
Equational Security Proofs of Oblivious Transfer
Protocols?

Baiyu Li and Daniele Micciancio

University of California, San Diego, USA
{baiyu,daniele}@cs.ucsd.edu

Abstract. We exemplify and evaluate the use of the equational frame-
work of Micciancio and Tessaro (ITCS 2013) by analyzing a number
of concrete Oblivious Transfer protocols: a classic OT transformation
to increase the message size, and the recent (so called “simplest”) OT
protocol in the random oracle model of Chou and Orlandi (Latincrypt
2015), together with some simple variants. Our analysis uncovers sub-
tle timing bugs or shortcomings in both protocols, or the OT definition
typically employed when using them. In the case of the OT length exten-
sion transformation, we show that the protocol can be formally proved
secure using a revised OT definition and a simple protocol modification.
In the case of the “simplest” OT protocol, we show that it cannot be
proved secure according to either the original or revised OT definition, in
the sense that for any candidate simulator (expressible in the equational
framework) there is an environment that distinguishes the real from the
ideal system.

1 Introduction

Cryptographic design and analysis is a notoriously hard problem, arguably even
harder than standard software design because it requires to build systems that
behave robustly in the presence of a malicious adversary that actively tries to
subvert their execution. The desirability of precise formalisms to describe and
analyze cryptographic constructions is well exemplified by the code-based game-
playing framework of [4] to present security definitions and proofs of standard
cryptographic functions. But even the detailed framework of [4] offers little help
when formalizing more complex cryptographic protocols, due to their interactive
nature and underlying distributed execution model. At the semantic level, the
gold standard in secure computation protocol design and analysis is the uni-
versally composable (UC) security model of [5] (or one of its many technical
variants [1, 2, 7, 9, 16, 17, 21],) which offers strong compositionality guarantees
in fully asynchronous execution environments like the Internet. Unfortunately,
the relative lack of structure/abstraction in the traditional formulation of this

? This work was supported in part by NSF grant CNS-1528068. Opinions, findings and
conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of NSF.

model1 makes it rather hard to use in practice, when specifying and analyzing
concrete protocols.2 These limitations are widely recognized, and have prompted
researchers to explore several variants, simplifications and specialization of the
general UC security model [6,19,22,30]. In this perspective, a very interesting line
of work is represented by the “abstract cryptography” framework of [25], which
calls for an axiomatic approach to the description and analysis of cryptographic
primitives/protocols, and the “constructive cryptography” [24] and “equational
security” [26] frameworks, which can be thought of as logical models of the
axioms put forward in [25].

In this work we examine the equational security framework of [26], which
provides both a concrete mathematical model of computation/communication,
and a concise syntax to formally describe distributed systems by means of a set
of mathematical equations. We believe that progress in our ability to describe
and analyze cryptographic protocols cannot be achieved simply by formulating
frameworks and proving theorems in definitional papers, but it requires putting
the frameworks to work on actual example protocols. To this end, we present
a detailed case-study where we evaluate the expressiveness and usability of this
framework by analyzing a number of concrete oblivious transfer protocols, a
simple but representative type of security protocols of interest to cryptographers.

Oblivious transfer (OT), in its most commonly used 1-out-of-2 formulation
[12], is a two party protocol involving a sender transmitting two messages m0,m1

and a receiver obtaining only one of them mb, in such a way that the sender
does not learn which message b ∈ {0, 1} was delivered and the receiver does not
learn anything about the other message m1−b. OT is a classic example of secure
computation [12,27], and an important (in fact, complete) building block for the
construction of arbitrary security protocols [11, 14, 18, 20, 23, 32]. In Sections 3
and 4 we investigate a well known transformation often used to increase the
message length of OT protocols with the help of a pseudorandom generator. In
Section 5, we investigate a very efficient OT protocol in the random oracle model
recently proposed in [10].

We remark that the primary goal of our work is to exemplify and evaluate
the usability of the equational security framework of [26], rather than finding
and fixing bugs in specific protocol instances. Still, our findings about the OT
protocols under study may be of independent interest, and well illustrate how
equational security modeling can offer a convenient and valuable tool for cryp-
tographic protocol specification and analysis. The main findings about the OT
protocols are the following:

– The security of the OT protocol transformation, often considered a folklore
result in cryptography, does not hold with respect to the naive OT definition

1 Rooted in computational complexity, the model is usually described as an arbitrary
network of (dynamically generated) Turing machines that communicate by means of
shared tapes, possibly under the direction of some scheduling process, also modeled
as an interactive Turing machine.

2 This is analogous to the Turing machine, an excellent model to study computation in
general but a rather inconvenient one when it comes to specifying actual algorithms.

2

typically used (often implicitly) in the cryptographic literature. However, if
the OT ideal functionality definition is suitably modified, then the transfor-
mation becomes provably secure, and can be readily analyzed using simple
equational reasoning.

– The protocol of [10] can be proved secure according to neither the classic
nor the revised OT definitions considered above.

Technical details about our findings, and general comments/conclusions are pro-
vided in the next paragraphs.

1.1 Oblivious Transfer Extension.

The standard definition of OT is given by a functionality OT((m0,m1), b) = mb

that takes a pair of messages (m0,m1) from the sender, a selection bit b from
the receiver, gives mb to the receiver, and gives nothing to the sender. The two
messages are assumed to have the same length |m0| = |m1| = κ, which is usually
tied to the security parameter of the scheme and the mathematical structures
used to implement it. (E.g., κ = log |H| where H is the domain/range of some
group-theoretic cryptographic function.) A natural and well known method to
adapt such OT protocol to one allowing the transmission of longer messages is
the following:

1. Use an underlying OT protocol to send two random seeds (s0, s1) of length κ,
2. Use these seeds as keys to encrypt the two messages using a private-key en-

cryption scheme,3 and send both ciphertexts to the receiver over a standard
(authenticated, but insecure to eavesdropping) communication channel.

The intuition is that since the receiver gets only one of the two keys, the other
message is protected by the encryption scheme. Indeed, the intuition is correct,
in the sense that encryption does its job and protects the other message, but the
protocol is nevertheless not secure (at least, according to the simulation-based
fully asynchronous security definition implied by the OT functionality described
above.) Our formal analysis shows that, while the protocol is correct, and secure
against corrupted senders, it is not secure against corrupted receivers, and for
a very simple reason: it contains a subtle timing bug! In a real execution, the
sender transmits the encryption of its two messages as soon as the two messages
are made available by the environment. However, the simulator can produce the
corresponding simulated ciphertexts only after the receiver has chosen her selec-
tion bit b. In order to prove security, the sender should delay the transmission
of the ciphertexts until after the receiver has provided b to the underlying OT
protocol. The problem is that the above OT ideal functionality does not disclose
any information to the sender, not even if and when the receiver has selected
the bit b.

3 Since each seed si is used only once, the secret key encryption scheme can be as
simple as stretching si using a pseudorandom generator G, and use the resulting
string G(si) as a one-time pad to mask the message mi.

3

We also consider a revised OT definition OT((m0,m1), b) = (f(b),mb), that
includes an additional output f(b) ∈ {⊥,>} disclosing to the sender if b has
been chosen yet, without providing the actual value of b ∈ {0, 1}. We modify
the protocol accordingly (by letting the sender delay the transmission of the
ciphertexts until b > ⊥), and show that the modified protocol can be formally
proved secure according to the revised OT definition.

1.2 Oblivious Transfer in the Random Oracle Model.

In [10], Chou and Orlandi propose a new OT protocol achieving UC security in
the random oracle model [3]. The protocol is very elegant and can be efficiently
implemented based on elliptic curve groups. We provide a formal analysis of the
protocol using the equational framework. We show that if the naive OT defini-
tion is used, then the protocol is insecure against both corrupted senders and
corrupted receivers. For the case of corrupted senders, the failure of simulation
is due to the fact that in a real protocol execution the sender learns if and when
the receiver provides her selection bit b, which is not available to the simulator.
For the case of corrupted receivers, the problem is that in a real protocol execu-
tion the receiver can delay its random oracle query until after seeing the sender’s
ciphertexts, but in the ideal protocol execution, if the simulator has to output
the ciphertexts before seeing the receiver’s random oracle query, then it must be
able to guess an external random bit correctly before seeing any inputs, which
is impossible to achieve with high probability. However, unlike the case of the
OT length extension transformation, these problems are not the only weakness
of the protocol, and security cannot be proved by switching to the revised OT
definition given above.

1.3 Discussion/Conclusions

Before jumping to conclusions, some remarks about the significance of our results
are in order. As already noted, it should be understood that the aim of our work
was to illustrate the use of the equational framework, rather than criticizing
any specific protocol or definition. In particular, we are not arguing that the
revised OT definition given in Section 4 is the “correct” one, and everybody
should use it. In fact, other alternative definitions are possible. Our main point
is that the equational model is a convenient framework to precisely formulate
and investigate alternative definitions.

The OT message length transformation studied in Section 3 is folklore. We
are not aware of any work analyzing its security, and our study is, to the best
of our knowledge, the first work even making a formal security claim about it.
This is perhaps because doing this using the traditional framework based on
the informal use of interactive Turing machines already seemed cumbersome
and error prone enough not be worth the effort. In fact, the transformation is
simple enough that at first it is natural to wonder if a formal proof of security is
required at all. Our analysis shows that a formal security proof is indeed useful,
at very least to unambiguously identify the security property (ideal functionality)

4

for which the transformation is (proved or claimed to be) correct. We remark
that when we set to analyze the OT protocol transformation, we were giving
for granted that the transformation was secure, and the analysis was meant
primarily as a simple example to illustrate the use of the equational framework.
Finding that the protocol does not emulate the traditional OT definition came
to us as a surprise, even if in hindsight the timing bug is rather obvious. In this
respect, the equational framework proved to be a very convenient tool to carry
out a precise formal analysis with relatively modest effort.

As for the protocol of [10], our primary aim is to illustrate the use of the
equational framework to analyze a protocol in the random oracle model. We
are certainly not concerned about whether the protocol is making a “morally
correct” use of the random oracle, or if a “global” random oracle definition [8]
should be used instead. We simply use the equational framework to model and
analyze the protocol as described in the original paper [10]. Our analysis shows
that the protocol is not secure according to the original OT definition (seemingly
used in [10],) but even using a revised OT definition still does not allow to
prove security in the equational framework, in the technical sense that for any
simulator (expressible in the equational framework) there is an environment that
distinguishes between the real and the ideal systems.

We believe our analysis highlights the importance of a more rigorous proof
style when analyzing secure computation protocols than currently feasible using
traditional formulations of the UC framework and its variants. This is especially
important when it comes to formally specifying the security properties satisfied
(or claimed) by a protocol. Without an unambiguous formal security specifi-
cation/claim, even the most detailed proof is of little value, as it is not clear
what is being proved or claimed. Within the context of our work, the equational
framework of [26] proved to be a very convenient and useful formalism to ex-
press security definitions (in the form of ideal functionalities) and cryptographic
protocols in a concise, yet mathematically precise way. It allowed us to easily
explore different definitional variants and put them to good use to spot potential
bugs in cryptographic protocols. Exploring the applicability of abstract frame-
works along the lines of [24–26] to the specification and analysis of a wider range
of cryptographic protocols is likely to be mutually beneficial, both to further de-
velop and refine the models, and to gain useful insight on the security of concrete
cryptographic protocols.

2 Background and Notation

In this section we review the equational framework of [26], and define the nota-
tion used in this paper. For completeness, we will first recall some background
on the (standard) theory that gives a precise meaning to systems of equations as
used in [26] and in this paper. This material is important to give a solid math-
ematical foundation to the equational framework, but is not essential to follow
the rest of the paper, and the reader may want to skip directly to the following
paragraph describing our computational models and notational conventions.

5

2.1 Domain Theoretical Background

The mathematical foundation of the equational framework is provided by domain
theory. Here we give just enough background to describe the systems studied in
this paper, and refer the reader to [15,28,29] for a detailed treatment. Recall that
a partially ordered set (or poset) is a set X equipped with a reflexive, transitive
and antisymmetric relation≤. All posets in this paper are complete partial orders
(CPOs), i.e., any (possibly empty) chain x1 < x2 < . . . has a least upper bound
supi xi in X. The Cartesian product X×Y of two CPOs is also a CPO with the
component-wise partial order (x1, y1) ≤ (x2, y2) ⇐⇒ x1 ≤ x2 ∧ y1 ≤ y2. These
posets are endowed with the Scott topology, where a subset C ⊆ X is closed
if for all x ∈ C, y ≤ x implies y ∈ C, and any chain in C has a least upper
bound in C. A set is open if its complement is closed. The standard topological
definition of continuous function still applies here, and continuous functions
(with respect to the Scott topology) are exactly the functions that preserve
limits f(supi xi) = supi f(xi). The set of all continuous functions from CPOs
X to Y is denoted by [X → Y]. Any (Scott) continuous function is necessarily
monotone, i.e., for all x, y ∈ X, if x ≤ y then f(x) ≤ f(y). All CPOs X have
a minimal element ⊥ = sup ∅, called the bottom, which satisfies ⊥ ≤ x for all
x ∈ X.

For any set A, we can always construct a flat CPO A⊥ = A∪{⊥} by including
a unique bottom element ⊥. The partial order in A⊥ consists of ⊥ ≤ x for all
x ∈ A. It should be easy to see that all nonempty closed sets in A⊥ contain ⊥,
and open sets in A⊥ are exactly the subsets of A and the whole A⊥. Functions
f : A → B between sets can be lifted to strict functions f : A⊥ → B⊥ between
the corresponding flat CPOs by setting f(⊥) = ⊥. The bottom element usually
designates the situation where no (real) input or output is given yet.

For any CPO X, every continuous functions f : X → X admits a least fixed
point, denoted as fix(f), which is the minimal x ∈ X such that f(x) = x.
The least fixed point can be obtained by taking the limit of the sequence
⊥, f(⊥), f2(⊥), A system of mutually recursive equations can be solved via
least fixed point computation. Such a solution describes the final outputs of in-
teractive computations between nodes in a network. By Bekič’s theorem [31], the
least fixed point of such a system can be computed one component at a time:
For example, the system (x, y) = (f(x, y), g(x, y)) can be solved by computing
first x̂ = fix(λx.f(x, fix(λy.g(x, y)))) and then ŷ = fix(λy.g(x̂, y)), and the least
fixed point of the system is (x̂, ŷ).

We can also model probabilistic behaviors in equational framework. A prob-
ability distribution on a CPO X is a function p : X → [0, 1] such that4 p(A) +
p(B) = p(A ∪B) for all disjoint A,B ⊆ X and p(X) = 1. As usual, we say that
a probability p is negligible if for all x ∈ X, p(x) < n−c for any constant c > 1,

4 In general we should consider the Borel algebra on X when defining probability
distributions on X. Here we simply use X instead since we work on finite sets and
discrete probabilities.

6

where n is a security parameter.5 Similarly, p is overwhelming if 1− p is negligi-
ble. If X is a CPO, then the set of probability distributions over X, denoted by
D(X), is also a CPO, where for any two distributions p ≤ q (in D(X)) if and
only if p(A) ≤ q(A) for any open subset A ⊆ X. Probabilistic functions are just
(continuous) functions between sets of distributions with respect to this ordering
relation.

2.2 Computational Model

We recall that the execution model of [26] consists of a network, with nodes rep-
resenting computational units, and (directed) edges modeling communication
channels. (See below for details.) Each channel is associated with a partially
ordered set of channel “histories” or “behaviors”, representing all possible mes-
sages or sequences of messages that may be transmitted on the channel over
time. The partial order represents temporal evolution, so for any two histories
h1 ≤ h2 means that h2 is a possible extension (or future) of h1. The standard
example is that of finite sequences M∗ = {(m1, . . . ,mk) : k ≥ 0,∀i.mi ∈ M}
of messages from a ground set M , ordered according to the prefix partial order.
By combining the set M∞ of infinite sequences of messages from M , we get a
CPO Mω. Another common example, modeling a channel capable of delivering
only a single message, is the flat partial order M⊥, consisting of all messages
in M and a special bottom element ⊥ denoting the fact that no message has
been transmitted yet. Different incoming and outgoing channels (incident to a
single node) are combined taking Cartesian products, so that each node can
be thought as having just one input and one output. The computational units
at the nodes are modeled as functions F : X → Y from the incoming channels
to the outgoing channels, satisfying the natural monotonicity requirement that
for any h1 ≤ h2 in X, we have F(h1) ≤ F(h2) in Y . Informally, monotonicity
captures the intuition that once a party transmits a message, it cannot go back
in time and take it back. A probabilistic computational unit can be modeled
as a function of type X → D(Y), where D is the probability monad. We may
also consider units with limited computational power in the monadic approach,
which is an important extension to the equational framework. However, as all
the protocols considered in this paper run in constant time, for simplicity we do
not formalize computational cost (e.g. running time, space, etc) in our analysis.

Computation units can be connected to a communication network N to form
a system, where N is also a monotone function. Such a system is again a mono-
tone function mapping external input channels to external output channels of
all the units, and it is modeled as a composition of functions describing all the
units and the network. Syntactically, function compositions can be simplified
by substitution and variable elimination, and, when recursive definition is in-
volved, by using fixed point operations. In general, we use the notation (F|G)

5 In the asymptotic setting, cryptographic protocols are parameterized by a security
parameter n. For notational simplicity, we consider this security parameter n as fixed
throughout the paper.

7

to denote the system composed by functions F and G, where the composition
operator “|” is associative. The main advantage of the equational framework is
that it has a mathematically clean and well defined semantics, where functions
can be completely described by mathematical equations (specifying the relation
between the input and the output of the units), and composition simply com-
bines equations together. The equational approach also provides a simple and
precise way to reason about relations between systems. For example, equivalent
components (in the sense of having equivalent equations) can be replaced by
each other, and when considering probabilistic behaviors, if a component is in-
distinguishable from another component, then they can be used interchangeably
with negligible impact on the behavior of the entire system.

2.3 Security

The definition of security in the equational framework follows the well-accepted
simulation-based security paradigm. In this paper we consider only OT protocols,
which are two-party protocols between a sender program and a receiver program.
An ideal functionality F is a function from X = X0 ×X1 to Y = Y0 × Y1, where
Xi (Yi) is the external input (output) of party Pi. An environment is a function
Env : Y ω → Xω × {>}⊥ such that it takes as input the output history (as
a sequence of evolving messages) of a system, and it produces a sequence of
evolving inputs to the system and a decision bit t. Here a sequence of messages
x0x1 . . . over X is evolving if xi ≤X xi+1 for all i, where xi ∈ X and ≤X is the
partial order of X. An experiment between an environment Env and a system S,
is executed as follows: Env generates an evolving sequence of input x0x1 . . . to
S such that S outputs yi = S(xi) for each xi, Env takes as input the sequence
y0y1 . . ., and it eventually produces an external decision bit t. We write Env[S]
for the output (distribution) t of this experiment. When all parties are honest,
the real system is a composition of the network N and two parties P0 and P1,
denoted as (P0|P1|N), and it must be equivalent to the ideal functionality F.
When a party Pi is corrupted, the real system is composed by the remaining
honest party and the network, and the ideal system is composed by F and a
monotone simulator Sim. We say that a protocol is secure against the corruption
of Pi if there exists a simulator Sim as a computation unit such that the systems
(N|P(1−i)) and (Sim|F) are indistinguishable by any environment that produces
a decision bit in polynomial time in the output length of the system and the
security parameter.

A distinctive feature of the equational framework is the ability to specify fully
asynchronous systems. An environment might not provide a complete input to
a system at once, that is, the input to certain channels might be ⊥. So we
must consider such asynchronous environments when analyzing the security of
a protocol.

It is an very interesting and important open question to compare the equa-
tional framework (with the full extension of computational security) with the
UC model and its variants (for example, the simplified models of [6,30].) Due to

8

space limitation, we do not address such a problem in the current paper and we
will study it in future work.

2.4 Notation

Now we briefly mention our notational conventions. In this paper we mainly use
flat CPOs, i.e., partially ordered sets X with a bottom element ⊥ ∈ X such that
x1 ≤ x2 iff x1 = ⊥ or x1 = x2. These are used to model simple communication
channels that can transmit a single message from X \ {⊥}, with ⊥ representing
the state of the channel before the transmission of the message. For any CPO
X, we write X×2 = {(x, y) : x, y ∈ X, x 6= ⊥, y 6= ⊥}⊥ for the CPO of strict pairs
over X and ⊥. The elements of a pair z ∈ X×2 are denoted z[0] and z[1], with
z[i] = ⊥ when z = ⊥ or i = ⊥. The operation of combining two elements into
a strict pair is written 〈x, y〉. Notice that 〈x,⊥〉 = 〈⊥, y〉 = ⊥, and therefore
〈x,⊥〉[0] = 〈⊥, y〉[1] = ⊥ even when x, y 6= ⊥. For any set A, we write x ← A⊥
for the operation of selecting an element x 6= ⊥ uniformly at random from A.

It is easily verified that for any pairs z, 〈x0, x1〉, 〈y0, y1〉, strict function f and
strict binary operation �,

z = 〈z[0], z[1]〉 (1)

f(〈x0, x1〉[i]) = 〈f(x0), f(x1)〉[i] (2)

〈x0, x1〉[i]� 〈y0, y1〉[i] = 〈x0 � y0, x1 � y1〉[i] (3)

The followings are common CPOs and operations:

– The CPO T = {>}⊥, representing signals, i.e., messages with no information
content.

– The CPO B = {0, 1}⊥ of single bit messages, often used to select an element
from a pair.

– The CPO Mn = {0, 1}n⊥ of bit-strings of length n.
– x!y = 〈x, y〉[1], the operation of guarding an expression y by some other

expression x. Notice that x!y = y, except when x = ⊥, and can be used to
“delay” the transmission of y until after x is received.

– x! = x!>, testing that x > ⊥.

As an example, using the notation introduced so far, we can describe the
ideal (1-out-of-2) OT functionality by the equations in Fig. 1. (Notice that this
functionality is parameterized by a message space M.) The first line specifies the
names of the functionality (OT), input channels (m2, b) and output channel(s)
m. This is followed by a specification of the type of each channel: the input
interface includes a message pair m2 = 〈m0,m1〉 ∈ M×2 from a sender and a
selection bit b ∈ B from a receiver. The output interface is a single message
m ∈ M sent to the receiver while the sender does not get any information from
the functionality. The last line m = m2[b] is an equation specifying the value of
the output channel(s) as a function of the input channels. The functionality is
illustrated by a diagram showing the names of the function and the input/output
channels.

9

OTM(m2, b) = m
m2 : M×2

b : B
m : M
m = m2[b]

m2

m

b

OTM

Fig. 1. A naive OT functionality: the receiver gets the selected message m = m2[b],
and the sender does not get anything at all.

In the rest of this paper, equational variables usually belong to unique do-
mains (e.g., m2 : M×2n .) So from now on, we will omit such type specifications
when defining functions using equations, and we will follow the convention listed
in Table 1 for naming variables.

Variable name Domain Variable name Domain

m Mn m′ M`

m2 M×2
n m′2 M×2

`

c0,c1 M` c2 M×2
n

a,a′ T b,b′ B
i,o Mn i2,o2 M×2

`

k Kn k2 K×2
n

q (G2 ×G)⊥ q2 (G2 ×G)×2
⊥

X,Y G⊥

Table 1. Frequently used variables and their domains.

3 Oblivious Transfer Length Extension: a first attempt

As an abbreviation, when the message space M = {0, 1}n⊥ is the set of all bit-
strings of length n, we write OTn instead of OTM . Consider the following OT
length extension problem: given an OTn channel for messages of some (suffi-
ciently large) length n, build an OT functionality OT` for messages of length
` > n. The goal is to implement OT` making a single use of the basic OTn

functionality, possibly with the help of an auxiliary (unidirectional, one-time)
communication channel for the transmission of messages from the sender to the
receiver. For simplicity,6 we model the communication channel as a functionality
Net` that copies its input of length ` to the output of the same length:

6 This corresponds to a perfectly secure communication channel. More com-
plex/realistic communication channels are discussed at the end of this section.

10

Net`(i) = o
o = i

oi
Net`

The OT length extension protocol is specified by a pair of Sender and Receiver
programs, which are interconnected (using the OTn and Net2` functionalities) as
shown in Fig. 2. Notice how the external input/output interface of the system
corresponding to a real execution of the protocol in Fig. 2 is the same as that of
the ideal functionality OT`(m

′
2, b
′) = m′ the protocol is trying to implement.

o2

m′2

m2

m′

m

i2

b′
b

Sender Receiver

Real(m′2, b
′) = m′

OTn

Net2`

Fig. 2. A real execution of a candidate OT length extension protocol. The protocol
consists of a Sender and a Receiver programs that communicate using OTn and Net2`
functionalities.

A natural approach to design an OT length extension protocol is to make use
of a pseudorandom generator G : Mn →M` that stretches a short random seed of
length n into a long pseudorandom string of length `. Using such pseudorandom
generator, one may define candidate Sender and Receiver programs as follows:

Sender(m′2) = (m2, i2)
m2 ←M×2n

i2[0] = m′2[0]⊕ G(m2[0])
i2[1] = m′2[1]⊕ G(m2[1])

Receiver(m, o2, b
′) = (b,m′)

b = b′

m′ = o2[b′]⊕ G(m)

m′2

m2

i2
Sender

o2
m′

m

b′
b

Receiver

In words, these programs work as follows:

– The sender picks a pair m2 of two random seeds, and passes (one of) them
to the receiver using the OTn functionality. It then stretches the two seeds
using the pseudorandom generator G, and uses the generator’s output as a
one-time pad to “mask” the actual messages before they are transmitted to
the receiver over the communication channel Net2`.

11

– The receiver selects one of the two seeds from the OTn functionality, expands
it using the pseudorandom generator, and uses the result to “unmask” the
corresponding message from Net2`.

It is easy to show that the protocol is correct, in the sense that combining
the equations of OTn, Net2`, Sender and Receiver as shown in Fig. 2 results in
a system Real(m′2, b

′) = m′ that is perfectly equivalent to the defining equation
m′ = m′2[b′] of the ideal functionality OT`. Intuitively, the protocol also seems
secure because only one of the two seeds can be recovered by the receiver, and
the unselected message is protected by an unpredictable pseudorandom pad. But
security of cryptographic protocols is a notoriously tricky business, and deserves
a closer look.

We first consider the security of the protocol when the sender is corrupted.
The attack scenario corresponds to the real system obtained by removing the
Sender program from the protocol execution in Fig. 2. Following the simulation
paradigm, security requires exhibiting an efficient simulator program SimS (in-
teracting, as a sender, with the ideal functionality OT`) such that the following
real and ideal systems are computationally indistinguishable:

o2

m′2

m2 m2

m′
m′

m

i2
i2

b′
b′

b

SimSReceiver

RealS(m2, i2, b
′) = m′

OT`

OTn

Net2`

IdealS(m2, i2, b
′) = m′

Security is easily proved by defining the following simulator:

SimS(m2, i2) = m′2
m′2[0] = i2[0]⊕ G(m2[0])
m′2[1] = i2[1]⊕ G(m2[1])

m′2

m2

i2
SimS

We observe that RealS and IdealS are perfectly equivalent because they both
simplify to m′ = i2[b′] ⊕ G(m2[b′]). So, the protocol is perfectly secure against
corrupted senders.

We now turn to analyzing security against a corrupted receiver. This time
we need to come up with a simulator SimR such that the following real and ideal
executions are equivalent:

12

o2 o2

m′2 m′2

m2

m′

m m

i2

b′
b b

SimRSender

RealR(m′2, b) = (m, o2)

OT`

OTn

Net2`

IdealR(m′2, b) = (m, o2)

Of course, this time we can only aim at proving computational security, i.e.,
coming up with a simulator such that RealR and IdealR are computationally
indistinguishable. We begin by writing down explicitly the equations that define
the real system execution. Combining the equations for Sender, OTn and Net2`,
we obtain the following system:

RealR(m′2, b) = (m, o2)
m2 ←M×2n

o2[0] = m′2[0]⊕ G(m2[0])
o2[1] = m′2[1]⊕ G(m2[1])
m = m2[b]

So, the simulator may proceed by picking m0,m1 at random on its own, and set
m = m2[b] just as in the real execution. However, the simulator cannot compute
o2 as in RealR because it does not know m′2. This is addressed by using the same
message m′ twice, counting on the pseudorandom masking to hide this deviation
from a real protocol execution. Formally, the simulator SimR is defined as follows:

SimR(m′, b) = (b′,m, o2)
b′ = b
m2 ←M×2n

m = m2[b]
o2[0] = m′ ⊕ G(m2[0])
o2[1] = m′ ⊕ G(m2[1])

o2
m′

m

b′
b

SimR

Combining SimR with OT` results in the ideal system:

IdealR(m′2, b) = (m, o2)
m2 ←M×2n

o2[0] = m′2[b]⊕ G(m2[0])
o2[1] = m′2[b]⊕ G(m2[1])
m = m2[b]

As expected, the two systems IdealR, RealR are indistinguishable for both b = 0
and b = 1. For example, RealR(m′2, 0) and IdealR(m′2, 0) are equivalent because
they are both computationally indistinguishable from the process that chooses
m←Mn and c←M` at random and sets o2 = 〈m′2[0]⊕ G(m), c〉. The case when
b = 1 is similar. At this point it would be very tempting to conclude that RealR

13

and IdealR are equivalent, but they are not: they can be easily distinguished by an
environment that sets m′2 6= ⊥ and b = ⊥. In fact, IdealR(m′2,⊥) = (⊥,⊥), but
RealR(m′2,⊥) = (⊥, o2), where o2 6= ⊥. So, IdealR and RealR are not equivalent,
and the simulator SimR is not valid.

Insecurity in general By generalizing the above idea, we can show that, for any
simulator SimR there is an environment Env that can distinguish the two systems
RealR and IdealR with nonnegligible probability. We build Env that works in two
stages:

Env0(m, o2) = (b,m′2, t) where
b = ⊥, m′2 ←M×2n , t = (o2 > ⊥)

Env1(m, o2) = (b,m′2, t) where
b← {0, 1}, m′2 ←M×2n , t = (G(m) + o2[b] = m′2[b])

Notice that the output of the ideal system IdealR(m′2, b) = (m, o2) is defined
by (b′,m, o2)← SimR(m′2[b′], b), where b′ is an internal channel. Since b′ ranges
over a flat CPO, and m′2[⊥] = ⊥, the value of b′ resulting from a least fixed point
computation is given by (b′, ,) = SimR(⊥, b). In particular, b′ may depend
only on the external input b. We denote using SimR(b)b

′
the random variable b′

computed on input b.
Let p = Pr{SimR(⊥)b

′
= ⊥} and q = Pr{SimR(⊥,⊥)o2 = ⊥}. It is clear that

Pr{Envi[RealR] = >} = 1 for all i ∈ {1, 2}. For the ideal system, we have

Pr{Env0[IdealR] = >} = Pr{SimR(⊥,⊥)o2 > ⊥} · p
+ Pr{SimR(⊥,m′2[b′])o2 > ⊥} · (1− p)

= (1− q)p+ Pr{SimR(⊥,m′2[b′])o2 > ⊥} · (1− p).

Since Pr{Env0[RealR] = >} = 1, Pr{Env0[IdealR] = >} must be overwhelming;
and since Pr{SimR(⊥,⊥)o2 > ⊥} ≤ Pr{SimR(⊥,m′2[b′])o2 > ⊥}, p must be
negligible. Finally, notice that

Pr{Env1[IdealR] = >} = Pr{G(m) + o2[b] = m′2[b] | SimR(⊥)b
′

= ⊥} · p

+ Pr{G(m) + o2[b] = m′2[b] | SimR(⊥)b
′
> ⊥} · (1− p).

If SimR(⊥)b
′
> ⊥, then Pr{b′ = b} = 1

2 and so

Pr{G(m) + o2[b] = m′2[b] | SimR(⊥)b
′
> ⊥} =

1

2
(1 +

1

2`
).

This implies that Pr{Env2[IdealR] = >} = 1
2 + ε for some negligible ε > 0, and

so Env can distinguish the two systems.
The discrepancy between the two systems as shown above highlights a subtle

timing bug in the protocol: in order to carry out the simulation, the transmission
of i2 should be delayed until after the receiver has selected her bit b. However,
this information is not available to the sender, and fixing the protocol requires
revising the definition of OT, as we will do in the next section.

14

Other communication channels We conclude this section with a discussion of
other possible communication channels and weaker OT variants that leak some
information to the environment. For example, one may replace the perfectly se-
cure communication channel NetM with an authenticated channel AuthNetM(i, ei) =
(o, eo) that also takes an input ei : T and provides an output eo : M to the envi-
ronment. The environment output eo = i is used to leak the transmitted message
as well as the timing information about when the message is transmitted. The
environment input ei is used to allow the environment to delay the transmission
of the message o = ei!i to the receiver.

Similarly, one may consider the OT variants that leak the input timing in-
formation eo = (m2!>, b!>) to the environment, and allow the environment to
delay the OT output m = ei!m2[b]. This idea is similar to the “message header”
in the UC models proposed in [6, 30].

We remark that none of these modifications affect the analysis presented in
this section. In particular, considering a perfectly secure communication channel
Net only makes our insecurity result stronger. Also, leaking the signal b!> to the
environment does not solve the timing bug in the protocol: in order to fix the
bug, the sender needs to delay the transmission of i2 until b > ⊥. So, it is not
enough to provide this information to the environment. The timing signal b!>
needs to be provided as an input to the honest sender.

4 OT Length Extension

We have seen that the “standard” OT definition is inadequate even to model and
analyze a simple OT length-extension protocol. In Fig. 3 we provide a revised
definition of oblivious transfer that includes an acknowledgment informing the
sender of when the receiver has provided her selection bit.

OT′M(m2, b) = (a,m)
m = m2[b]
a = (b > ⊥)

m2

m

b

a OT′M

Fig. 3. A revised OT functionality.

We use this revised definition to build and analyze a secure OT length-
extension protocol, similar to the one described in the previous section. The OT
length extension uses the same Receiver program as defined in Section 3, but
modifies Sender by using the signal a to delay the transmission of the message
i2. The new Sender′ also forwards the signal a to the environment to match the
new OT′ definition:

15

Sender′(m′2, a) = (a′,m2, i2)
(m2, i

′
2) ← Sender(m′2)

a′ = a
i2 = a!i′2

m′2
m2

i2
a′

a
Sender′

o2

m′2
m2

m′

m

i2

b′
b

a′

a

ReceiverSender′

Real(m′2, b
′) = (a′,m′)

OTn

Net2`

Fig. 4. A normal execution of the OT Length Extension protocol.

The Sender and Receiver programs are interconnected using OT′n and Net2` as
shown in Fig. 4. As in the previous section, it is easy to check that the protocol
is correct, i.e., combining and simplifying all the equations from the real system
in Fig. 4 produces a set of equations identical to the revised definition of the
ideal functionality OT′(m′2, b

′) = (a′,m′). Security when the sender is corrupted
is also similar to before. The real and ideal systems in this case are given by

o2

m′2
m2 m2

m′ m′

m

i2 i2

b′ b′
b

a′

a a
Receiver SimS′

RealS(m2, i2, b
′) = (m′, a)

OT′`

OT′n

Net2`

IdealS(m2, i2, b
′) = (m′, a)

We see that this time SimS′ has an additional input a′ and output a. We adapt
the simulator from the previous section simply by adding an equation that for-
wards the a′ signal from OT′ to the external environment:

SimS′(m2, i2, a
′) = (a,m′2)

m′2 = SimS(m2, i2)
a = a′

m′2
m2

i2
a′

a
SimS′

16

RealS(m2, i2, b
′) and Ideal(m2, i2, b

′) are equivalent because they both output
m′ = o2[b′]⊕G(m2[b′]) and a = (b′ > ⊥). So, the protocol is still perfectly secure
against corrupted senders according to the revised OT′ definition.

We now go back to the analysis of security against corrupted receivers. The
real and ideal systems are:

o2 o2

m′2 m′2
m2

m′

m m

i2

b′
b b

a′ a′

a
SimRSender′

RealR(m′2, b) = (a′,m, o2)

OTn

OT′`

Net2`

IdealR(m′2, b) = (a′,m, o2)

No change to the simulator are required: we use exactly the same “candidate”
simulator SimR as defined in Section 3. Combining and simplifying the equations,
gives the following real and ideal systems:

RealR(m′2, b) = (a′,m, o2)
m2 ←M×2n

c0 = m′2[0]⊕ G(m2[0])
c1 = m′2[1]⊕ G(m2[1])
o2 = b!〈c0, c1〉
m = m2[b]
a′ = (b > ⊥)

IdealR(m′2, b) = (a′,m, o2)
m2 ←M×2n

c0 = m′2[b]⊕ G(m2[0])
c1 = m′2[b]⊕ G(m2[1])
o2 = 〈c0, c1〉
m = m2[b]
a′ = (b > ⊥)

Now, when b = ⊥, we have RealR(m′2,⊥) = IdealR(m′2,⊥) = (⊥,⊥,⊥). So, no
adversary can distinguish the two systems by not setting b. On the other hand,
when b 6= ⊥, RealR and IdealR are identical to the real and ideal systems from
the previous section, augmented with the auxiliary output a′ = (b > ⊥) = >. As
we already observed in Section 3, these two distributions are computationally
indistinguishable, proving that the length extension protocol is secure against
corrupted receivers.

5 The OT protocol of Chou and Orlandi

In this section we consider the OT protocol proposed by Chou and Orlandi
in [10]. In the original paper, this is described as a protocol to execute l instances
of 1-out-of-m OT, in parallel, i.e., the sender provides an l-dimensional vector of
m-tuples of messages, and the receiver (non-adaptively) selects one message from
each tuple. For simplicity, we consider the most basic case where l = 1 andm = 2,
i.e., a single OT execution of a basic OT protocol as defined in the previous
sections. This is without loss of generality because our results are ultimately
negative. So, fixing l = 1 and m = 2 only makes our results stronger. Our goal
is to show that this protocol is not provably secure in the equational framework

17

according to a fully asynchronous simulation-based security definition. In order
to formally analyze security, we begin by giving a mathematical description of
the protocol and model of [10] using the equational framework.

The Random Oracle model The protocol of [10] is designed and analyzed in the
random oracle model [3]. So, both parties have access to an ideal functionality
RO implementing a random function with appropriately chosen domain Q and
range K. Queries from the sender and receiver are answered consistently, and, in
general, RO can receive multiple (adaptively chosen) queries from both parties.
Formally, the random oracle is modeled by the following functionality, where
f∗(x1, x2, . . . ,) = (f(x1), f(x2), . . .) is the standard extension of f to sequences:

ROQ,K(qs, qr) = (ks, kr)
qs, qr : Q∗

ks, kr : K∗

f ← [Q→ K]
ks = f∗(qs)
kr = f∗(qr)

qs qr

ks krRO

The random oracle starts by picking a function f : Q→ K uniformly at ran-
dom, and then it uses f to answer any sequence of queries qs, qr ∈ Q∗ from
each party. We give separate channels to access RO to the sender (qs) and re-
ceiver (qr) to model the fact that random oracle queries are implemented as
local computations, and each party is not aware of if/when other players ac-
cess the oracle. The Sender and Receiver programs from the protocol of [10]
only make a small number of queries (two and one respectively.) Moreover, the
two sender queries are chosen simultaneously, non-adaptively. So, for simplicity,
we restrict RO(q2, q) = (k2, k) to an oracle that receives just a pair of queries
q2 = 〈q0, q1〉 ∈ Q×2⊥ from the sender and one query q ∈ Q⊥ from the receiver.
We remark that in order to prove security, one should consider an arbitrary (still
polynomial) number of (sequential, adaptively chosen) queries to model the ad-
versary/environment ability to compute the RO function locally an arbitrary
number of times.7 However, since our results are negative, fixing the number of
queries only makes our result stronger: we show that the protocol is not provably
secure even against the restricted class of adversaries that make only this very
limited number of random oracle queries.

It has been observed, for example in [8], that a protocol analyzed stand-alone
in the traditional random oracle model might lose its security when composed
with other instances of protocols in the same random oracle model: either each
instance uses an independent random oracle such that the real composed system
cannot assume a single hash function, or the composed system suffers from trans-
ferability attack. A modified notion called global random oracle was proposed

7 This can be modeled by letting qs and qr range over the set of sequences of queries
Q∗, partially ordered according to the prefix ordering relation.

18

in [8] to allow a composed system achieving UC security when all protocols can
access a single global random oracle. With respect to this issue, the OT protocol
of [10] cannot be claimed UC secure and it should be re-defined in the global
random oracle model or an equivalent notion. However, such issue is indepen-
dent of the negative result we are going to present. Since our motivation is to
illustrate the use of equational framework, for simplicity, we still consider the
traditional random oracle model as used in [10].

The protocol In order to facilitate a comparison with the original paper, we use
as far as possible the same notation as [10]. Let G = 〈B〉 be a group generated by
an element B of prime order p. Following [10], we use additive group notation,
so that the group elements are written as xB for x = 0, . . . , p − 1.8 In [10] it
is assumed that group elements have unique, canonical representations (which
allows for equality testing), and group membership can be efficiently checked.
Here, for simplicity, we assume that all messages representing group elements
are syntactically valid, i.e., whenever a program expects a group element from G
as input, it will always receive the valid representation of a such a group element
(or ⊥ if the no message has been sent), even when this value is adversarially
chosen. This is easily enforced by testing for group membership, and mapping
invalid strings to some standard element, e.g., the group generator B.

The protocol uses a random oracle RO(q2, q) = (k2, k) for functions with
domain Q = G2 × G and range K = {0, 1}n, which receives two (parallel)
queries q2 = 〈q0, q1〉 ∈ Q×2⊥ from the sender and one query q ∈ Q⊥ from the
receiver.

The protocol also uses a symmetric encryption scheme (E,D), with the same
message space Mn as the OT functionality, and key and ciphertext space Kn =
{0, 1}n⊥ equal to the range of the random oracle. In addition, the scheme is
assumed to satisfy the following properties:

1. Non-committing: There exist PPT S1,S2 such that, for all m ∈ Mn, the
following distributions are identical:9

{(e, k) : k ← K, e← E(k,m)}
{(e, k) : e← S1, k ← S2(e,m)}

2. Robustness: Let S be a set of keys chosen independently and uniformly at
random from Kn. For any PPT algorithms A, if e ← A(S), then the set
VS,e = {k ∈ S | D(k, e) 6= ⊥} of keys under which e can be successfully
decrypted has size at most 1 with overwhelming probability (over the choice
of S and the randomness of A.)

8 Chou and Orlandi use additive notation to match their efficient implementation
based on elliptical curve groups. Here we are not concerned with any specific imple-
mentation, but retain the additive notation to match [10] and facilitate the compar-
ison with the original protocol description.

9 In fact, computational indistinguishability is enough, but it is easy to achieve perfect
security.

19

A simple encryption scheme satisfying these property is given by E(m, k) =
(m, 0n)⊕ k, i.e., padding the message with a string of zeros for redundancy, and
masking the result with a one-time pad.

The protocol of [10] can be described by the equations in Fig. 5, and its
execution is depicted in Fig. 6. We briefly explain the normal protocol execution:
Sender first samples a random group element X and sends it to Receiver; once
it receives Y from Receiver, it submits a pair of queries q2 to RO; and once
it receives random keys k2 from RO, it encrypts messages m2 under the keys
k2, and it sends the ciphertext pair c2 to Receiver. On the other hand, Receiver
first samples a random group element yB, and upon receiving X from Sender it
computes Y = bX+yB and sends it to Sender; it then submits a query q to RO,
and once the random key k and the ciphertexts c2 are all received, it decrypts
c2[b] using k to get the desired message m.

Sender(m2, k2, Y) = (q2, X, c2)
x ← Z∗p
X = xB
q2[0] = ((X,Y), xY)
q2[1] = ((X,Y), xY − xX)
c2[0]← E(k2[0],m2[0])
c2[1]← E(k2[1],m2[1])

Receiver(k,X, c2, b) = (q, Y,m)
y ← Z∗p
Y = bX + yB
q = ((X,Y), yX)
m= D(k, c2[b])

Fig. 5. The OT protocol of Chau and Orlandi.

q2 q

m2

m

k2 k

c2

b

Y

XSender Receiver

RO

Fig. 6. A normal execution of the OT protocol of Chou and Orlandi.

In the following subsections, we show that this protocol is insecure, both
according to the classic OT definition given in Fig. 1, and according to our
revised OT′ definition of Fig. 3 that includes the signal a = (b > ⊥) to the
sender. Specifically, first, in Subsections 5.1 and 5.2 we show that if the definition
from Fig. 1 is used, then the protocol is insecure against corrupted senders and
corrupted receivers. The sender insecurity is for reasons very similar to those

20

leading to the failure simulation in Section 3. Unlike the case of OT length
extension, when considering the revised OT′ definition and modifying the sender
program accordingly, we show in Subsection 5.3 that the modified protocol is
still insecure against corrupted senders and corrupted receivers.

5.1 Corrupted sender

We begin our analysis of the OT protocol with respect to the standard OT
functionality, and we first consider the case when the sender is corrupted. The
corresponding real and ideal systems are shown in the following diagrams:

q2 q2q

m2

m m

k2 k2k

c2 c2

b b

Y Y

X X
SimSReceiver

RO

OT

RealS(q2, X, c2, b) = (k2, Y,m) IdealS(q2, X, c2, b) = (k2, Y,m)

For the protocol to be secure, the two systems should be computationally
indistinguishable (for some simulator program SimS.) Just like the case of OT
length extension, there exists an environment that can distinguish the two sys-
tems. We now describe an environment Env that works in two stages Env0 and
Env1, and show that for any SimS, at least one of Env0 and Env1 distinguishes
the real and ideal systems with nonnegligible advantage. We recall that a distin-
guishing environment connects to all input and output channels of the system,
and produces one external output t ∈ {⊥,>}. The distinguishing advantage of
Envi is given by

Adv[Envi] = |Pr{Envi[RealS] = >} − Pr{Envi[IdealS] = >}| .

The two stages of the distinguisher work as follows:

– Env0(k2, Y,m) = (q2, X, c2, b, t) sets q2 = ⊥, X = B, c2 = ⊥ and b = ⊥, and
outputs t = (Y > ⊥).

– Env1(k2, Y,m) = (q2, X, c2, b, t) sets q2 = ⊥, X = B, c2 = ⊥ and b = 0, and
outputs t = (Y > ⊥).

Notice that the only difference between these two stages is in the value of b.
Using the equations for the Receiver, we see that in the real system Y > ⊥
if and only if b > ⊥. In particular, we have Pr{Env0[RealS] = >} = 0 and
Pr{Env1[RealS] = >} = 1. On the other hand, we have

Pr{Env0[IdealS] = >} = Pr{Env1[IdealS] = >} (4)

21

because when interacting with IdealS, the output value t is independent of b.
So, if we let p be the probability in (4), the two stages of Env have advantage
Adv[Env0] = p and Adv[Env1] = 1 − p. It follows that either Env0 or Env1 has
distinguishing advantage at least 1/2.

Intuitively, this environment can distinguish the real and the ideal systems
because a corrupted sender (interacting with the real system RealS), learns when
the receiver sets b > ⊥ by observing the incoming message Y > ⊥, but in the
ideal system this timing information is not passed to the simulator.

5.2 Corrupted receiver

We have seen that when using the standard OT definition, the protocol is not
secure against corrupted senders. Now we turn to analyzing the protocol against
corrupted receivers with respect to the standard OT definition. The real and
ideal system in this case are shown in Fig. 7.

q2 q q

m2 m2

m

k2 k k

c2 c2

b

Y Y

X X
SimR

RO

Sender

RealR(m2, q, Y) = (a, k,X, c2)

OT

IdealR(m2, q, Y) = (a, k,X, c2)

Fig. 7. The real and ideal systems when receiver is corrupted.

Security requires that the real and the ideal systems are indistinguishable for
some simulator program SimR. Unfortunately, as we are about to show, no such
simulator exists.

Proposition 1. For the OT protocol in Fig. 5, when the receiver is corrupted,
for any receiver simulator SimR, there is an environment that distinguishes the
two systems with nonnegligible probability.

Proof. We build an environment that works in three stages, denoted by Envi for
i ∈ {0, 1, 2}:

22

Env0(k,X, c2) = (m2, q, Y, t) where
d← {0, 1}, y ← Z∗p, m2 = ⊥, Y = dX + yB, q = ⊥, t = (c2 = ⊥)

Env1(k,X, c2) = (m2, q, Y, t) where
d← {0, 1}, y ← Z∗p, m2 ←M×2n , Y = dX + yB, q = ⊥, t = (c2 > ⊥)

Env2(k,X, c2) = (m2, q, Y, t) where
d← {0, 1}, y ← Z∗p, m2 ←M×2n , Y = dX + yB, q = ((X,Y), yX),
t = (D(k, c2[d]) = m2[d])

Assume there exists a receiver simulator SimR. With the real system, Envi
outputs t = > with probability 1 for all i ∈ {0, 1, 2}. So Pr{Envi[(OT|SimR)] =
>} must be overwhelming for all i ∈ {0, 1, 2}.

Notice that in the ideal system both b and m are internal channels such that
m = m2[b], and we can simplify the output of the ideal system as (k,X, c2) ←
SimR(m2[b], q, Y). For i = 0, 1, 2, let ui denote the (random variable of) the input
to SimR when working with Envi, and let SimR(ui)

b denote the (random variable
of) the value of b given input ui. The external input channels to SimR are q and
Y , and their values are ⊥ in both Env0 and Env1. If SimR sets b = ⊥ when q = ⊥
and Y = ⊥, then it cannot tell the difference between Env0 and Env1, and thus
at least one of Env0 and Env1 has a nonnegligible distinguishing advantage. So
Pr{SimR(u0)b > ⊥} must be overwhelming. Since SimR is a monotone function,
Pr{SimR(ui)

b > ⊥} is also overwhelming for i ∈ {1, 2}. In particular, let ε =
1
2 Pr{SimR(u1)b = ⊥}, then ε is negligible.

Now consider Env1, which sets q = ⊥ and samples Y from the distribution
{dX + yB | y ← Z∗p} ≡ {yB | y ← Z∗p}. So q and Y are independent of d, and

thus Pr{SimR(u1)b = d} = Pr{SimR(u1)b = 1− d} = 1
2 − ε.

Finally, when working with Env2 we have

Pr{Env2[(OT|SimR)] = >} = Pr{D(k, c2[d]) = m2[d]}
= Pr{D(k, c2[d]) = m2[d] | SimR(u2)b = d}Pr{SimR(u2)b = d}

+ Pr{D(k, c2[d]) = m2[d] | SimR(u2)b = 1− d}Pr{SimR(u2)b = 1− d}
+ Pr{D(k, c2[d]) = m2[d] | SimR(u2)b = ⊥}Pr{SimR(u2)b = ⊥}

Since SimR is monotone, 1
2−ε = Pr{SimR(u1)b = 1−d} ≤ Pr{SimR(u2)b = 1−d},

and thus Pr{SimR(u2)b = d} ≤ 1
2+ε. On the other hand, when SimR(u2)b = 1−d,

it holds that SimR(ui)
b ∈ {1− d}⊥ for i ∈ {0, 1} and thus SimR has no access to

m2[d], and since m2[d] is independently sampled from Mn, SimR cannot guess it
correctly with probability more than 1

2n . So we can bound the probability

Pr{Env2[(OT|SimR)] = >} ≤ 1

2
+ ε+

1

2n
+ 2ε,

which is close to 1
2 . Therefore the environment can distinguish the real and the

ideal systems with nonnegligible probability. ut

5.3 Revised OT definition

The timing issue with a corrupted sender is similar to the one for OT length
extension that is fixed by adding an acknowledgment signal. So it is natural to ask

23

if the insecurity problems can be resolved by modifying the protocol according
to the revised functionality OT′. Clearly, changing the definition requires also
modifying the sender program to output a signal a in order to match OT′. Since
the sender receives only one message (Y) from the receiver, there is only one
sensible way to modify the protocol to produce this additional output: setting
a = (Y > ⊥). Formally, we consider the following modified sender program:

Sender′(m2, k2, Y) = (a, q2, X, c2)
(q2, X, c2) ← Sender(m2, k2, Y)
a = (Y > ⊥)

We leave it to the reader to verify that a real protocol execution (Sender′ | RO |
Receiver) : (m2, b) 7→ (a,m) is equivalent to the ideal functionality OT′ : (m2, b) 7→
(a,m).

For security, we start with the case when the receiver is corrupted. The real
and ideal systems are depicted in Fig. 8. Notice that the additional bit a is not
provided to the simulator but is instead given to the environment. So any receiver
simulator SimR that connects to OT′ to form the ideal system in the revised OT
definition has the same interface as a receiver simulator in the standard OT
definition. Thus we obtain the same result as in Proposition 1 that the modified
protocol is insecure against corrupted receivers.

q2 q q

m2 m2

m

k2 k k

c2 c2

b

a aY Y

X X
SimR

RO

Sender′

RealR(m2, q, Y) = (a, k,X, c2)

OT′

IdealR(m2, q, Y) = (a, k,X, c2)

Fig. 8. The real and ideal systems when receiver is corrupted, under revised OT defi-
nition.

When the sender is corrupted, the sender simulator is now provided with an
additional bit a = (b > ⊥), as shown in Fig. 9. This small modification is the key
to prove security for the OT length extension protocol, so one might speculate,
as we did in the previous version of this paper, that security could also hold
for the current protocol in the case of sender corruption. On the contrary, this
modification is not enough. As we are exploring the useability of the equational
framework, we show in the following why the natural simulation strategy that
takes advantage of the signal a fails at proving security.

24

q2 q2q

m2

m m

k2 k2k

c2 c2

b b

aY Y

X X
SimS

RO

Receiver′

RealS(q2, X, c2, b) = (k2, Y,m)

OT′

IdealS(q2, X, c2, b) = (k2, Y,m)

Fig. 9. The real and ideal systems when sender is corrupted, under revised OT defini-
tion.

The speculated simulator is shown below. As we are presenting negative
results, we limit the power of a corrupted sender such that it can send at most
one pair of RO queries q2 and it obtains at most one pair of keys k2.

SimS(q2, X, a, c2) = (k2, Y,m2)
f ← [(G2 ×G)→ K]
k2 = f∗(q2)
y ← Z∗p
Y = X!a!yB
m2[0] = if (∃i.q2[i] = ((X,Y), . . .)) then D(k2[i], c2[0])
m2[1] = if (∃i.q2[i] = ((X,Y), . . .)) then D(k2[i], c2[1])

Let us derive an equation for m. In the real system RealS, the message m
satisfies the equation

m = D(f((X, bX + yB), yX), c2[b]), (5)

where y is sampled uniformly at random from Z∗p by the honest receiver. In the

ideal system IdealS = (SimS|OT′), notice that a = (b > ⊥), and so

m = D(f((X,X!b!yB),W), c2[b]), (6)

where y is sampled uniformly at random from Z∗p by the simulator and W is some
element of G chosen by the environment. In both equations (5) and (6), c2[b]
is an input to the system given by the environment. By a careful examination,
we can see that the value of m as computed in these two equations could be
different if the environment sets W to be distinct from yX. We follow this idea
to construct the following environment:

Env(k2, Y,m) = (q2, X, c2, b, t) where
x← Z∗p, X = xB, w ← Z∗p, W = wB, b← {0, 1},
For i ∈ {0, 1}:
q2[i] = ((X,Y),W), c2[i]← E(k2[i], 0),

t = (m > ⊥)

25

In the real system, Env outputs t = > only in two cases: either the key k =
f((X,Y), yX) obtained by the receiver is same as the key k2[b] = f((X,Y),W)
used by Env to encrypt m2[b] in the ciphertext c2[b], where f is a random function
sampled by RO, or the decryption succeeds when k 6= k2[b]. For a sufficiently
large key space Kn, since yX = yxB and W = wB are independently sampled
and uniformly distributed, the probability ε that k = k2[b] is negligible. Since
(E, D) is a robust encryption scheme, when k 6= k2[b] the decryption can succeed
with only a negligible probability δ. So Env outputs t = > with a negligible
probability ε+ (1− ε)δ. But in the ideal system, the decryption always succeeds
and thus we get m = 0 > ⊥, which implies that Env outputs t = > with
probability 1. Therefore Env has a nonnegligible distinguishing advantage.

We remark that, if the above simulator SimS has access to a DDH oracle O
that answers on input (X,Y,W) whether W = yxB for X = xB and Y = yB,
then we can modify the equations for m2 in SimS to prove sender security with
respect to the revised OT definition:

m2[0] = if (∃i.q2[i] = ((X,Y),W) and O(X,Y,W) = >) then D(k2[i], c2[0])
m2[1] = if (∃i.q2[i] = ((X,Y),W) and O(X,Y,W) = >) then D(k2[i], c2[1])

That is, if a RO query contains a triple of group elements satisfying the DDH
condition, then SimS uses the corresponding key to decrypt both c2[0] and c2[1]
and assigns the resulting plaintext to m2[0] and m2[1], respectively. As already
noted by Genç, Iovino, and Rial [13], sender security holds with certain gap-DH
groups in which the CDH problem is hard but the DDH problem is easy to solve.

6 Conclusion

We considered two OT protocols within the equational framework in this paper:
The OT length extension protocol and the “simplest” OT protocol by Chou and
Orlandi [10]. Both examples demonstrated the simplicity and expressive power
of the equational framework in analyzing MPC protocols. We found that the
traditional formulation of the OT problem does not fit into a fully asynchronous
simulation-based security model, and we revised it accordingly to fix it for the
OT length extension protocol. Still, the revised formulation does not allow to
salvage the OT protocol of Chou and Orlandi. Overall, the equational framework
proved to be a convenient formalism to carry out rigorous, yet concise, security
analysis of cryptographically interesting protocols.

References

1. Backes, M., Pfitzmann, B., Waidner, M.: The reactive simulatability (RSIM) frame-
work for asynchronous systems. Inf. Comput. 205(12), 1685–1720 (2007)

2. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: 45th Symposium on Foundations of Computer
Science (FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings. pp. 186–195
(2004)

26

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security. pp. 62–73. CCS ’93, ACM, New York, NY, USA (1993)

4. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Advances in Cryptology - EUROCRYPT 2006,
25th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings.
Lecture Notes in Computer Science, vol. 4004, pp. 409–426. Springer (2006)

5. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Foundations of Computer Science, 2001. Proceedings. 42nd IEEE
Symposium on. pp. 136–145 (Oct 2001)

6. Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally compos-
able security for standard multiparty computation. In: Advances in Cryptology
- CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part II. pp. 3–22 (2015)

7. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with
global setup. In: Theory of Cryptography, 4th Theory of Cryptography Conference,
TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007, Proceedings. pp.
61–85 (2007)

8. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random ora-
cle. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security. pp. 597–608. CCS ’14, ACM, New York, NY, USA (2014)

9. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: Proceedings of the Thiry-fourth Annual
ACM Symposium on Theory of Computing. pp. 494–503. STOC ’02, ACM, New
York, NY, USA (2002)

10. Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) Progress in Cryptology – LATINCRYPT 2015: 4th
International Conference on Cryptology and Information Security in Latin Amer-
ica, Guadalajara, Mexico, August 23-26, 2015, Proceedings. pp. 40–58. Springer
International Publishing (2015)

11. Crépeau, C., Graaf, J., Tapp, A.: Committed oblivious transfer and private multi-
party computation. In: Coppersmith, D. (ed.) Advances in Cryptology — CRYPT0’
95: 15th Annual International Cryptology Conference Santa Barbara, California,
USA, August 27–31, 1995 Proceedings. pp. 110–123. Springer Berlin Heidelberg,
Berlin, Heidelberg (1995)

12. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

13. Genç, Z.A., Iovino, V., Rial, A.: “The simplest protocol for oblivious
transfer” revisited. IACR Cryptology ePrint Archive 2017, 370 (2017),
http://eprint.iacr.org/2017/370

14. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing. pp.
218–229. STOC ’87, ACM, New York, NY, USA (1987)

15. Gunter, C.A., Scott, D.S.: Handbook of theoretical computer science (vol. b). chap.
Semantic Domains, pp. 633–674. MIT Press, Cambridge, MA, USA (1990)

16. Hofheinz, D., Shoup, V.: GNUC: A new universal composability framework. J.
Cryptology 28(3), 423–508 (2015)

17. Hofheinz, D., Unruh, D., Müller-Quade, J.: Polynomial runtime and composability.
J. Cryptology 26(3), 375–441 (2013)

27

18. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) Advances in Cryptology – CRYPTO 2008: 28th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 17-
21, 2008. Proceedings. pp. 572–591. Springer Berlin Heidelberg, Berlin, Heidelberg
(2008)

19. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous
computation. In: TCC. pp. 477–498 (2013)

20. Kilian, J.: Founding crytpography on oblivious transfer. In: Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing. pp. 20–31. STOC
’88, ACM, New York, NY, USA (1988)

21. Küsters, R.: Simulation-based security with inexhaustible interactive turing ma-
chines. In: Computer Security Foundations Workshop, CSFW-19 ’06. pp. 309–320.
IEEE Computer Society (2006)

22. Küsters, R., Tuengerthal, M.: The IITM model: a simple and expressive model
for universal composability. IACR Cryptology ePrint Archive 2013, 25 (2013),
http://eprint.iacr.org/2013/025

23. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. Journal of Cryptology 25(4), 680–722 (2011)

24. Maurer, U.: Constructive cryptography – a new paradigm for security definitions
and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) Theory of Security and
Applications: Joint Workshop, TOSCA 2011, Saarbrücken, Germany, March 31
- April 1, 2011, Revised Selected Papers. pp. 33–56. Springer Berlin Heidelberg,
Berlin, Heidelberg (2012)

25. Maurer, U., Renner, R.: Abstract cryptography. In: Innovations in Computer Sci-
ence - ICS 2010, Tsinghua University, Beijing, China, January 7-9, 2011. Proceed-
ings. pp. 1–21 (2011)

26. Micciancio, D., Tessaro, S.: An equational approach to secure multi-party computa-
tion. In: Proceedings of the 4th Conference on Innovations in Theoretical Computer
Science. pp. 355–372. ITCS ’13, ACM, New York, NY, USA (2013)

27. Rabin, M.O.: How to exchange secrets with oblivious transfer (1981), technical
Report, TR-81 edn. Aiken Computation Lab, Harvard University

28. Scott, D.S.: Domains for denotational semantics. In: Proceedings of the 9th Collo-
quium on Automata, Languages and Programming. pp. 577–613. Springer-Verlag,
London, UK, UK (1982)

29. Stoltenberg-Hansen, V., Lindström, I., Griffor, E.R.: Mathematical Theory of Do-
mains. Cambridge University Press, New York, NY, USA (1994)

30. Wikström, D.: Simplified universal composability framework. In: Theory of Cryp-
tography - TCC 2016-A. LNCS, vol. 9562, pp. 566–595. Springer (2016)

31. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press, Cambridge, MA, USA (1993)

32. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: Founda-
tions of Computer Science, Proceedings of FOCS’86. pp. 162–167. IEEE Computer
Society (1986)

28

