈ (L/q)/L,

Pr
X∼DL/q mod L

[X = y] =
ρ(L+ y)

ρ(L/q)
≤ 1 + ε

1− ε
· 1

qn
.

It follows that

H(DL/q mod L) ≥ n log2 q + log2(1− ε)− log2(1 + ε) > n log2 q − 2 ,

as needed.
Suppose, on the other hand, that ηε(L) ≥ 1000Cη(n) ·

√
log(1/ε) and

q ≥ 2n(η2−n(L) + µ(L)). By Lemma 6, η1/2(L) ≥ 1000Cη(n), so that by
Theorem 11, there is a set S of size |S| = qn/200 with at least 9/10 of the
mass of DL/q mod L. Therefore,

H(DL/q mod L) ≤ 9

10
· log2 |S|+

1

10
· n log2 q < n log2 q − 6 ,

as needed.

Corollary 5 shows that, in order to reduceO(log(n)
√

log(1/ε))-GapSPPε
to Entropy Approximation, it suffices to construct a circuit that samples
from DL/q mod L. The main result of this section follows immediately
from Corollary 2.

Theorem 12. There is an efficient Karp reduction from γ-GapSPPε to
Entropy Approximation for

γ := O(Cη(n)
√

log(1/ε)) ≤ O(log(n)
√

log(1/ε)) .

and any ε ∈ (0, 1/2). I.e., γ-GapSPPε is in NISZK.

Proof. The reduction behaves as follows on input L ⊂ Qn. By Lemma 7,
we can find an integer q ≥ 2 with polynomial bit length that satisfies
q ≥ 2n(η2−n(L) + µ(L)). The reduction constructs the circuit CL/q from
Corollary 2 and outputs the modified circuit C(L/q)/L that takes the
output from CL/q and reduces it modulo L. It then outputs the Entropy
Approximation instance (C(L/q)/L, k := n log2 q − 4).



The running time is clear. Suppose that ηε(L) ≤ 1. Then, by Corol-
lary 5,

H(DL/q mod L) > n log2 q − 2 .

Since the output of C(L/q)/L is statistically close to DL/q mod L, it follows
that H(C(L/q)/L(U)) > n log2 q − 3, as needed.

If, on the other hand, ηε(L) ≥ Ω(Cη(n) ·
√

log(1/ε)), then by Corol-
lary 5,

H(DL/q mod L) < n log2 q − 6 .

Since the output of C(L/q)/L is statistically close to DL/q mod L, it follows
that H(C(L/q)/L(U)) < n log2 q − 5.

4 A coNP Proof for O(logn)-GapSPP

We will need the following result from [47], which extends Theorem 5
to smaller ε by noting that ρ1/s(L∗ \ {0}) decays at least as quickly as
ρ1/s(λ1(L∗)).

Theorem 13. For any lattice L ⊂ Rn and any ε ∈ (0, 1/2),

ηε(L)2 ≤ Cη(n)2ηdet(L)2+
log(1/ε)

πλ1(L∗)2
≤ 100(log n+2)2ηdet(L)2+

log(1/ε)

πλ1(L∗)2
.

Proof. We may assume without loss of generality that ηdet(L) = 1. Then,
by definition, ρ1/Cη(n)(L∗ \ {0}) ≤ 1/2. Therefore, for any s ≥ Cη(n),

ρ1/s(L∗) = 1 +
∑

w∈L∗\{0}

exp(−π(s2 − Cη(n)2)‖w‖2)ρ1/Cη(n)(w)

≤ 1 +
∑

w∈L∗\{0}

exp(−π(s2 − Cη(n)2)λ1(L∗)2)ρ1/Cη(n)(w)

≤ 1 + exp(−π(s2 − Cη(n)2)λ1(L∗)2)/2 ,

and the result follows.

Next, we prove an easy lower bound with a similar form (by taking the
average of two trivial lower bounds).

Lemma 13. For any lattice L ⊂ Rn and any ε ∈ (0, 1/2),

ηε(L)2 ≥ ηdet(L)2/8 +
log(2/ε)

2πλ1(L∗)2
.



Proof. First, note that ρ1/s(L∗ \ {0}) ≥ 2ρ1/s(λ1(L∗)). Rearranging, we
see that

ηε(L)2 ≥ log(2/ε)

πλ1(L∗)2
.

On the other hand, recall that for any lattice projection π onto a subspace
W , det(L∗∩W ) = 1/ det(π(L)). I.e., ηdet(L) = maxL′⊆L∗ det(L′)−1/ rank(L′).
So, suppose s ≤ ηdet(L)/2. Then, by Lemma 3,

ρ1/s(L∗) = max
L′⊆L∗

ρ1/s(L′) ≥ max
L′⊆L∗

s− rank(L′)/ det(L′) ≥ 2 .

So, ηε(L)2 ≥ η1(L)2 ≥ ηdet(L)2/4. The result follows by taking the average
of the two bounds.

The main theorem of this section now follows immediately.

Theorem 14. For any ε ∈ (0, 1/2), γ-GapSPPε is in coNP for γ =
O(Cη(n)) ≤ O(log n).

Proof. Let γ := 2
√

2Cη(n). On input a lattice L ⊂ Rn, the prover simply
sends a lattice projection π with det(π(L))1/ rank(π(L)) = ηdet(L) and a
vector w ∈ L∗ with ‖w‖ = λ1(L∗). The verifier checks that π is indeed a
lattice projection and that w ∈ L∗ \ {0}. It then answers NO if and only
if

γ2 det(π(L))2/ rank(π(L))/8 +
log(1/ε)

π‖w‖2
> γ2 . (2)

To prove completeness, suppose that ηε(L) > γ. Then, by Theorem 13,

γ2ηdet(L)2/8 +
log(1/ε)

πλ1(L∗)2
≥ ηε(L)2 > γ2 .

I.e., there exists a valid proof, as needed.
To prove soundness, suppose that ηε(L) ≤ 1. Then, by Lemma 13,

ηdet(L)2/8 +
log(1/ε)

2πλ1(L∗)2
≤ ηε(L)2 ≤ 1 .

Therefore,

γ2ηdet(L)2/8 +
log(1/ε)

πλ1(L∗)2
≤
γ2ηdet(L)2/8 + log(1/ε)

πλ1(L∗)2

ηdet(L)2/8 + log(1/ε)
2πλ1(L∗)2

≤ max{γ2, 2}
≤ γ2 .

In other words, Equation (2) cannot hold for any pair w ∈ L∗ \ {0} and
lattice projection π. I.e., the verifier will always answer YES, as needed.



Finally, we derive the following corollary.

Corollary 6. For any ε ∈ (0, 1/2), γ-coGapSPPε has an SZK proof sys-
tem with an efficient prover for

γ := O(Cη(n) +
√

log(1/ε)/ log n) ≤ O(log n+
√

log(1/ε)/ log n) .

Proof. By Theorem 7, γ-GapSPPε is in SZK. Since SZK is closed under
complements [48,43], γ-coGapSPPε is in SZK as well. By Theorem 14,
γ-coGapSPPε is in NP. The result then follows by the fact that any
language in SZK∩NP has an SZK proof system with an efficient prover [40].

5 An SZK Proof for O(
√
n)-GapCRP

In this section we prove that O(
√
n)-GapCRP is in SZK, which improves

the previous known result by a ω(
√

log n) factor [45]. First we need the
following result from [16].

Lemma 14. For any lattice L and parameter s > 0,

ρs(L) · γs(V(L)) ≤ 1 .

Here we prove an upper bound on the smoothing parameter of a lattice in
terms of its covering radius. This bound is implicit in [18].

Lemma 15. For any lattice L ⊂ Rn and ε > 0, we have

ηε(L) ≤
√

π

log(1 + ε)
· µ(L) .

In particular, ηε(L) ≤ O(µ(L)) for any ε ≥ Ω(1).

Proof.

ρ1/s(L∗) = s−n · det(L) · ρs(L) (Lemma 3)

≤ s−n · det(L)

γs(V(L))
(Lemma 14)

≤ s−n · det(L)∫
V(L) s

−n · exp(−πx2/s2) dx

≤ det(L)∫
V(L) exp(−πµ(L)2/s2) dx

≤ exp(πµ(L)2/s2) ,

where we used the fact that ‖x‖ ≤ µ(L) for any x ∈ V(L). By setting

s =
√

π
log(1+ε) · µ(L) we have the desired result.



Theorem 15. The problem O(
√
n)-GapCRP has an SZK proof system

with an efficient prover, as does O(
√
n)-coGapCRP .

Proof. Fix some some constant ε ∈ (0, 1/2). By Lemma 8 and Lemma 15,
we know that there exist C1 and C2 such that

C1ηε(L) ≤ µ(L) ≤ C2

√
n · ηε(L),

and hence there is a simple reduction from O(
√
n)-GapCRP to O(1)-

GapSPPε. It follows from Theorem 7 that O(
√
n)-GapCRP is in SZK. To

see that the prover can be made efficient, we recall from [27] that O(
√
n)-

GapCRP is in NP ∩ coNP. The result then follows by the fact that any
language in SZK∩NP has an SZK proof system with an efficient prover [40].
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A Proof of Lemma 12

Definition 5. For any δ > 0, S ⊆ Rn, we say that A ⊆ S is a δ-net of
S if for each v ∈ S, there is some u ∈ A such that ‖u− v‖ ≤ δ.

Lemma 16. For any δ > 0, there exists a δ-net of the unit sphere in Rn
with at most (1 + 2/δ)n points.

Proof. Let N be maximal such that N points can be placed on the unit
sphere in such a way that no pair of points is within distance δ of each
other. Clearly, there exists a δ-net of size N .

http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf
http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf


So, it suffices to show that any collection of vectors A in the unit
sphere with |A| > (1 + 2/δ)n must contain two points within distance δ of
each other. Let

B :=
⋃
u∈A

((δ/2)Bn
2 + u)

be the union of balls of radius δ/2 centered at each point in A. Notice
that B ⊆ (1 + δ/2)Bn

2 . If all of these balls were disjoint, then we would
have

vol(Bn2 ) = |A| · (δ/2)n vol(Bn
2 ) > vol((1 + δ/2)Bn

2 ) ,

a contradiction. Therefore, two such balls must overlap. I.e., there must
be two points within distance δ of each other, as needed.

We will need the following result from [49, Lemma 5.4].

Lemma 17. For a symmetric matrix M ∈ Rn×n and a δ-net of the unit
sphere A with δ ∈ (0, 1/2),

‖M‖ ≤ 1

1− 2δ
·max
v∈A
|〈Mv,v〉| .

We will also need the following result from [36, Lemma 2.8], which shows
that the discrete Gaussian distribution is subgaussian.

Lemma 18. For any lattice L ⊂ Rn with η1/2(L) ≤ 1, shift vector t ∈ Rn,
unit vector v ∈ Rn, and any r > 0,

Pr
X∼DL−t

[|〈v,X〉| ≥ r] ≤ 10 exp(−πr2) .

Proof (Proof of Lemma 12). Let {v1, . . . ,vN} be a (1/10)-net of the unit
sphere with N ≤ 25n, as guaranteed by Lemma 16. By Lemma 18, we
have that for any ei in the proof, any vj , and any r ≥ 0, Pr[|〈vj , ei〉| ≥
r] ≤ 10 exp(−πr2). Therefore, by Lemma 10

Pr
[∑

i

〈vj , ei〉2 ≥ r
]
≤ 2me−πr/2 .

Applying the union bound, we have

Pr
[
∃j,

∑
i

〈vj , ei〉2 ≥ r
]
≤ N2me−πr/2 .

Taking r := 2m, we see that this probability is negligible. Applying
Lemma 17 shows that∥∥∥∑

i

eie
T
i

∥∥∥ ≤ 2m · 5

4
< 3m ,

except with negligible probability, as needed.


